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Abstract 17 

 18 

We develop integrated coevolution and dynamic coupling (ICDC) approach to identify, 19 

mutate, and assess distal sites to modulate function. We validate the approach first by analyzing 20 

the existing mutational fitness data of TEM-1 β-lactamase and show that allosteric positions co-21 

evolved and dynamically coupled with the active site significantly modulate function. We further 22 

apply ICDC approach to identify positions and their mutations that can modulate binding affinity 23 
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in a lectin, Cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies 24 

of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that 25 

binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and 26 

show that rigidification of the binding residues compensates for the entropic cost of binding. This 27 

work suggests a general mechanism by which distal mutations modulate function through dynamic 28 

allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize 29 

protein function. 30 

 31 

Introduction 32 

 33 

The evolutionary history of a protein comprises the ensemble of mutations acquired during 34 

the course of its evolutionary trajectory across different species, and contains valuable information 35 

on which residue positions contribute the most to a given protein’s 3-D fold and function based on 36 

their conservation. (Campbell et al., 2016; Rivoire et al., 2016; Yang et al., 2016). Furthermore, 37 

the subset of positions that are co-evolved (i.e., correlated mutational sites) provide clues on 38 

specific, native-state interactions. Pairwise residue contacts inferred from co-evolved positions 39 

within a protein family can be used as distance restraints to accurately model 3-D structures. (de 40 

Juan et al., 2013; Hopf et al., 2019; Kamisetty et al., 2013; Kim et al., 2014; Tripathi et al., 2015). 41 

Recent revolutionary successes in accurate predictions of 3-D protein structures combine these 42 

methods with machine learning strategies i.e., deep learning (Jumper et al., 2021; Wang et al., 43 

2016; Xu, 2019). Co-evolved positions also embed information on protein function, for example 44 

revealing how factors such as binding affinity and specificity are modulated across evolutionary 45 

history and species (Rivoire et al., 2016; Salinas and Ranganathan, 2018; Torgeson et al., 2022). 46 
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However, accessing, interpreting, and applying this information in a predictive manner is very 47 

challenging; mutations observed in the evolutionary history are often distal from the functional 48 

sites, implying that protein dynamics are responsible for their effects on function and that these 49 

sites act as distal allosteric regulators of function (Campitelli et al., 2020a; Modi et al., 2021a; 50 

Romero and Arnold, 2009; Salinas and Ranganathan, 2018; Tokuriki et al., 2012; Torgeson et al., 51 

2022; Wei et al., 2016). 52 

 53 

Molecular dynamics (MD) simulations can capture protein dynamics and reveal the impact 54 

of distal mutations on function (Bowman and Geissler, 2012; Campbell et al., 2016; Campitelli et 55 

al., 2020a; Jiménez-Osés et al., 2014; Kolbaba-Kartchner et al., 2021; Modi et al., 2021a; Yang et 56 

al., 2016). However, the computational cost of MD simulations of sufficient length can be 57 

prohibitively high; further, it’s often far from straightforward to forge a clear connection to 58 

function. To bridge this gap, we developed a framework to quickly evaluate MD trajectories and 59 

identify the sensitivity of a given position to mutation based on its intrinsic flexibility, which we 60 

assess using our Dynamic Flexibility Index (DFI) metric, and on its dynamic coupling with 61 

functionally critical positions assessed by Dynamic Coupling Index (DCI) (Campitelli et al., 2018; 62 

Gerek and Ozkan, 2011; Kumar et al., 2015b; Larrimore et al., 2017). DFI measures the resilience 63 

of a position by computing the total fluctuation response and thus captures the flexibility/rigidity 64 

of a given position. Applying DFI to several systems, we showed that rigid positions such as hinge 65 

sites contribute the most to equilibrium dynamics, and that mutations at hinge sites significantly 66 

impact function regardless of the distance from active sites (Kim et al., 2015; Kolbaba-Kartchner 67 

et al., 2021; Modi et al., 2021b, 2018; Modi and Ozkan, 2018; Zou et al., 2021, 2015). DCI 68 

measures the dynamic coupling between residue pairs and thus identifies positions most strongly 69 
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coupled to active/binding sites; these positions point to possible allosteric regulation sites 70 

important for modulating function in adaptation and evolution (Butler et al., 2015; Campitelli et 71 

al., 2020a, 2021; Kuriyan and Eisenberg, 2007; Lu and Liang, 2009; Modi and Ozkan, 2018; Ose 72 

et al., 2020; Risso et al., 2018; Wodak et al., 2019). 73 

 74 

In this paper, we present integrated co-evolution and dynamic coupling (ICDC) approach 75 

to identify distal allosteric sites, and to assess and predict the effects of mutations on these sites on 76 

function. We propose a system to classify residue positions in a binary fashion based on co-77 

evolution (co-evolved, 1 or not, 0) and dynamic coupling by DFI and DCI (dynamically coupled 78 

1, or not ,0) with the functionally critical sites. This classification captures the complementarity of 79 

dynamics-based and sequence-based methods. We hypothesize that positions belonging to 80 

category (1,1), i.e., positions both co-evolved and dynamically coupled with the functional sites, 81 

will have the largest effect on function. 82 

 83 

We validate our hypothesis first by analyzing the existing mutational fitness data for TEM-84 

1 β-lactamase, available for every position of the protein (Stiffler et al., 2015). In agreement with 85 

our hypothesis, we find that mutations on category (1,1) positions significantly modulate the 86 

function. A large fraction of mutations enhancing enzymatic activity correspond to category (1,1) 87 

irrespective of distance from the active site. Second, we apply our ICDC approach to blindly 88 

predict and experimentally validate mutations that allosterically modulate dimannose binding in a 89 

natural lectin, Cyanovirin-N (CV-N). CV-N binds dimannose with nanomolar affinity and 90 

remarkable specificity (Barrientos et al., 2003; Botos and Wlodawer, 2005, 2003; Mori and Boyd, 91 

2001; O’Keefe et al., 2003). It is part of the CV-N family, found in a wide range of organisms 92 
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including cyanobacterium, ascomycetous fungi, and fern (Koharudin et al., 2008; Koharudin and 93 

Gronenborn, 2013; Patsalo et al., 2011; Percudani et al., 2005; Qi et al., 2009). While the 3D folds 94 

is remarkably conserved in all experimentally characterized members, the affinity and specificity 95 

for different glycans and, in particular, to dimannose varies significantly (Koharudin et al., 2009, 96 

2008; Matei et al., 2016; Woodrum et al., 2013). To design CV-N variants with improved binding 97 

affinities for dimannose based on distal allosteric coupling, we binned each position in one of the 98 

four categories based on computed DFI, DCI and co-evolution rates. We explored mutations at 99 

these sites based on frequency in the sequence alignment. After obtaining the mutant models 100 

through Molecular dynamics (MD) simulations, we assessed the impact of each naturally observed 101 

mutation on binding affinity by docking dimannose to the mutant models via Adaptive BP-Dock 102 

(Bolia et al., 2014b, 2014a; Bolia and Ozkan, 2016). We chose position I34, which belongs to 103 

category (1,1) and is 16Å away from the binding pocket, for experimental validation. We found 104 

that mutations I34K/L/Y had a diverse effect on glycan binding, either improving by two-fold or 105 

abolishing completely. Through experimental and MD studies we show that the observed 106 

improvement in binding affinity is due to changes in the dynamics of residues in the binding 107 

pocket; mutation I34Y leads to rigidification of binding sites, thus compensating the entropic cost 108 

of binding (Breiten et al., 2013; Chodera and Mobley, 2013; Cornish-Bowden, 2002; Fox et al., 109 

2018). Mutations at an additional position (A71T/S) from category (1,1) showed evidence of the 110 

same allosteric mechanism governing the modulation of binding dynamics. Overall, this study 111 

provides not only a new approach to identify distal sites whose mutations modulate binding 112 

affinity, but also sheds light into mechanistic insights on how distal mutations modulate binding 113 

affinity through dynamics allostery. 114 

 115 
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Results and Discussion 116 

 117 

Combining long-range dynamic coupling analysis with co-evolution allows to identify distal 118 

sites that contribute to functional activity. 119 

 120 

With our ICDC approach, we aim to explore the role of dynamics versus evolutionary 121 

coupling as well as the role of rigidity versus flexibility in allosterically modulating active/binding 122 

site dynamics. To this extend, we created four unique categories that classifies residue positions 123 

based on residue DFI score, DCI score and co-evolutionary score: category (1,1) is dynamically, 124 

and co-evolutionarily coupled rigid sites (exhibiting %DFI values 0.2 or lower, showing 0.7 or 125 

higher %DCI with the binding site, and showing 0.6 or higher co-evolution scores with the binding 126 

site); category (1,0) is dynamically coupled but co-evolutionarily not coupled sites; category (0,1) 127 

is dynamically not coupled but co-evolutionarily coupled sites; category (0,0) is dynamically not 128 

coupled, and co-evolutionarily not coupled flexible sites (exhibiting %DFI values 0.7 or higher) 129 

(Supplementary file 1 table 1 & 2); importantly, this classification is based on two independent 130 

statistical approaches thus compensate the noise of individual approaches. Based on our 131 

evolutionary analysis (Campitelli et al., 2020a; Modi et al., 2021b; Modi and Ozkan, 2018), we 132 

hypothesize that category (1,1) would impact protein activity or binding affinity the most. 133 

 134 

To test our hypothesis, we first analyzed the deep mutational scanning data available for 135 

the beta lactamase TEM-1, correlating changes in ampicillin degradation activity (e.g. MIC values) 136 

with mutations to all possible amino acids at each position (Stiffler et al., 2015). The experimental 137 

results showed that amino acid substitutions at the catalytic site residues of TEM-1 negatively 138 
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impacted activity. Mutations at other positions also affected activity; while most mutations were 139 

deleterious, surprisingly, others resulted in increased activity. The impact of mutations on 140 

dynamics and function of TEM-1 have been heavily explored but the distal mutational effects are 141 

still poorly understood (Kolbaba-Kartchner et al., 2021; Modi et al., 2021b; Modi and Ozkan, 142 

2018; Salverda et al., 2010; Schneider et al., 2021; Stiffler et al., 2015; Thomas et al., 2010; 143 

Zimmerman et al., 2017; Zou et al., 2015). We applied our approach by obtaining DFI, DCI and 144 

co-evolution scores for every position of TEM-1 and binning residue positions into each ICDC 145 

category (Table S1). We constructed fitness distributions for each category using the 146 

experimentally measured single mutant relative fitness values for all mutations per position 147 

provided in the dataset (Fig 1). 148 

 149 
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Fig 1 ICDC categories based on the dynamics and co-evolutionary analyses applied on TEM-1 β-

lactamase. A) The distributions in the form of violin plots are obtained for each ICDC category using all 

available experimental mutational data (Stiffler et al., 2015) B) Violin plots showing the fitness values 

for amino acid substitutions observed in the natural sequences. C) The category (1,1) positions are 

mapped on 3-D structure. The catalytic site residues are shown in dark grey whereas category (1,1) 
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positions are shown in magenta color. The function altering category (1,1) positions are widely 

distributed over the 3-D structure. 

 150 

We found that category (1,1) positions show the highest impact, both significantly 151 

enhancing and reducing ampicillin degradation by TEM-1 (Fig 1A&C). In addition, category (0,0) 152 

residue mutations (i.e., the exact opposite of category (1,1)) lie within the neutral like activity 153 

range defined by Stiffler et al., 2015, suggesting that mutations on positions that neither co-evolve 154 

nor dynamically couple to active site do not affect the function significantly. Category (1,0) 155 

residues enhance activity more than those in the neutral category (0,0). Mutations in category (0,1) 156 

positions also modulate function in both positive and negative direction, albeit not as strongly as 157 

those in category (1,1). However, mutations that negatively impact activity are conspicuously 158 

under-represented in the MSA of native sequences (Fig 1B), particularly in category (1,1). This 159 

finding implies nature mostly allows mutations that don’t compromise fold and function: Negative 160 

selection (i.e. elimination of amino-acid types that are detrimental to the folding) is a major force 161 

in shaping the mutational landscape (Jana et al., 2014; Modi et al., 2021a; Morcos, 2020; Morcos 162 

et al., 2014, 2013). Thus, the use of conservation information from MSA is a useful tool in 163 

eliminating deleterious amino acid substitutions in protein design. 164 

 165 

Our ICDC selection criteria effectively identifies residue positions and their amino acid 166 

substitutions that could finetune function without leading to a functional loss; and category (1,1) 167 

residues have the largest impact on function irrespective of their distance from active site (Fig 1C). 168 

 169 

 170 

 171 
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Application of ICDC approach to modulate CV-N binding affinity through distal mutations 172 

 173 

 CV-N is a small (11 kDa) natural lectin isolated from cyanobacterium Nostoc 174 

ellipsosporum which comprises two quasi-symmetric domains, A (residues 1-38/90-101) and B 175 

(residues 39-89 respectively), that are connected to each other by a short helical linker. Despite 176 

almost having identical structures, the domains show relatively low sequence homology (28% 177 

sequence identity, and 52% similarity). Functionally, they both bind dimannose, yet the affinity is 178 

quite different, with domain B having tighter binding affinity (Kd= 15.3 µM), and domain A 179 

showing weak affinity (Kd = 400 µM) (Balzarini, 2007; Bolmstedt et al., 2001; Li et al., 2015).  180 

 181 

To simplify our analyses, we used a designed CV-N variant, P51G-m4, that contains a 182 

single high-affinity dimannose binding site (domain B), folds exclusively as a monomer in 183 

physiological conditions, and is more stable to thermal denaturation than wild type (Fromme et 184 

al., 2008, 2007). The binding pocket of domain B of CV-N has been subjected to intense scrutiny 185 

to glean information on the origin of its binding specificity for dimannose (Bewley, 2001; Bolia et 186 

al., 2014b; Botos and Wlodawer, 2003; Li et al., 2015; Vorontsov and Miyashita, 2009). Previous 187 

mutational studies on the binding pocket residues have shown their importance in modulating 188 

interaction with dimannose (Barrientos et al., 2006; Bolia et al., 2014b; Chang and Bewley, 2002; 189 

Matei et al., 2008). All known substitutions of the binding residues led to decreased binding 190 

affinity for dimannose on domain B (Bolia et al., 2014b; Fujimoto and Green, 2012; Kelley et al., 191 

2002; Matei et al., 2011; Ramadugu et al., 2014). Evolutionary analyses shows that the majority 192 

of the binding site residues are conserved in CV-N glycan interactions, suggesting that affinity is 193 

already optimized at the binding site. (Koharudin et al., 2008; Percudani et al., 2005). We 194 
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hypothesized that amino acid substitutions at distal positions could enhance the dimannose affinity 195 

of CV-N by rigidification of the binding site and applied our ICDC approach to CV-N to identify 196 

positions in each category (Table S2) (Supplementary file 1 table 2). 197 

 198 

We generated models of CV-N variants in each ICDC category by mutating these positions 199 

to amino acid types observed in the MSA of CV-N family members, choosing the subset of 200 

sequences that have binding sites with identical or similar amino-acid composition to P51G-m4 201 

CV-N. As discussed above this approach allows us to identify amino-acid substitutions with the 202 

least impact on fold. All the substitutions identified (104 variants in total) were modeled using the 203 

crystal structure of P51G-m4 CV-N (Fromme et al., 2008) and subjected to MD simulations 204 

(Abraham et al., 2015; Spoel et al., 2005). The best conformation sampled for each variant obtained 205 

from equilibrated production trajectories was used as a model for dimannose docking analysis. We 206 

evaluated the variants using Adaptive BP-Dock (Bolia and Ozkan, 2016), a computational docking 207 

tool that incorporates both ligand and receptor flexibility to accurately sample binding induced 208 

conformations, and ranks them using X-scores binding energy units (XEUs) . In previous work on 209 

CV-N this method yielded good correlations with experimentally measured binding affinities (Kd), 210 

and established -6.0 XEU unit as a good threshold to differentiate variants that bind dimannose 211 

from “non-binders” (Bolia et al., 2014b; Li et al., 2015; Woodrum et al., 2013). Here, we applied 212 

Adaptive BP-Dock initially on wild-type CV-N and its variants, P51G-m4 and mutDB (a mutant 213 

in which binding by domain B has been obliterated) and the results recapitulate the success of 214 

previous studies (Table S3). This result shows that Adaptive BP-Dock can correctly assess the 215 

dimannose binding of CV-N and its variants, thus, we applied it on new P51G-m4 CV-N variants 216 

to predict the impact of mutations on dimannose binding. Figure 2 shows the distribution of 217 
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changes in predicted binding energy scores relative to the P51G-m4 energy scores for mutations 218 

belonging to each binary category: a positive change in binding score represents an unfavorable 219 

effect on binding, and, conversely, a negative change in the score indicates an enhancement in 220 

binding.  221 

 222 

 

Fig 2 Predicted binding energies for each ICDC category. Mutations in category (1,1) positions comprise 

the highest number of binding energy enhancing mutations as well as deleterious mutations. Mutations 

in category (0,0) positions are mostly near neutral (Category (1,1) & (0,0) P value < 0.3). 

 223 

The substitutions on positions in category (1,1) (Fig 2) yield a wide range of change in 224 

binding energy scores: the tail of the distribution on the positive side reaches nearly a binding 225 

score change of 2.0 XEUs and on the negative site values below -0.5 XEUs. Strikingly, the 226 

positions in category (1,1) yield the most binding enhancing energy scores compared to all other 227 

categories, mirroring TEM-1 results. Additionally, the substitutions applied in category (1,0) also 228 

result in more favorable binding energy scores for dimannose. Mutations in both category (1,1) 229 

and (1,0) present favorable binding energy scores. However, the number of mutations predicted to 230 

be enhancing binding in category (1,1) is more than those in category (1,0) (26% of category (1,1) 231 

compared to 14% of category (1,0)). Interestingly, the mutations in category (1,0) that disrupt the 232 
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binding energy scores is not a strong as category (1,1), but similar to category (0,1) and (0,0). The 233 

observed mostly neutral behavior with category (0,0) agrees with the same trend obtained with 234 

TEM-1 analyses. 235 

 236 

Overall, the distribution of computational binding scores of dimannose binding to CV-N 237 

in each category aligns with the distribution of experimentally characterized TEM-1 fitness results 238 

of the same category. However, there are some discrepancies, for example, there are beneficial 239 

mutations in category (0,1) in TEM-1, but we don’t observe the same trend in CV-N. This is due 240 

to the initial challenge faced in constructing the MSA of CV-N homologous proteins. There is 241 

limited sequence information, and most of the proteins in the CV-N family exhibits binding 242 

specificity to a different glycan (Fujimoto and Green, 2012; Koharudin et al., 2009). In contrast, 243 

β-lactamase family proteins exhibit highest activity towards penicillin, and they have been 244 

subjected to strong natural selection leading to conservation in both fold and function (Salverda et 245 

al., 2010; Zou et al., 2021). Hence, the less noise in evolutionary analysis in case of β-lactamase 246 

family of proteins allows us to correctly filter deleterious type of substitutions based on the MSA. 247 

Regardless, however, in both cases, as hypothesized, substitutions on category (1,1) residues 248 

impact the function most. 249 

 250 

 To further investigate the mechanism of functional modulation of category (1,1) mutations, 251 

we chose the position with highest binding enhancing docking scores, I34, from category (1,1). 252 

I34 exhibits %DFI values lower than 0.2 (Fig 3A), is at least 16Å away from binding residues 253 

(distal), dynamically coupled (Fig 3B) and co-evolved with the binding pocket (Table S2) 254 

(Supplementary file 1 table 2). Moreover, docking scores of I34 variants suggest that the mutations 255 
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can modulate binding in a wide range: I34Y variant leads to an increase in binding affinity 256 

(beneficial), I34K decreases the binding affinity (deleterious), and I34L yields no change (neutral) 257 

(Table 1).  258 

 259 

 

Fig 3 A) DFI profile mapped onto CV-N structure: red corresponds to high DFI, (very flexibile sites) , 

and blue to low DFI values (hinge sites). Position I34 (low DFI score) is highlighted B) DCI profile 

projected on CV-N structure with green corresponding to sites exhibiting high coupling with binding site 

residues. 

 260 

To verify the predictions of I34 variants, we first assessed the folding and thermal stability 261 

of these mutants by circular dichroism (CD) spectroscopy. Far-UV CD spectroscopy showed that 262 

all mutants are well folded and adopt a fold similar to the parent protein, characterized by spectra 263 

with a single negative band centered at 216 nm. We determined the stability of the mutants by CD 264 

monitored thermal denaturation; the thermal denaturation curves were analyzed to obtain apparent 265 
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melting temperature (Tm) values. We found that the conservative mutation I34L is as stable as 266 

P51G-m4, with apparent Tm of 57.8 C and 58 C respectively. In contrast, I34Y and I34K were 267 

less thermostable than P51G-m4 as shown by apparent Tm values of 54.7 C and 47 °C, 268 

respectively. Not surprisingly, substituting a hydrophobic residue with a basic aliphatic amino acid 269 

(lysine) has a large destabilizing effect, while aromatic and polar tyrosine is better tolerated. The 270 

trend of thermostability is P51G-m4 ~ I34L > I34Y > I34K (Fig S1). 271 

 272 

Table 1. Predicted binding affinities of domain B, experimental ITC data, and chemical denaturation 

experiments for P51G-m4, and its I34 variants. 

Protein 

Predicted 
Binding 
Score 

(X-score 
energy 
unit) 

ITC 
dimannose 

Kd (M) 

ITC 
dimannose 

H 
(kcal/mol) 

ITC 
dimannose 

TS (kcal/mol) 
(T=298K) 

ITC 
dimannose 

G (kcal/mol) 

∆GH2O 
(kcal/mol) Cm (M) 

P51G-m4 -6.62 117 ± 3 -12.3 ± 0.3 -7.00 ± 0.3 -5.30 ± 0.3 3.01 ± 0.047 1.46 ± 0.019 

P51G-m4-I34K -5.85 No-binding No-binding No-binding No-binding 2.40 ± 0.124 0.68 ± 0.015 

P51G-m4-I34L -6.19 148 ± 2 -9.60 ± 0.1 -4.40 ± 0.1 -5.20 ± 0.1 2.95 ± 0.077 1.39 ± 0.009 

P51G-m4-I34Y -6.75 64 ± 5 -4.35 ± 0.1 1.32 ± 0.2 -5.67 ± 0.2 2.91 ± 0.157 1.13 ± 0.017 
 

 273 

Chemical denaturation experiments were used to extract thermodynamic values, after 274 

ensuring complete equilibration at each concentration of guanidinium hydrochloride by incubating 275 

the samples for 72-hour (Patsalo et al., 2011). The ∆GH20 values and Cm values of P51G-m4, I34L, 276 

I34Y and I34K are found as 3.0, 2.94, 2.91 and 2.38 kcal/mol and of 1.45, 1.39, 1.13 and 0.68 M 277 

respectively (Table 2). The results align with the thermal denaturation results: P51G-m4 is the 278 

most stable to denaturant, followed by I34L, I34Y and I34K (Fig S2). 279 

 280 
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Next, we evaluated the impact of the mutations on the dimannose binding affinity by 281 

isothermal titration calorimetry (ITC) (Fig S3); data were analyzed to extract Kd values listed in 282 

Table 2. We found that I34Y binds dimannose with tightest affinity (Kd: 64 µM) of all the mutants 283 

tested, a two-fold improvement over P51G-m4 (Kd: 117 µM). Binding by I34L is slightly weaker 284 

with a Kd of 148 µM. No binding was observed for I34K in these conditions. Thermodynamic 285 

values extracted from ITC experiments (Table 2) suggest that entropy changes play an important 286 

role in the observed changes in binding affinity: surprisingly, entropy is positive for I34Y, 287 

indicating an increase in disorder upon binding. 288 

 289 

To glean more information on the mode of binding by I34Y, we determined the X-ray 290 

structure of the unbound and dimannose-bound form and compared it with the template protein 291 

P51G-m4. The fold is highly conserved (Fig 4) as shown by main chain RMSD of 0.16 and 0.20 292 

Å with bound and unbound I34Y, respectively, and tyrosine is well tolerated at position I34. The 293 

binding pocket region is also structurally conserved compared to P51G-m4. Analysis of the polar 294 

contacts between dimannose and P51G-m4 and I34Y (Fig 4B) shows an identical number of 295 

hydrogen bonds (11) with the ligand, indicating a conserved binding pose. We compared the 296 

docked pose of I34Y acquired from Adaptive BP-Dock with the bound X-ray structure. The ligand 297 

shows an RMSD value of 0.75 Å (Fig S4). These observations suggest that the increase in binding 298 

affinity of I34Y towards dimannose might be mediated by equilibrium dynamics, which are not 299 

captured by the crystal structure. This hypothesis is supported by the changes in entropy 300 

compensation measured experimentally (ITC) in dimannose binding by P51G-m4 (negative TΔS) 301 

and I34Y (positive TΔS).  302 

 303 
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Fig 4 A) The crystal structures of I34Y (bound in magenta and unbound in cyan) and its template protein 

P51G-m4 (green) are superimposed. B) Overlay of bound structures of I34Y (magenta) and P51G-m4 

(grey) (RMSD 0.15 Å); dashed lines depict polar interactions with dimannose. 

 304 

Molecular mechanism governing the binding dynamics in I34 variants 305 

 306 

It is interesting to observe that a distal site can modulate binding affinity to a wide range 307 

based on amino-acid substitutions. This finding has also been observed for allosterically regulated 308 

enzymes such as LacI, for which different amino-acid substitutions on non-conserved sites lead to 309 

gradual changes in function, acting like a rheostatic switch to modulate function through 310 

conformational dynamics (Campitelli et al., 2021, 2020b; Meinhardt et al., 2013; Miller et al., 311 

2017; Swint-Kruse et al., 1998). To gather atomic level detail on how the substitutions on I34 312 

dynamically modulate the binding affinity, we employed MD simulations both in bound and 313 

unbound forms (See Methods for details of the simulations). The unbound trajectories were 314 
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analyzed for acquiring binding pocket hydrogen bond distances and pocket volume. Later, to learn 315 

about the ligand induced conformational dynamic changes, the bound trajectories were utilized to 316 

estimate computational binding free energies (Deng and Roux, 2009; Okazaki et al., 2006). 317 

 318 

Previous computational work in our lab had linked binding affinity in the CV-N family to 319 

the accessibility of the binding pocket: A hydrogen bond between the amide hydrogen of N42 and 320 

carbonyl oxygen of N53 forms a closed pocket, hindering glycan accessibility, whereas the loss of 321 

this hydrogen bond leads to an open pocket (Li et al., 2015). Using the formation of this hydrogen 322 

bond in the trajectories of unbound WT and I34Y as metric for assessing open and closed 323 

conformations, we found that I34Y variant samples the open binding pocket more often than 324 

P51G-m4 (Fig S5). 325 

 326 

Another compelling evidence differentiating I34 variants from P51G-m4 is the change in 327 

their binding pocket volumes estimated by POVME pocket volume calculation tool (Wagner et 328 

al., 2017). The calculated pocket volumes for I34Y, I34K and P51G-m4 were converted into 329 

frequencies to obtain probability distributions (Fig 5A), revealing that I34Y variant samples a more 330 

compact pocket volume compared to P51G-m4. If the pocket is too small or too large, dimannose 331 

cannot maximize its interaction with the protein, and a compact conformation enables dimannose 332 

to easily make the necessary hydrogen bond interactions with the protein. This optimum pocket 333 

volume sampled by I34Y may also explain the different binding energetics observed by ITC, in 334 

which a positive entropy change upon binding compensates for the loss in enthalpy compared to 335 

P51G-m4 (Table 1) (Breiten et al., 2013; Cornish-Bowden, 2002). Pocket volume analysis reveals 336 

a larger value for I34K compared to P51G-m4, suggesting that this mutant cannot accommodate 337 
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the necessary interactions with the dimannose resulting in loss of binding. We applied the same 338 

pocket volume calculation to the X-ray structures of P51G-m4 and I34Y variant, and we found 339 

volumes of 141 Å3 and 114 Å3 for P51G-m4 and I34Y, respectively in the unbound forms (Fig 340 

5B). These volumes correlate well with the mean volumes from MD trajectories, suggesting that 341 

the variants modulate the conformational dynamics of binding pocket.  342 

 343 

 

Fig 5 A) Probability distribution of the pocket volume analyses obtained from MD simulation 

trajectories. I34Y populates a conformation with an optimum volume more than others. P51G-

m4 and I34L variant sample similar pocket volumes, but I34K variant has a larger pocket volume 

compared to others. B) Pocket volume comparison of the domain B of solved structures for 

P51G-m4 (purple) and I34Y variant (green). 

 344 
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Overall, the conformational dynamics analysis of the unbound conformations indicates a 345 

shift of the native ensemble towards a smaller pocket volume upon I34Y mutation. This could 346 

explain the decrease in the entropic cost of binding observed in ITC results. We also analyzed the 347 

binding energetics by carrying out dimannose docking with 2000 different conformations sampled 348 

from the binding pocket volume distributions. We found that the small volume restrict accessibility 349 

to the side-chain conformations of binding residue R76 in the I34Y variant, yielding different 350 

hydrogen bond patterns with the dimannose (Fig S6) and suggesting a loss in enthalpic 351 

contribution. 352 

 353 

The bound simulation trajectories were subjected to the MM-PBSA approach to estimate 354 

computational binding free energies and related enthalpic and entropic contributions (He et al., 355 

2020; Rastelli et al., 2010). The results are tabulated on Table S4. The computed binding free 356 

energies capture the trend of experimental binding affinities (R=0.87). The I34Y variant displays 357 

a more favorable binding with dimannose compared to wild type. Interestingly, both experimental 358 

and computational results show I34Y compensating the enthalpic loss with entropic gain. While 359 

I34L variant enthalpic loss is greater than I34Y in computational approach, the overall binding 360 

free energy mirrors the ITC results. Additionally, loss of binding of I34K variant overlaps with the 361 

ITC data. 362 

 363 

 364 

 365 

 366 
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Substitutions of I34 modulates the conformational ensemble leading to change in dimannose 367 

binding affinity 368 

 369 

Proteins adapt to a new environment or changes the function of a protein by modulating 370 

the native state ensemble through mutations of different positions while keeping the 3-D structure 371 

conserved (Campitelli et al., 2020a; Kuriyan and Eisenberg, 2007; Li et al., 2015; Liu and 372 

Nussinov, 2017; Modi and Ozkan, 2018; Risso et al., 2018; Tripathi et al., 2015; Woodrum et al., 373 

2013). As, we also observed a similar pattern of conservation of structure yet change in function 374 

in our designed CV-N I34 variants, we further analyzed the flexibility profiles of I34 variants. The 375 

DFI profiles clustered using principal component analyses (PCA) match the 2-D map of melting 376 

temperature and Kd as reaction coordinates, suggesting a correlation between changes in dynamics 377 

and changes in function (Fig 6). The 2-D map shows I34L, P51G-m4, and I34Y under the same 378 

cluster, with I34L and P51G-m4 close, while I34K is markedly different (Fig 6A). The dendrogram 379 

constructed based on the DFI profiles captures this clustering (Fig 6B) with P51G-m4 and I34L 380 

variant under the same branch, suggesting their dynamics are very similar; I34Y is under the same 381 

main cluster albeit in a different branch. I34K is under a separate branch, indicating different 382 

dynamics. This is in agreement with our previous studies, where substitutions on DARC spots 383 

modulates binding dynamics reflected in their flexibility profiles to adapt to a new environment 384 

(Campitelli et al., 2021, 2020b; Kumar et al., 2015b; Modi et al., 2021a). 385 

 386 
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Fig 6 A) 2D map of Kd and Melting temperature of P51G-m4 and its variants B) PCA clustering 

on the first two principal components of the DFI profiles as a dendrogram.  

 387 

We further gleaned a molecular view of the role of flexibility in binding by comparing 388 

changes in DFI profiles of the binding site residues with P51G-m4 for each mutant, in the unbound 389 

and bound form (Fig 7A and B). We found that flexibility at position T57 is highly dependent on 390 

the amino acid at position I34: flexibility increases in I34K, suggesting a higher entropic penalty 391 

for binding interactions; It is unchanged in I34L, which has similar binding affinity. In contrast, 392 

T57 becomes much more rigid in I34Y mutant. This indicates the rigidification leading to a 393 

decrease in the entropic cost can contribute to the binding affinity enhancement of this mutant 394 

which is also in agreement with the ITC results. 395 

 396 
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Fig 7 A) Change in flexibility of I34K, I34L, and I34Y relative to P51G-m4 in unbound form 

are shown. Residues E41, N42, and T57 rigidifies on I34Y compared to P51G-m4. B) Change 

in flexibility of I34K, I34L, and I34Y relative to P51G-m4 in bound form are projected on 

structure. C) Hydrogen bonding interactions of residues I55, E56, T57, and C58 are shown for 

P51G-m4 and I34Y variant.  

 397 

Comparison of the flexibility profiles of the bound form with those of the unbound form 398 

reveals that residue I34 in WT drastically gets rigidified upon binding, whereas I34Y variant does 399 

not. The decreased flexibility of T57 in the unbound form of I34Y accommodate the interactions 400 
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with dimannose, contributing to the entropic compensation. In addition to the binding site residues 401 

of Domain B, the flexibility of the rest of the residues also contribute to the total change in binding 402 

free energies. Therefore, we analyzed the correlation between (i) the sum of total change in 403 

flexibility of the binding site residues, (ii) the binding site residues and the residues exhibiting 404 

highly coupling with the binding pocket, with the experimentally measured binding affinity 405 

change. We observe a strong correlation between change in flexibility and change in affinity, as 406 

expected I34Y exhibiting tighter binding also gets more rigidified upon binding compared to 407 

P51G-m4. Moreover, inclusion of the highly coupled residues in addition to the domain B binding 408 

sites in computing the total sum of DFI scores yields a higher correlation with the experimental 409 

binding affinity change (Fig S7A). On the other hand, the correlation between the flexibility 410 

change of the randomly selected residues and experimental binding affinities yields poor 411 

correlation coefficient (Fig S7B). These results strongly support the role of dynamic allostery in 412 

modulating binding affinity. 413 

 414 

 415 

The rigidification of T57 in I34Y variant is compelling evidence that the distal mutation is 416 

allosterically controlling the binding site dynamics. We further computed the network of 417 

interactions that connects the residue position 34 to 57 and investigated whether distinct pathways 418 

emerge after I34Y mutation. We analyzed the hydrogen bond networks, particularly computed the 419 

possible network of hydrogen bonds creating pathways from 34 to 57 using the sampled snapshots 420 

from the MD trajectories (Fig S8). This analysis presents a unique pathway from 34 to 57 by first 421 

forming a new hydrogen bond between the side chain oxygen of the Tyrosine 34 and the nitrogen 422 

of the Tyrosine 100 in I34Y variant. Furthermore, a second pathway is also found which is sampled 423 
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much more frequently in I34Y variant strengthening the communication between position 34 and 424 

57. Thus, both pathways may contribute to the rigidification of T57. We also analyzed the 425 

conformations from MD clustered with highest percentage based on alpha carbon RMSD for I34Y 426 

and P51G-m4 and compared the hydrogen bond interactions of T57 and its neighboring residues. 427 

The closest neighbors of T57; positions I55, E56, and C58 conserved their hydrogen bond 428 

interactions with their surrounding residues between P51G-m4 and I34Y. On the other hand, T57 429 

makes an additional hydrogen bond interaction in I34Y compared to P51G-m4 (Fig 7C), 430 

suggesting that enhancement in hydrogen bond networking of T57 in I34Y leads to rigidification 431 

of this position in equilibrium dynamics. 432 

 433 

To gain more insight on distal dynamic modulation of binding pocket particularly the 434 

decrease of binding site flexibility through distal coupling, we computationally and experimentally 435 

characterized another residue, A71, belonging to category (1,1) and its mutations: T, S. The 436 

docking scores and DFI profiles of A71 variants show high similarity to position I34 ones. The 437 

variant A71T is predicted as binding enhancing by our docking scheme displaying a similar 438 

binding score as I34Y (A71T predicted binding score: -6.81 XEU), whereas variant A71S is 439 

predicted as analogous to I34L variant (A71S predicted binding score: -6.20 XEU). This position 440 

is next to residue E72, which is within the hydrogen bond pathway (Pathway 2) (Fig S8) identified 441 

previously connecting I34 and binding residue T57. Furthermore, the computed binding free 442 

energies by MM-PBSA is found to be correlating with position I34 results. The A71T variant 443 

shows a binding free energy near I34Y (A71T ΔG: -13.70 kcal/mol with ΔH: -29.33 kcal/mol and 444 

TΔS: -15.63 kcal/mol), and A71S close to I34L (A71S ΔG: -9.98 kcal/mol with ΔH: -29.00 445 

kcal/mol and TΔS: -19.02 kcal/mol). All computational analyses suggested that A71 can modulate 446 
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binding affinity through distal dynamic coupling similar to I34, hence we experimentally 447 

characterized these two variants. 448 

 449 

The experimental binding affinity by ITC correlates with in silico predictions. When the 450 

change in total DFI score upon binding is compared to change in free energy of binding from ITC 451 

experiments (Fig S7), A71T (ΔG: -5.70 kcal/mol with ΔH: -6.00 kcal/mol and TΔS: -0.30) features 452 

both a change in total DFI and ΔG closer to I34Y, and A71S (A71S ΔG: -5.10 kcal/mol with ΔH: 453 

-9.10 kcal/mol and TΔS: -4.00) shows a score identical to I34L. The entropy of A71T shows a 454 

similar change as I34Y experimentally (A71T TΔS: -0.30) indicating that the same compensation 455 

mechanism is utilized by another category (1,1) residue. A71S is closer to I34L (A71S TΔS: -456 

4.00). Similar to I34Y, the melting temperature of A71T is lower than P51G-m4 (Fig S1). Results 457 

of A71 variants further establishes the potential of ICDC and category (1,1) residues in diversely 458 

tuning the binding affinity of Domain B of CV-N through playing enthalpy-entropy compensation 459 

of binding process. 460 

 461 

Our new integrated coevolution and dynamic coupling (ICDC) approach shows that it is 462 

possible to identify and incorporate distal mutations into protein design bringing together 463 

evolutionary inferences with long-range dynamic communications within the 3-D network of 464 

interactions. 465 

 466 
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Methods 467 

 468 

Adaptive BP-Dock 469 

 470 

Adaptive backbone perturbation docking, Adaptive BP-Dock in short, allows us to model 471 

the interaction between CV-N and glycans in silico (Bolia and Ozkan, 2016). Adaptive BP-dock 472 

combines the complex simulation of backbone flexibility of a protein into Rosetta’s ligand docking 473 

application (Davis and Baker, 2009). The common restriction in docking is the implementation of 474 

flexibility of receptor and ligand (Davis et al., 2009; Davis and Baker, 2009; DeLuca et al., 2015; 475 

Meiler and Baker, 2006). Rosetta included the flexibility of ligand in their monte-carlo sampling 476 

approach but lacking full receptor flexibility. This high order challenge is overcome by utilizing 477 

Perturbation Response Scanning (PRS) to compute backbone changes during docking (Atilgan and 478 

Atilgan, 2009; Bolia et al., 2014b, 2014a; Ikeguchi et al., 2005). This procedure also allows the 479 

modeling of transition from an unbound state to a bound state (Bolia and Ozkan, 2016). The 480 

computational cost of sampling is reduced by using a coarse-grained approach employing Elastic 481 

Network Model (ENM) leading to an efficient way of computing backbone perturbations, 482 

mimicking the ligand interacting with receptor (Atilgan et al., 2001, 2010; Atilgan and Atilgan, 483 

2009). 484 

 485 

We employed Adaptive BP-Dock in modeling glycan CV-N interactions starting from an 486 

unbound conformation of CV-N. The perturbed pose of the protein is calculated using PRS. The 487 

structure is then minimized, and the side chains are added at this step. The glycan is docked to the 488 

minimized structure using RosettaLigand algorithm. Rosetta samples bound conformations using 489 
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a knowledge based potential function and calculates bound pose energies. The lowest energy 490 

docked pose is selected and feed back to perturbation step, and the same procedure is followed 491 

iteratively until a convergence is reached. At the end of each iteration the lowest energy docked 492 

pose is taken and binding score is calculated using an empirical scoring function X-score. X-score 493 

energy units (XEUs) has shown to provide higher correlations with experimental results (Wang et 494 

al., 2002). The flow of the algorithm is shown in Fig S9. Adaptive BP-Docks iterative algorithm 495 

ensures the sampling does not get trapped in a local minimum and reaches a global minimum. The 496 

challenge of unbound/bound modeling is solved using the iterative approach as the conformations 497 

are led towards a bound pose with the help of PRS. 498 

 499 

Molecular Dynamics (MD) 500 

 501 

Gromacs simulations are conducted for P51G-m4 CV-N and all the variants in unbound 502 

form, and further for P51G-m4 CV-N, I34 variants I34K, I34L, I34Y, and A71 variants A71S, 503 

A7T in bound form. (Abraham et al., 2015; Spoel et al., 2005). For each simulation the all-atom 504 

system is parametrized with CHARMM36 force field and explicit water model TIP3P. The 505 

solvation box is set to be minimum 16Å from the edge of the protein. The system is neutralized by 506 

potassium ions to sustain electroneutrality and minimized with steepest descent for 10000 steps. 507 

A short-restrained equilibrium is conducted in the constant number of particles, pressure, and 508 

temperature ensemble (NPT) for 5 ns using the Berendsen method at 300K temperature and 1 bar 509 

pressure. NPT production trajectories were performed with Nose-Hoover and Parrinello-Rahman 510 

temperature and pressure coupling methods for 2µs at 300K and 1 bar. For all cases periodic 511 
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boundary conditions and particle-mesh Ewald (PME) with interaction cutoff of 12Å is employed 512 

with Gromacs version 2018.1. 513 

 514 

Dynamic Flexibility Index (DFI) 515 

 516 

DFI is a position specific metric that can measures the resilience of a given position to the 517 

force perturbations in a protein. It calculates the fluctuation response of a residue relative to the 518 

gross fluctuation response of the protein (Kumar et al., 2015b; Larrimore et al., 2017). DFI 519 

calculates residue response due to a perturbation by utilizing covariance matrices. 520 

 521 

 522 

 523 

 524 

 525 

Residue response, ∆R, is calculated using Linear Response Theory (LRT) by applying 526 

force, F, in multiple directions to mimic isotropic fluctuations. Hessian matrix, H, contains second 527 

derivatives of potentials. The inverse of Hessian matrix, H-1, contains residue covariances, and 528 

interpreted as a covariance matrix. The covariance matrices can be gathered from MD simulations, 529 

and also by using Elastic Network Model (ENM) of a protein. In this study, MD covariance 530 

matrices have been utilized to incorporate residue interactions accurately. 531 

 532 
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 Residues with low DFI score (below 0.2) are considered as hinge points. These points are 533 

communication hubs in this 3-D interaction network. Due to high coordination number, the 534 

residues exhibiting low DFI values are crucial as information gateways. While they do not exhibit 535 

high residue fluctuation to the perturbations, they quickly transfer the perturbation information to 536 

other parts, thus they are in control of collective motion of the protein. A change in low DFI 537 

positions (i.e., a mutation) will lead to a transformation in the communication grid and majority of 538 

disease-associated (i.e. function altering mutations) are often observed as hinges (Butler et al., 539 

2015; Gerek et al., 2013; Kumar et al., 2015a). The substitution on these site usually alters catalytic 540 

activity or binding interaction (i.e., glycans) by modulating equilibrium dynamics (Campitelli et 541 

al., 2020a). 542 

 543 

Dynamic Coupling Index (DCI) 544 

 545 

Dynamic Coupling Index (DCI) exploits the same framework of DFI (Campitelli et al., 546 

2020a; Larrimore et al., 2017). DCI utilizes the residue response fluctuation upon random force 547 

perturbation at a specific residue position to investigate residues that exhibit long-range coupling 548 

to each other. In DCI approach, a unit force is applied on functional residues (i.e., binding site 549 

residues) one by one and responses of all other residues are calculated. 550 

 551 

 552 

 553 
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With DCI scheme the residues with high response (high DCI score) indicates high long 554 

range dynamic coupling. Residues with high DCI values with binding sites play a critical role in 555 

intercommunication of a protein with the binding residues. These coupled residues are of utmost 556 

importance in how forces propagate through amino acid chain network on a binding event. Some 557 

of the coupled residues are far from the binding site but still encompass modulation capabilities 558 

over binding pocket. 559 

 560 

Informing dynamics from co-evolution 561 

 562 

Co-evolutionary data paves the way to assessing 3-D structural contacts by utilizing 563 

available sequence information (Hopf et al., 2018; Marks et al., 2012; Morcos et al., 2014). 564 

Sequence information is more abundant compared to resolved protein structures. Exploiting the 565 

sequence information, primary contacts comparable to realistic structural contacts can be 566 

calculated and a contact matrix is formed. The accuracy of these contact maps is proved to be 567 

valuable in protein folding studies (Kryshtafovych et al., 2019; Morcos et al., 2011; Wang et al., 568 

2016). Evolutionary coupling (EC) analysis is used to collect information on how much two 569 

residues in a protein sequence is in close proximity in 3-D structure. EC scores could be calculated 570 

by many different statistical approaches. In this study EC information is gathered by using 571 

RaptorX, EVcouplings, and MISTIC webservers (Hopf et al., 2019; Simonetti et al., 2013; Wang 572 

et al., 2017). While the limitation of these methods emerges from sequence homolog availability 573 

of a protein in multiple sequence alignment (MSA), RaptorX uses a deep neural network 574 

leveraging joint family approach, combining multiple ortholog protein families sharing similar 575 

function and phylogeny, to infer possible contacts. This method is proven to produce high accuracy 576 
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in contact prediction compared to others (Wang et al., 2017). However, for a given MSA 577 

containing enough homolog sequences other methods are also strong in predicting spatial contacts. 578 

EVcouplings approach uses Direct Information (DI) to calculate co-evolutionary couplings. DI 579 

metric is a modified mutual information (MI) score considering consistency between pairwise 580 

probabilities and single amino acid frequencies (de Juan et al., 2013; Morcos et al., 2011). 581 

Nonetheless, MI, a global approach compared to local DI metric, is accurate in capturing true 582 

contacts, while entangling indirect contacts from direct contacts. MISTIC web server has taken 583 

advantage of MI to calculate co-evolutionary couplings (Dunn et al., 2008; Gouveia-Oliveira and 584 

Pedersen, 2007; Simonetti et al., 2013). In their MI method they introduced a correction term to 585 

MI to surpass the low statistics gathered with an MSA containing limited number of sequences. 586 

This approach is very useful in cases where certain homologs are rare and MSA of these homologs 587 

have multiple gaps in their alignments. All of these methods are employed in this study to achieve 588 

high accuracy predictions in finding residue couplings. 589 

 590 

Mutant proteins cloning, expression, and purification 591 

 592 

The genes for mutants (I34Y, I34K, and I34L) were generated by applying mutagenic 593 

primers to P51G-m4-gene sequence and amplifying by PCR. The constructs were subsequently 594 

cloned in pET26B vector between NdeI and XhoI sites and transformed in BL21(DE3) for 595 

expression and purification. The proteins were expressed from a 10 ml starter culture in LB broth 596 

overnight at 37 °C, inoculated into 1 L LB medium. The culture was induced with 1 mM isopropyl 597 

thiogalactoside (IPTG) when OD reached 0.6 and grown for another 6-8 hours. Then, the cells 598 

were harvested by centrifugation, lysed in 6M Guanidine hydrochloride at pH 8.0, and sonicated 599 
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for 10 minutes. The supernatant recovered after centrifugation was used to purify proteins with 600 

GE HisTrap HP column (GE Healthcare Bio-Sciences, Piscataway, NJ) and a Bio-Rad 601 

EconoPump (Bio-Rad, Richmond, CA) under denaturing conditions. In brief, the proteins were 602 

loaded on the column in Gu-HCl buffer, which was buffer exchanged by 8M Urea buffer. The 603 

nonspecific proteins were washed out by 4M urea and 20mM imidazole buffer, pH 8.0 and eluted 604 

with 2M Urea and 200mM imidazole, pH 8.0 buffer before putting it for overnight dialysis against 605 

10 mM Tris pH 8.0 and 100 mM NaCl buffer. The buffer was changed once during the night. The 606 

refolded protein was concentrated and re-purified to isolate the monomeric species by size 607 

exclusion chromatography using Sephadex 75 10/300 column on Agilent’s Infinity 1260 system. 608 

The gel filtered protein was finally used for all the experiments. 609 

 610 

CD spectroscopy and T-melts 611 

 612 

In CV-N family proteins, thermodynamic parameters like free energy of unfolding, 613 

enthalpy and entropy cannot be extracted by thermal denaturation because the transition from 614 

folded to unfolded state is non-reversible (Patsalo et al., 2011), therefore melting temperatures are 615 

used. Far-UV CD spectra were recorded on a Jasco J-815 spectropolarimeter equipped with a 616 

thermostatic cell holder, PTC 424S. Spectra were measured from 250 to 200 nm, using a scanning 617 

speed of 50 nm/min and a data pitch of 1.0 nm at 25 °C. Samples concentration was approximately 618 

15 µM in 10 mM Tris, pH 8.0 and 100 mM NaCl. For thermal denaturation experiments, the 619 

melting profile was monitored at 202 nm from 25 °C to 90 °C. The data points were plotted and 620 

fitted in Origin8.5 software to get apparent Tm. 621 

 622 
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Isothermal titration calorimetry (ITC) 623 

 624 

ITC was performed at the Sanford-Burnham Medical Research Institute Protein Analysis 625 

Facility using ITC200 calorimeter from Microcal (Northampton, MA) at 23 oC. 2.0 µl aliquots of 626 

solution containing between 3mM and 10 mM Man2 were injected into the cell containing between 627 

0.057, and 0.11 mM protein. 19 of 2.0 µl injections were made. The experiments were performed 628 

in 10mM Tris, 100mM NaCl, pH 8.0 buffer. ITC data were analyzed using Origin software 629 

provided by Microcal. 630 

 631 

Chemical denaturation experiments 632 

 633 

Chemical denaturation experiments were done by monitoring the shift in the intrinsic 634 

tryptophan fluorescence on Cary Eclipse instrument (Varian). 10 µM of protein samples were 635 

incubated with increasing concentrations of Guanidine hydrochloride in the range of 0-6 M in 50 636 

mM Tris pH8.0 buffer for 72 hours at 25 °C. The emission spectra for the same were recorded by 637 

keeping the excitation wavelength at 295nm and bandwidth of 1 nm. A ratio of fluorescence at 638 

330 and 360 nm (I330/360) was plotted at respective Gu-HCl concentrations, and the data points 639 

were fit to following sigmoidal equation to obtain Cm. 640 

𝑦 = A2 +
A1 − A2

1 + e(x−x0)/dx
 641 

Where, A1and A2 are the initial and final 330/360 ratios and x0 is the concentration of Gu-HCl, 642 

where y= (A1 +A2) /2, or the point where 50 % of the population is unfolded. It is also denoted as 643 

Cm. 644 
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 The denaturation curve was used to calculate the free energy of the protein in the absence of 645 

denaturant (∆GH2O). Fraction unfolded (fU) was calculated using the following formula: 646 

fU = (yF - yobs)/(yF-yU) 647 

where fU, is the fraction unfolded, yF is the value when there is no denaturant, yobs is the value at 648 

each position and yU is the value for unfolded protein. Since fU+ fF =1, the equilibrium constant, K, 649 

the free energy change can be calculated using 650 

K= fU/ fF 651 

K= fU/ 1 - fF 652 

∆G = -RTlnK 653 

Where R is the gas constant whose value is 1.987 cal/mol.K and T is the temperature of 654 

incubation, which was 298K. The value of ∆G is linear over a limited range of Gu-HCl. The linear 655 

fit over that range was extrapolated to obtain ∆GH2O. 656 

 657 

Crystallization and structure determination 658 

 659 

I34Y was purified as discussed previously and the monomeric gel filtered protein was 660 

concentrated to 8mg/ml. We got the crystals in 2M ammonium sulphate and 5 % (v/v) 2-propanol 661 

after screening it in Index HT screen from Hampton Research. The protein crystals were 662 

reproduced using same condition in hanging drop method. For protein crystals with dimannose, 663 

the crystals were incubated in 1.2 fold molar excess of dimannose. Single needle-like crystals were 664 

picked up and cryo-preserved in 25 % glycerol before freezing them for data collection at 665 

Synchrotron ALS, beamline 8.2.1. Single crystal diffraction was measured at wavelength of 0.999 666 

A with ADSC quantum 315 r detector. The data were evaluated to resolution of 1.25 A. The data 667 
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acquired was indexed using XDS and scaled by the aimless package from CCP4i program suite. 668 

The structural coordinates and phase were determined by molecular replacement using 2RDK PDB 669 

code. The structure of I34Y of CV-N is deposited under PDB accession code 6X7H. The structure 670 

was further refined in Coot. 671 

 672 

Acknowledgements 673 

S.B.O. acknowledges support from the Gordon and Betty Moore Foundations and National 674 

Science Foundation (Award: 1715591 and 1901709). This work was supported in part by NIH 675 

award 1R21CA207832-01. 676 

 677 

Competing interests 678 

No competing interests declared. 679 

 680 

Supplementary Data 681 

 682 

Table S1. DFI, DCI, RaptorX, Evcoupling, and MISTIC metrics are used to identify residues in 

TEM-1 β-lactamase for the four unique categories (Supplementary file 1 table 1). 
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 683 

Table S2. DFI, DCI, RaptorX, Evcoupling, and MISTIC metrics are used to identify residues in 

CV-N for the ICDC categories (Supplementary file 1 table 2). 

 

 684 

Minimum Average Minimum Average

44 0.20 0.94 14 19 0.92 0.87 0.32 V AFILMV 51 0.56 0.35 17 24 0.77 0.77 0.92 L
ACEFGIKLM

NPQRSTV

45 0.10 0.89 15 19 0.93 0.99 0.67 G AGR 121 0.55 0.63 13 17 0.66 0.91 0.91 E
ADEGHKMN

QRSTV

46 0.05 0.86 15 19 0.90 0.88 0.69 Y AFGILMTVY 142 0.35 0.52 13 19 0.83 0.61 0.77 I
ACFHILMNQ

RSTVY

47 0.13 0.85 16 20 0.89 0.84 0.97 I
ACDEFGHIL

MNQRSTVW

Y

148 0.30 0.68 11 16 0.94 0.78 0.95 L
ADFILMQTV

WY

122 0.15 0.92 10 14 0.71 0.92 0.86 L ACFHILMSV 155 0.58 0.51 17 23 0.68 0.91 0.91 M
ACEFGHIKL

MNPQRSTV

W

137 0.13 0.93 10 15 0.93 0.95 0.95 L
AEFGIKLMQ

RSVY
183 0.04 0.50 14 17 0.84 0.97 0.75 P ALPS

179 0.25 0.85 11 13 0.98 0.97 0.93 D ADGNR 199 0.61 0.45 17 23 0.74 0.99 0.67 L ILV

181 0.19 0.90 12 15 0.92 0.99 0.71 T ACILSTV 220 0.49 0.67 10 16 0.95 0.96 0.99 L
ACEFGHKLM

QRSTVWY

182 0.10 0.70 15 18 0.66 0.98 0.65 M ACKMNRSTV 222 0.61 0.56 11 18 0.93 0.99 0.74 R
ACGKLNPQR

SV

187 0.08 0.73 13 17 0.84 0.91 0.99 A
ACEGILMNQ

RSTV
223 0.71 0.51 14 20 0.88 0.88 0.64 S

ADEGHKLPQ

RSTV

190 0.19 0.78 12 16 0.95 0.94 0.86 L
AFHILMNST

VWY
224 0.69 0.59 16 22 0.83 0.68 0.75 A

ADEGHIKLNP

RSTVY

262 0.01 0.94 10 15 0.96 0.64 0.99 V ACGILNSTV 225 0.74 0.45 15 22 0.84 0.76 0.99 L
AFIKLMQST

VW

263 0.01 0.90 11 15 0.94 0.80 0.99 I
ACFGILMST

V
227 0.98 0.67 20 27 0.66 0.62 0.89 A

ADEFGHIKL

MNPQRSTV

83 0.74 0.89 16 22 0.16 0.41 0.44 R
ADEGHKLM

NQRSTVY
35 0.80 0.81 21 27 0.52 0.09 0.53 D

ADEGHIKLM

NPQRSTVW

Y

84 0.77 0.84 17 23 0.33 0.41 0.48 V

ACDEFGHIKL

MNQRSTVW

Y

52 0.75 0.28 21 27 0.44 0.49 0.50 N
ADEFGHIKM

NPQRSTV

93 0.92 0.92 19 24 0.16 0.35 0.51 R
ADEHKLNQR

STVY
197 0.71 0.42 21 26 0.33 0.39 0.49 E

ACDEGHKLN

PQRSTY

94 0.90 0.93 19 23 0.16 0.29 0.40 R

ACDEFGHIKL

MNPQRSTV

W

201 0.79 0.43 20 25 0.33 0.09 0.32 L

ACDEFGHIKL

MNPQRSTV

Y
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Table S3. The predicted binding affinities of domain B and comparison with experimental ITC 

data for wild type, mutDB, and P51G-m4 benchmarking. 

Protein 

Predicted 
Binding 
Score 

(X-score 
energy unit) 

ITC 
dimannose 
Kd (M) 

ITC 
dimannose 

H (kcal/mol) 

ITC 
dimannose 

TS (kcal/mol) 
(T=298K) 

ITC 
dimannose 

G (kcal/mol) 

Wild Type -7.08 16 ± 1 -12.5 ± 0.3 -6.00 ± 0.1 -6.50 ± 0.3 

mutDB -5.97 No-binding No-binding No-binding No-binding 

P51G-m4 -6.62 117 ± 3 -12.3 ± 0.3 -7.00 ± 0.3 -5.30 ± 0.3 
 

 685 

Table S4. Binding free energies, enthalpy and entropy values for wild type CV-N and its variants 

calculated with MM-PBSA approach applied on dimannose bound MD simulations. 

 

 686 
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Fig S1 Fits for thermal melts of the CV-N mutants A) I34 variants, and B) A71 variants.  

 687 

 

Fig S2 A) Chemical denaturation curve showing I330/ I360 ratio as a function of Gu-HCl 

concentration, b) ∆GH2O versus Gu-HCl concentration plot for CV-N mutants. 

 688 
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Fig S3 Binding isotherms of CV-N mutants upon titration with dimannose: A) I34Y and B) 

P51G-m4 C) A71T. 

 689 

 

Fig S4 Comparison of experimentally solved I34Y structure with docked pose from Adaptive 

BP dock algorithm. The RMSD of the ligand is calculated as 0.75 Å. 

 690 
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Fig S5 A) Structural difference of open vs closed conformation based on the hydrogen bond 

distance between residue N42 and N53 B) Hydrogen bond distance between residue N42 and 

N53 from crystal structures of P51G-m4, and P51G-m4-I34Y C) Frequencies of hydrogen bond 

distance between residue N42 and N53 from GROMACS production runs showing I34Y variant 

sampling more open conformation compared to P51G-m4. 
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Fig S6 We sampled 2000 different conformations from MD simulations for P51G-m4 CV-N 

and I34Y mutant and performed dimannose docking to obtained docked poses and then analyzed 

hydrogen bond patterns A) Hydrogen bonds (representing the peak of the distribution on panel 

B) and their distances are shown between dimannose and residue R76 for P51G-m4 (blue) and 

I34Y (orange) B) H-bond distance distribution between dimannose and residue R76. 
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 695 
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Fig S7 A) Change in ΔG of binding (ΔGmut - ΔGwt) is compared with change in total DFI scores 

(∑ 𝐷𝐹𝐼𝑚𝑢𝑡 −  𝐷𝐹𝐼𝑤𝑡) for selected residues. The correlation with experimental binding scores is 

compared with the total sum of DFI values considering only domain B binding site residues first, 

and also summing over the domain B binding sites as well as the residues highly coupled 

(coupling greater than 0.8) to them. The observed high correlations indicates that these residues 

play an important role in the binding modulation upon mutations. The similar trend has also 

been seen in LacI (Campitelli et al., 2021) B) In addition we randomly selected residues in 

domain B to calculate total DFI change over these positions upon mutations. Three different 

randomly selected residue sets all show poor correlation with change in experimental binding 

free energy. 
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Fig S8 Network of hydrogen bond interactions connecting residue location 34 to T57 is 

investigated in I34Y variant and P51G-m4 CV-N. Two Hydrogen bond pathways are found 

connecting residue 34 to 57. Pathway 1 is unique to I34Y. Pathway 2 is also observed in 

P51G-m4 CV-N but sampled much more frequently in I34Y variant. 

 698 
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Fig S9 The flow of Adaptive BP-Dock. Starting from an unbound structure the backbone atoms 

are perturbed using PRS and perturbed pose is fed into minimization. The minimized 

conformation is docked with the glycan using RosettaLigand docking approach. The lowest 

scored docked pose is selected and used for next iteration step until convergence is established. 

For every lowest energy docked pose from an iteration a new binding score is reevaluated using 

X-score empirical scoring function. 
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 701 

Supplementary file 1 702 

 703 

This file contains Supplementary Table 1 & 2 (referenced in the main text). 704 
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Supplementary Table 1 contains the complete TEM-1 DFI, DCI, RaptorX, Evcoupling, and 706 

MISTIC metric data used in this study.  707 

Supplementary Table 2 contains the complete CV-N DFI, DCI, RaptorX, Evcoupling, and 708 

MISTIC metric data used in this study.  709 
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