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Abstract—Over-the-air analog computation allows offloading
computation to the wireless environment through carefully
constructed transmitted signals. In this paper, we design and
implement the first-of-its-kind convolution that uses over-the-
air computation and demonstrate it for inference tasks in a
convolutional neural network (CNN). We engineer the ambient
wireless propagation environment through reconfigurable intelli-
gent surfaces (RIS) to design such an architecture, which we
call ’AirNN’. AirNN leverages the physics of wave reflection
to represent a digital convolution, an essential part of a CNN
architecture, in the analog domain. In contrast to classical com-
munication, where the receiver must react to the channel-induced
transformation, generally represented as finite impulse response
(FIR) filter, AirNN proactively creates the signal reflections to
emulate specific FIR filters through RIS. AirNN involves two
steps: first, the weights of the neurons in the CNN are drawn from
a finite set of channel impulse responses (CIR) that correspond
to realizable FIR filters. Second, each CIR is engineered through
RIS, and reflected signals combine at the receiver to determine
the output of the convolution. This paper presents a proof-of-
concept of AirNN by experimentally demonstrating convolutions
with over-the-air computation. We then validate the entire
resulting CNN model accuracy via simulations for an example
task of modulation classification.

Index Terms—over-the-air computation, analog convolution,
reconfigurable intelligent surface, convolutional neural network,
programmable wireless environment

I. INTRODUCTION

New and emerging Internet of Things (IoT) applications
require collecting and processing large amounts of data,
generally transmitted over the wireless channel [1]. In this
context, over-the-air analog computation has been proposed
as a alternative to all-digital approaches using acoustic [2],
optical [3] and RF [4] signals. The core idea is to take
advantage of additional degrees of freedom in the environment
to partially offload computation into the wireless domain.
Ideally, communications signals that carry information from
the source are also controlled and modified by the environment
such that the received signal emulates the end result of a
mathematical operation. Recent results, albeit limited to pure
simulation studies, have demonstrated remarkable promise for
operations like data aggregation [5] and processing in recurrent
neural networks [2].
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Fig. 1: (a) Generic CNN architecture, highlighting the convolution
step (shown in red box), with input data in the form of raw IQ
samples and where digital convolution operations in software are
represented as a bank of FIR filters, (b) AirNN architecture shows
the same convolution operation with over-the-air computation, using
a RIS network. Different RIS configurations result in specific channel
transformations, equivalent to the FIR filter responses of the digital
convolution operations shown in (a).

The wireless research community has applied machine
learning (ML) methods to physical layer related problems
of protocol classification [6], adversarial activity detection,
modulation classification [7] and RF fingerprinting [8], among
others. In particular, the ML solutions proposed in these works
are based on a special class of architectures named convolu-
tional neural networks (CNNs). Fig. 1a shows a generic CNN
processing chain, composed of a convolutional layer, followed
by a fully connected (FC) layer that predicts the output and
where raw in-phase/quadrature (IQ) samples are fed to the
neural network as example of an input.

Given the interest in applying CNNs on RF signals and the
promise of analog computation, this paper poses the following
question: what if we were able to realize analog convolu-
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tions using over-the-air computation accurately enough to
substitute their digital equivalents in a CNN? We describe
a methodology to achieve this objective and demonstrate it
experimentally. We then show how this analog convolution
impacts more complex mathematical operations, such as a
CNN (that may have hundreds of such convolution operations).
• Programming the Environment: We propose a radically
different approach by shifting the burden of executing the
convolution operation from dedicated digital devices into the
ambient environment. First, we note that the output of a
convolution operation is a time series of samples. Each sample
is calculated as the addition of the element-wise product
between a finite impulse response (FIR) filter and a subset
of sequential samples of the input data. In this work, we
perform convolutions in the analog domain leveraging wireless
signals and their physical interaction with the propagation
environment. Specifically, we relate the addition operation
to the interference phenomena that occurs when different
multipath components of the transmitted signal are naturally
combined at the receiver location. Moreover, we relate each of
the element-wise products to the interaction between a sample
of the input data (transferred to a wireless signal) with one
of the wireless channel multipath components. Broadly, we
relate the digital FIR filter in a convolution operation with the
channel impulse response (CIR) of the wireless channel (see
Fig.1). Our goal is then to program the CIR to implement
different FIR filters to convolve an input signal with.

We propose to leverage a network of reconfigurable in-
telligent surfaces (RIS) that cover the principal multipath
components in the wireless propagation environment. An RIS
is capable of imparting changes on the phase and amplitude of
the reflected signal [9]. In signal processing, such changes are
characterized as complex-valued weights. Therefore, changing
the configuration of the RIS is equivalent to implementing
a range of complex product operations. Following this ap-
proach, specific samples of the input signal are transmitted
towards individual RIS. As a result, signals interact with a
carefully engineered propagation and reflection environment
and combine at the receiver, emulating the mathematically
equivalent outcome of passing the signal through a digital
convolutional filter present in a CNN. As this step happens
over-the-air, we refer to the resulting architecture as ’AirNN’:
our prototype testbed for over-the-air convolutions. We can
extend this concept from a single convolution computation to
a number of them performed in succession. Fig. 1b shows two
configurations of RIS that give rise to two different desired FIR
filters, which convolve with the transmitted signal.
• Challenges in Designing AirNN: While the domain of ana-
log computation has existed for over a decade [10], combining
wireless signals to emulate a digital convolution operation has
not been attempted before. It is noted that AirNN relies on
representing a convolutional filter of size N in a CNN as an
N-tap FIR filter. This leverages the mathematical equivalence
between the latter and the N tap discrete version of the CIR.
In order to realize this equivalence in practice, we identify
several challenges that need to be addressed.

First, the CIR depends on the transmitted signal and the
multipath components of the environment, which the RIS can

influence to a significant extent, but not perfectly. Moreover,
an RIS can only implement a finite set of complex-valued
weights that is dictated by its hardware constraints. This
motivates the design of an efficient optimization loop: we
must be able to train a CNN with quantized weights, drawn
from a very limited candidate set, that corresponds to the
feasible CIR set that can be attained trough the use of RIS
in practice. This mapping between RIS configuration and CIR
deviates over time as the wireless channel conditions change.
Therefore, we need to engineer repeatable conditions during
testing while accommodating ambient factors that cannot be
controlled. Second, from a systems viewpoint, we need to
create a network of programmable, low-cost RIS that is time-
synchronized and responds to control directives to change each
RIS reflection ability. Finally, we should demonstrate that the
accuracy of a CNN with experimentally computed convolution
in AirNN is comparable to its all-digital CNN running on a
GPU.
• Summary of Contributions in AirNN: Our main contri-
butions are as follows:
(1) We formulate and experimentally demonstrate the theory
that maps digital (processing-based) and analog convolutions
with over-the-air computation using programmable RIS.
(2) We propose a method to train CNNs with a quantized
set of weights drawn from the RIS-engineered candidate set
without appreciable loss of accuracy for a task of modulation
classification, compared to unconstrained training. We include
measures to increase resiliency when the wireless channel
changes over time.
(3) As a systems contribution, we implement a software-
framework to control the RIS network called AirNNOS that
synchronizes and aligns start times of the transmitters and the
receiver, as well as reconfigures the RIS on demand to change
their reflection coefficients.
(4) Given the measured error of the convolution performed in
AirNN, we show through simulations that the experimentally
derived analog convolution is accurate enough to run inference
on trained neural networks, with an average deviation in testing
accuracy of 3.2% for a range of medium-to-high SNR of [6,
30] dB compared to classical, GPU-based inference.

II. RELATED WORK

The area of analog computing is in a nascent stage [11][12].
Within the physics community, the work in [11] surveys the
state-of-the-art metastructures for performing analog compu-
tation. The seminal work in [12] uses a chaotic cavity as
a random medium and a simple phase- binary metasurface
reflecting-array to shape the wave field and perform desired
operations. We note that a variety of approaches spanning
digital, analog, hybrid and FPGA-based solutions have been
studied to accelerate training and inference in NNs [13].
The authors in [14] propose a method to train end-to-end
analog NN using stochastic gradient descent by varying the
conductance of programmable resistive devices and diodes.
In-situ learning for a memristor-based multi-layer perceptron
is demonstrated in [15]. In [16] the authors implement an
optical neural chip to realise complex-valued NN. Despite
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Fig. 2: AirNN system components and transmission sequence:
AirNN uses different directive antennas to forward the signals of
interest to the network of programmable RIS, controlled via the neural
network controller (NNCtrl) module. The RIS reflect the signals
with desired channel transformations that combine at the receiver.

their promising results, all these approaches propose on-chip
implementations, an essential difference from AirNN that
uses the wireless propagation environment as part of the
computation entity. The authors in [2] leverage wave physics
properties to experimentally demonstrate an analog recurrent
NN using acoustic signals. Apart from the difference on the
use of acoustic -instead of RF- signals, their approach lacks
the programmability provided by use of RIS.

Specific to the RF domain, Over-the-Air Computation (Air-
Comp) has been receiving special attention for solving prob-
lems such as data aggregation [22], efficient battery recharging
trough beamforming [23][24] and local model uploading for
federated learning [25] [26]. These works however, target
different applications from what we achieve in AirNN, i.e.,
over-the-air computation for realizing convolutions that are
part of a CNN. Our focus on the convolution operation is mo-
tivated by the remarkable performance that CNNs have shown
within the deep learning community in fields such as computer
vision, signal processing or RF signal classification [30]. This
performance has attracted numerous research efforts towards
realizing convolution implementations, as this processing step
alone consumes over 80% of the total computation during the
forward propagation step [31].

Regarding the use of RIS, multiple works in the RF domain
have included them as part of their solution to perform product
operations. Several works enhance the channel conditions by
compensating for destructive interference [27], boosting the
received power [28] or maximizing the achievable hybrid rate
of all users in a network [29] by configuring a network of
RIS. However, all above works ([22]- [29]) are validated
in simulation, not providing insights on the implementation
feasibility of their approaches. Different from these works that
mostly rely on AirComp to perform data aggregation tasks, this
paper is, to the best of our knowledge, the first experimental
demonstrator of using RF signals and a network of RIS to
perform over-the-air synchronised products and additions on
a prototype testbed, as an alternative to digital convolutions.
It is also the first work that analyses the cumulative effect
of over-the-air computations on more complex processing that
includes multiple convolution operations in a CNN.

III. AIRNN OPERATIONAL OVERVIEW

In AirNN, we perform convolutions making use of a net-
work of programmable RIS, multiple transmitters (Tx) and a
single receiver (Rx), as shown in Fig. 2. The network controller
(NNCtrl) orchestrates all processes between transmitters,
receiver and RIS in a centralized manner. First, it creates
several copies of the input signal and introduces one sample
delays among different copies through padding (see Fig. 2).
Each of these copies are then fed to different transmitters.
Following this step, each transmitter forwards its version of
the input signal using a directional antenna (shown by link
A) towards a specific RIS. The RIS effect on its incident
signal is equivalent to one sample obtained from the element-
wise product operation in the convolution. The network con-
troller (NNCtrl) adjusts the reflection angles of the different
RIS, which modifies the taps of the convolutional filter. The
NNCtrl also adjusts transmission time with sample level
accuracy for all transmitters to ensure that the reflected copies
of the signal (shown by link B) combine in a determinis-
tic manner at the receiving antenna. Once all these copies
combine, the cumulative effect at the receiver resembles the
processing of the same input signal as if it passed through a
convolutional layer used in a CNN.

As discussed in Sec.I, assuming the availability of RIS con-
figurations that perfectly replicate any targeted convolutional
FIR filter is not realistic. Therefore, the NNCtrl is tasked to
train the network with a quantized set of weights, dictated by
the set of reflections that our network of RIS can generate.
During inference, the NNCtrl notifies the RIS network with
the updated realizable RIS configurations that result in the
desired convolution. It uses a dedicated control plane that
interacts with the microcontrollers at the RIS (see Fig.2).

IV. CONVOLUTIONS WITH OVER-THE-AIR COMPUTATION

In this section, we first explain the theory behind AirNN,
namely, how to map the computation of digital convolutions to
over-the-air signal transformations by the wireless channel. We
then describe how RIS help us engineer such transformations
as well as the system challenges we need to address to
experimentally demonstrate such concept in AirNN.

A. Theory for Mapping the Process of Convolution

• Convolution in a Digitally Constructed CNN: In a given
CNN, the convolutional filters are learned during the training
process. These filters activate neurons when a specific feature
of interest is detected during testing. For 1-D inputs to the
CNN, typical for streaming IQ samples from a wireless signal,
each of such filters can be represented as an FIR of length
N i.e. N taps, filter order L = N − 1. This essentially
is a vector of N complex weights, each weight defining a
specific amplitude and phase of that particular filter tap. As
an example, consider the output of a filter of length N in Eq. 1,
where w = {w0, w1, ..., wN−1} ∈ C are the complex weights
that are applied to the incoming stream of samples. The filter
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order L also gives the number of input samples needed to
generate a single sample at the output.

y[n] = w0∗x[n+
L

2
]+· · ·+wL

2
∗x[n]+· · ·+wL∗x[n−

L

2
], (1)

• Convolution in the Wireless Channel: Our goal is simple:
we wish to artificially construct signal transformations in the
physical environment during testing that precisely maps to the
above vector w that we obtained during training time. We
leverage the fact that, when a signal is transmitted over the
air, the reflections from the environment cause copies of the
same signal to arrive at the receiver with different amplitude,
phase, and time delays, collectively referred to as multipath.
This phenomenon is characterized by the CIR, where each
path is defined by the tuple of complex transformations in
amplitude and phase and the instant of arrival at the receiver.
This multipath results in an FIR filter of order N−1, where N
is the total number of paths. Here, the first path is associated
with the Line of Sight (LoS) component, whereas the N − 1
later paths arise from Non-Line of Sight (NLoS).

B. Engineering Convolutions using RIS

In AirNN we use N programmable paths to implement
an N tap FIR filter. Each programmable path is created
by focusing the signal towards an RIS that is configured
to implement a feasible FIR tap. In AirNN, an RIS is a
planar array of passive reflective antennas, where each such
antenna has a selectable range of impedance matching circuits.
These circuits are programmable, and by activating one over
the others, we change the impedance of the corresponding
reflective antenna. This alters the antenna reflection coefficient,
which then changes the phase of the reflected signal. The RIS-
engineered reflections allow flexibility in imparting the desired
complex-valued amplitude and phase changes to the signal
travelling on a given multipath component. Thus, the signal
reflection upon the RIS implements the product operation
in the convolution. However, the set of candidate options
is limited, i.e., the feasible code-book is constrained by the
number of available RIS, the selectable circuit combinations
within each RIS reflective antenna array, and the geometry of
the propagation environment.

C. Systems Challenges in AirNN

While the concept of AirNN is intuitive, there are several
systems challenges for practical realization, as we briefly
covered in the introduction and further describe below.
(Ch1) Complex-Valued Convolutions: Complex numbers are
used jointly to represent amplitude and phase information in
the RF domain. Thus, mapping real-valued convolutional layer
filters to the complex-valued CIR is not feasible. We can
only use complex-valued neural networks, as we describe in
Sec. V-A.
(Ch2) RIS Based Weight Constraints: The number of possi-
ble FIRs that we can engineer via RIS is limited. In the digital
domain, this constrains the set of feasible FIR filters that can
be used during the CNN training stage. Thus, AirNN must
quantize the CNN weights that correspond to only realizable
(i.e., RIS-engineered) FIR filters, as given in Sec. V-B.

(Ch3) Receiver Noise: Even if the channel remains time-
invariant and the RIS configuration are static, there exists
thermal noise. We need to account for this stochastic noise,
especially as the reflected signals are low in amplitude and
barely above noise floor. We explain how we achieve this
for additive white Gaussian noise via a correction factor in
Sec. V-C.
(Ch4) RIS-Path Separation: The FIR filter taps that we
obtain through AirNN must be equally spaced in time, as is
also assumed in the digital version. In the wireless domain,
this is challenging as the arrival time of the signal depends on
separation distances and the sampling rate. AirNN addresses
this via a multi-transmitter (see Fig. 2), that ensures sufficient
path separation. We explain this in Sec. VI-A.
(Ch5) Meaningful CIR Variations: The LoS path dominates
over the NLoS paths resulting from RIS reflections in terms
of received signal strength. To ensure that the artificially
constructed NLoS paths shape the CIR precisely (despite the
overbearing LoS path), we use directional antennas at the
transmitters as explained in Sec. VI-B.
(Ch6) Channel Variations: When the wireless channel
changes, prior configured RIS may generate older and out-
dated CIR values. To prevent re-training the neural network
or repeating the mapping between RIS configurations and
generated CIR, AirNN compensates for channel variations
from a pre-determined baseline, as we show in Sec. VI-C.
(Ch7) Precise Synchronization: Long symbol times can
disrupt the system as the CIR may change beyond the esti-
mated value. Given the concise time window to perform a
convolution, all transmitters must adjust their start time to
achieve µs-level synchronization, for Mbps-level data rate.
AirNN solves this problem by padding the sequence at each
transmitter with zeroes, precisely achieving one sample delay
between any two successive signals, as detailed in Sec. VII-C.

V. AIRNN NEURAL NETWORK DESIGN

In this section, we explain how we design AirNN by
addressing the challenges Ch1, Ch2 and Ch3. We then address
the remaining challenges in Sec. VI.

A. Design Complex-Valued CNN (Ch1)
To facilitate the mapping between the neural network

weights and the RIS-engineered CIR, we design a neural
network model based on complex-valued data and weights
[32]. Given that the convolution operator (∗) is distributive,
we express the output of a complex convolutional layer ϕ as:

y = ϕwR
(xR)− ϕwI

(xI) + j(ϕwI
(xR) + ϕwR

(xI)) (2)

where y is the output of the complex convolution, x and w
represent the input and weights of the convolutional layer
and xR/I , wR/I are the real/imaginary parts of x and w,
respectively. The distributive property also applies to the
product-sum operation of fully connected (FC) layers. Thus,
we design complex-valued layers (ϕw) using two real-valued
layers, where each one of them independently represents the
real (ϕwR

) and imaginary parts (ϕwI
). The seminal work

in [32] provides a detailed explanation of complex neural
network theory and implementation.
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B. Constrained Weight Quantization (Ch2)

We use a quantization-enabled approach to train the neural
network with the set of feasible weights provided by the
RIS-engineered environment. Let the weights of a complex
convolution layer be:

W ={w1, ..., wf , ..., wF }, wf ∈ CN

wf =[w1
f , ..., w

n
f , ..., w

N
f ], wn

f ∈ C,
(3)

with wf ∈ CN , CN being a complex-valued N dimensional
space, wn

f ∈ C and where W is the set of F FIR filters (wf )
with length N that represent the layer weights. As we de-
scribed in Sec. IV-A, there is limited freedom in implementing
an FIR filter using RIS. Therefore, we constrain the weights
wn

f for each filter tap with index n to a candidate set Sn of
implementable values, defined as:

Sn = {cn1 , ..., cns , ..., cn|Sn|}, cns ∈ C, 1 < n < N. (4)

Here |Sn| is the size of the constrained set and cns represents
each of its complex-valued elements. During training, we
compute the Euclidean distance (D) from every individual
weight wn

f ∈ W to all weight candidates cns ∈ Sn. Then,
we define the nearest neighbor of wn

f as:

wn
f
′ = arg min

c∈Sn

D(c, wn
f ). (5)

While training the model, the weight values wn
f are rounded to

their nearest neighbors wn
f
′ to perform forward propagation,

following Eq. 5. However, the derivative of the rounding
function is zero throughout and cannot be trained via classic
backpropagation. We solve this by employing the Straight
Through Estimator (STE) approach [33], [34], which assumes
the derivative of the discrete rounding function to be 1.
While other approaches based on ADMM [35] have also
been proposed, we select STE due to its faster training and
convergence. Then, the forward and backward propagation
steps can be expressed as:

Forward: L = ϕw′(input); Backward:
∂L
∂w

=
∂L
∂w′ ,

(6)
where L can be any form of loss function. Here, the gradient
of w is approximated to the gradient of w′, which is the
fundamental working principle of STE.

C. Handling Errors in Weights (Ch3)

As we mentioned in Sec. IV-C, the receiver introduces ther-
mal noise that causes random variations, denoted henceforth
as ϵ ∈ C, into the RIS-engineered CIR. Such CIR variations
follow a Gaussian distribution with standard deviation σ, i.e.,
ϵ ∼ CN (0, σ2) [36].

Due to noise and changing wireless environment, the current
CIR may have a mismatch with the filters identified by the RIS,
and yet we desire the CNN to be robust without appreciable
fall in accuracy. In order to solve this problem, we modify
Eq. 5 by adding the term ϵ, as given below:

wn
f
′ = arg min

c∈Sn

D(c, wn
f ) + ϵ. (7)

As opposed to previous data augmentation approaches, the
variable ϵ is applied during training directly to the weights to

increase the robustness of the model as well as during testing.
In each forward propagation step, weights are first quantized
to the target constraint and noise is added. After the forward
loss has been computed, we use backpropagation and obtain
gradients for w′. As previously mentioned, STE is employed
to approximate gradients for w, such that w is updated via
Stochastic Gradient Descent (SGD).

VI. AIRNN TRANSMITTER DESIGN

In this section, we address the design challenges Ch4, Ch5
and Ch6 introduced in Sec. IV-C.

A. Multi-Transmitter (Ch4)

The straightforward implementation of FIR filter taps in the
CNN requires (i) constant inter-path time arrivals from consec-
utive RIS paths, i.e., tRISi+1

−tRISi
= ∆t, ∀i ∈ {0, ...N−1},

and (ii) exact match between these inter-path time arrivals and
the communication symbol time, i.e., ∆t = Ts. Here, the first
condition imposes a hard constraint on the physical deploy-
ment of RIS in the environment, forcing all RIS paths lengths
to be exact multiples of one another. To achieve this high
(sample-level) precision, AirNN accommodates a software-
based temporal adjustment over the transmitted frames, as we
discuss in Sec.VII-C. The second condition requires sampling
rates (Fs = 1/Ts) that may not be compliant with the
expected rate at the receiver. For example, for a total separation
of 2m between two signal paths, the arrival time difference
is 66.7 ns, which needs a sampling rate of up to 150 MS/s.
AirNN solves this via a multi-transmitter system, where each
transmitter sends the signal with a time delay of precisely one
sample with respect to the next, maintaining equal spacing
between arriving signals. For instance, with Fs = 1 MS/s,
we create a convolution output sample per microsecond if all
signal paths are equal in traversed distance.

B. Directional Antennas (Ch5)

While a multi-transmitter system ensures fine-grained tem-
poral separation of the signal paths, the use of omnidirectional
antennas at the transmitters brings additional challenges to
implement the desired FIR filter taps using RIS. Specifically,
for omnidirectional transmissions, the received signal from
a RIS roughly drops at least 10 dB. Moreover, in such
transmissions there may exist a strong LoS component as
well as reflections from multiple uncontrolled scatterers (other
than our RIS), present in the environment. The combination
of these two factors drastically limit the power contribution of
the signal reflected from the RIS at the receiver, which in turn
reduce the amplitudes of the FIR filter taps.

In order to study this problem, we formally express the delay
profile in a setup with a single transmitter, single receiving
antenna and N RIS as:

S(t) = (Pt−LLoS)δ(tLoS)+
N∑
i=1

(Pt−LRISi
)δ(tRISi

), (8)

with Pt (dBm) the transmitted power. The terms LLoS and
LRISi

(dB) represent the losses for the LoS path and the
ith RIS path, i = {1, 2, ..., N}, respectively. Following the
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(a) Directivities
RIS-to-LoS Gain in dB

(b) CIR range

Fig. 3: (a) Higher antenna directivities tend to lead to higher RIS-to-
LoS power ratios (difference between black and red arrows), which
translates into (b) higher achievable CIR magnitude range, as the LoS
component does not neglect the RIS contribution.

interpretation of a given RIS as an array of diffuse reflective
antennas [37], and considering that each RIS is formed by M
such antennas, we estimate LRISi from:

LRISi = 10log |
M∑

m=1

lRISm
i
ejϕ

m
i |, (9)

where lRISm
i

represents the path loss associated with a particu-
lar reflective antenna m. This loss value depends on the carrier
frequency, the distance between transmitter to RIS and RIS
to receiver, RIS dimensions, transmitter and receiver antenna
gains in the direction of each reflective antenna and the angle
of incidence of the signal wavefront to the RIS plane. The term
ejϕ

m
i in Eq.9 represents the phase of the incoming signal from

element m of the RIS to the receiver, and thus, the received
power is determined by the interference of the incoming signal
from all m = {1, 2, ...,M} reflective antennas of the RIS. The
phase ϕm

i is given by ϕm
i = k(d(Tx,mi )+d(mi ,Rx))+ϕSm

i
with

k = 2π
λ as the wave number and λ as the wavelength. Lastly,

d(Tx,mi ), d(mi ,Rx) represent the distances from transmitter to
reflective antenna m and from that same antenna to receiver,
respectively. The term ϕSm

i
gives the configurable phase shift

introduced by reflective antenna m. Importantly, the estimation
of lRISm

i
follows a product-distance path loss model [37],

where the power decays with the squared product between
d(Tx,mi ) and d(mi ,Rx), a much sharper decay compared to the
squared of d(Tx,Rx) of the LoS component. We estimate the
term LLoS in Eq.8 from the Friis equation and the delay terms
δ(tLoS) and δ(tRISi) by dividing the known distances with
c, the speed of light in vacuum. Thus, we estimate the CIR
component associated to the RIS i path as:

hi =
√
lRISi

M∑
m=1

ejϕ
m
i . (10)

In Fig. 3b, we show the simulated maximum range for the
magnitude of the received signal given in Eq.10 as a function
of the RIS-to-LoS power ratio, for different transmitter antenna
radiation patterns (Fig. 3a), as defined by their respective 3-dB
beamwidth BW3dB = {360◦, 120◦, 50◦, 25◦, 12◦} and differ-
ent number of antenna elements with M = {49, 36, 25, 9, 4}.
In Fig. 3a, the black arrow points to the RIS, while the red
arrow points directly to the receiver, located at 45◦ from the
RIS direction. We observe that for low antenna directivity,
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Fig. 4: (a) Measured CIR for three RIS configurations (C0, C1, and
C2) under varying scattering profiles. We observe a similar relative
distance of the CIR magnitude and phase between different RIS
configurations as the scattering profile changes. (b) AirNN adapts
to varying scattering conditions using LS equalization with respect
to a prori chosen baseline C0.

the high power of the LoS component compared to that of
the signal reflected from the RIS renders any manipulation of
the RIS ineffective. Hence, AirNN uses directional antenna
elements at the transmitter that (i) boost the power of the
reflected signals from the RIS paths and (ii) mitigate the
degrading impact of the LoS signal along with the effect of
additional ambient scatterers not controlled within AirNN.

C. Compensating for Channel (Ch6)

Due to the non-stationarity of wireless channels, the CIR
engineered by certain RIS configurations may change over
time, not resulting in the exact weights corresponding to the
digital convolution, unless the CNN architecture is re-trained
for every new scattering profile. Instead, AirNN uses a channel
tracking and correction C0 to ensure that the weights of
the CNN, as decided by the RIS configuration, remain valid
even under new channel conditions caused by slow fading.
This ensures that the received signal at the receiver always
experiences a fixed and constant phase of zero degrees and
unit magnitude when using the baseline configuration at every
RIS.

We explain this process in Fig. 4, where we consider three
different RIS configurations for illustration purpose, denoted
by C0, C1, and C2. The process is as follows: using the
AirNN setup, we send a known preamble sequence from a
transmitter pointing to an RIS and collect samples of the
received signal on two different days and scattering profiles.
These profiles include cases of low impact (few meters away)
and high impact (few cm away) scatterers, respectively. We
then extract the preamble sequence at the receiver by cross-
correlating the received samples with the preamble that is
known at the receiver. From the received and known pream-
bles, we estimate the channel for each RIS configuration,
day and scattering profile using Least Squares (LS) channel
estimation. Although we use a single RIS in Fig. 4, the same
channel estimation approach is applicable to multiple trans-
mitters pointing to different RIS by using unique preamble
sequences at each transmitter. Since directional transmissions
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Fig. 5: AirNNOS software blocks within the modules of transmitter,
receiver and NNCtrl.

mitigate the multipath effect, we denote ĥC0 ∈ C as the
estimated narrowband channel at the receiver.

From our experimental results, we make two observations.
First, we note that a change in the channel environment
introduces variations within the over-the-air generated filter
coefficients (Fig. 4a). Second, the relative distance between
any pair of clusters of channel coefficients resulting from
specific RIS configurations remains constant between deploy-
ments (Fig. 4a). In this example, AirNN takes configuration
C0 as the baseline to generate the desired unit magnitude
and no phase rotation, as shown in Fig. 4b. To accomplish
this, the transmitter inverts the estimated channel vector as
p = (ĥC0)

−1 ∈ C that is used to equalize the channel
transformation for a other given RIS configuration. We capture
such transformation by θ (0 ≤ θ ≤ π/2) computed as
cos(θ) = Re

{
hHp

}
/(||h||||p||). We then apply the phase

rotation to the CIR estimation of C0, C1, and C2. We note
that this approach is applicable to any nC arbitrary number
of RIS configurations. The condition is that the data for the
configurations of interest is collected along with the data for
the baseline configuration C0 within the channel coherence
time (Tc). For a large number of RIS configurations, this
process is performed over multiple Tc in the initial offline
C0, where in each Tc the CIR for the baseline configuration
C0 and a different subset of the configurations of interest
are estimated. During testing, only data for C0 and the
configurations that generate the CIR that map the desired FIR
taps need to be collected within Tc. Although we illustrate
this process for a single RIS in Fig. 4, AirNN takes the same
approach for every RIS.

VII. SYSTEM IMPLEMENTATION

We highlight the main components of AirNN from a hard-
ware viewpoint in Fig. 5. We describe our implementation us-
ing COTS Software Defined Radios (SDRs) in Sec. VII-A and
the RIS hardware design and implementation in Sec. VII-B.
We describe AirNNOS software that drives operations and
controls the RIS units in Sec. VII-C.

Fig. 6: Hardware prototype of a RIS with 9 patch reflective antennas
whose signal reflections can be changed through software running in
the controller by selecting transmission lines via the RF-switch.

A. Hardware Components

• SDRs: Our implementation is composed of four Ettus USRP
X310 SDRs, each attached to a UBX 160MHz daughterboard,
which can flexibly digitize up to 200 MSamples per second.
Three SDRs serve in the transmitter interface, and a single
SDR serves in the receiver interface. The SDRs are connected
to the host machine via a 1 Gbps Ethernet link. We synchronize
all SDRs in frequency and time through an Ettus OctoClock
CDA-299. The octoclock helps correct the CFO of the multiple
transmitters and the receiver.
• Antennas: The receiver is attached to a VERT 2450 dual-
band omnidirectional vertical antenna with 3 dBi gain. The
transmitters have directional patch antennas with 18◦ of 3-dB
beamwidth in azimuth and elevation and a grating lobe at 90◦

from their broadside direction. They operate in the 2.4GHz
band.

B. RIS Hardware Design and Fabrication

The concept of loss-based transmission line for phase shift-
ing has been implemented before [9], which we modify to
realize AirNN. Our fabricated RIS is shown in Fig. 6.

To access the feasibility of generating over-the-air FIR
weights, we next study several RIS parameters, including (i)
the type and number of patch reflective antennas within a
RIS, the intra-RIS separation of the reflective antennas, and
(ii) the phase shifts that these antennas may generate. We
leverage the signal propagation model presented in Sec. VI-B
to assess the impact of several RIS parameters on the feasible
over-the-air generated FIR weights. We include simulations
using a topology of a single RIS placed equidistantly from
the transmitter and receiver antennas at 2.5 meters, while
transmitting and receiving antennas are separated by 5 meters.
• Reflective Elements: (type, size, distribution and num-
ber): Each reflective element within our RIS is a switchable
patch-type antenna of dimension λ/2 inserted between a two-
layer PCB dielectric substrate and a full metal sheet at the
bottom layer. We select a RIS of M = 9 reflective antennas,
with a 3x3 layout in a 2D-plane. We space the antennas a
distance of λ/2 to reduce the effect of mutual coupling between
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Fig. 7: CIR phase range and distribution w.r.t. RIS dimensions (i.e.,
number of reflective antennas). (a) A larger dimension does not result
in a larger CIR phase range, but (b) results in a better granularity (less
CIR weight quantization).

neighboring elements, as well as grating lobes in the RIS
radiation pattern [38].

To assess how AirNN can benefit from having a larger
number of reflective antennas, we configure our simulations
with three different RIS sizes, i.e., 3x3, 5x5 and 7x7, and
evaluate the obtained phase span, as well as the resulting
phase granularity. Here, the term span refers to the difference
between the maximum and the minimum induced phase shifts
possible at the receiver, whereas the term granularity refers
to the minimum phase difference between any two realizable
phases at the receiver. Interestingly, having a larger RIS
dimension does not lead to a larger span, as we show in Fig. 7a.
Although a larger number of reflective elements achieve higher
granularity, as seen in Fig. 7b, this improvement increases the
size and cost of the RIS. For example, the improvement in
granularity obtained by using a 7x7 instead of a 3x3 antenna
RIS increases the manufacturing price by $200. These findings
motivate us to select a small antenna set of M = 9 reflective
antennas, with a 3x3 layout in a 2D-plane. These antennas are
finally printed on a RIS PCB board with a FR-4 epoxy glass
substrate of dimension 20cm × 20cm × 0.16cm.
• Phase Shifts (angular range and inter-shift distances):
We connect each of the nine reflective antennas to three loss-
less transmission lines of different lengths through a single RF
switch. The resulting four phases per antenna (including no
phase shift) enables (4)9 configurations per RIS, generating a
rich diversity of distinct signal reflections at the receiver. This
design is finally printed on a RIS PCB board with a FR-4
epoxy glass substrate of dimension 20cm × 20cm × 0.16cm.
A general purpose HMC7992 RF switch [39] connected to an
Arduino Mega2560 µcontroller activates the selected line per
antenna in real-time.

By selecting the length of our transmission lines, we can
alter each reflective element impedance, which in turn changes
their reflective coefficient and, consequently, introduces a
phase shift to the signal reflected by that particular element.
Our implementation allows four possible shifts per element,
although the overall phase at the receiver is a combination of
the individual shifts introduced by each of these nine reflective
antennas.

We determine next the span of possible phases, considering
all possible combinations of the transmission line selections
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Fig. 8: Study of the CIR phase range and distribution w.r.t. the RIS.
(a) A larger shift span achieves a broader range of CIR phase values.
(b) A uniform inter-shift spacing results in a uniform CIR phase
distribution.

per reflective antenna. To do so, we simulate a single RIS
unit of 3x3 dimensions with four transmission lines but with
different upper bounds of the maximum transmission line
induced shift. We show this analysis in Fig. 8a for such
maximum shifts of 60◦, 135◦, and 180◦. We observe that
the span at the receiver for the transmission line shift of
180◦ is over double that of a lower maximum value of 60◦.
Next, we study how the inter-shift angular distance shapes the
range of realizable phases at the receiver. We consider three
combinations- with uniformly distributed phase shifts between
transmission lines, narrowly spaced, and widely spaced shifts.
From Fig. 8b we see that the PDF for uniform spacing follows
a Gaussian phase distribution. Conversely, non-uniform phase
spacing results in a Rician distribution. Thus, we design trans-
mission lines to generate uniformly separated phase shifts to
enable a maximum span at the receiver, i.e., {45◦, 90◦, 135◦}.

C. AirNNOS Controller (Ch7)

We create AirNNOS, an orchestrating software framework
that controls the following processes (see Fig. 5):
• Transmission/reception sequence: The receiver collects IQ
samples and forwards them to the Coarse synch block that
performs basic energy detection. At this stage, the Coarse
synch module redirects the incoming IQ samples to the
associated transmitters thread, which in turn processes the
samples for AirNN operation and then re-transmits over the
air. At this time, the Coarse synch switches its active output
port to forward the incoming samples, i.e., resulting from
the convolution, to the processing blocks within the receiver
(see AirNN output). After fine-grained synchronization at the
receiver, samples are fed to the NNCtrl to complete the CNN
processing.
•Pre-processing at the transmitter: At the transmitter, we
generate a set of orthogonal Gold sequences (GS) [40] used
as preamble signals as they have desirable properties of good
auto- and cross-correlation. We uniquely assigns one sequence
to the set of IQ samples being sent over each transmit antenna.
Thus, a transmission is composed of a GS appended to the
received samples from the Tx. The benefit of using GS
is two-fold: on the one hand, GS guarantees precise time
synchronization for generating paths-delays that match the
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Fig. 9: Precise synchronization at the transmitter. (a) Misaligned
inter-RIS path arrivals, and (b) precise synchronization in AirNN
(see Sec. IV-C).

temporal distribution of desired FIR filters (see Sec. VI-A). On
the other hand, GS offers a way to estimate and compensate
for the channel variations over time (Sec. VI-C), as we explain
next.
• Synchronization and channel estimation at the receiver:
Although the SDRs used as transmitters start their transmis-
sions at the same PPS instant, AirNN requires more fine-
grained precision to realize the desired filter taps (Fig. 9a)
when transmitting with high bitrate. To achieve this, the
receiver computes the symbol misalignment between all the
transmit streams via the GS by setting the last received stream
as a reference. It then sends back this information along
with the channel state information or CSI (Channel estimation
computed at the receiver) to the transmitter. The SDRs used as
transmitters delay their signals with additional zero-padding to
sync with other peer-transmitters. We note that this padding
is different from the padding used to generate one sample
delayed versions of the same signals at each transmitter, shown
in Fig. 2. Only with accurate time alignment (Fig. 9b)
can AirNN generate the desired temporal displacement by
deferring transmissions precisely by one sample with respect
to other transmitters (see Sec.VI-A).

In Algorithm 1, we provide a pseudo-code that summarizes
the tasks AirNN performs during the offline mapping stage as
well as during the online stage that is run during testing, as
described in Secs.VI and VII. .

VIII. PERFORMANCE EVALUATION

In this section, we first validate the equivalence between
the analog convolution with over-the-air computation using
our proposed AirNN system and its digital counterpart. Then,
using as example the problem of digital modulation classi-
fication, we compare in simulation the classification accu-
racy achieved via different deep learning approaches. This
comparison includes classical CNN trained using standard
methods on a GPU (Classical-CNN), quantized CNN (QM-
CNN) from Sec. V-B, and robust-quantized CNN (RQM-CNN
from Sec. V-C).

A. Experimental Testbed

We use the hardware components as described in Sec.VII-A
and fabricate three RIS units using the approach in Sec.VII-B.

Fig. 10: Floor layout plan and experimental setup for AirNN testbed
using our custom-built RIS.

Algorithm 1: Computation of Convolutions in AirNN
Input: RIS feasible configurations per Tx:

{Cf}n = {C0, C1, ..., CnC}n, n = {1, · · · , N}.
Input: RIS desired configurations per Tx (FIR taps):

{Cd} = {C1, C2, ..., CN}.
Input: Input signal: x.
Output: Convolution output: y

1 1. Stage 1. Offline mapping (RIS configurations-FIR taps):
2. for i = 0, · · · , nC

3. Send GSn from Txn with {Ci}n set at the RIS.
4. Collect y at the Rx and cross-correlate it with GSn.
5. Estimate hn,i from known and extracted GSn using
Least-Squares.
6. end
7. Return mapping between hn,i and RIS configurations.
8. Stage 2. Online testing:
9. Get CIR for {C0}n, {Cd} within Ts, as above.
10. Estimate correction factor pn per Tx from Sec.VI-C.
11. Generate zero-padded input signals: {x1, x2, ..., xN}
12. Apply pn to xn, ∀n, n = {1, · · · , N}
13. Trigger synchronized transmission of xn from all Tx.
14. Return: Output of the convolution y collected at Rx.

The distance between the RIS and both transmitters and
receiver is 0.7m. To achieve interference nulls at unintended
RIS, given the transmitter antenna grating lobes, we orient
each transmitter antenna towards a dedicated RIS with a 45◦

angle with respect to the plane of any other neighboring
RIS (see Fig. 10). We use the frequency of 2.49 GHz and
a sampling rate of 1 MS/s.

B. Validation of Convolutions in AirNN

We first demonstrate the capability of AirNN to generate a
signal that matches the expected output of an all-digital FIR
filter in a CNN. To this extent, AirNNOS first sends unique
GS from each transmitter and estimates the CIR trough cross-
correlation and LS estimation at the receiver for all RIS config-
urations, as a one-time initial step. We then train our QM-CNN
model, constrained to the convolutional filter weights that our
RIS can provide. At this stage, AirNNOS sends one sample
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Fig. 11: Comparison between over-the-air convolution with and
without the use of AirNN RIS network. The former accurately
realizes the desired convolutional filter with negligible error.
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Fig. 12: Complex-valued layer (ϕw) diagram (a) and neural network
architecture with complex weights used for modulation classification
(b).

delayed versions of a BPSK digitally modulated signal from
each transmitter, using directive antennas pointing to different
RIS. Finally, after the signal has traversed the three RIS, we
store the received signal at the receiver, whose magnitude
and phase are shown in blue colour in Figs. 11a and 11b,
respectively. We compare the similarity of the received signal
to that of an all-digital convolution, shown in black colour,
observing a Root Mean Square Error (RMSE) of 0.11 and
0.6 in magnitude and phase, respectively. When we store the
received signal without controlling the RIS network (shown
in red colour). The lack of temporal alignment and the RIS
misconfiguration leads to a phase and magnitude mismatch
with the all-digital convolution. This increases RMSE values
to 0.46 and 2.58 in phase and magnitude, respectively.

C. AirNN for Modulation Classification

Next, we demonstrate that the convolution performed in
AirNN is accurate enough to replace its digital equivalent for
the real-world problem of modulation classification.
•Dataset description: We use the RADIOML 2018.01A
dataset released in [41]. This includes signals collected
from over-the-air transmissions modulated with 24 different
schemes, i.e., from BPSK to 256QAM, under variable link
qualities or SNR levels that range from -10 to 30dB. The
data is organized in IQ sequences of 1024 I/Q samples, with
4096 sequences per modulation/SNR pair. Since this paper fo-
cuses on experimentally realizing convolutions with over-the-
air computations (and not on improving on best-performing
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Fig. 13: (a) Realizable FIR filter taps (magnitude and phase) using
RIS. Each RIS provides a total of 512 phase-amplitude selections,
any of which can be used as a filter tap; (b) Effect of quantization on
the accuracy in modulation classification for different SNR values.

architecture for the problem of modulation classification), we
consider a smaller subset of the problem with four of the most
common classes of BPSK QPSK, 16QAM, and 32QAM. We
split this reduced dataset into non-overlapping portions for
training (60%), validation (20%), and testing (20%).
•Architecture Description: Our deep CNN model is com-
posed of three sequential convolutional layers, i.e., a bundle
of convolutional FIR filters followed by the pertinent batch
normalization, activation (ReLu) and max pooling, an adap-
tive average pool layer and a single fully connected layer
(Fig. 12b). We use PyTorch for implementation, with the
number of filters as ten and learning rate 1e−4.

D. Impact of Quantization

Recall that we extract the set of feasible weights that our
experimentally deployed RIS can realize, and use them to train
our proposed QM-CNN (see Fig. 12). For a tractable analysis,
we consider the lower-end of the shifting range, i.e., 0◦ and
45◦, for each reflective element in all RIS. This gives us a total
of 29 = 512 different phase shifts for the reflected signal. We
show the measured received CIR magnitude and phase at the
receiver in Fig. 13a, where each point is an average of over ten
transmissions. Multiple works have explored different bit-level
quantization-aware training, such as 4-bit [42], [43], [44], [45],
2-bit (ternary) [46], [47], [48] or 1-bit (binary) [49], [50], [51]
while preserving non-quantized network performance. This is
also the approach we use as the starting point of this work.

To assess how quantization impacts accuracy, we generate
smaller sets of candidate weights by randomly selecting sub-
sets of size {2, 8, 64} from the global set of 512. Here, 2
represents the most restrictive (or quantized) case, implying
that the entire QM-CNN is constructed with two possible
weights for each convolutional filter tap. Fig. 13b shows the
average accuracy of QM-CNN when provided with various
subset sizes for CIR weights and SNR values. Note that the
SNR captures the wireless link quality of the input data and is
provided by the dataset. Reducing the set of realizable weights
impacts the QM-CNN accuracy, which falls more than an 8%
for a quantization level below 64 and the lowest SNR evaluated
of 0 dB. As the SNR increases up to 4 dB, the accuracy drops
only a 2% for quantization levels above 8, becoming only
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(a) (b)

Fig. 14: Accuracy in modulation classification using (a) quantized
model (QM-CNN) and (b) our quantized robust approach (RQM-
CNN).

critical (7%) for a quantization as low as eight levels and
below.

E. Robustness to Noise

We validate the robustness of the proposed RQM-CNN
approach, which aims to mitigate deviations in RIS-engineered
CIR weights due to noise. Fig. 4b gives a visualization of
such a deviation illustrating the worst-case deviation measured
empirically on the complete secondary path: transmitter to RIS
to receiver, giving a CIR variance of -35 dB (σ2 in Sec. V-C).
Once we profile a range of possible CIR deviations, we train
our RQM-CNN under an AWGN distribution within this CIR
variance bound, following the steps described in Sec. V-C. We
test the RQM-CNN performance for SNR levels between -20
and 30 dB on the primary link given as: transmitter to receiver,
and CIR deviations between -55 and -15 dB over the secondary
link transmitter to RIS to receiver. As opposed to this, simpler
QM-CNN approach does not account for such over-the-air
impairments during training. Results shown in Fig. 14 reveal
that QM-CNN provides good performance for higher SNR
and CIR deviations, but does not provide accuracy above 88%
for SNR levels below 4dB and CIR levels above -35 dB (see
Fig. 14a). The RQM-CNN approach achieves an accuracy of
up to 96% in the same regimes (see Fig. 14b).

F. AirNN Performance

In this section, we compare the accuracy between the
three all-digital CNN versions discussed so far: Classical-CNN
and the quantized versions QM-CNN and RQM-CNN, as a
function of the SNR level of input data. We also compare
it with AirNN, using the experimentally derived convolution
error on top of the RQM-CNN model. Here, QM-CNN and
RQM-CNN are trained and tested as described in Sec. VIII-E.
AirNN uses the same trained weights than RQM-CNN, but
must operate within dynamic conditions that arise during
testing. These modify the RIS-engineered FIR taps from the
initial values acquired at the mapping stage (see Fig. 4b),
which we earlier characterized as AWGN (see Sec. V-C).

We present the experimental results with AirNN in Fig. 15,
where the CIR inaccuracies are selected from a Gaussian PDF
(see Sec. V), ranging from -15dB to -50dB. In the figure, the
Classical-CNN bounds the performance for any given SNR
value. We observe a similar accuracy reported from all four

Fig. 15: Accuracy in modulation classification using all-digital con-
volution (Classic-CNN), quantized approaches QM-CNN and RQM-
CNN, and our end-to-end AirNN system.

models for very low SNR, i.e., between -20dB and -5dB,
which is extremely challenging for the classification task.
For higher SNR values, QM-CNN reports a lower maximum
accuracy of 95%, while the robust training in RQM-CNN
raises the accuracy up to 98%. AirNN closely follows the
bound of the software-based RQM-CNN, with a drop in
accuracy of only 2%, and an overall drop w.r.t. Classic-CNN
of 3.2% for the SNR range of [6, 30] dB.

IX. LIMITATIONS AND FUTURE OPPORTUNITIES

In this section, we identify limitations and open challenges
of our approach and provide candidate solutions to speed up
the practical deployment of AirNN.
• AirNN uses N transmitters to compute an over-the-air
convolution. This specific implementation requires tight syn-
chronization between transmitters and needs to scale in terms
of cost and complexity with the FIR filter size (N). This can
be potentially addressed using antenna phased arrays with
multiple RF chains that can construct many simultaneous
beams as well as ubiquitous deployment of RIS in the ambient
environment. Although our validation is limited in scale, there
is potential for generalization in a more resource-rich network
[52]
• The limited reflected power from our custom designed RIS
constrain the separation distance between transmitters, receiver
and RIS. Thus, they have to be carefully deployed to receive
sufficient power. This situation can be mitigated with the use
of larger RIS, improved RIS design with minimal losses and
scenarios where higher power transmission become possible,
e.g., in outdoor environments.
• Although AirNNOS is designed to tackle channel changes
over time, it assumes that transmitters, receiver and RIS
locations are fixed for both training and testing. Handling mo-
bility requires interdisciplinary research in rapid wireless CIR
estimation and lifelong-learning methods for RF pioneered by
the ML community.
• AirNN only emulates the convolutional operation. It remains
an open challenge to extend these ideas towards a complete
CNN, all performed within the RF domain, which includes
multi-layer convolutions and nonlinear activation functions.
• Performing a convolution with over-the-air computation
involves higher power consumption and latency compared
to its digital equivalent running on a GPU or FPGA. Our
approach is best suited for scenarios where signals must be
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transmitted over-the-air and AirNN merely provides an add-
on functionality. Thus, supporting network infrastructure like
multiple synchronized transmitters and RIS should not be
solely present to realize AirNN.

Despite the above limitations, AirNN points towards an
exciting computational domain involving RF signals. We will
open-source design files for the RIS, code for AirNNOS and
RIS simulation to equip the community with essential tools
for future systems-focused work that can lead to full-fledged
over-the-air CNNs.

X. CONCLUSIONS

We have demonstrated the feasibility of engineering con-
volution operations with over-the-air computation through a
programmable RIS network that is precisely equivalent to its
digital counterpart. We report an RMSE of 0.11 and 0.6 in
magnitude and phase, respectively, in the output of the convo-
lution between the analog and digital versions. Furthermore,
we have shown how this operation, when included within
the processing steps of a trained CNN is accurate enough
to run inference on signal analysis tasks such as modulation
classification. AirNN average testing accuracy is within 3.2%
of the classical digital version under medium-to-high SNR
conditions.
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