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Abstract

We develop integrated coevolution and dynamic coupling (ICDC) approach to identify,
mutate, and assess distal sites to modulate function. We validate the approach first by analyzing
the existing mutational fitness data of TEM-1 B-lactamase and show that allosteric positions co-
evolved and dynamically coupled with the active site significantly modulate function. We further

apply ICDC approach to identify positions and their mutations that can modulate binding affinity
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in a lectin, Cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies
of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that
binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and
show that rigidification of the binding residues compensates for the entropic cost of binding. This
work suggests a general mechanism by which distal mutations modulate function through dynamic
allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize

protein function.

Introduction

The evolutionary history of a protein comprises the ensemble of mutations acquired during
the course of its evolutionary trajectory across different species, and contains valuable information
on which residue positions contribute the most to a given protein’s 3-D fold and function based on
their conservation. (Campbell et al., 2016; Rivoire et al., 2016; Yang et al., 2016). Furthermore,
the subset of positions that are co-evolved (i.e., correlated mutational sites) provide clues on
specific, native-state interactions. Pairwise residue contacts inferred from co-evolved positions
within a protein family can be used as distance restraints to accurately model 3-D structures. (de
Juan et al., 2013; Hopf et al., 2019; Kamisetty et al., 2013; Kim et al., 2014; Tripathi et al., 2015).
Recent revolutionary successes in accurate predictions of 3-D protein structures combine these
methods with machine learning strategies i.e., deep learning (Jumper et al., 2021; Wang et al.,
2016; Xu, 2019). Co-evolved positions also embed information on protein function, for example
revealing how factors such as binding affinity and specificity are modulated across evolutionary

history and species (Rivoire et al., 2016; Salinas and Ranganathan, 2018; Torgeson et al., 2022).
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However, accessing, interpreting, and applying this information in a predictive manner is very
challenging; mutations observed in the evolutionary history are often distal from the functional
sites, implying that protein dynamics are responsible for their effects on function and that these
sites act as distal allosteric regulators of function (Campitelli et al., 2020a; Modi et al., 2021a;
Romero and Arnold, 2009; Salinas and Ranganathan, 2018; Tokuriki et al., 2012; Torgeson et al.,

2022; Wei et al., 2016).

Molecular dynamics (MD) simulations can capture protein dynamics and reveal the impact
of distal mutations on function (Bowman and Geissler, 2012; Campbell et al., 2016; Campitelli et
al., 2020a; Jiménez-Osés et al., 2014; Kolbaba-Kartchner et al., 2021; Modi et al., 2021a; Yang et
al., 2016). However, the computational cost of MD simulations of sufficient length can be
prohibitively high; further, it’s often far from straightforward to forge a clear connection to
function. To bridge this gap, we developed a framework to quickly evaluate MD trajectories and
identify the sensitivity of a given position to mutation based on its intrinsic flexibility, which we
assess using our Dynamic Flexibility Index (DFI) metric, and on its dynamic coupling with
functionally critical positions assessed by Dynamic Coupling Index (DCI) (Campitelli et al., 2018;
Gerek and Ozkan, 2011; Kumar et al., 2015b; Larrimore et al., 2017). DFI measures the resilience
of a position by computing the total fluctuation response and thus captures the flexibility/rigidity
of a given position. Applying DFI to several systems, we showed that rigid positions such as hinge
sites contribute the most to equilibrium dynamics, and that mutations at hinge sites significantly
impact function regardless of the distance from active sites (Kim et al., 2015; Kolbaba-Kartchner
et al., 2021; Modi et al., 2021b, 2018; Modi and Ozkan, 2018; Zou et al., 2021, 2015). DCI

measures the dynamic coupling between residue pairs and thus identifies positions most strongly
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coupled to active/binding sites; these positions point to possible allosteric regulation sites
important for modulating function in adaptation and evolution (Butler et al., 2015; Campitelli et
al., 2020a, 2021; Kuriyan and Eisenberg, 2007; Lu and Liang, 2009; Modi and Ozkan, 2018; Ose

et al., 2020; Risso et al., 2018; Wodak et al., 2019).

In this paper, we present integrated co-evolution and dynamic coupling (ICDC) approach
to identify distal allosteric sites, and to assess and predict the effects of mutations on these sites on
function. We propose a system to classify residue positions in a binary fashion based on co-
evolution (co-evolved, 1 or not, 0) and dynamic coupling by DFI and DCI (dynamically coupled
1, or not ,0) with the functionally critical sites. This classification captures the complementarity of
dynamics-based and sequence-based methods. We hypothesize that positions belonging to
category (1,1), i.e., positions both co-evolved and dynamically coupled with the functional sites,

will have the largest effect on function.

We validate our hypothesis first by analyzing the existing mutational fitness data for TEM-
1 B-lactamase, available for every position of the protein (Stiffler et al., 2015). In agreement with
our hypothesis, we find that mutations on category (1,1) positions significantly modulate the
function. A large fraction of mutations enhancing enzymatic activity correspond to category (1,1)
irrespective of distance from the active site. Second, we apply our ICDC approach to blindly
predict and experimentally validate mutations that allosterically modulate dimannose binding in a
natural lectin, Cyanovirin-N (CV-N). CV-N binds dimannose with nanomolar affinity and
remarkable specificity (Barrientos et al., 2003; Botos and Wlodawer, 2005, 2003; Mori and Boyd,

2001; O’Keefe et al., 2003). It is part of the CV-N family, found in a wide range of organisms
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including cyanobacterium, ascomycetous fungi, and fern (Koharudin et al., 2008; Koharudin and
Gronenborn, 2013; Patsalo et al., 2011; Percudani et al., 2005; Qi et al., 2009). While the 3D folds
is remarkably conserved in all experimentally characterized members, the affinity and specificity
for different glycans and, in particular, to dimannose varies significantly (Koharudin et al., 2009,
2008; Matei et al., 2016; Woodrum et al., 2013). To design CV-N variants with improved binding
affinities for dimannose based on distal allosteric coupling, we binned each position in one of the
four categories based on computed DFI, DCI and co-evolution rates. We explored mutations at
these sites based on frequency in the sequence alignment. After obtaining the mutant models
through Molecular dynamics (MD) simulations, we assessed the impact of each naturally observed
mutation on binding affinity by docking dimannose to the mutant models via Adaptive BP-Dock
(Bolia et al., 2014b, 2014a; Bolia and Ozkan, 2016). We chose position 134, which belongs to
category (1,1) and is 16A away from the binding pocket, for experimental validation. We found
that mutations I34K/L/Y had a diverse effect on glycan binding, either improving by two-fold or
abolishing completely. Through experimental and MD studies we show that the observed
improvement in binding affinity is due to changes in the dynamics of residues in the binding
pocket; mutation 134Y leads to rigidification of binding sites, thus compensating the entropic cost
of binding (Breiten et al., 2013; Chodera and Mobley, 2013; Cornish-Bowden, 2002; Fox et al.,
2018). Mutations at an additional position (A71T/S) from category (1,1) showed evidence of the
same allosteric mechanism governing the modulation of binding dynamics. Overall, this study
provides not only a new approach to identify distal sites whose mutations modulate binding
affinity, but also sheds light into mechanistic insights on how distal mutations modulate binding

affinity through dynamics allostery.
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Results and Discussion

Combining long-range dynamic coupling analysis with co-evolution allows to identify distal

sites that contribute to functional activity.

With our ICDC approach, we aim to explore the role of dynamics versus evolutionary
coupling as well as the role of rigidity versus flexibility in allosterically modulating active/binding
site dynamics. To this extend, we created four unique categories that classifies residue positions
based on residue DFI score, DCI score and co-evolutionary score: category (1,1) is dynamically,
and co-evolutionarily coupled rigid sites (exhibiting %DFI values 0.2 or lower, showing 0.7 or
higher %DCI with the binding site, and showing 0.6 or higher co-evolution scores with the binding
site); category (1,0) is dynamically coupled but co-evolutionarily not coupled sites; category (0,1)
is dynamically not coupled but co-evolutionarily coupled sites; category (0,0) is dynamically not
coupled, and co-evolutionarily not coupled flexible sites (exhibiting %DFI values 0.7 or higher)
(Supplementary file 1 table 1 & 2); importantly, this classification is based on two independent
statistical approaches thus compensate the noise of individual approaches. Based on our
evolutionary analysis (Campitelli et al., 2020a; Modi et al., 2021b; Modi and Ozkan, 2018), we

hypothesize that category (1,1) would impact protein activity or binding affinity the most.

To test our hypothesis, we first analyzed the deep mutational scanning data available for
the beta lactamase TEM-1, correlating changes in ampicillin degradation activity (e.g. MIC values)
with mutations to all possible amino acids at each position (Stiffler et al., 2015). The experimental

results showed that amino acid substitutions at the catalytic site residues of TEM-1 negatively
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impacted activity. Mutations at other positions also affected activity; while most mutations were
deleterious, surprisingly, others resulted in increased activity. The impact of mutations on
dynamics and function of TEM-1 have been heavily explored but the distal mutational effects are
still poorly understood (Kolbaba-Kartchner et al., 2021; Modi et al., 2021b; Modi and Ozkan,
2018; Salverda et al., 2010; Schneider et al., 2021; Stiffler et al., 2015; Thomas et al., 2010;
Zimmerman et al., 2017; Zou et al., 2015). We applied our approach by obtaining DFI, DCI and
co-evolution scores for every position of TEM-1 and binning residue positions into each ICDC
category (Table S1). We constructed fitness distributions for each category using the
experimentally measured single mutant relative fitness values for all mutations per position

provided in the dataset (Fig 1).
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Fig 1 ICDC categories based on the dynamics and co-evolutionary analyses applied on TEM-1 (-

lactamase. A) The distributions in the form of violin plots are obtained for each ICDC category using all
available experimental mutational data (Stiffler et al., 2015) B) Violin plots showing the fitness values

for amino acid substitutions observed in the natural sequences. C) The category (1,1) positions are

mapped on 3-D structure. The catalytic site residues are shown in dark grey whereas category (1,1)
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positions are shown in magenta color. The function altering category (1,1) positions are widely

distributed over the 3-D structure.

We found that category (1,1) positions show the highest impact, both significantly
enhancing and reducing ampicillin degradation by TEM-1 (Fig 1A&C). In addition, category (0,0)
residue mutations (i.e., the exact opposite of category (1,1)) lie within the neutral like activity
range defined by Stiffler et al., 2015, suggesting that mutations on positions that neither co-evolve
nor dynamically couple to active site do not affect the function significantly. Category (1,0)
residues enhance activity more than those in the neutral category (0,0). Mutations in category (0,1)
positions also modulate function in both positive and negative direction, albeit not as strongly as
those in category (1,1). However, mutations that negatively impact activity are conspicuously
under-represented in the MSA of native sequences (Fig 1B), particularly in category (1,1). This
finding implies nature mostly allows mutations that don’t compromise fold and function: Negative
selection (i.e. elimination of amino-acid types that are detrimental to the folding) is a major force
in shaping the mutational landscape (Jana et al., 2014; Modi et al., 2021a; Morcos, 2020; Morcos
et al., 2014, 2013). Thus, the use of conservation information from MSA is a useful tool in

eliminating deleterious amino acid substitutions in protein design.

Our ICDC selection criteria effectively identifies residue positions and their amino acid
substitutions that could finetune function without leading to a functional loss; and category (1,1)

residues have the largest impact on function irrespective of their distance from active site (Fig 1C).
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Application of ICDC approach to modulate CV-N binding affinity through distal mutations

CV-N is a small (11 kDa) natural lectin isolated from cyanobacterium Nostoc
ellipsosporum which comprises two quasi-symmetric domains, A (residues 1-38/90-101) and B
(residues 39-89 respectively), that are connected to each other by a short helical linker. Despite
almost having identical structures, the domains show relatively low sequence homology (28%
sequence identity, and 52% similarity). Functionally, they both bind dimannose, yet the affinity is
quite different, with domain B having tighter binding affinity (K¢= 15.3 uM), and domain A

showing weak affinity (K4 =400 uM) (Balzarini, 2007; Bolmstedt et al., 2001; Li et al., 2015).

To simplify our analyses, we used a designed CV-N variant, P51G-m4, that contains a
single high-affinity dimannose binding site (domain B), folds exclusively as a monomer in
physiological conditions, and is more stable to thermal denaturation than wild type (Fromme et
al., 2008, 2007). The binding pocket of domain B of CV-N has been subjected to intense scrutiny
to glean information on the origin of its binding specificity for dimannose (Bewley, 2001; Bolia et
al., 2014b; Botos and Wlodawer, 2003; Li et al., 2015; Vorontsov and Miyashita, 2009). Previous
mutational studies on the binding pocket residues have shown their importance in modulating
interaction with dimannose (Barrientos et al., 2006; Bolia et al., 2014b; Chang and Bewley, 2002;
Matei et al., 2008). All known substitutions of the binding residues led to decreased binding
affinity for dimannose on domain B (Bolia et al., 2014b; Fujimoto and Green, 2012; Kelley et al.,
2002; Matei et al., 2011; Ramadugu et al., 2014). Evolutionary analyses shows that the majority
of the binding site residues are conserved in CV-N glycan interactions, suggesting that affinity is

already optimized at the binding site. (Koharudin et al., 2008; Percudani et al., 2005). We
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hypothesized that amino acid substitutions at distal positions could enhance the dimannose affinity
of CV-N by rigidification of the binding site and applied our ICDC approach to CV-N to identify

positions in each category (Table S2) (Supplementary file 1 table 2).

We generated models of CV-N variants in each ICDC category by mutating these positions
to amino acid types observed in the MSA of CV-N family members, choosing the subset of
sequences that have binding sites with identical or similar amino-acid composition to P51G-m4
CV-N. As discussed above this approach allows us to identify amino-acid substitutions with the
least impact on fold. All the substitutions identified (104 variants in total) were modeled using the
crystal structure of P51G-m4 CV-N (Fromme et al., 2008) and subjected to MD simulations
(Abraham et al., 2015; Spoel et al., 2005). The best conformation sampled for each variant obtained
from equilibrated production trajectories was used as a model for dimannose docking analysis. We
evaluated the variants using Adaptive BP-Dock (Bolia and Ozkan, 2016), a computational docking
tool that incorporates both ligand and receptor flexibility to accurately sample binding induced
conformations, and ranks them using X-scores binding energy units (XEUs) . In previous work on
CV-N this method yielded good correlations with experimentally measured binding affinities (Ka),
and established -6.0 XEU unit as a good threshold to differentiate variants that bind dimannose
from “non-binders” (Bolia et al., 2014b; Li et al., 2015; Woodrum et al., 2013). Here, we applied
Adaptive BP-Dock initially on wild-type CV-N and its variants, P51G-m4 and mutDB (a mutant
in which binding by domain B has been obliterated) and the results recapitulate the success of
previous studies (Table S3). This result shows that Adaptive BP-Dock can correctly assess the
dimannose binding of CV-N and its variants, thus, we applied it on new P51G-m4 CV-N variants

to predict the impact of mutations on dimannose binding. Figure 2 shows the distribution of

11
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changes in predicted binding energy scores relative to the P5S1G-m4 energy scores for mutations
belonging to each binary category: a positive change in binding score represents an unfavorable

effect on binding, and, conversely, a negative change in the score indicates an enhancement in

binding.
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Fig 2 Predicted binding energies for each ICDC category. Mutations in category (1,1) positions comprise
the highest number of binding energy enhancing mutations as well as deleterious mutations. Mutations

in category (0,0) positions are mostly near neutral (Category (1,1) & (0,0) P value <0.3).

The substitutions on positions in category (1,1) (Fig 2) yield a wide range of change in
binding energy scores: the tail of the distribution on the positive side reaches nearly a binding
score change of 2.0 XEUs and on the negative site values below -0.5 XEUs. Strikingly, the
positions in category (1,1) yield the most binding enhancing energy scores compared to all other
categories, mirroring TEM-1 results. Additionally, the substitutions applied in category (1,0) also
result in more favorable binding energy scores for dimannose. Mutations in both category (1,1)
and (1,0) present favorable binding energy scores. However, the number of mutations predicted to
be enhancing binding in category (1,1) is more than those in category (1,0) (26% of category (1,1)

compared to 14% of category (1,0)). Interestingly, the mutations in category (1,0) that disrupt the
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binding energy scores is not a strong as category (1,1), but similar to category (0,1) and (0,0). The
observed mostly neutral behavior with category (0,0) agrees with the same trend obtained with

TEM-1 analyses.

Overall, the distribution of computational binding scores of dimannose binding to CV-N
in each category aligns with the distribution of experimentally characterized TEM-1 fitness results
of the same category. However, there are some discrepancies, for example, there are beneficial
mutations in category (0,1) in TEM-1, but we don’t observe the same trend in CV-N. This is due
to the initial challenge faced in constructing the MSA of CV-N homologous proteins. There is
limited sequence information, and most of the proteins in the CV-N family exhibits binding
specificity to a different glycan (Fujimoto and Green, 2012; Koharudin et al., 2009). In contrast,
B-lactamase family proteins exhibit highest activity towards penicillin, and they have been
subjected to strong natural selection leading to conservation in both fold and function (Salverda et
al., 2010; Zou et al., 2021). Hence, the less noise in evolutionary analysis in case of f-lactamase
family of proteins allows us to correctly filter deleterious type of substitutions based on the MSA.
Regardless, however, in both cases, as hypothesized, substitutions on category (1,1) residues

impact the function most.

To further investigate the mechanism of functional modulation of category (1,1) mutations,
we chose the position with highest binding enhancing docking scores, 134, from category (1,1).
134 exhibits %DFI values lower than 0.2 (Fig 3A), is at least 16A away from binding residues
(distal), dynamically coupled (Fig 3B) and co-evolved with the binding pocket (Table S2)

(Supplementary file 1 table 2). Moreover, docking scores of [34 variants suggest that the mutations
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can modulate binding in a wide range: 134Y variant leads to an increase in binding affinity
(beneficial), 134K decreases the binding affinity (deleterious), and I34L yields no change (neutral)

(Table 1).
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Fig 3 A) DFI profile mapped onto CV-N structure: red corresponds to high DFI, (very flexibile sites) ,
and blue to low DFI values (hinge sites). Position 134 (low DFI score) is highlighted B) DCI profile
projected on CV-N structure with green corresponding to sites exhibiting high coupling with binding site

residues.

To verify the predictions of 134 variants, we first assessed the folding and thermal stability
of these mutants by circular dichroism (CD) spectroscopy. Far-UV CD spectroscopy showed that
all mutants are well folded and adopt a fold similar to the parent protein, characterized by spectra
with a single negative band centered at 216 nm. We determined the stability of the mutants by CD

monitored thermal denaturation; the thermal denaturation curves were analyzed to obtain apparent
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melting temperature (Tm) values. We found that the conservative mutation I34L is as stable as
P51G-m4, with apparent Tm of 57.8 °C and 58 °C respectively. In contrast, [34Y and 134K were
less thermostable than P51G-m4 as shown by apparent Tm values of 54.7 °C and 47 °C,
respectively. Not surprisingly, substituting a hydrophobic residue with a basic aliphatic amino acid

(lysine) has a large destabilizing effect, while aromatic and polar tyrosine is better tolerated. The

trend of thermostability is P51G-m4 ~ [34L > [34Y > [34K (Fig S1).

Table 1. Predicted binding affinities of domain B, experimental ITC data, and chemical denaturation

experiments for P51G-m4, and its 134 variants.

Predicted
Binding ITC ) ITC ) ITC ITC
Protein Score dimannose dimannose dimannose dimannose AGtizo Cn (M)
(X-score Ka (uM) AH TAS (kcal/mol) AG (kcal/mol) (kcal/mol)
energy d (K (kcal/mol) (T=298K)
unit)

P51G-m4 -6.62 117+3 -123+0.3 -7.00 + 0.3 -530+0.3 [3.01+0.047 |[1.46+0.019
P51G-m4-134K -5.85 No-binding | No-binding No-binding No-binding | 2.40 = 0.124 10.68 = 0.015
P51G-m4-134L -6.19 148 +2 -9.60 +0.1 -4.40+0.1 -520+0.1 |[2.95+0.077 |1.39 +0.009
P51G-m4-134Y -6.75 64+5 -4.35+0.1 1.32+£0.2 -5.67+02 [291+0.157 |1.13+£0.017

Chemical denaturation experiments were used to extract thermodynamic values, after
ensuring complete equilibration at each concentration of guanidinium hydrochloride by incubating
the samples for 72-hour (Patsalo et al., 2011). The AGn20 values and Cm values of P51G-m4, [34L,
134Y and 134K are found as 3.0, 2.94, 2.91 and 2.38 kcal/mol and of 1.45, 1.39, 1.13 and 0.68 M
respectively (Table 2). The results align with the thermal denaturation results: P5S1G-m4 is the

most stable to denaturant, followed by 134L, I34Y and 134K (Fig S2).
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Next, we evaluated the impact of the mutations on the dimannose binding affinity by
isothermal titration calorimetry (ITC) (Fig S3); data were analyzed to extract K4 values listed in
Table 2. We found that [34Y binds dimannose with tightest affinity (K4: 64 pM) of all the mutants
tested, a two-fold improvement over P51G-m4 (Ka: 117 uM). Binding by 134L is slightly weaker
with a Kq of 148 uM. No binding was observed for 134K in these conditions. Thermodynamic
values extracted from ITC experiments (Table 2) suggest that entropy changes play an important
role in the observed changes in binding affinity: surprisingly, entropy is positive for 134Y,

indicating an increase in disorder upon binding.

To glean more information on the mode of binding by 134Y, we determined the X-ray
structure of the unbound and dimannose-bound form and compared it with the template protein
P51G-m4. The fold is highly conserved (Fig 4) as shown by main chain RMSD of 0.16 and 0.20
A with bound and unbound 134Y, respectively, and tyrosine is well tolerated at position 134. The
binding pocket region is also structurally conserved compared to P5S1G-m4. Analysis of the polar
contacts between dimannose and P51G-m4 and I34Y (Fig 4B) shows an identical number of
hydrogen bonds (11) with the ligand, indicating a conserved binding pose. We compared the
docked pose of 134Y acquired from Adaptive BP-Dock with the bound X-ray structure. The ligand
shows an RMSD value of 0.75 A (Fig S4). These observations suggest that the increase in binding
affinity of 134Y towards dimannose might be mediated by equilibrium dynamics, which are not
captured by the crystal structure. This hypothesis is supported by the changes in entropy
compensation measured experimentally (ITC) in dimannose binding by P51G-m4 (negative TAS)

and 134Y (positive TAS).
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Fig 4 A) The crystal structures of 134Y (bound in magenta and unbound in cyan) and its template protein
P51G-m4 (green) are superimposed. B) Overlay of bound structures of 134Y (magenta) and P51G-m4

(grey) (RMSD 0.15 A); dashed lines depict polar interactions with dimannose.

Molecular mechanism governing the binding dynamics in 134 variants

It is interesting to observe that a distal site can modulate binding affinity to a wide range
based on amino-acid substitutions. This finding has also been observed for allosterically regulated
enzymes such as Lacl, for which different amino-acid substitutions on non-conserved sites lead to
gradual changes in function, acting like a rheostatic switch to modulate function through
conformational dynamics (Campitelli et al., 2021, 2020b; Meinhardt et al., 2013; Miller et al.,
2017; Swint-Kruse et al., 1998). To gather atomic level detail on how the substitutions on 134
dynamically modulate the binding affinity, we employed MD simulations both in bound and

unbound forms (See Methods for details of the simulations). The unbound trajectories were

17



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

analyzed for acquiring binding pocket hydrogen bond distances and pocket volume. Later, to learn
about the ligand induced conformational dynamic changes, the bound trajectories were utilized to

estimate computational binding free energies (Deng and Roux, 2009; Okazaki et al., 2006).

Previous computational work in our lab had linked binding affinity in the CV-N family to
the accessibility of the binding pocket: A hydrogen bond between the amide hydrogen of N42 and
carbonyl oxygen of N53 forms a closed pocket, hindering glycan accessibility, whereas the loss of
this hydrogen bond leads to an open pocket (Li et al., 2015). Using the formation of this hydrogen
bond in the trajectories of unbound WT and 134Y as metric for assessing open and closed

conformations, we found that I134Y variant samples the open binding pocket more often than

P51G-m4 (Fig S5).

Another compelling evidence differentiating 134 variants from P51G-m4 is the change in
their binding pocket volumes estimated by POVME pocket volume calculation tool (Wagner et
al., 2017). The calculated pocket volumes for 134Y, 134K and P51G-m4 were converted into
frequencies to obtain probability distributions (Fig 5A), revealing that [34Y variant samples a more
compact pocket volume compared to P51G-m4. If the pocket is too small or too large, dimannose
cannot maximize its interaction with the protein, and a compact conformation enables dimannose
to easily make the necessary hydrogen bond interactions with the protein. This optimum pocket
volume sampled by I34Y may also explain the different binding energetics observed by ITC, in
which a positive entropy change upon binding compensates for the loss in enthalpy compared to
P51G-m4 (Table 1) (Breiten et al., 2013; Cornish-Bowden, 2002). Pocket volume analysis reveals

a larger value for 34K compared to P51G-m4, suggesting that this mutant cannot accommodate
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the necessary interactions with the dimannose resulting in loss of binding. We applied the same

pocket volume calculation to the X-ray structures of P51G-m4 and 134Y variant, and we found

volumes of 141 A3 and 114 A3 for P51G-m4 and 134Y, respectively in the unbound forms (Fig

5B). These volumes correlate well with the mean volumes from MD trajectories, suggesting that

the variants modulate the conformational dynamics of binding pocket.
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Fig 5 A) Probability distribution of the pocket volume analyses obtained from MD simulation

trajectories. 134Y populates a conformation with an optimum volume more than others. P51G-

m4 and I34L variant sample similar pocket volumes, but 134K variant has a larger pocket volume

compared to others. B) Pocket volume comparison of the domain B of solved structures for

P51G-m4 (purple) and 134Y variant (green).
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Overall, the conformational dynamics analysis of the unbound conformations indicates a
shift of the native ensemble towards a smaller pocket volume upon 134Y mutation. This could
explain the decrease in the entropic cost of binding observed in ITC results. We also analyzed the
binding energetics by carrying out dimannose docking with 2000 different conformations sampled
from the binding pocket volume distributions. We found that the small volume restrict accessibility
to the side-chain conformations of binding residue R76 in the 134Y variant, yielding different
hydrogen bond patterns with the dimannose (Fig S6) and suggesting a loss in enthalpic

contribution.

The bound simulation trajectories were subjected to the MM-PBSA approach to estimate
computational binding free energies and related enthalpic and entropic contributions (He et al.,
2020; Rastelli et al., 2010). The results are tabulated on Table S4. The computed binding free
energies capture the trend of experimental binding affinities (R=0.87). The 134Y variant displays
a more favorable binding with dimannose compared to wild type. Interestingly, both experimental
and computational results show 134Y compensating the enthalpic loss with entropic gain. While
I34L variant enthalpic loss is greater than 134Y in computational approach, the overall binding
free energy mirrors the ITC results. Additionally, loss of binding of 134K variant overlaps with the

ITC data.
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Substitutions of 134 modulates the conformational ensemble leading to change in dimannose

binding affinity

Proteins adapt to a new environment or changes the function of a protein by modulating
the native state ensemble through mutations of different positions while keeping the 3-D structure
conserved (Campitelli et al., 2020a; Kuriyan and Eisenberg, 2007; Li et al., 2015; Liu and
Nussinov, 2017; Modi and Ozkan, 2018; Risso et al., 2018; Tripathi et al., 2015; Woodrum et al.,
2013). As, we also observed a similar pattern of conservation of structure yet change in function
in our designed CV-N 134 variants, we further analyzed the flexibility profiles of 134 variants. The
DFI profiles clustered using principal component analyses (PCA) match the 2-D map of melting
temperature and K4 as reaction coordinates, suggesting a correlation between changes in dynamics
and changes in function (Fig 6). The 2-D map shows 134L, P51G-m4, and 134Y under the same
cluster, with 134L and P51G-m4 close, while 134K is markedly different (Fig 6A). The dendrogram
constructed based on the DFI profiles captures this clustering (Fig 6B) with P51G-m4 and 134L
variant under the same branch, suggesting their dynamics are very similar; 134Y is under the same
main cluster albeit in a different branch. 134K is under a separate branch, indicating different
dynamics. This is in agreement with our previous studies, where substitutions on DARC spots
modulates binding dynamics reflected in their flexibility profiles to adapt to a new environment

(Campitelli et al., 2021, 2020b; Kumar et al., 2015b; Modi et al., 2021a).
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Fig 6 A) 2D map of K4 and Melting temperature of P51G-m4 and its variants B) PCA clustering

on the first two principal components of the DFI profiles as a dendrogram.

We further gleaned a molecular view of the role of flexibility in binding by comparing
changes in DFI profiles of the binding site residues with P51G-m4 for each mutant, in the unbound
and bound form (Fig 7A and B). We found that flexibility at position T57 is highly dependent on
the amino acid at position 134: flexibility increases in 134K, suggesting a higher entropic penalty
for binding interactions; It is unchanged in I134L, which has similar binding affinity. In contrast,
T57 becomes much more rigid in 134Y mutant. This indicates the rigidification leading to a
decrease in the entropic cost can contribute to the binding affinity enhancement of this mutant

which is also in agreement with the ITC results.
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Fig 7 A) Change in flexibility of 134K, I34L, and 134Y relative to P51G-m4 in unbound form
are shown. Residues E41, N42, and T57 rigidifies on 134Y compared to P51G-m4. B) Change
in flexibility of 134K, I34L, and 134Y relative to P51G-m4 in bound form are projected on
structure. C) Hydrogen bonding interactions of residues 155, E56, T57, and C58 are shown for

P51G-m4 and 134Y variant.

Comparison of the flexibility profiles of the bound form with those of the unbound form

reveals that residue 134 in WT drastically gets rigidified upon binding, whereas 134Y variant does

not. The decreased flexibility of T57 in the unbound form of 134Y accommodate the interactions
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with dimannose, contributing to the entropic compensation. In addition to the binding site residues
of Domain B, the flexibility of the rest of the residues also contribute to the total change in binding
free energies. Therefore, we analyzed the correlation between (i) the sum of total change in
flexibility of the binding site residues, (ii) the binding site residues and the residues exhibiting
highly coupling with the binding pocket, with the experimentally measured binding affinity
change. We observe a strong correlation between change in flexibility and change in affinity, as
expected 134Y exhibiting tighter binding also gets more rigidified upon binding compared to
P51G-m4. Moreover, inclusion of the highly coupled residues in addition to the domain B binding
sites in computing the total sum of DFI scores yields a higher correlation with the experimental
binding affinity change (Fig S7A). On the other hand, the correlation between the flexibility
change of the randomly selected residues and experimental binding affinities yields poor
correlation coefficient (Fig S7B). These results strongly support the role of dynamic allostery in

modulating binding affinity.

The rigidification of T57 in 134Y variant is compelling evidence that the distal mutation is
allosterically controlling the binding site dynamics. We further computed the network of
interactions that connects the residue position 34 to 57 and investigated whether distinct pathways
emerge after [34Y mutation. We analyzed the hydrogen bond networks, particularly computed the
possible network of hydrogen bonds creating pathways from 34 to 57 using the sampled snapshots
from the MD trajectories (Fig S8). This analysis presents a unique pathway from 34 to 57 by first
forming a new hydrogen bond between the side chain oxygen of the Tyrosine 34 and the nitrogen

of the Tyrosine 100 in [34Y variant. Furthermore, a second pathway is also found which is sampled
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much more frequently in 134Y variant strengthening the communication between position 34 and
57. Thus, both pathways may contribute to the rigidification of T57. We also analyzed the
conformations from MD clustered with highest percentage based on alpha carbon RMSD for 134Y
and P51G-m4 and compared the hydrogen bond interactions of T57 and its neighboring residues.
The closest neighbors of T57; positions 155, E56, and C58 conserved their hydrogen bond
interactions with their surrounding residues between P51G-m4 and 134Y. On the other hand, T57
makes an additional hydrogen bond interaction in I34Y compared to P51G-m4 (Fig 70C),
suggesting that enhancement in hydrogen bond networking of T57 in 134Y leads to rigidification

of this position in equilibrium dynamics.

To gain more insight on distal dynamic modulation of binding pocket particularly the
decrease of binding site flexibility through distal coupling, we computationally and experimentally
characterized another residue, A71, belonging to category (1,1) and its mutations: T, S. The
docking scores and DFI profiles of A71 variants show high similarity to position 134 ones. The
variant A71T is predicted as binding enhancing by our docking scheme displaying a similar
binding score as 134Y (A7IT predicted binding score: -6.81 XEU), whereas variant A71S is
predicted as analogous to 134L variant (A71S predicted binding score: -6.20 XEU). This position
is next to residue E72, which is within the hydrogen bond pathway (Pathway 2) (Fig S8) identified
previously connecting 134 and binding residue T57. Furthermore, the computed binding free
energies by MM-PBSA is found to be correlating with position 134 results. The A71T variant
shows a binding free energy near 134Y (A71T AG: -13.70 kcal/mol with AH: -29.33 kcal/mol and
TAS: -15.63 kcal/mol), and A71S close to 134L (A71S AG: -9.98 kcal/mol with AH: -29.00

kcal/mol and TAS: -19.02 kcal/mol). All computational analyses suggested that A71 can modulate
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binding affinity through distal dynamic coupling similar to 134, hence we experimentally

characterized these two variants.

The experimental binding affinity by ITC correlates with in silico predictions. When the
change in total DFI score upon binding is compared to change in free energy of binding from ITC
experiments (Fig S7), A71T (AG: -5.70 kcal/mol with AH: -6.00 kcal/mol and TAS: -0.30) features
both a change in total DFI and AG closer to [34Y, and A71S (A71S AG: -5.10 kcal/mol with AH:
-9.10 kcal/mol and TAS: -4.00) shows a score identical to 134L. The entropy of A71T shows a
similar change as [34Y experimentally (A71T TAS: -0.30) indicating that the same compensation
mechanism is utilized by another category (1,1) residue. A71S is closer to 134L (A71S TAS: -
4.00). Similar to 134Y, the melting temperature of A71T is lower than P51G-m4 (Fig S1). Results
of A71 variants further establishes the potential of ICDC and category (1,1) residues in diversely
tuning the binding affinity of Domain B of CV-N through playing enthalpy-entropy compensation

of binding process.

Our new integrated coevolution and dynamic coupling (ICDC) approach shows that it is
possible to identify and incorporate distal mutations into protein design bringing together
evolutionary inferences with long-range dynamic communications within the 3-D network of

interactions.
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Methods

Adaptive BP-Dock

Adaptive backbone perturbation docking, Adaptive BP-Dock in short, allows us to model
the interaction between CV-N and glycans in silico (Bolia and Ozkan, 2016). Adaptive BP-dock
combines the complex simulation of backbone flexibility of a protein into Rosetta’s ligand docking
application (Davis and Baker, 2009). The common restriction in docking is the implementation of
flexibility of receptor and ligand (Davis et al., 2009; Davis and Baker, 2009; DeLuca et al., 2015;
Meiler and Baker, 2006). Rosetta included the flexibility of ligand in their monte-carlo sampling
approach but lacking full receptor flexibility. This high order challenge is overcome by utilizing
Perturbation Response Scanning (PRS) to compute backbone changes during docking (Atilgan and
Atilgan, 2009; Bolia et al., 2014b, 2014a; Ikeguchi et al., 2005). This procedure also allows the
modeling of transition from an unbound state to a bound state (Bolia and Ozkan, 2016). The
computational cost of sampling is reduced by using a coarse-grained approach employing Elastic
Network Model (ENM) leading to an efficient way of computing backbone perturbations,
mimicking the ligand interacting with receptor (Atilgan et al., 2001, 2010; Atilgan and Atilgan,

2009).

We employed Adaptive BP-Dock in modeling glycan CV-N interactions starting from an
unbound conformation of CV-N. The perturbed pose of the protein is calculated using PRS. The
structure is then minimized, and the side chains are added at this step. The glycan is docked to the

minimized structure using Rosettal.igand algorithm. Rosetta samples bound conformations using
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a knowledge based potential function and calculates bound pose energies. The lowest energy
docked pose is selected and feed back to perturbation step, and the same procedure is followed
iteratively until a convergence is reached. At the end of each iteration the lowest energy docked
pose is taken and binding score is calculated using an empirical scoring function X-score. X-score
energy units (XEUs) has shown to provide higher correlations with experimental results (Wang et
al., 2002). The flow of the algorithm is shown in Fig S9. Adaptive BP-Docks iterative algorithm
ensures the sampling does not get trapped in a local minimum and reaches a global minimum. The
challenge of unbound/bound modeling is solved using the iterative approach as the conformations

are led towards a bound pose with the help of PRS.

Molecular Dynamics (MD)

Gromacs simulations are conducted for P51G-m4 CV-N and all the variants in unbound
form, and further for P51G-m4 CV-N, 134 variants 134K, 134L, 134Y, and A71 variants A71S,
AT7T in bound form. (Abraham et al., 2015; Spoel et al., 2005). For each simulation the all-atom
system is parametrized with CHARMM36 force field and explicit water model TIP3P. The
solvation box is set to be minimum 16A from the edge of the protein. The system is neutralized by
potassium ions to sustain electroneutrality and minimized with steepest descent for 10000 steps.
A short-restrained equilibrium is conducted in the constant number of particles, pressure, and
temperature ensemble (NPT) for 5 ns using the Berendsen method at 300K temperature and 1 bar
pressure. NPT production trajectories were performed with Nose-Hoover and Parrinello-Rahman

temperature and pressure coupling methods for 2us at 300K and 1 bar. For all cases periodic
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boundary conditions and particle-mesh Ewald (PME) with interaction cutoff of 12A is employed

with Gromacs version 2018.1.

Dynamic Flexibility Index (DFI)

DFI is a position specific metric that can measures the resilience of a given position to the
force perturbations in a protein. It calculates the fluctuation response of a residue relative to the
gross fluctuation response of the protein (Kumar et al., 2015b; Larrimore et al., 2017). DFI

calculates residue response due to a perturbation by utilizing covariance matrices.

[AR]3 ) = [H]_;]\;ng[F]_wxl

> AR,
YL X AR,

DFI, =

Residue response, AR, is calculated using Linear Response Theory (LRT) by applying
force, F, in multiple directions to mimic isotropic fluctuations. Hessian matrix, H, contains second
derivatives of potentials. The inverse of Hessian matrix, H/, contains residue covariances, and
interpreted as a covariance matrix. The covariance matrices can be gathered from MD simulations,
and also by using Elastic Network Model (ENM) of a protein. In this study, MD covariance

matrices have been utilized to incorporate residue interactions accurately.
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Residues with low DFI score (below 0.2) are considered as hinge points. These points are
communication hubs in this 3-D interaction network. Due to high coordination number, the
residues exhibiting low DFI values are crucial as information gateways. While they do not exhibit
high residue fluctuation to the perturbations, they quickly transfer the perturbation information to
other parts, thus they are in control of collective motion of the protein. A change in low DFI
positions (i.e., a mutation) will lead to a transformation in the communication grid and majority of
disease-associated (i.e. function altering mutations) are often observed as hinges (Butler et al.,
2015; Gerek et al., 2013; Kumar et al., 2015a). The substitution on these site usually alters catalytic
activity or binding interaction (i.e., glycans) by modulating equilibrium dynamics (Campitelli et

al., 2020a).
Dynamic Coupling Index (DCI)

Dynamic Coupling Index (DCI) exploits the same framework of DFI (Campitelli et al.,
2020a; Larrimore et al., 2017). DCI utilizes the residue response fluctuation upon random force
perturbation at a specific residue position to investigate residues that exhibit long-range coupling
to each other. In DCI approach, a unit force is applied on functional residues (i.e., binding site

residues) one by one and responses of all other residues are calculated.

DCI ZJ‘:V Functionet |ARJ |f/NFimc.ti(ma,I
i = i -
>N IARIIN
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With DCI scheme the residues with high response (high DCI score) indicates high long
range dynamic coupling. Residues with high DCI values with binding sites play a critical role in
intercommunication of a protein with the binding residues. These coupled residues are of utmost
importance in how forces propagate through amino acid chain network on a binding event. Some
of the coupled residues are far from the binding site but still encompass modulation capabilities

over binding pocket.

Informing dynamics from co-evolution

Co-evolutionary data paves the way to assessing 3-D structural contacts by utilizing
available sequence information (Hopf et al., 2018; Marks et al., 2012; Morcos et al., 2014).
Sequence information is more abundant compared to resolved protein structures. Exploiting the
sequence information, primary contacts comparable to realistic structural contacts can be
calculated and a contact matrix is formed. The accuracy of these contact maps is proved to be
valuable in protein folding studies (Kryshtafovych et al., 2019; Morcos et al., 2011; Wang et al.,
2016). Evolutionary coupling (EC) analysis is used to collect information on how much two
residues in a protein sequence is in close proximity in 3-D structure. EC scores could be calculated
by many different statistical approaches. In this study EC information is gathered by using
RaptorX, EVcouplings, and MISTIC webservers (Hopf et al., 2019; Simonetti et al., 2013; Wang
et al., 2017). While the limitation of these methods emerges from sequence homolog availability
of a protein in multiple sequence alignment (MSA), RaptorX uses a deep neural network
leveraging joint family approach, combining multiple ortholog protein families sharing similar

function and phylogeny, to infer possible contacts. This method is proven to produce high accuracy
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in contact prediction compared to others (Wang et al., 2017). However, for a given MSA
containing enough homolog sequences other methods are also strong in predicting spatial contacts.
EVcouplings approach uses Direct Information (DI) to calculate co-evolutionary couplings. DI
metric is a modified mutual information (MI) score considering consistency between pairwise
probabilities and single amino acid frequencies (de Juan et al., 2013; Morcos et al., 2011).
Nonetheless, M1, a global approach compared to local DI metric, is accurate in capturing true
contacts, while entangling indirect contacts from direct contacts. MISTIC web server has taken
advantage of MI to calculate co-evolutionary couplings (Dunn et al., 2008; Gouveia-Oliveira and
Pedersen, 2007; Simonetti et al., 2013). In their MI method they introduced a correction term to
MI to surpass the low statistics gathered with an MSA containing limited number of sequences.
This approach is very useful in cases where certain homologs are rare and MSA of these homologs
have multiple gaps in their alignments. All of these methods are employed in this study to achieve

high accuracy predictions in finding residue couplings.

Mutant proteins cloning, expression, and purification

The genes for mutants (134Y, 134K, and I34L) were generated by applying mutagenic
primers to P51G-m4-gene sequence and amplifying by PCR. The constructs were subsequently
cloned in pET26B vector between Ndel and Xhol sites and transformed in BL21(DE3) for
expression and purification. The proteins were expressed from a 10 ml starter culture in LB broth
overnight at 37 °C, inoculated into 1 L LB medium. The culture was induced with 1 mM isopropyl
thiogalactoside (IPTG) when OD reached 0.6 and grown for another 6-8 hours. Then, the cells

were harvested by centrifugation, lysed in 6M Guanidine hydrochloride at pH 8.0, and sonicated
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for 10 minutes. The supernatant recovered after centrifugation was used to purify proteins with
GE HisTrap HP column (GE Healthcare Bio-Sciences, Piscataway, NJ) and a Bio-Rad
EconoPump (Bio-Rad, Richmond, CA) under denaturing conditions. In brief, the proteins were
loaded on the column in Gu-HCI buffer, which was buffer exchanged by 8M Urea buffer. The
nonspecific proteins were washed out by 4M urea and 20mM imidazole buffer, pH 8.0 and eluted
with 2M Urea and 200mM imidazole, pH 8.0 buffer before putting it for overnight dialysis against
10 mM Tris pH 8.0 and 100 mM NaCl buffer. The buffer was changed once during the night. The
refolded protein was concentrated and re-purified to isolate the monomeric species by size
exclusion chromatography using Sephadex 75 10/300 column on Agilent’s Infinity 1260 system.

The gel filtered protein was finally used for all the experiments.

CD spectroscopy and T-melts

In CV-N family proteins, thermodynamic parameters like free energy of unfolding,
enthalpy and entropy cannot be extracted by thermal denaturation because the transition from
folded to unfolded state is non-reversible (Patsalo et al., 2011), therefore melting temperatures are
used. Far-UV CD spectra were recorded on a Jasco J-815 spectropolarimeter equipped with a
thermostatic cell holder, PTC 4248S. Spectra were measured from 250 to 200 nm, using a scanning
speed of 50 nm/min and a data pitch of 1.0 nm at 25 °C. Samples concentration was approximately
15 uM in 10 mM Tris, pH 8.0 and 100 mM NaCl. For thermal denaturation experiments, the
melting profile was monitored at 202 nm from 25 °C to 90 °C. The data points were plotted and

fitted in Origin8.5 software to get apparent Tm.
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Isothermal titration calorimetry (ITC)

ITC was performed at the Sanford-Burnham Medical Research Institute Protein Analysis
Facility using ITC200 calorimeter from Microcal (Northampton, MA) at 23 °C. 2.0 pl aliquots of
solution containing between 3mM and 10 mM Man2 were injected into the cell containing between
0.057, and 0.11 mM protein. 19 of 2.0 ul injections were made. The experiments were performed
in 10mM Tris, 100mM NaCl, pH 8.0 buffer. ITC data were analyzed using Origin software

provided by Microcal.

Chemical denaturation experiments

Chemical denaturation experiments were done by monitoring the shift in the intrinsic
tryptophan fluorescence on Cary Eclipse instrument (Varian). 10 uM of protein samples were
incubated with increasing concentrations of Guanidine hydrochloride in the range of 0-6 M in 50
mM Tris pH8.0 buffer for 72 hours at 25 °C. The emission spectra for the same were recorded by
keeping the excitation wavelength at 295nm and bandwidth of 1 nm. A ratio of fluorescence at
330 and 360 nm (I330/360) was plotted at respective Gu-HCI concentrations, and the data points

were fit to following sigmoidal equation to obtain Cnm.

Al — A2

y= AZ + 1+ e(x—x0)/dx

Where, Aland A2 are the initial and final 330/360 ratios and x0 is the concentration of Gu-HCI,
where y= (A1 +A2) /2, or the point where 50 % of the population is unfolded. It is also denoted as

Cm.
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The denaturation curve was used to calculate the free energy of the protein in the absence of
denaturant (AGmu20). Fraction unfolded (fu) was calculated using the following formula:
Ju = (VE - yobs)/(yE-yu)
where fu, is the fraction unfolded, yr is the value when there is no denaturant, yobs is the value at
each position and yu is the value for unfolded protein. Since fu+ fr =1, the equilibrium constant, K,
the free energy change can be calculated using
K=fu/fr
K=fu/1-fr
AG = -RTInK

Where R is the gas constant whose value is 1.987 cal/mol.K and T is the temperature of

incubation, which was 298K. The value of AG is linear over a limited range of Gu-HCI. The linear

fit over that range was extrapolated to obtain AGmn20.

Crystallization and structure determination

[34Y was purified as discussed previously and the monomeric gel filtered protein was
concentrated to 8mg/ml. We got the crystals in 2M ammonium sulphate and 5 % (v/v) 2-propanol
after screening it in Index HT screen from Hampton Research. The protein crystals were
reproduced using same condition in hanging drop method. For protein crystals with dimannose,
the crystals were incubated in 1.2 fold molar excess of dimannose. Single needle-like crystals were
picked up and cryo-preserved in 25 % glycerol before freezing them for data collection at
Synchrotron ALS, beamline 8.2.1. Single crystal diffraction was measured at wavelength of 0.999

A with ADSC quantum 315 r detector. The data were evaluated to resolution of 1.25 A. The data
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acquired was indexed using XDS and scaled by the aimless package from CCP4i program suite.
The structural coordinates and phase were determined by molecular replacement using 2RDK PDB
code. The structure of [34Y of CV-N is deposited under PDB accession code 6X7H. The structure

was further refined in Coot.
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Dynamically Coupled to Binding Sites Not Dynamically Coupled to Binding Sites
1 0
Distance Distance
residue PF1 DO RAPTORX MISTIC EVCOUPLING ~ Current  Available |. .. DFI DI RAPTORX MISTIC EVCOUPLING ~ Current  Available
€514 Score Score \pinimum Average SCOre | Score  Score  Aminoacid Aminoacid |- Score Score nniim ayerage SCOT€  Score  Score  Aminoacid Amino acid
ACEFGIKLM
44 020 094 14 19 092 087 0.32 v AFLMV | 51 056 035 17 2 077 077 0.92 L
NPQRSTV
45 010 089 15 19 093 099 0.67 G AGR 121 055 063 13 17 066 091 091 E AD;(;?:C"N
46 005 086 15 19 090 0388 0.69 Y AFGILMTVY [ 142 035 052 13 19 083 061 0.77 1 Ac:ﬁ&\w‘a
ACDEFGHIL
ADFILMQTV
47 013 085 16 20 089 084 0.97 MNQRSTVW| 148 030 068 11 16 094 078 0.95 L qu
Y
ACEFGHIKL
122 015 092 10 14 071 092 0.86 L ACFHILMSV | 155 058 051 17 23 068 091 091 M MNPQRSTV
w
Coevolved 137 013 093 10 15 093 095 0.95 L ABFGIKLMA( 103 00s 050 14 17 084 097 0.75 P ALPS
with Binding 1 RSVY
Sites
179 025 085 11 13 098 097 0.93 D ADGNR | 199 061 045 17 23 074 099 0.67 L %
ACEFGHKLM
181 019 090 12 15 092 099 071 T ACLSTV | 220 049 067 10 16 095 096 0.99 L QRSTVWY
182 010 070 15 18 066 098 0.65 M ACKMNRSTV| 222 061 056 11 18 093 099 0.74 R ACGZ"\?‘PQR
187 008 073 13 17 084 091 099 A ACEGILMNQ) 553 071 051 14 20 088 088 064 s ADEGHKLPQ
.08 0. . X X RSTV .71 0. . . X STV
AFHILMNST ADEGHIKLNP
19 019 078 12 16 095 094 0.86 L 224 069 059 16 2 083 068 0.75 A
vwy RSTVY
262 001 094 10 15 096  0.64 0.99 v ACGILNSTV | 225 074 045 15 2 084 076 0.99 L AF'K\ECAVQST
ACFGILMST ADEFGHIKL
263 001 090 11 15 094  0.80 0.99 v 227 098 067 20 27 066 062 0.89 A MNPQRSTY
ADEGHKLM ADEGHIKLM
83 074 089 16 2 016 041 044 R 35 080 081 21 27 052 0.09 053 D NPQRSTVW
NQRSTVY v
ACDEFGHIKL ADEFGHIM
84 077 084 17 23 033 041 0.48 v MNORSTVW| 52 075 028 21 27 044 049 0.50 N
v NPQRSTV
Not Coevolved
ADEHKLNQR ACDEGHKLN
withBinding 0| 93 092 092 19 2 016 035 051 R R 197 o7 042 2 2% 033 039 049 E
sites STVY PQRSTY
ACDEFGHIKL ACDEFGHIKL
94 090 093 19 23 016 029 0.40 R MNPQRSTV| 201 079 043 20 25 033 0.09 032 L MNPQRSTV
w Y
ACDEFGHIKL
289 085 072 23 30 052 0.10 0.50 H MNPQRSTV
wy

Table S2. DFI, DCI, RaptorX, Evcoupling, and MISTIC metrics are used to identify residues in

CV-N for the ICDC categories (Supplementary file 1 table 2).

Dynamically Coupled to Binding Sites Not Dynamically Coupled to Binding Sites
1 [
Distance Distance
Residue DFI DCI RAPTORX MISTIC EVCOUPLING  Current Available Residue DFI DCI RAPTORX MISTIC EVCOUPLING  Current Available
Score Score prinimum Average Score  Score Score Amino acid Amino acid Score Score prinimum Average Score  Score Score Amino acid Amino acid
Coevolved 34 017 071 16 2 065 093 071 | FIKLMVY | 18 054 051 16 21 065 098 084 L FILMV
with Binding 1
Sites
ACFIKLMQST ADEFGKLMN]|
61 0.15 0.83 11 15 0.81 0.76 0.86 T YWY 66 0.95 0.27 21 26 0.27 0.91 0.94 S PQRST
71 0.01 093 11 13 0.94 0.92 0.98 A ACDEGQSTV/
ADEFGHIKN
32 0.02 091 23 29 0.44 0.92 0.48 S ACDHLNSTV| 65 0.88 0.49 21 24 0.26 0.7 0.69 G PQRSTWY
Not Coevolved ADEFHIKLM ADEGHIKLM
with Binding 0| 99 0.35 0.85 18 26 0.53 03 0.37 K 67 0.82 0.29 18 23 0.34 0.79 0.86 S
N NQRSTV NPQRSTVY
Sites
88 0.74 0.55 16 23 0.59 0.72 0.73 ) ADEGHNRST]|
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data for wild type, mutDB, and P51G-m4 benchmarking.

Table S3. The predicted binding affinities of domain B and comparison with experimental ITC

Predicted ITC
Binding ITC ITC . ITC
. . . dimannose .
Protein Score dimannose dimannose TAS (keal/mol dimannose
(X-score Ka(uM) | AH (keal/mol) (keal/mol) | ) 'y cal/mol)
. (T=298K)
energy unit)

Wild Type -7.08 16+ 1 -12.5+0.3 -6.00 £ 0.1 -6.50+ 0.3
mutDB -5.97 No-binding No-binding No-binding No-binding
P51G-m4 -6.62 117+£3 -123+0.3 -7.00 £0.3 -5.30+0.3

calculated with MM-PBSA approach applied on dimannose bound MD simulations.

Protein |AH (kcal/mol) | TAS (kcal/mol) | AG (kcal/mol)
P51G-m4 -31.13 -18.34 -12.80
134K -0.03 -51.07 51.04
134L -27.54 -17.97 -9.57
134Y -29.76 -15.72 -14.05

* The AG scores displayed in this table correlates with experimental
binding scores with an R value of 0.87.

Table S4. Binding free energies, enthalpy and entropy values for wild type CV-N and its variants
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Fig S1 Fits for thermal melts of the CV-N mutants A) [34 variants, and B) A71 variants.
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Fig S3 Binding isotherms of CV-N mutants upon titration with dimannose: A) 134Y and B)

P51G-m4 C) A7IT.

B 134Y — experimentally solved structure
20 134Y — docked structure

Fig S4 Comparison of experimentally solved 134Y structure with docked pose from Adaptive

BP dock algorithm. The RMSD of the ligand is calculated as 0.75 A.
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Fig S5 A) Structural difference of open vs closed conformation based on the hydrogen bond
distance between residue N42 and N53 B) Hydrogen bond distance between residue N42 and
N53 from crystal structures of P51G-m4, and P51G-m4-134Y C) Frequencies of hydrogen bond
distance between residue N42 and N53 from GROMACS production runs showing 134Y variant

sampling more open conformation compared to P51G-m4.
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Fig S6 We sampled 2000 different conformations from MD simulations for P51G-m4 CV-N
and [34Y mutant and performed dimannose docking to obtained docked poses and then analyzed
hydrogen bond patterns A) Hydrogen bonds (representing the peak of the distribution on panel
B) and their distances are shown between dimannose and residue R76 for P51G-m4 (blue) and

134Y (orange) B) H-bond distance distribution between dimannose and residue R76.
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Fig S7 A) Change in AG of binding (AGmut - AGwt) is compared with change in total DFI scores

(> DFIl,,,; — DFI,,;) for selected residues. The correlation with experimental binding scores is

compared with the total sum of DFI values considering only domain B binding site residues first,

and also summing over the domain B binding sites as well as the residues highly coupled

(coupling greater than 0.8) to them. The observed high correlations indicates that these residues

play an important role in the binding modulation upon mutations. The similar trend has also

been seen in Lacl (Campitelli et al., 2021) B) In addition we randomly selected residues in

domain B to calculate total DFI change over these positions upon mutations. Three different

randomly selected residue sets all show poor correlation with change in experimental binding

free energy.
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Fig S8 Network of hydrogen bond interactions connecting residue location 34 to T57 is
investigated in 134Y variant and P51G-m4 CV-N. Two Hydrogen bond pathways are found
connecting residue 34 to 57. Pathway 1 is unique to I34Y. Pathway 2 is also observed in

P51G-m4 CV-N but sampled much more frequently in 134Y variant.
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Fig S9 The flow of Adaptive BP-Dock. Starting from an unbound structure the backbone atoms
are perturbed using PRS and perturbed pose is fed into minimization. The minimized
conformation is docked with the glycan using Rosettaligand docking approach. The lowest
scored docked pose is selected and used for next iteration step until convergence is established.
For every lowest energy docked pose from an iteration a new binding score is reevaluated using
X-score empirical scoring function.
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Supplementary Table 1 contains the complete TEM-1 DFI, DCI, RaptorX, Evcoupling, and
MISTIC metric data used in this study.
Supplementary Table 2 contains the complete CV-N DFI, DCI, RaptorX, Evcoupling, and

MISTIC metric data used in this study.
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