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Abstract— This paper addresses human-robot collaboration
(HRC) challenges of integrating predictions of human activity to
provide a proactive-n-reactive response capability for the robot.
Prior works that consider current or predicted human poses as
static obstacles are too nearsighted or too conservative in
planning, potentially causing delayed robot paths. Alternatively,
time-varying prediction of human poses would enable robot
paths that avoid anticipated human poses, synchronized
dynamically in time and space. Herein, a proactive path
planning method, denoted STAP, is presented that uses spatio-
temporal human occupancy maps to find robot trajectories that
anticipate human movements, allowing robot passage without
stopping. In addition, STAP anticipates delays from robot speed
restrictions required by ISO/TS 15066 speed and separation
monitoring (SSM). STAP also proposes a sampling-based
planning algorithm based on RRT* to solve the spatio-temporal
motion planning problem and find paths of minimum expected
duration. Experimental results show STAP generates paths of
shorter duration and greater average robot-human separation
distance throughout tasks. Additionally, STAP more accurately
estimates robot trajectory durations in HRC, which are useful in
arriving at proactive-n-reactive robot sequencing.

I. INTRODUCTION

A prevalent challenge in human-robot collaboration
(HRC) is providing robot(s) proactive-n-reactive capability to
correctly anticipate and respond to humans working in close
proximity. In contexts such as manufacturing, robot(s) and
human(s) typically perform cyclic tasks in which human
motion is likely repetitive and predictable. If HRC controller
algorithms, including motion planners, can efficiently leverage
such knowledge, then the robot can proactively avoid
anticipated interruptions. Additionally, the robot could take
advantage of predicted windows of time that are free of
obstruction to move safely and seamlessly among humans. A
motion planner that utilizes the predicted motions of humans
can also estimate a ‘robotic task completion time’ metric
useful in selecting the next robot task to perform. The planner
could then further modify the timing of robot motions to
reduce the amount of time a robot spends in close proximity to
a human, allowing greater human comfort.
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State-of-the-art variations of Rapidly Exploring Random
Trees (RRT) and Probabilistic Roadmaps have included
features that allow reaction to an obstacle’s current pose while
computing fast enough for online planning [1-5]. These recent
variations only consider current, static poses of dynamic
obstacles. Recent human-aware planners consider static,
anticipated human volumes and robot speed reduction due to
human proximity to generate paths specifically beneficial to
HRC [6-8]. Human-aware planners also consider dynamic
obstacles as having anticipated, static poses. Since these
planners only consider static obstacle poses and do not
consider obstacles’ time varying motion, they are nearsighted
in planning. This nearsightedness allows obstacles to drive the
robot toward temporary entrapments and production delay.
For example, consider a workcell with two assembly stations,
a robot that services both stations, and a human that alternates
between stations. If the robot’s path planner considers human
pose as static, then the human and robot could interfere with
each other as the human moves between stations. The method
herein permits robot paths that proactively account for the
anticipated human motion between stations, allowing
uninterrupted robot and human motion.

This paper proposes the Spatio-Temporal Avoidance of
Predictions (STAP) method. The goal of STAP is to reduce the
interference between humans and robots during collaborative
tasks. STAP includes predictions of the humans’ movements
in a motion planning problem and searches for a trajectory that
avoids potential collisions. While previous methods have also
used time-based cost functions, STAP has key differences
from previous works. First, STAP uses predicted human
motion in 3D space to estimate time-varying human
occupancy in a robotic workcell. Second, STAP formulates
robot trajectory planning as an optimal motion planning
problem in which trajectory execution time under the spatio-
temporal avoidance constraints is minimized. A variation of
RRT* is developed to solve this planning problem. Third,
STAP incorporates the speed and separation monitoring
(SSM) rules from the ISO/TS 15066 standard to estimate the
effect of predicted human poses on robot speed and trajectory
duration [9]. Experiments show that trajectories planned with
STAP have significantly shorter execution times and larger
robot/human separation distances during close collaboration.

The following sections include a discussion of the STAP
method’s key steps, experimental validation, results, and
conclusions. Section III includes subsections: III.A) detailing
the predicted human model, III.B) avoidance intervals, II1.C)
incorporation of idle times owed to safety stops and
slowdowns, III.D) variation of RRT* to utilize avoidance
intervals, and III.LE) STAP time-parameterization.



II. RELATED WORKS

Prior planning methods incorporate predicted obstacle
motion to proactively avoid anticipated obstructions. One
option is to dynamically modify the robot’s trajectory based
on immediate human motion [10,11]. Another method
generates collision free waypoints when time is included in the
configuration space and uses a local planner to ensure
reachability [12]. Other works define safe intervals for passage
through configuration nodes to avoid obstacles when
generating 2D robot paths, in which both obstacles and robot
are defined as points [13,14]. One planning framework models
probabilistic human motion sequences using time sequences
of Gaussian Mixture Models (GMMs) [15,16]. It uses the
STOMP path optimizer to deform straight-line robot paths to
minimize penetration into the human’s volume. Other methods
use optimization frameworks to generate robot trajectories that
maintain a distance between the robot’s trajectory and learned
time-sequences of human arm motion [17,18]. Some
approaches avoid anticipated points of collision for the entire
task by considering previously occupied space or predicted
human occupancy volumes (HOVs) as static obstacles
throughout the task [6,19]. STAP differs from prior works by
utilizing predicted, dynamic motions of humans over an entire
task rather than static definitions or instantaneous estimates.

In an HRC manufacturing workeell, the structure of tasks
facilitates prediction of human motion. The human predictions
are inputs to the method presented in this paper. One motion
prediction method uses GMMs to generate time sequences of
probabilistic models for human arm extension trajectories
[20,21]. Then it uses the GMMs for classification and
extrapolation for current human motion. GMMs were also
used to learn a linear dynamic model to represent human
trajectories [22,23]. Probabilistic principal component
analysis has also been used to learn motion models for human
trajectories, detect motion onset, estimate human speed, and
select a motion model to infer a future trajectory [24]. Methods
such as Risk of Passage and the Swept Volumes method
anticipate volumes at the intersection of robot paths and
predicted human motion [25,26].

III. METHOD

The goal of STAP is to develop a cost function and
sampling-based robot path planner variation that considers
anticipated, time-varying motion of humans. STAP first
generates a spatio-temporal human occupancy map to encode
anticipated human poses and times of occupancy. Then STAP
considers both the occupancy map and estimated speed
reductions enforced by an SSM safety controller to estimate
the time required for a robot to traverse robot configurations.
Finally, a variation of RRT* is proposed that creates a graph
of nodes and estimated path costs using the STAP cost
function. STAP outputs the trajectory of minimal duration
considering anticipated, time-varying, human occupancy. Fig.
1 shows how STAP fits into an overall robot control scheme
as the green blocks. The blue block is the motion prediction
method providing input to STAP. Fig. 1 includes the SSM
safety controller as the orange block which limits robot speed
along the planned trajectory based on real-time robot/human
separation distance.

7 robot motion planning

real-time
© |SSM safety
i (_controller

HRC workeell

Figure 1. The high-level control loop for an HRC workcell.

A. Predicted Spatio-Temporal Human-Occupancy Map

First, STAP generates a spatio-temporal occupancy map in
cartesian space. Each point of the map stores a set of
avoidance intervals, which are the time intervals over which
any human body part will occupy that point. The input to
STAP is a time series defining human motion in terms of the
pelvis location, quaternions of each human body part (aka
limb, human skeletal link) w.r.t. the world-z axis, link lengths,
and link radii for the human for each time step. At each time
step of the human motion, quaternion forward kinematics
determines the human joint locations based on the pelvis
location, quaternions, and link lengths. Then, the human shape
is generalized to a cylinder for each link, shown in fig. 2A.
Next, the link cylinders are fit to a discretized 3D grid to
generate the blue point cloud in fig. 2B. The cartesian
workspace surrounding the robot is denoted by W. Each
occupied point in W is assigned the time of occupancy from
the human motion sequence. This results in a set of cartesian
points occupied at a list of time steps, denoted . The set H
can then be used to generate intervals of time over which each
point in W is occupied. Each interval has start time t; and end
time ¢;. If a point in H is occupied over a set of consecutive
time steps, then the first time step is the start time of an
interval and the last time step is the end time. A single point in
H can have multiple intervals, denoted [, t¢], over which the
point is occupied.

B. Avoidance Intervals

The points in W must inherit occupancy intervals from H .
Interval start and end times for a point in W are denoted ¢ .
L

and ¢ty , respectively, for the i*" interval resulting from the ot"
L
obstacle at that point. The time intervals of occupancy are:
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Figure 2. (A) Human pose generalized to cylinders and (B) a point cloud.



where A, (x,¥,2) is the i*" avoidance interval for the o"
obstacle occupying point (x,y,z) and tpq,, is the final time
step of the predicted motion sequence for the o™ obstacle. The
A(x,y,z) is the union of all intervals for which humans
occupy point (x,y, z). If point (x, y, z) is occupied by the ot*
obstacle at the end of the motion prediction for that obstacle,
then it must be assumed that point (x, y, z) is occupied by the
o'" obstacle for the remainder of time. This leads to the notion
of a last time of passage for some points in cartesian space:

tip,, (X, ¥,2) = Vo = fendo 3)
lpoi ' Vs tsoi tfo = tendo'
t,,(x,y,z) = min mint X,V,Z), 4
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where ¢, (x,y,2) is the last time passage is allowed due to
L
the i*" interval for 0" obstacle at cartesian point (x, y, z). The
tip (x,y, z) is the last time of passage for point (x, y, z), which
is the minimum of t;,,  (x,y,z) over all intervals for which
i

humans occupy point (x, y, z).

After determining the spatio-temporal occupancy map, a
sampling-based planner can generate a trajectory for the robot.
The planner generates a new node, having robot configuration
q.. Each robot configuration has dimension equal to the
degrees of freedom (DOF) of the robot. Connections between
the new node and each of its neighbors, having robot
configuration g, are considered. Robot configurations with
spacing Aq between q,, and g, must be checked for collision.
Let FK (qp, qc) represent the poses of the robot determined by
forward kinematics at configurations between q,, and q.. If an
intersection of points in W and FK (qp, qc) exists, then the set
of avoidance intervals for the intersecting points will be added
to the set of avoidance intervals and last pass time for the
connection between q,, and q. in the planner’s node graph (§),

denoted c/l(qp, q.)and tiy (qp, q.) respectively:
o‘l(qp' qc) = U(x,y,z)e FK(qp.4c) Jl(x, Y, Z)' (5

min ti (%, Y, 2). (6)
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Next, if Jl(qp, qc) is not an empty set, then the minimum
time to reach node q. from the start configuration while
avoiding potential collision between q, and q, must be
determined. First, the minimum time required to travel
between q,, and q, is:

qclil-qpli]
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) (7)

t(qp, q.) = max

i€[1,n]

where @ is the vector of maximum velocities for each robot
DOF and i iterates over each DOF [1, n]. Each node in G must
store the minimum arrival time for the robot to reach its
configuration from the start configuration, denoted t,., v for

node at q,,. The t,,, for the start node is set to zero. Then the
minimum time to reach q. via q,, is t;:

te=t, +t(a, q.), (8)
where t,, is initially considered to be tarr, for the node at q,,.
This creates a time interval for passage from q, to q. of

rrcye rrc i »Hc)> i
[tp t ] If [tp t ] intersects c/l(qp q ) then t,, is updated
according to:

+ tpaa: [t te] N A(ap,4c) = 0} (9)

The tp,qq 1s a user-defined time padding constant. The larger
tpaa 18, the more tolerant the plan is to deviations in actual
human motion compared to the prediction. If ¢,, or t. is greater
than t;,,(qp, q.), then the connection is blocked indefinitely
and it is rejected. For example, if the human doesn’t back away
from the robot after a task, the robot’s path could be blocked
indefinitely. Every time t,, is updated, t, must be updated

using (8). The c/l(qp, qc) is sorted by increasing interval start

t, = miin{c/ll- (ap.q.)

end

time, so the resulting [tp, tc] is the earliest time interval when
the robot can travel from g, to g, without colliding with a
predicted human pose. The time to reach q., denoted t., can
now be considered as the cost to reach q,. for use in finding the
optimal path. Now the t,.. . for the node at q. is also updated
to be t. if t. is less than tg,., .

C. Safety-Aware Cost-Function

When STAP is applied to HRC, the ISO/TS 15066
standard defines modes of robot operation to ensure human
safety [9]. The SSM rules of ISO/TS 15066 require that a
safety controller, shown as the orange block in fig. 1, enforce
a robot speed limit proportional to robot/human separation
distance. The safety controller stops the robot if the separation
distance becomes too small. To mitigate potential SSM safety
controller slowdown effects, STAP adapts its time-based cost
function to anticipate speed reductions based on SSM rules
applied with the predicted human motion. STAP estimates the
effect of SSM by calculating the time between nodes using the
formulation from [27]. First, the distance between the i point
on the human at time t;, in the predicted motion (h;(t;)) and
the j*" robot point at q (denoted FK;(q)) is:

D;; = ||hi(ty) — FK;(9)]- (10)

The points of the human in h(t;) are located at the human’s
joints and centroids of limbs. Then the maximum speed
allowed by the jt" robot point relative to the i*" human point
at time t; and robot configuration q according to SSM is:

Umax (q' LJj, th) =

{—aSTr — v, + \/vﬁ +(aT)? + 24,0 :Dy;>D (D

0 else

The v}, is the human’s velocity relative to the robot, ag is the
maximum cartesian deceleration of the robot relative to the
human, T, is the reaction time of the robot, and D is a
minimum distance between human and robot allowed for robot
motion. The magnitude of the robot’s tangential speed in the
direction of the human is:

(qe-ap) (hit)-FK;(@)
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Vrobot (@ 1, J, th) = ]j @ (12)

where J;(q) is the robot’s translational Jacobian for point j on

IFK;(q)

the robot at configuration g, calculated by J;(q) = g



The t(qp, qc) is the nominal duration from (7). Then (7) can
be updated with the speed bound (v,,,,,) allowed by SSM:

t , =y maX”robot(q;i:jvtn) lldqll ¢ ) Nk
(q” q”) Zq‘qp i vmax(@ijtn) ||lac—apl| (q” qc) (13)
where the range between ¢, and q. is divided into

configurations of spacing dq and the time to complete each
dq is summed. The t,, is the nominal time to reach q:

t, =t -+1B:3£lt(qp,qc)
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If Yy opot / Vmax becomes greater than a user selected threshold,
then predicted human poses over a short window into the
future (At) can be considered by (13) to see if the delay due to
human proximity is predicted to be temporary:

Yrobot(@ij,tn) — m Vrobot(@,LJj,ts)
Ymax(q.i.),tn) tsEltntn+At] Vmax(@ijts)

(15)

The updated v,opot/Vimax from (15) can be used for
Vyobot/ Vmax 1M (13) for the configuration in question. This
allows STAP to estimate delays induced by humans and the
effect of SSM. A safety controller external to STAP must
enforce real-time compliance with the SSM rules.

D. Spatio-Temporal Path Planning

The STAP method includes a variation of RRT* to use the
human-avoidance model and time-based cost function. The
RRT* planner was a starting point for the proposed variation
because it uniformly randomly selects new nodes (V,,,,) from
within the robot’s configuration space and converges to the
optimal path. The STAP method can be used with high DOF
robots, so random selection of V,,,, ensures exploration of
robot configurations. The planner variation in STAP has a few
significant deviations from standard RRT*. This variation
stores data, such as avoidance intervals, for suboptimal
connections for future consideration to reduce computation.
Standard RRT* discards suboptimal parent connections.

Standard RRT* includes a mechanism to connect (rewire)
from V,,,, to a node near V,,,, (V;0qr) if the new connection
has less cost than the current connection to V., [28]. This
ensures trajectories converge to the optimal trajectory as nodes
and connections are added to G. In STAP, V., is rewired to
Vpew if the new connection results in a smaller t,,.,. for V,,,,.
When this occurs, STAP also considers if connections for
which V., is the parent can be improved, up to some number
of levels (denoted N,) down the solution tree in the direction
of children. Additionally, when a new node is added to the
solution tree, all V,,,, in the neighborhood of 1, are also
checked to see if there are any better parent nodes for V., in
the neighborhood. This is necessary for STAP because a
rewiring event could reduce the t,,, for a node, possibly
making it a better parent for another node. This could result in
a long chain of parent upgrades and too much computation. By
upgrading parent connections only for nodes near V,,,,, STAP
ensures that if configurations for V., are uniformly randomly
selected from the configuration space, then each existing node
has equal probability of upgrading its connection to a better
parent that would reduce its arrival time. Once a connection to
the goal node is found, the optimal sequence of connections
from the start node to the goal node, denoted ¢, is found to be
the sequence that minimizes the goal node arrival time.

E. Time Parameterization with Avoidance Intervals

Once STAP determines the sequence of connections ¢,
then a time parameterization can also be determined using the
connection parent times computed in (8) and (9). The time to
reach the goal node would be ¢, for the connection whose child
is the goal node. Then, looking backwards through ¢* starting
from the connection to the goal node, the time the robot should
reach each connection’s parent node (t,) has been computed
in (9). The robot velocity between consecutive connections for
the i** robot configuration variable was limited according to:

(16)

The connection velocity limit reduces the robot’s velocity if
the next connection is delayed to avoid an anticipated human
pose. This prevents the robot from stopping close to a human
while waiting for an avoidance interval to pass. The STAP
time parameterization also allows t,, for the connection whose
parent node is the start node to be greater than zero. This
occurs when the robot should wait at the start node before
beginning motion to avoid a human within the first connection.
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Fig. 3 depicts a robot path solution found using the above
method. Time is shown on the horizontal axis with motion start
time at the left and configurations shown on the vertical axis
with initial configuration at the top and goal at the bottom. Red
(shaded) blocks indicate avoidance intervals where
connections between configurations are obstructed. The solid
black line and green circles indicate the trajectory through the
time/configuration space and waypoints. It shows the
connection from q4 to g, has reduced velocity to prevent
stopping at q, until time t,. The figure also depicts the last
pass time (t;,,) for the g, - q; and q, — q3 connections.

IV. EXPERIMENTS

Experiments with simulated and real workecells, each
having a robot manipulator and a human worker, were used to
validate the STAP method presented in section III. One
workcell used for testing included a Comau e.Do 6DOF-6R
robot sitting on a table, shown in fig. 4A. Live tests were also
performed with this cell equipped with two depth cameras,
outlined by blue ovals in fig. 4A, to sense the human’s real-
time location. While the e.Do robot has full rotation about its
based, the robot is restricted to move in the half of the cell
nearest the human to ensure robot/human interaction. The
second workcell was equipped with a UR10e 6DOF-6R robot
mounted hanging over a table, as shown in fig. 4B. Use of
these two workcells allowed exploration of impacts on STAP
planning by: 1) different robot maximum joint velocity limits
and 2) different robot configurations (e.g., base mount, tasks /
robot paths / poses). The UR10e has a maximum joint velocity
about 4 times greater than the e.Do for any joint. A computer
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Figure 3. A sequence of nodes/connections from an initial configuration to a
goal configuration indicating avoidance intervals for connections.



with an Intel 19 processor used up to 16 CPU cores for path
planning.

The robot and human performed three experimental tasks
together, denoted task A, B, and C. In each task, the human
reached for targets, shown as red rectangles, in fig. 4 and fig.
5. In fig. 5, human wrist and robot end-effector traces are solid
blue and dashed green arrows, respectively. In task A, the
human retrieved an item from a shelf, as shown in fig. 5A,
while the robot tried to move an item from the right side of the
workcell to the left side, from the human’s point of view. In
task B, the human retrieved an item from the right side of the
table, brought it back to table in front of them, and then
returned it. Meanwhile, the robot moved an item from the left
to right side of the cell. The goal pose of the robot’s gripper is
between the human’s forearm and table, as shown in fig. 5B.
Task C has the human extend their arms in front, pointed at the
robot, with palms together and then sweep the right arm up and
left arm down 45°, as shown in fig. 5C, over 5 seconds, then
back together over 5 seconds, repeating twice. The human
creates a narrow passageway of time-varying size through the
configuration space. Meanwhile, the robot moves an item from
left to right across the cell. Tasks A and B represent more
realistic motions in an industrial HRC workcell, while C
presents greater challenge. In all tasks, human motion prevents
the robot from reaching the goal without delay. Each task was
performed 10 times in the simulated and live e.Do cells, and
simulated UR10e cell. The live tests used real-time human
motions sensed with the depth cameras using the method in
[29] while the simulations used pre-recorded human motion to
emulate a real human. Simulations provide results under ideal
conditions, not including possible variations in the human’s
behavior caused by the interaction with the moving robot. Live
tests show how the planning methods accommodate such
variations in real human motions.

The STAP method was tested with waypoint timing
assigned either as: 1) the output times directly from STAP time
parameterization in (&) and (9 (denoted “STAP-PT” in
res
Pa
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Figure 5. Experimental robot/human tasks.

generated waypoints (denoted “STAP-IPTP” in results) [30].
The IPTP assigns timing so the robot will reach each waypoint
as quickly as possible. These two methods only used the
“offline proactive planning” block and not the “online reactive
planning” block in fig. 1. For a baseline, tests were performed
using the robot trajectory generated by three existing planners.
The STOMP planner was used like in [15] to deform the direct
trajectory, attempting to avoid predicted human motion with
repulsion inversely proportional to robot-human separation
distance. The Bi-directional Transition-based Rapidly-
Exploring Random Trees (BiTRRT) planner repeated
planning as the robot approached the real-time human
location, making the robot react to the human’s real-time pose
[31]. The third planner (denoted “HOVs” in results) is a
variant of RRT that tried to avoid all 3D points the human will
occupy during the task [6]. The planning time allowed for each
planner was 60 seconds to allow convergence near to their
unique optimal trajectories.

In all tests, a real-time SSM safety controller applied robot
speed reduction according to (11)-(13). The SSM safety
controller reduced robot speed to a fraction of planned speed:

(17)

where q is the robot’s current configuration, in joint space, q,,
and q, are the configurations at the start and end of a planned
connection, respectively, and V4, (q, i, j) and v,.p0:(q, i, j)
use the human’s current pose instead of prediction in (11)-(13).
The q is the robot velocity allowed by the SSM safety mode.
The ratio V4. /Vropor 1N (17) reduces speed while v,yp0¢/
VUmax I (13) increases time duration. The SSM parameters
were T, a,, and D of 0.15s, 0.1m/s?, and 0.2m, respectively.
For each test, we measured the task completion time (in
seconds) and the average human-robot relative distance during
the trajectory execution (in meters), aiming to show that STAP
can reduce the robot cycle time by avoiding severe slowdowns
caused by robot proximity.

Ymax(@Lj) 4c—p

7 = min -
1 i,j Vrobot(@ij) tc_tp’

V. RESULTS AND DISCUSSION

The results of experiments with the e.Do and the UR10e
2 shown in fig. 6. Fig. 6A shows the average duration the
bot took to perform each trajectory. These results show that
ing the STAP method with IPTP resulted in trajectories that
ok 47% less time on average compared to the other methods,
th the exception of Task A — e.Do simulated. The average
ne reduction by using STAP method versus others was 44%
r simulated e.Do, 45% for live e.Do, and 52% for simulated
R10e tests. The faster UR10e yields better time reduction
sults compared to the slower e.Do robot. Fig. 6B shows
erage robot-human separation distance during tests. Since
ior works consider robot/human separation distance an
iportant metric, it is assumed that the average separation
stance metric is directly related to the human’s level of
mfort with robot motion [8,9-17,27]. The results show that
2 STAP method with either timing variation (“STAP-IPTP”

“STAP-PT”) resulted in higher average robot-human
paration distance. This result means the robot spent less time
ar the human in all tests except Task C in the UR10e Sim.

The estimated robot trajectory durations output from the
"AP method were also much closer to the actual durations
observed in all tests. The trajectory generated by the STAP



method with IPTP took only 13% more time than the estimate,
on average. The STAP method using the time parameterization
of (8) and (9) had 73% average duration estimation error. The
STOMP and BiTRRT planners generated estimation errors of
646% and 876%. Their estimation errors are large because
they planned to do the trajectory as fast as possible but had to
react to the human. The HOVs planner estimated infinite path
time because its robot paths could not avoid all anticipated
human occupancy volumes. A significance of these results is
STAP’s potential impact on task scheduling. I.e., the robot
duration estimates can be used to schedule robot tasks to better
match the sequence of other machines or humans in an HRC
workcell. Trajectory duration estimates are also useful in robot
task planning where the robot can select a next action that
minimizes anticipated delay caused by humans. Planner
performance was also collected for the STAP method on Task
C, allotting 500 planner iterations to generate the trajectory.
Fig. 7 shows evolution of path cost, or estimated trajectory
duration, averaged over generation of 100 plans. It indicates
the path after 180 iterations was within 15% of optimal.

A weakness of the STAP method is computation time. The
first 180 iteration of STAP applied to Task C took about 30
seconds. STAP performs N.n? times more computations per
iteration than RRT* due to the STAP planner variation, where
n is proportional to the number of nodes at a given iteration

anJ AT RSN [ . B A A L Y A X ATit oV _a_at_
eDo Sim eDo Live UR10e Sim

27.3
A 21.5

11.7290.5 20.5
8.7

actual trajectory duration (seconds)
Task B

A
@]
s
"]
\©
RER & Q& & R L5¥
\Q o &Q"Q@ \Q O /\Q"Q@ \Q Q @QO
ks
WA ¥ a0 & & & & S N S
- eDo Sim eDo Live UR10e Sim
vy
;._‘; 0.385 33
240.4-
=% |021923p3¢
§ £ 027 0.100_07_
[]
007
gmo-“
2%
& mo.
B 3
@
w
c
v
5 x
= [}
g0
e}
[s]
2

«Q&

\Q é &Q ‘:@

Figure 6. (A) Average trajectory durations and (B) average robot/human
separation distance, with mean values indicated above the bars and standard
deviations indicated by magnitude of the smaller black bars. Green hatched
bars correspond to the STAP method with either timing option.
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Figure 7. STAP — Task C: Evolution of average planner cost (trajectory

duration estimate) and standard deviation over 500 planning iterations.

also stems from processing a predicted human model that is
more complex than prior works. The predicted human model
has many data points due to consideration of time-varying
occupancy. Future works will investigate functional
representations of the human model that can estimate future
robot/human intersection with less computation. STAP’s
computation time limits its use to tasks in which human motion
is predictable, e.g., cyclic manufacturing tasks. In these
scenarios, STAP can plan offline based on the task definition
and human task training data. During execution, if the human
motion differs too much from the prediction, then the robot
could use reactive planning methods, such as BiTRRT, to
replan its path.

To summarize, STAP outperformed other methods by
anticipating impasses due to human occupancy and delays
caused by the SSM safety controller. This resulted in less-

terrupted robot paths and a larger human-robot average
paration distance. In addition, consideration of impasses and
M effects allowed STAP to estimate execution times more
curately. Therefore, STAP improves HRC by providing
ttputs that mitigate production delay and human discomfort
predictable tasks.

VI. CONCLUSION

The proposed method combines predicted human motion
quences and proactive robot path planning. It includes a
atio-temporal occupancy map to represent anticipated
man poses and a time-avoidance cost function and variation
t RRT*. The goal of the STAP method is to mitigate
oduction delays and reduce human discomfort in an HRC
ykeell. Results showed the STAP method generates
jectories of shorter duration in an HRC setting.
1ditionally, trajectories generated by STAP result in the
bot spending less time close to the human. The STAP
sthod also outputs an estimate of the robot trajectory
ration, which is useful in arriving at proactive-n-reactive
bot sequencing. In future work, more compact forms of the
atio-temporal human occupancy map will be explored to
dress the computational challenges of STAP and a broader
perimental validation will assess the efficacy of the method
ross different subjects and tasks.
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