
  

 

Abstract— This paper addresses human-robot collaboration 
(HRC) challenges of integrating predictions of human activity to 
provide a proactive-n-reactive response capability for the robot. 
Prior works that consider current or predicted human poses as 
static obstacles are too nearsighted or too conservative in 
planning, potentially causing delayed robot paths. Alternatively, 
time-varying prediction of human poses would enable robot 
paths that avoid anticipated human poses, synchronized 
dynamically in time and space. Herein, a proactive path 
planning method, denoted STAP, is presented that uses spatio-
temporal human occupancy maps to find robot trajectories that 
anticipate human movements, allowing robot passage without 
stopping. In addition, STAP anticipates delays from robot speed 
restrictions required by ISO/TS 15066 speed and separation 
monitoring (SSM). STAP also proposes a sampling-based 
planning algorithm based on RRT* to solve the spatio-temporal 
motion planning problem and find paths of minimum expected 
duration. Experimental results show STAP generates paths of 
shorter duration and greater average robot-human separation 
distance throughout tasks. Additionally, STAP more accurately 
estimates robot trajectory durations in HRC, which are useful in 
arriving at proactive-n-reactive robot sequencing. 

I. INTRODUCTION 

A prevalent challenge in human-robot collaboration 
(HRC) is providing robot(s) proactive-n-reactive capability to 
correctly anticipate and respond to humans working in close 
proximity. In contexts such as manufacturing, robot(s) and 
human(s) typically perform cyclic tasks in which human 
motion is likely repetitive and predictable. If HRC controller 
algorithms, including motion planners, can efficiently leverage 
such knowledge, then the robot can proactively avoid 
anticipated interruptions. Additionally, the robot could take 
advantage of predicted windows of time that are free of 
obstruction to move safely and seamlessly among humans. A 
motion planner that utilizes the predicted motions of humans 
can also estimate a ‘robotic task completion time’ metric 
useful in selecting the next robot task to perform. The planner 
could then further modify the timing of robot motions to 
reduce the amount of time a robot spends in close proximity to 
a human, allowing greater human comfort. 

State-of-the-art variations of Rapidly Exploring Random 
Trees (RRT) and Probabilistic Roadmaps have included 
features that allow reaction to an obstacle’s current pose while 
computing fast enough for online planning [1-5]. These recent 
variations only consider current, static poses of dynamic 
obstacles. Recent human-aware planners consider static, 
anticipated human volumes and robot speed reduction due to 
human proximity to generate paths specifically beneficial to 
HRC [6-8]. Human-aware planners also consider dynamic 
obstacles as having anticipated, static poses. Since these 
planners only consider static obstacle poses and do not 
consider obstacles’ time varying motion, they are nearsighted 
in planning. This nearsightedness allows obstacles to drive the 
robot toward temporary entrapments and production delay. 
For example, consider a workcell with two assembly stations, 
a robot that services both stations, and a human that alternates 
between stations. If the robot’s path planner considers human 
pose as static, then the human and robot could interfere with 
each other as the human moves between stations. The method 
herein permits robot paths that proactively account for the 
anticipated human motion between stations, allowing 
uninterrupted robot and human motion.   

This paper proposes the Spatio-Temporal Avoidance of 
Predictions (STAP) method. The goal of STAP is to reduce the 
interference between humans and robots during collaborative 
tasks. STAP includes predictions of the humans’ movements 
in a motion planning problem and searches for a trajectory that 
avoids potential collisions. While previous methods have also 
used time-based cost functions, STAP has key differences 
from previous works. First, STAP uses predicted human 
motion in 3D space to estimate time-varying human 
occupancy in a robotic workcell. Second, STAP formulates 
robot trajectory planning as an optimal motion planning 
problem in which trajectory execution time under the spatio-
temporal avoidance constraints is minimized. A variation of 
RRT* is developed to solve this planning problem. Third, 
STAP incorporates the speed and separation monitoring 
(SSM) rules from the ISO/TS 15066 standard to estimate the 
effect of predicted human poses on robot speed and trajectory 
duration [9]. Experiments show that trajectories planned with 
STAP have significantly shorter execution times and larger 
robot/human separation distances during close collaboration.   

The following sections include a discussion of the STAP 
method’s key steps, experimental validation, results, and 
conclusions.  Section III includes subsections:  III.A) detailing 
the predicted human model, III.B) avoidance intervals, III.C) 
incorporation of idle times owed to safety stops and 
slowdowns, III.D) variation of RRT* to utilize avoidance 
intervals, and III.E) STAP time-parameterization.  
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II. RELATED WORKS 
Prior planning methods incorporate predicted obstacle 

motion to proactively avoid anticipated obstructions. One 
option is to dynamically modify the robot’s trajectory based 
on immediate human motion [10,11]. Another method 
generates collision free waypoints when time is included in the 
configuration space and uses a local planner to ensure 
reachability [12]. Other works define safe intervals for passage 
through configuration nodes to avoid obstacles when 
generating 2D robot paths, in which both obstacles and robot 
are defined as points [13,14]. One planning framework models 
probabilistic human motion sequences using time sequences 
of Gaussian Mixture Models (GMMs) [15,16]. It uses the 
STOMP path optimizer to deform straight-line robot paths to 
minimize penetration into the human’s volume. Other methods 
use optimization frameworks to generate robot trajectories that 
maintain a distance between the robot’s trajectory and learned 
time-sequences of human arm motion [17,18]. Some 
approaches avoid anticipated points of collision for the entire 
task by considering previously occupied space or predicted 
human occupancy volumes (HOVs) as static obstacles 
throughout the task [6,19]. STAP differs from prior works by 
utilizing predicted, dynamic motions of humans over an entire 
task rather than static definitions or instantaneous estimates. 

In an HRC manufacturing workcell, the structure of tasks 
facilitates prediction of human motion. The human predictions 
are inputs to the method presented in this paper. One motion 
prediction method uses GMMs to generate time sequences of 
probabilistic models for human arm extension trajectories 
[20,21]. Then it uses the GMMs for classification and 
extrapolation for current human motion. GMMs were also 
used to learn a linear dynamic model to represent human 
trajectories [22,23]. Probabilistic principal component 
analysis has also been used to learn motion models for human 
trajectories, detect motion onset, estimate human speed, and 
select a motion model to infer a future trajectory [24]. Methods 
such as Risk of Passage and the Swept Volumes method 
anticipate volumes at the intersection of robot paths and 
predicted human motion [25,26]. 

III. METHOD 

The goal of STAP is to develop a cost function and 
sampling-based robot path planner variation that considers 
anticipated, time-varying motion of humans. STAP first 
generates a spatio-temporal human occupancy map to encode 
anticipated human poses and times of occupancy. Then STAP 
considers both the occupancy map and estimated speed 
reductions enforced by an SSM safety controller to estimate 
the time required for a robot to traverse robot configurations. 
Finally, a variation of RRT* is proposed that creates a graph 
of nodes and estimated path costs using the STAP cost 
function.  STAP outputs the trajectory of minimal duration 
considering anticipated, time-varying, human occupancy. Fig. 
1 shows how STAP fits into an overall robot control scheme 
as the green blocks.  The blue block is the motion prediction 
method providing input to STAP. Fig. 1 includes the SSM 
safety controller as the orange block which limits robot speed 
along the planned trajectory based on real-time robot/human 
separation distance.  

A. Predicted Spatio-Temporal Human-Occupancy Map 
First, STAP generates a spatio-temporal occupancy map in 

cartesian space.  Each point of the map stores a set of 
avoidance intervals, which are the time intervals over which 
any human body part will occupy that point. The input to 
STAP is a time series defining human motion in terms of the 
pelvis location, quaternions of each human body part (aka 
limb, human skeletal link) w.r.t. the world-z axis, link lengths, 
and link radii for the human for each time step. At each time 
step of the human motion, quaternion forward kinematics 
determines the human joint locations based on the pelvis 
location, quaternions, and link lengths. Then, the human shape 
is generalized to a cylinder for each link, shown in fig. 2A. 
Next, the link cylinders are fit to a discretized 3D grid to 
generate the blue point cloud in fig. 2B. The cartesian 
workspace surrounding the robot is denoted by 𝒲𝒲. Each 
occupied point in 𝒲𝒲 is assigned the time of occupancy from 
the human motion sequence. This results in a set of cartesian 
points occupied at a list of time steps, denoted ℋ. The set ℋ 
can then be used to generate intervals of time over which each 
point in 𝒲𝒲 is occupied. Each interval has start time 𝑡𝑡! and end 
time 𝑡𝑡". If a point in ℋ is occupied over a set of consecutive 
time steps, then the first time step is the start time of an 
interval	and the last time step is the end time. A single point in 
ℋ can have multiple intervals, denoted [𝑡𝑡!, 𝑡𝑡"], over which the 
point is occupied. 

B. Avoidance Intervals 
The points in 𝒲𝒲 must inherit occupancy intervals from ℋ. 

Interval start and end times for a point in 𝒲𝒲 are denoted 𝑡𝑡!#! 
and 𝑡𝑡""! , respectively, for the 𝑖𝑖$% interval resulting from the 𝑜𝑜$% 
obstacle at that point. The time intervals of occupancy are: 

 𝒜𝒜#!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 1
2𝑡𝑡!#! , 𝑡𝑡""!3 𝑡𝑡"# < 𝑡𝑡&'(#
2𝑡𝑡!"! , ∞6 𝑡𝑡"# = 𝑡𝑡&'(#

, (1) 

  𝒜𝒜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = ⋃ ⋃ 𝒜𝒜#!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)	∀𝑖𝑖 ∈ 𝑜𝑜, ∀𝑜𝑜 ∈ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧))# , (2) 

 
Figure 1. The high-level control loop for an HRC workcell. 
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Figure 2. (A) Human pose generalized to cylinders and (B) a point cloud. 



  

where 𝒜𝒜#!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the 𝑖𝑖$% avoidance interval for the 𝑜𝑜$% 
obstacle occupying point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 𝑡𝑡&'(# is the final time 
step of the predicted motion sequence for the 𝑜𝑜$% obstacle. The 
𝒜𝒜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the union of all intervals for which humans 
occupy point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). If point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is occupied by the 𝑜𝑜$% 
obstacle at the end of the motion prediction for that obstacle, 
then it must be assumed that point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is occupied by the 
𝑜𝑜$% obstacle for the remainder of time. This leads to the notion 
of a last time of passage for some points in cartesian space: 

 𝑡𝑡*+"!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = :
∞ 𝑡𝑡"# < 𝑡𝑡&'(#
𝑡𝑡!"! 𝑡𝑡"# = 𝑡𝑡&'(#

, (3) 

 𝑡𝑡*+(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = min
#∈(.,0,1)

min
)∈#

𝑡𝑡*+"!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), (4) 

where 𝑡𝑡*+"!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the last time passage is allowed due to 
the 𝑖𝑖$% interval for 𝑜𝑜$% obstacle at cartesian point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). The 
𝑡𝑡*+(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the last time of passage for point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), which 
is the minimum of 𝑡𝑡*+"!(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) over all intervals for which 
humans occupy point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧).  

After determining the spatio-temporal occupancy map, a 
sampling-based planner can generate a trajectory for the robot. 
The planner generates a new node, having robot configuration 
𝒒𝒒𝒄𝒄. Each robot configuration has dimension equal to the 
degrees of freedom (DOF) of the robot. Connections between 
the new node and each of its neighbors, having robot 
configuration 𝒒𝒒+, are considered. Robot configurations with 
spacing ∆𝒒𝒒 between 𝒒𝒒+ and 𝒒𝒒𝒄𝒄 must be checked for collision. 
Let 𝑭𝑭𝑭𝑭B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C represent the poses of the robot determined by 
forward kinematics at configurations between 𝒒𝒒𝒑𝒑 and 𝒒𝒒𝒄𝒄. If an 
intersection of points in 𝒲𝒲 and 𝑭𝑭𝑭𝑭B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C exists, then the set 
of avoidance intervals for the intersecting points will be added 
to the set of avoidance intervals and last pass time for the 
connection between 𝒒𝒒𝒑𝒑 and 𝒒𝒒𝒄𝒄 in the planner’s node graph (𝒢𝒢), 
denoted 𝒜𝒜B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄Cand 𝑡𝑡*+(𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄) respectively: 

 𝒜𝒜B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C = ⋃ 𝒜𝒜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧),(.,0,1)∈	𝑭𝑭𝑭𝑭8𝒒𝒒𝒑𝒑,𝒒𝒒𝒄𝒄:  (5) 

 𝑡𝑡*+B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C = min
(.,0,1)∈	𝑭𝑭𝑭𝑭8𝒒𝒒𝒑𝒑,𝒒𝒒𝒄𝒄:

𝑡𝑡*+(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). (6) 

Next, if 𝒜𝒜B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C is not an empty set, then the minimum 
time to reach node 𝒒𝒒𝒄𝒄 from the start configuration while 
avoiding potential collision between 𝒒𝒒𝒑𝒑 and 𝒒𝒒𝒄𝒄 must be 
determined. First, the minimum time required to travel 
between 𝒒𝒒𝒑𝒑 and 𝒒𝒒𝒄𝒄 is: 

 𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C = max
)∈[<,']

H𝒒𝒒𝒄𝒄[𝒊𝒊]?𝒒𝒒𝒑𝒑[𝒊𝒊]
𝒒̇𝒒A[𝒊𝒊]

H, (7) 

where 𝒒̇𝒒J is the vector of maximum velocities for each robot 
DOF and 𝑖𝑖 iterates over each DOF [1, n]. Each node in 𝒢𝒢 must 
store the minimum arrival time for the robot to reach its 
configuration from the start configuration, denoted 𝑡𝑡BCC+ for 
node at 𝒒𝒒𝒑𝒑.  The 𝑡𝑡BCC for the start node is set to zero. Then the 
minimum time to reach 𝒒𝒒𝒄𝒄 via 𝒒𝒒𝒑𝒑 is 𝑡𝑡D: 

 𝑡𝑡D = 𝑡𝑡+ + 𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C, (8) 

where 𝑡𝑡+ is initially considered to be 𝑡𝑡BCC% for the node at 𝒒𝒒𝒑𝒑.  
This creates a time interval for passage from 𝒒𝒒𝒑𝒑 to 𝒒𝒒𝒄𝒄 of 

L𝑡𝑡+, 𝑡𝑡DM. If L𝑡𝑡+, 𝑡𝑡DM intersects 𝒜𝒜B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C, then 𝑡𝑡+ is updated 
according to: 

𝑡𝑡! = min
"
&𝒜𝒜"(𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄+%&' 	+ 𝑡𝑡!(': /𝑡𝑡!, 𝑡𝑡)0 ∩ 𝒜𝒜(𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄+ ≡ 04 (9) 

The 𝑡𝑡+B( is a user-defined time padding constant. The larger 
𝑡𝑡+B( is, the more tolerant the plan is to deviations in actual 
human motion compared to the prediction. If 𝑡𝑡+ or 𝑡𝑡D is greater 
than 𝑡𝑡*+(𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄), then the connection is blocked indefinitely 
and it is rejected. For example, if the human doesn’t back away 
from the robot after a task, the robot’s path could be blocked 
indefinitely. Every time 𝑡𝑡+ is updated, 𝑡𝑡D must be updated 
using (8). The 𝒜𝒜B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C is sorted by increasing interval start 
time, so the resulting L𝑡𝑡+, 𝑡𝑡DM is the earliest time interval when 
the robot can travel from 𝒒𝒒𝒑𝒑 to 𝒒𝒒𝒄𝒄 without colliding with a 
predicted human pose. The time to reach 𝒒𝒒𝒄𝒄, denoted  𝑡𝑡D, can 
now be considered as the cost to reach 𝒒𝒒𝒄𝒄 for use in finding the 
optimal path. Now the 𝑡𝑡BCCD for the node at 𝒒𝒒𝒄𝒄 is also updated 
to be 𝑡𝑡D if 𝑡𝑡D is less than 𝑡𝑡BCCD. 

C. Safety-Aware Cost-Function  
When STAP is applied to HRC, the ISO/TS 15066 

standard defines modes of robot operation to ensure human 
safety [9]. The SSM rules of ISO/TS 15066 require that a 
safety controller, shown as the orange block in fig. 1, enforce 
a robot speed limit proportional to robot/human separation 
distance. The safety controller stops the robot if the separation 
distance becomes too small. To mitigate potential SSM safety 
controller slowdown effects, STAP adapts its time-based cost 
function to anticipate speed reductions based on SSM rules 
applied with the predicted human motion. STAP estimates the 
effect of SSM by calculating the time between nodes using the 
formulation from [27]. First, the distance between the 𝑖𝑖$% point 
on the human at time 𝑡𝑡% in the predicted motion (𝒉𝒉𝒊𝒊(𝑡𝑡%)) and 
the 𝑗𝑗$% robot point at 𝒒𝒒 (denoted 𝑭𝑭𝑲𝑲𝒋𝒋(𝒒𝒒)) is: 

 𝐷𝐷)F = Q𝒉𝒉𝒊𝒊(𝑡𝑡%) − 𝑭𝑭𝑲𝑲𝒋𝒋(𝒒𝒒)Q. (10) 

The points of the human in 𝒉𝒉(𝑡𝑡%) are located at the human’s 
joints and centroids of limbs. Then the maximum speed 
allowed by the 𝑗𝑗$% robot point relative to the 𝑖𝑖$% human point 
at time 𝑡𝑡% and robot configuration 𝒒𝒒 according to SSM is: 

 𝑣𝑣GB.(𝒒𝒒, 𝑖𝑖, 𝑗𝑗, 𝑡𝑡%) = 

T−𝑎𝑎!𝑇𝑇C − 𝑣𝑣% + W𝑣𝑣%H + (𝑎𝑎!𝑇𝑇C)H + 2𝑎𝑎!𝐷𝐷)F : 𝐷𝐷)F > 𝐷𝐷

0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
. 

(11) 

The 𝑣𝑣% is the human’s velocity relative to the robot, 𝑎𝑎! is the 
maximum cartesian deceleration of the robot relative to the 
human, 𝑇𝑇C is the reaction time of the robot, and 𝐷𝐷 is a 
minimum distance between human and robot allowed for robot 
motion. The magnitude of the robot’s tangential speed in the 
direction of the human is: 

 𝑣𝑣C#I#$(𝒒𝒒, 𝑖𝑖, 𝑗𝑗, 𝑡𝑡%) = 𝑱𝑱𝒋𝒋(𝒒𝒒) 8𝒒𝒒𝒄𝒄?𝒒𝒒𝒑𝒑:
$8𝒒𝒒𝒑𝒑,𝒒𝒒𝒄𝒄:

⋅
J𝒉𝒉𝒊𝒊($')?LM((𝒒𝒒)N

O𝒉𝒉𝒊𝒊($')?LM((𝒒𝒒)O
, (12) 

where 𝑱𝑱𝒋𝒋(𝒒𝒒) is the robot’s translational Jacobian for point 𝑗𝑗 on 
the robot at configuration 𝒒𝒒, calculated by 𝑱𝑱𝒋𝒋(𝒒𝒒) = P𝑭𝑭𝑲𝑲𝒋𝒋(𝒒𝒒)

P𝒒𝒒
. 



  

The 𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C is the nominal duration from (7). Then (7) can 
be updated with the speed bound (𝑣𝑣GB.) allowed by SSM: 

			𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C = ∑ max
),F

Q*"+",(𝒒𝒒,),F,$-)
Q./0(𝒒𝒒,),F,$-)

‖𝒅𝒅𝒅𝒅‖
O𝒒𝒒𝒄𝒄?𝒒𝒒𝒑𝒑O

𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C
𝒒𝒒𝒄𝒄
𝒒𝒒T𝒒𝒒𝒑𝒑 , (13) 

where the range between 𝒒𝒒𝒑𝒑 and 𝒒𝒒𝒄𝒄 is divided into 
configurations of spacing 𝒅𝒅𝒅𝒅 and the time to complete each 
𝒅𝒅𝒅𝒅 is summed. The 𝑡𝑡' is the nominal time to reach 𝒒𝒒: 

 𝑡𝑡' =	 𝑡𝑡+ + O𝒒𝒒?𝒒𝒒𝒑𝒑O
O𝒒𝒒𝒄𝒄?𝒒𝒒𝒑𝒑O

𝑡𝑡B𝒒𝒒𝒑𝒑, 𝒒𝒒𝒄𝒄C. (14) 

If 𝑣𝑣C#I#$ 𝑣𝑣GB.⁄  becomes greater than a user selected threshold, 
then predicted human poses over a short window into the 
future (∆𝑡𝑡) can be considered by (13) to see if the delay due to 
human proximity is predicted to be temporary: 

 Q*"+",(𝒒𝒒,),F,$-)
Q./0(𝒒𝒒,),F,$-)

= min
$1∈[$-,$-U∆$]

Q*"+",(𝒒𝒒,),F,$1)
Q./0(𝒒𝒒,),F,$1)

. (15) 

The updated 𝑣𝑣C#I#$ 𝑣𝑣GB.⁄  from (15) can be used for 
𝑣𝑣C#I#$ 𝑣𝑣GB.⁄  in (13) for the configuration in question. This 
allows STAP to estimate delays induced by humans and the 
effect of SSM. A safety controller external to STAP must 
enforce real-time compliance with the SSM rules. 

D. Spatio-Temporal Path Planning 
The STAP method includes a variation of RRT* to use the 

human-avoidance model and time-based cost function. The 
RRT* planner was a starting point for the proposed variation 
because it uniformly randomly selects new nodes (𝑉𝑉'&W) from 
within the robot’s configuration space and converges to the 
optimal path. The STAP method can be used with high DOF 
robots, so random selection of 𝑉𝑉'&W ensures exploration of 
robot configurations. The planner variation in STAP has a few 
significant deviations from standard RRT*. This variation 
stores data, such as avoidance intervals, for suboptimal 
connections for future consideration to reduce computation. 
Standard RRT* discards suboptimal parent connections.  

Standard RRT* includes a mechanism to connect (rewire) 
from 𝑉𝑉'&W to a node near 𝑉𝑉'&W (𝑉𝑉'&BC)  if the new connection 
has less cost than the current connection to 𝑉𝑉'&BC [28]. This 
ensures trajectories converge to the optimal trajectory as nodes 
and connections are added to 𝒢𝒢. In STAP, 𝑉𝑉'&BC is rewired to 
𝑉𝑉'&W if the new connection results in a smaller 𝑡𝑡BCC for 𝑉𝑉'&W. 
When this occurs, STAP also considers if connections for 
which 𝑉𝑉'&BC is the parent can be improved, up to some number 
of levels (denoted 𝑁𝑁D) down the solution tree in the direction 
of children. Additionally, when a new node is added to the 
solution tree, all 𝑉𝑉'&BC in the neighborhood of 𝑉𝑉'&W	are also 
checked to see if there are any better parent nodes for 𝑉𝑉'&BC in 
the neighborhood. This is necessary for STAP because a 
rewiring event could reduce the 𝑡𝑡BCC for a node, possibly 
making it a better parent for another node. This could result in 
a long chain of parent upgrades and too much computation. By 
upgrading parent connections only for nodes near 𝑉𝑉'&W, STAP 
ensures that if configurations for 𝑉𝑉'&W are uniformly randomly 
selected from the configuration space, then each existing node 
has equal probability of upgrading its connection to a better 
parent that would reduce its arrival time. Once a connection to 
the goal node is found, the optimal sequence of connections 
from the start node to the goal node, denoted 𝜎𝜎∗, is found to be 
the sequence that minimizes the goal node arrival time.  

E. Time Parameterization with Avoidance Intervals 
Once STAP determines the sequence of connections 𝜎𝜎∗, 

then a time parameterization can also be determined using the 
connection parent times computed in (8) and (9). The time to 
reach the goal node would be 𝑡𝑡D for the connection whose child 
is the goal node. Then, looking backwards through 𝜎𝜎∗ starting 
from the connection to the goal node, the time the robot should 
reach each connection’s parent node (𝑡𝑡+) has been computed 
in (9). The robot velocity between consecutive connections for 
the 𝑖𝑖$% robot configuration variable was limited according to: 

  |𝒒̇𝒒[𝒊𝒊]| ≤ j
𝒒𝒒𝒄𝒄[𝒊𝒊]?𝒒𝒒𝒑𝒑[𝒊𝒊]

$2?$%
j	∀𝑖𝑖 ∈ [1, 𝑛𝑛]. (16) 

The connection velocity limit reduces the robot’s velocity if 
the next connection is delayed to avoid an anticipated human 
pose. This prevents the robot from stopping close to a human 
while waiting for an avoidance interval to pass. The STAP 
time parameterization also allows 𝑡𝑡+ for the connection whose 
parent node is the start node to be greater than zero. This 
occurs when the robot should wait at the start node before 
beginning motion to avoid a human within the first connection. 

Fig. 3 depicts a robot path solution found using the above 
method. Time is shown on the horizontal axis with motion start 
time at the left and configurations shown on the vertical axis 
with initial configuration at the top and goal at the bottom. Red 
(shaded) blocks indicate avoidance intervals where 
connections between configurations are obstructed. The solid 
black line and green circles indicate the trajectory through the 
time/configuration space and waypoints. It shows the 
connection from 𝒒𝒒𝟏𝟏 to 𝒒𝒒𝟐𝟐 has reduced velocity to prevent 
stopping at 𝒒𝒒𝟐𝟐 until time 𝑡𝑡H.  The figure also depicts the last 
pass time (𝑡𝑡*+) for the 𝒒𝒒𝟏𝟏 → 𝒒𝒒𝟐𝟐 and 𝒒𝒒𝟐𝟐 → 𝒒𝒒𝟑𝟑 connections. 

IV. EXPERIMENTS 

Experiments with simulated and real workcells, each 
having a robot manipulator and a human worker, were used to 
validate the STAP method presented in section III. One 
workcell used for testing included a Comau e.Do 6DOF-6R 
robot sitting on a table, shown in fig. 4A. Live tests were also 
performed with this cell equipped with two depth cameras, 
outlined by blue ovals in fig. 4A, to sense the human’s real-
time location. While the e.Do robot has full rotation about its 
based, the robot is restricted to move in the half of the cell 
nearest the human to ensure robot/human interaction. The 
second workcell was equipped with a UR10e 6DOF-6R robot 
mounted hanging over a table, as shown in fig. 4B. Use of 
these two workcells allowed exploration of impacts on STAP 
planning by: 1) different robot maximum joint velocity limits 
and 2) different robot configurations (e.g., base mount, tasks / 
robot paths / poses). The UR10e has a maximum joint velocity 
about 4 times greater than the e.Do for any joint. A computer 

 
Figure 3. A sequence of nodes/connections from an initial configuration to a 
goal configuration indicating avoidance intervals for connections. 



  

with an Intel i9 processor used up to 16 CPU cores for path 
planning. 

The robot and human performed three experimental tasks 
together, denoted task A, B, and C. In each task, the human 
reached for targets, shown as red rectangles, in fig. 4 and fig. 
5. In fig. 5, human wrist and robot end-effector traces are solid 
blue and dashed green arrows, respectively. In task A, the 
human retrieved an item from a shelf, as shown in fig. 5A, 
while the robot tried to move an item from the right side of the 
workcell to the left side, from the human’s point of view. In 
task B, the human retrieved an item from the right side of the 
table, brought it back to table in front of them, and then 
returned it.  Meanwhile, the robot moved an item from the left 
to right side of the cell. The goal pose of the robot’s gripper is 
between the human’s forearm and table, as shown in fig. 5B. 
Task C has the human extend their arms in front, pointed at the 
robot, with palms together and then sweep the right arm up and 
left arm down 45°, as shown in fig. 5C, over 5 seconds, then 
back together over 5 seconds, repeating twice. The human 
creates a narrow passageway of time-varying size through the 
configuration space. Meanwhile, the robot moves an item from 
left to right across the cell. Tasks A and B represent more 
realistic motions in an industrial HRC workcell, while C 
presents greater challenge. In all tasks, human motion prevents 
the robot from reaching the goal without delay. Each task was 
performed 10 times in the simulated and live e.Do cells, and 
simulated UR10e cell. The live tests used real-time human 
motions sensed with the depth cameras using the method in 
[29] while the simulations used pre-recorded human motion to 
emulate a real human. Simulations provide results under ideal 
conditions, not including possible variations in the human’s 
behavior caused by the interaction with the moving robot. Live 
tests show how the planning methods accommodate such 
variations in real human motions.  

The STAP method was tested with waypoint timing 
assigned either as: 1) the output times directly from STAP time 
parameterization in (8) and (9) (denoted “STAP-PT” in 
results), or 2) the timing generated by applying Iterative 
Parabolic Time Parameterization (IPTP) to the STAP 

generated waypoints (denoted “STAP-IPTP” in results) [30]. 
The IPTP assigns timing so the robot will reach each waypoint 
as quickly as possible. These two methods only used the 
“offline proactive planning” block and not the “online reactive 
planning” block in fig. 1. For a baseline, tests were performed 
using the robot trajectory generated by three existing planners. 
The STOMP planner was used like in [15] to deform the direct 
trajectory, attempting to avoid predicted human motion with 
repulsion inversely proportional to robot-human separation 
distance. The Bi-directional Transition-based Rapidly-
Exploring Random Trees (BiTRRT) planner repeated 
planning as the robot approached the real-time human 
location, making the robot react to the human’s real-time pose 
[31].  The third planner (denoted “HOVs” in results) is a 
variant of RRT that tried to avoid all 3D points the human will 
occupy during the task [6]. The planning time allowed for each 
planner was 60 seconds to allow convergence near to their 
unique optimal trajectories. 

In all tests, a real-time SSM safety controller applied robot 
speed reduction according to (11)-(13). The SSM safety 
controller reduced robot speed to a fraction of planned speed: 

 𝒒̇𝒒 = min
),F

Q./0(𝒒𝒒,),F)
Q*"+",(𝒒𝒒,),F)

𝒒𝒒𝒄𝒄?𝒒𝒒𝒑𝒑
$2?$%

, (17) 

where 𝒒𝒒 is the robot’s current configuration, in joint space, 𝒒𝒒𝒑𝒑 
and 𝒒𝒒𝒄𝒄 are the configurations at the start and end of a planned 
connection, respectively, and 𝑣𝑣GB.(𝒒𝒒, 𝑖𝑖, 𝑗𝑗) and 𝑣𝑣C#I#$(𝒒𝒒, 𝑖𝑖, 𝑗𝑗) 
use the human’s current pose instead of prediction in (11)-(13). 
The 𝒒̇𝒒 is the robot velocity allowed by the SSM safety mode. 
The ratio 𝑣𝑣GB./𝑣𝑣C#I#$ in (17) reduces speed while 𝑣𝑣C#I#$/
𝑣𝑣GB.	in (13) increases time duration. The SSM parameters 
were 𝑇𝑇C, 𝑎𝑎!, and 𝐷𝐷 of 0.15s, 0.1m/s2, and 0.2m, respectively. 
For each test, we measured the task completion time (in 
seconds) and the average human-robot relative distance during 
the trajectory execution (in meters), aiming to show that STAP 
can reduce the robot cycle time by avoiding severe slowdowns 
caused by robot proximity. 

V. RESULTS AND DISCUSSION 

The results of experiments with the e.Do and the UR10e 
are shown in fig. 6. Fig. 6A shows the average duration the 
robot took to perform each trajectory. These results show that 
using the STAP method with IPTP resulted in trajectories that 
took 47% less time on average compared to the other methods, 
with the exception of Task A – e.Do simulated. The average 
time reduction by using STAP method versus others was 44% 
for simulated e.Do, 45% for live e.Do, and 52% for simulated 
UR10e tests. The faster UR10e yields better time reduction 
results compared to the slower e.Do robot. Fig. 6B shows 
average robot-human separation distance during tests. Since 
prior works consider robot/human separation distance an 
important metric, it is assumed that the average separation 
distance metric is directly related to the human’s level of 
comfort with robot motion [8,9-17,27]. The results show that 
the STAP method with either timing variation (“STAP-IPTP” 
or “STAP-PT”) resulted in higher average robot-human 
separation distance. This result means the robot spent less time 
near the human in all tests except Task C in the UR10e Sim. 

The estimated robot trajectory durations output from the 
STAP method were also much closer to the actual durations 
observed in all tests. The trajectory generated by the STAP 
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Figure 4. (A) shows the e.Do workcell and (B) shows the UR10e workcell.  
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Figure 5. Experimental robot/human tasks. 



  

method with IPTP took only 13% more time than the estimate, 
on average. The STAP method using the time parameterization 
of (8) and (9) had 73% average duration estimation error. The 
STOMP and BiTRRT planners generated estimation errors of 
646% and 876%. Their estimation errors are large because 
they planned to do the trajectory as fast as possible but had to 
react to the human. The HOVs planner estimated infinite path 
time because its robot paths could not avoid all anticipated 
human occupancy volumes. A significance of these results is 
STAP’s potential impact on task scheduling.  I.e., the robot 
duration estimates can be used to schedule robot tasks to better 
match the sequence of other machines or humans in an HRC 
workcell. Trajectory duration estimates are also useful in robot 
task planning where the robot can select a next action that 
minimizes anticipated delay caused by humans. Planner 
performance was also collected for the STAP method on Task 
C, allotting 500 planner iterations to generate the trajectory. 
Fig. 7 shows evolution of path cost, or estimated trajectory 
duration, averaged over generation of 100 plans. It indicates 
the path after 180 iterations was within 15% of optimal.  

A weakness of the STAP method is computation time. The 
first 180 iteration of STAP applied to Task C took about 30 
seconds. STAP performs 𝑁𝑁D𝑛𝑛H times more computations per 
iteration than RRT* due to the STAP planner variation, where 
𝑛𝑛 is proportional to the number of nodes at a given iteration 
and 𝑁𝑁D was defined in section III.D. Additional computation 

also stems from processing a predicted human model that is 
more complex than prior works. The predicted human model 
has many data points due to consideration of time-varying 
occupancy. Future works will investigate functional 
representations of the human model that can estimate future 
robot/human intersection with less computation. STAP’s 
computation time limits its use to tasks in which human motion 
is predictable, e.g., cyclic manufacturing tasks. In these 
scenarios, STAP can plan offline based on the task definition 
and human task training data. During execution, if the human 
motion differs too much from the prediction, then the robot 
could use reactive planning methods, such as BiTRRT, to 
replan its path. 

To summarize, STAP outperformed other methods by 
anticipating impasses due to human occupancy and delays 
caused by the SSM safety controller. This resulted in less-
interrupted robot paths and a larger human-robot average 
separation distance. In addition, consideration of impasses and 
SSM effects allowed STAP to estimate execution times more 
accurately. Therefore, STAP improves HRC by providing 
outputs that mitigate production delay and human discomfort 
in predictable tasks.  

VI. CONCLUSION 

The proposed method combines predicted human motion 
sequences and proactive robot path planning. It includes a 
spatio-temporal occupancy map to represent anticipated 
human poses and a time-avoidance cost function and variation 
on RRT*. The goal of the STAP method is to mitigate 
production delays and reduce human discomfort in an HRC 
workcell. Results showed the STAP method generates 
trajectories of shorter duration in an HRC setting. 
Additionally, trajectories generated by STAP result in the 
robot spending less time close to the human. The STAP 
method also outputs an estimate of the robot trajectory 
duration, which is useful in arriving at proactive-n-reactive 
robot sequencing. In future work, more compact forms of the 
spatio-temporal human occupancy map will be explored to 
address the computational challenges of STAP and a broader 
experimental validation will assess the efficacy of the method 
across different subjects and tasks. 
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Figure 7. STAP – Task C: Evolution of average planner cost (trajectory 
duration estimate) and standard deviation over 500 planning iterations. 
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Figure 6. (A) Average trajectory durations and (B) average robot/human 
separation distance, with mean values indicated above the bars and standard 
deviations indicated by magnitude of the smaller black bars. Green hatched 
bars correspond to the STAP method with either timing option. 
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