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Abstract—1In this paper, we present a new method for
estimating the L-gain of systems governed by 2nd order linear
Partial Differential Equations (PDEs) in two spatial variables,
using semidefinite programming. It has previously been shown
that, for any such PDE, an equivalent Partial Integral Equation
(PIE) can be derived. These PIEs are expressed in terms of
Partial Integral (PI) operators mapping states in L2[(2], and
are free of the boundary and continuity constraints appearing
in PDEs. In this paper, we extend the 2D PIE representation
to include input and output signals in R", deriving a bijective
map between solutions of the PDE and the PIE, along with the
necessary formulae to convert between the two representations.
Next, using the algebraic properties of PI operators, we prove
that an upper bound on the L»-gain of PIEs can be verified by
testing feasibility of a Linear PI Inequality (LPI), defined by
a positivity constraint on a PI operator mapping R" X L2[Q].
Finally, we use positive matrices to parameterize a cone of
positive PI operators on R™ x L[], allowing feasibility of the
Lo-gain LPI to be tested using semidefinite programming. We
implement this test in the MATLAB toolbox PIETOOLS, and
demonstrate that this approach allows an upper bound on the
L2-gain of PDEs to be estimated with little conservatism.

I. INTRODUCTION

Physical systems are often modeled using Partial Differ-
ential Equations (PDEs), relating e.g. the temporal evolution
of state variables u to their spatial derivatives. For example,
for given parameters D and A, the 2D PDE defined as

a(t) = D[02u(t) + 62u(t)| + Xu(t) + w(t),

2(t) = /Q

can be used to model the evolution of a population density
u(t, x,y) in some domain (z,y) € 2 [1], where w(t) is some
external forcing, z(t) corresponds to the total population size,
and u(t) is further constrained by boundary conditions (BCs)
Y(z,y) € 09. )
In analysis and control of systems such as (1), a problem
that frequently arises is that of bounding the effect of the
disturbances w on the output z of the model. For example, we
may wish to measure the effect of environmental conditions
w(t) on the growth of the population size z(t). This effect
can be quantified by the Lo-gain, defined as the ratio v :=
\l\‘z;ll‘\iz of the magnitude of the regulated output z over
that of the disturbances w. The Lo-gain provides a worst-
case energy-amplification from input to output signals, and
is often used as a metric for optimilaty in control and
estimation, e.g. designing controllers to minimize the effect
of disturbances on the system output.

u(t, z,y)dzdy, ey
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Unfortunately, the spatial variation of the PDE state com-
plicates efforts to compute the Lo-gain of systems governed
by PDEs. For comparison, consider estimating the Lo-gain
of a system governed by an Ordinary Differential Equation
(ODE), written in state space representation as

u(t) = Au(t) + Bw(t), u(0) =0,
z(t) = Cu(t) + Dw(t). 3)

It can be shown that the Ly-gain of a system of this
form is bounded by a value v > 0, if there exists some
positive definite storage function V(u) > 0 which satisfies
V(u(t)) < ylw®)]? - %Hz(t)”2 along solutions u(t) of the
system. Parameterizing storage functions V(u) = (u, Pu)
using positive matrices P > 0, this problem can be posed as
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which can be efficiently solved using semidefinite program-
ming (SDP) [2].

However, two major issues arise when deriving a similar
test for computing the Lo-gain of e.g. System (1). Firstly, the
PDE state u(t) at each time ¢ > 0 exists in the space L3[Q?] of
square integrable functions on £ C R?, raising the question
of how to parameterize the set of positive storage functions
on this infinite-dimensional space. Secondly, solutions u(t)
to the system must satisfy not only the actual PDE (1),
but also the BCs (2) — raising the challenge of enforcing
the condition V (u(t)) < ~|lw(t)|]? — ~[lz(#)[* only along
solutions u(t) satisfying both constraints.

To circumvent these issues associated with parameteriz-
ing storage functions for PDEs, a common approach is to
approximate the PDE by a finite dimensional system — an
ODE - using e.g. a basis function expansion [3]. However,
properties such as Lo-gain bounds estimated for the resulting
ODE may not accurately reflect those of the original system
— necessitating a posteriori error bounding methods to obtain
provably valid gains. Moreover, a large number of ODE state
variables may be required to obtain accurate results, growing
exponentially with the number of spatial variables in the
PDE. As a result, although ODE-based input-output analysis
can be efficiently performed for certain 2D systems [4], [5],
it is computationally intractable for more general 2D PDEs.

Other methods for testing input-output properties of 2D
PDEs without relying on finite-dimensional approximations
are generally limited in their application. For example, in [6],
[7]1, LMIs for H, filtering and control of diffusive systems
are derived, using a storage function of the form V(u) =
[ul|Z, + (Vu, PVu),_, parameterized by a positive matrix
P > 0. Similarly, in [8], polynomial constraints N (z,y) < 0

the Linear Matrix Inequality (LMI)



are proposed for testing input-output properties of wall-
bounded shear flows, also parameterizing a storage function
V(u) = 1 (u,Qu) 1, by a positive matrix @) > 0. However,
the Lo-gain test obtained in each study is valid only for a par-
ticular type of PDE with a particular set of BCs. Moreover,
by parameterizing storage functions merely by matrices, the
proposed methods introduce significant conservatism.

As an alternative to the aforementioned approaches, in this
paper, we propose an SDP-based method for computing an
upper bound on the Ly-gain for a general class of 2nd order,
linear, 2D PDEs. Specifically, we focus on PDEs of the form,

32,0 Ao + Butn), U0 =9

) = Jo (322 2 Cis0i05u(t) ) dudy + Du(t), ()

where X C L[] is defined by a set of well-posed (non-
periodic) BCs. To derive an Lo-gain test for systems of
this form, we adopt the approach presented in [9], wherein
an alternative representation of 1D PDEs as Partial Integral
Equations (PIEs) is used. In particular, the authors prove that
for any linear, 1D PDE, with sufficiently well-posed BCs
u(t) € X, there exists an equivalent PIE representation,

Tv(t) = Av(t) + Bw(t), v(0) = 0,
z(t) = Cv(t) + Dw(t), )

such that a function v € Ly[Q] is a solution to the PIE
if and only if 7v € X is a solution to the PDE. In this
representation, the operators {7 ,.A, B,C, D} are all Partial
Integral (PI) operators: a class of operators that form a *-
algebra, with analytic expressions for addition, multiplica-
tion, etc.. Quadratic storage functions V(v) = (Tv,PTv)
can then be parameterized by PI operators P > 0, offering
substantially more freedom than parameterizing by matrices.
Moreover, the fundamental state v € L»[Q)] in the PIE
representation is free of the BCs imposed upon the the
PDE state u € X, allowing negativity conditions on the
derivative V (v(t)) to be readily enforced. In this manner,
the authors are able to derive a Linear PI Inequality (LPI),
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bound + on the Ls-gain of the PIE. Parameterizing a cone
of positive PI operators by positive matrices, the authors
then pose this LPI as an SDP, allowing problems of Ly-gain
analysis of 1D PDEs to be efficiently solved [10]-[12].
However, despite a PIE framework having recently been
introduced for 2D PDEs [13], deriving an SDP test for
bounding the Lo-gain of general systems of the form (4)
still offers several challenges. In particular, although a map
T : Ly[Q] — X from the fundamental state space to the
PDE domain has been derived for atonomous systems, this
map may not be valid when disturbances w are included —
presenting the problem of incorporating these disturbances in
the PIE to PDE state conversion. In addition, a framework
for converting 2D PDEs with inputs and outputs to PIEs
is not yet available, still requiring formulae for computing
the appropriate operators {B,C, D} to be derived. Finally,

u(t) =

} < 0, for verifying an upper

posing the LPI Q(y) < 0 for testing the Lo-gain as an
SDP requires parameterizing PI operators on a coupled space
R™ xR™ x Ly3[€], raising the challenge of performing such
a parameterization for PI operators in 2D.

In the remainder of this paper, we carefully detail how
we have overcome each of these challenges in deriving and
implementing an SDP test for Lo-gain analysis of 2D PDEs.
In particular, in Section III, we first present an LPI for testing
the Lo-gain of 2D PIEs, proving that this gain is bounded by
v if there exists some positive definite 2D-PI operator P :
L5? — L5? such that an associated operator Q(y, P) : R™ x
L5? — R™ x L3? is negative semidefinite. In Section IV, we
then show that a PIE representation can be derived for any
linear, 2nd order 2D PDE, defining operators 7o : Ly —
Lyv and T; : R™ — L5~ such that for a disturbance w €
R™», a function v € L3 solves the PIE if and only if Tov+
Tiw solves the PDE. Finally, in Section V, we parameterize
a cone of positive PI operators IT; : R™ x L? — R™ x
L3? by positive matrices, allowing feasibility of the Lo-gain
LPI to be posed as an SDP. This result is formulated in
Section VI, and numerical tests are presented in Section VII.

II. PRELIMINARIES
A. Notation

For a given domain 2 C R% let L}[Q] denote the set
of R™-valued square-integrable functions on {2, where we
omit the domain when clear from context. Define intervals
Q% := [a,b] and Q¢ := [c,d] for spatial variables z,y, and
let Q%4 := Qb x Q9 be the corresponding 2D domain. For n=
{no,n1} € N2, define Z][Q04]:= R"0 x LI [Q0] x Ly [Q4],
and for n = {ng,n1,n2} € N3, define Z"[QY%] := R™ x
L8] x Ly [Q4] x L5?[Qb4], where we also omit the
domain when clear from context. For given n € N® and any

uQ vo
u= ["“} eZ"and v = €Z", define the inner product

Uy
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<u; V>zn = <u07 UO) + <u:ca Va:>L2 + <uy7 Vy>L2 +<u27 V2>L2 ,

where (., .) denotes the Euclidean inner product, and (.,.)
the standard inner product on L,. For any a € N2, we
denote ||alc := max{ay,as}. Then, we define W} [Qb]
as a Sobolev subspace of L[Q%], where

Wbl ={v | 921 052v e LE %Y, VYo €N :lal|o < k}.

As for Ly, we occasionally omit the domain when clear from
context. For v € W*[Q%], we use the norm
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For v € W [Q2%4], we denote the Dirac delta operators
[AZV](Y) == v(a,y) [Agv](z) = v(z,¢).

For a function N € Ly*™[Q%4], and any v € LT[Q%], we
define the multiplier operator M and integral operator [ as

(M[N]v)(z,y) := v (z,y),

( )//ny (o, ).

and



B. Algebras of PI Operators on 2D

Partial integral (PI) operators are bounded, linear opera-
tors, parameterized by square integrable functions. In 2D, we
distinguish PI operators defined by parameters in the spaces
Noi1, Nop and Npi12, mapping different function spaces
as presented in Table I. We outline the definition of the
associated PI operators in this subsection, referring to [13]
for more details.

Definition 1 (011-PI Operators, 11y11): For any
m := {mg,m1} € N? and n := {ng,n1} € N?, let
]Rno Xmo L;LQ Xmq [QZ] L;O Xmq [Qg]
ori"[Qae] = | L5000 ,
Ly Mo [Qf]

NTB ™ Q] Ly [
LymQa] N e
where

Tp " (0] = L3 €0] x L3 [0 x Q] x Ly € x Q).

Boo Bo1 Bo2

Then, for given parameters B := Bio Bi1 Bi2 | € o
20 P21 D22
we define the associated 011-PI operator P[B] : Z™ — Z"
as
Boo  [au[Bo1]  [qa[Bo2]
P[B]:= [M[Biw] P[Bu] [qu[Bio]
M([Bzo] o [Bai]  P|Bas]

where for N := {Ny, N1, Na} €
L7[Q0], we define

(PINIv)(x) =

1XMQb] and any v €

o(z)v(z) + ZN1(x,0)v(0)d0
o
+/ Na(z,0)v(0)do.

We denote the set of 011-PI operators as IIj;]", so that
P e II5;" if and only if P = P[B] for some B € Nyi™.

Definition 2 (2D-PI Operators, 1llsp): For any m,n € N,
let
op " [Qae] =
LM Lol LEX k<o
Lymafion Lpemioficabl Ly ol . ob
Lyiabical] Lpoalicall] Lieoflof

. Noo No1 No2 nXm
Then, for given parameters N := | N1o N1 N2 | € NJJ™,
Nzg N21 Na2

we define the associated 2D-PI operator P[N] : LT [Q%4] —
L3[Q%] such that, for any v € L'[Q59),

(PINIv)(2,y) := Noo(z, y)v(z,y)

/ Nio(z,y,0)v(0,y d0+/ Noo(z,y,0)v(0,y)do
/ Noi(z,y,v (m,y)dy+/ Noz(z,y,v)v(z,v)dv
- y
+/ / Nii(z,y,0,v)v(0,v)dvdo
a (& b Y
+/ / Nai(z,y,0,v)v(0,v)dvdo
x c . d
—|—/ / Niz(z,y,0,v)v(0,v)dvdo
e
+/ / Nao(z,y,0,v)v(0,v)dvdl.
a Jy

We denote the set of 2D-PI operators as II5;™, so that
P € Iy 5™ if and only if P = P[N] for some N € N 3™,

PI operator parameter Function spaces associated to PI
space N operator P[N], for N € N
Nzp™  mméeN Lgll — L3105
NP mmene Zpiekl] -zl
N3plonn meN, meN? | Zp[0gd] —  L3[Qg
Notitop n€N?, meN || L[l —  zj[0p
Noriz  mmen? zn[gll - 205
TABLE I

FUNCTION SPACES ASSOCIATED TO PI OPERATOR PARAMETER SPACES
INTRODUCED IN SUBSECTION II-B

Definition 3 (0112-PI Operators, 1lg112): For any
m := {mg,m1,mz} € N3 and n := {ng,n1,na} € N3, let

an - (1)11X1m [de] N511X1122D [de]
R L e (R

where @i := {ng,n;}, m:= {mgy, m }, and

L52xmo [QZ%] L3o*™2 Qb
N;Dzzn(l)ll Nn2 o [Q ’ N“1><17Z22D NlnDlxm2 [thl(i]
N{%ml[ﬂ N2 [0d]
with
0k = L5 X L [ Q] x Ly 0 < )

Then, for given parameters G = [g; (Jj\}} € NMyyi3, where

Cos C30

— | X ma = | c
C [0;2}6 011<-2D and, Cy: [C;]E

no Xm
2D<+-011>

we define the associated 0112-PI operator P[G] : Z™ — Z°

N i = [EI8, 2],

P[C2]  P[N]
[g?} N Lsp and E =

nXm 2
apeo11 With n,m € N° we define

where for D =

PIE]= [M[Eo] P[EA] P[EQ]] , P[D]= [fgg [1] o P[D1]

we define

where for R := {Ry, R1, R2} € NT5™[Q5),

(PIRIV)(,3) = Ro(z, y)v(z, v) / Ri(z,y,0)v (0, y)db

/ Ry (z,y,0)v(0,y)do,

for arbitrary v € LT[Q%4]. We denote the set of 0112-
PI operators as II);75, so that P € II};75 if and only if

P = P[G] for some G € NjJi5.

C. Properties of PI Operators

In [13], it was shown that the set of 0112-PI operators
115715 forms a *-algebra, with several useful properties. We
summarize a few of these properties below, referring to [13]
for more details and a proof of each result.

1) The sum of 0112-PI operators is a 0112-PI operator:
Proposition 4: For any Q,R € I} with n,m € N3,
there exists a unique P € II};75 such that P = Q + R.
We denote the associated parameter map as £+ AV

5 c 0112 X
nXm nXm
o112 — N1, so that, for any @, R €

P[P] = P[Q] + P[R],

112’

if and only if P = L,(Q,R).



2) The product of 0112-PI operators is a 0112-PI
operator:

Proposition 5: For any Q € IIjF, and R € II)7]5 with
n,p,m € N3, there exists a unique P € II};[5 such that
P =0OR.

We denote the associated parameter map as Ly : j\/};’ﬁg ><

s — NG5, so that, for any Q € Nypi5 and R € N§j15,

P[P] =P[QIP[R], ifandonlyif P =Ly(Q,R).

3) The inverse of a suitable 011-PI operator is a 011-PI
operator:

Proposition 6: For any R € II"*" with n := {ng, n1, 0},
satisfying the conditions of Lemma 5 in [13], there exists a
unique R € TIX! such that RR = RR = I.

We denote the associated parameter map as Liyy : Oﬁ“ —

011", so that, for any R € NJ{" as in Lemma 5 in [13],

PIRP[R] = I,  if and only if R = Liy(R).
4) The composition of a differential operator with a
suitable 2D-PI operator is a 2D-PI operator:

We refer to Lemmas 6 and 7 in [13] for more information.

5) The adjoint of a 2D-PI operator is a 2D-PI operator:

Here we define the adjoint of a PI operator P € II}}}3, as
the unique operator P* € II{y}5 that satisfies

<V7Pu>Z" = <7D*V,11>Zm

for any u € Z™ and v € Z", where n,m € N3,

6) A cone of positive semidefinite 2D-PI operators can
be parameterized by positive semidefinite matrices:

Here we say that an operator P € II}){, is positive
semidefinite or (strictly) positive definite, denoted as P > 0
and P > 0, if for any v € Z" with v # 0 and some ¢ > 0,

(V,Pv), >0, orrespectively, (Pv,V)y > €(V,V),..

Using Properties II-C.1 through II-C.4, we will derive
an equivalent PIE representation of linear 2D PDEs with
inputs and outputs in Section IV. For this, we note that
Property 1I-C.4 holds for PI operators mapping Z{"0:0"2}
as well, as shown in Appx. I-A of the extended version of
this paper [14]. In Section V, we prove that Properties II-C.5
and II-C.6 also hold for PI operators on z{ro,0mz} allowing
us to numerically test feasibility of the Lo-gain LPI presented
in Section III using semidefinite programming.

D. Partial Integral Equations

A Partial Integral Equation (PIE) is a linear differential
equation, parameterized by PI operators, describing the evo-
lution of a fundamental state v(t) € L2[Q%]. For any linear,
2nd order, autonomous, 2D PDE, there exists an equivalent
PIE representation, as well as a differential operator © and
PI operator 7 such that any solution v(¢) to the PIE satisfies
v(t) = Dv(t), where v(t) = Tv(t) is a solution to the PDE.

Example 7: Consider a 2D advection PDE on (x,y) €
[0,1] x [0, 1], with Dirichlet boundary conditions,

é(t)zc[axv(t)myv(t)], 0=9(t,0,y)=v(t,2,0). (6)

Defining the fundamental state v(t) = 9,0,V(t) € Lo, this
system may be equivalently represented by the PIE

// (t,0,v) dudﬁ—c{/ v(t,x V)du—|—/va(t,9,y)al9}7

where v(t) solves this PIE if and only if v(t) :=
JoJv(t,0,v)dvdf solves the PDE (6). Defining R :=
[”310 € Nop and Q : [Q(io Qénﬂ € MNap, where
Rll(l’ y,9 V) =1 and QOl(xayvy) = Qlo(ajayve) = G
we may equivalently express the PIE as

Tv(t) = Av(t),

where T := P[R] € TI3 ! and A := P[Q] € TI, 5.
Consider now including a disturbance w(t) € R and
regulated output z(¢) € R in the PDE, as

v(t) = c[axv(t) + ayv(t)} + kw(t),

11
z(t) = / / V(t,x,y)dydx. (7)
o Jo

Then, assuming the same boundary conditions, the system
may be equivalently represented by the PIE

Tv(t) = Av(t) + kw(t) = Av(t) + Bw(t),
0= (g meT)ve) =cvio, ®
QL1
where 7,4 € I = H{OOZI}X{OO M} are as before, and
we define B := M[k] € Hé?l(;l}x{l 00 and

Ci= [l -o)(i-y)  en” ",
00

Then, for any input w, the pair (v, z) is a solution to the
PIE (8) if and only if (7, 2) is a solution to the PDE (7).
III. AN LPI FOR Lo-GAIN ANALYSIS

In this section, we present the main technical result of this
paper. In particular, we provide an LPI for verifying an upper
bound ~ on the Ly gain of a PIE of the form

Tv(t) = Av(t) + Bw(t), v(0) = 0,
2(t) = Cv(t) + Dw(t), )
where w(t) € R™, 2(t) € R", and v(t) € Li*[Qb]

represent respectively the value of the input, output, and
(fundamental) state at any time ¢ > 0, and where

7-’ Ac H({)(l)l()znv}x{o ,0 77,1,}
Cc Hg{)?fgo O}><{(JA,O,nv}7

0,0,m4 } X {nw,0,0

B € {00 {na0.0}
{n:,0,0}x{n,0,0}

D el :

Lemma 8: Let v > 0, and suppose there exists a 2D-PI
operator P € 115%™ such that P = P* > ( and

—~I D C
() —I  BPT <0 (10)
() O () +TPA



Then, for any w € Ly [0, 00), if (w, z) satisfies the PIE (9),
then z € L5*[0,00) and ||z||z, < ¥[|w]| L,-

Proof: Define a storage function V' : Lj* — R as
V(v) := (Tv,PTv),,. Since P > 0, we have V(v) >0
for any v # 0. In addition, for any w € L3[0,00), the
derivative V(v (t)) for v(t) satisfying PIE (9) is given by

V(v(t)=(Tv(t), PTV(t)), + (T (1), PTv(t)),,
= (Tv(t), P[Av(t) + Bu(t)]),
+ <[Av + Bw(t )},73'Tv(t)>L2

w(t) 0 B*PT w(t)
<[v(t)} [T*PB A*PTJrT*PAH (t )] >Znl
where n; := {n,,0,n,} so that Z" = R™ x L3*[Q%].
Define ny := {n, + ny,0,n,}. Then, for any w(t) € R™,
and for any v(t) € Ly*[Q%] and z(t) € R"* satisfying the
PIE (9) with input w, we have

I 1 D c 2
< wt)|,| D I B*PT w(t) >
v(t)] LC" T*PB APT+T*PA| |v(t)

[ {w(?) 0 B*PT w(t)
B < v(t)} ’ [T*PB A*PT + T*PA] [v t)]
— llw(t)|? +~ [< (1),C*2(t)) , + (w(t),D
+ 97 {20, eV (D) g, + (20
=V (v(t)) = yllw(®)|? +f1||z<t>|\2
Invoking Eqn. (10), it follows that
V(v(t) < Allw@®)|? ==t

Integrating both sides of this inequality from 0 up to oo,
noting that V(v(0)) = V(0) = 0, we find

. 2 —1 2
0.< lim V(v(t) <Allwld, —7 ],

“2(1)]

and therefore ||z||, < v|lwlL,- |

Lemma 8 proves that, if the LPI (10) is feasible for some
~ > 0, then the Lo-gain \‘||§)‘||\LLZ of the 2D PIE (9) is bounded
by . In Section IV, we will show that any well-posed, linear,
2nd order 2D PDE can be equivalently represented as a PIE
of the form (9) — thus allowing the Lo-gain to be tested as
an LPL In Section V, we then show that feasibility of an LPI
can be tested as an LMI, allowing the Ly-gain of 2D PDEs
to be verified using semidefinite programming — a result we
show in Section VI.

IV. A PIE REPRESENTATION OF 2D PARTIAL
DIFFERENTIAL INPUT-OUTPUT SYSTEMS

Having shown that the Ly-gain of a 2D PIE can be
tested by solving an LPI, we now show that equivalent PIE
representations can be derived for systems belonging to a
large class of 2D PDEs. In particular, in Subsection IV-
A, we present a standardized format for representing linear,
2nd order, 2D PDEs with finite-dimensional input and output
signals. In Subsection IV-B, we then derive a bijective map
between the PDE state space X, C L2[Q%¢], constrained

Du(t)] =7 =(0)

by boundary and continuity conditions, and the fundamental
state space L[Q%9]. Finally, in Subsection IV-C, we prove
that for any solution to the PDE, an equivalent solution
exists to an associated PIE, presenting the PI operators
{70, T1,A, B,C, D} defining this representation.

A. A Standardized PDE Format in 2D
We consider a coupled linear PDE of the form
v(t) = Av(t) + Buw(t),
2(t) = Cv(t) + Dw(t), (11)
where at any time ¢ > 0, w(t) € R™, z(t) € R"=, and

V(t) € Xyt), where X4 € LE°T"F2[Q04] includes the
boundary conditions and continuity constraints, defined as

Vo L3°
X ::{v: lw}elW{“]
Va 14%

and where the operators {A, B,C,D, &y, &} are all linear.
In particular, the PDE dynamics are defined by the operators

EoV + Ew = o}, (12)

A= Z ] 8299 M[S;;],  B:=M[B],
4,7=0
2

C [ [Cij] 9,0) M[S; 3],  D:=M[D], (13)
i,jzoﬂg‘i

parameterized by matrix-valued functions

Ay B) B mle p o
Cij D ’

Nz XM 1ybd N XNy
LZ [Qac} R
where n, = ng +ny +np and m;; :=
where the matrix

; d
Zk:max{i,j} N, an

In0+n1+n2v if i = Jj=0,

Sij = O(n1+n2)><no I7L1+n2i| , if max{i,j} =1,
0n2><no 0n2><711 In2:| ? lf ma‘X{i’j} = 2’
extracts all elements u(t) = S, ;V(t) € WQZ;{”}[QZ‘Q of

the state v(¢) which are differentiable up to at least order
i in x and j in y, for any ¢ > 0. In addition, the state
v(t) at each time is constrained by the boundary conditions
Eov(t) + E1w(t) = 0, where

go = P[EO] Abf7 and & = M[El}a (14)

for a matrix-valued function E; € Z'{hx{"“”o}[ﬂg‘i] and
parameters Eq € N3 ™ [Q49], where ny, := {ny + 4ng, ny +
2n9} corresponds to the number of boundary conditions, and
n¢ := {4ny + 16n2,2n; + 4ny}, and where the operator
Ape 0 L5° x W™ x W3'? — Z" extracts all the possible
boundary values for the state components v; and Vo, as
limited by differentiability. In particular,

Al R4n1+16n2
Ape= Ao | 1 L5 x Wi x W2 — | Ly H42 Q8] | (15)
As L™+ [og)



A2,
0 A 0 0 R0 0,
00 A 00 A20;
1 2
A=| 00 g |, [A2]2] 00 R20:0 |
As 0 Asdy 0
00 A9, 2
00 Aidy 00  Agd?
‘ 00 A30,0;
and where we use the Dirac operators Ay, defined as
A%A;
AYAS AS Ag
Al B a d AQ - |: y:| ’ AS - |: a::| .
A%Ag ’ AZ Ab
AJAY

Definition 9 (Solution to the PDE): For a given input sig-
nal w and given initial conditions vi € X, ), we
say that (v,z) is a solution to the PDE defined by
{Aij,B,Cij,D,EQ,E]_} if v is Frechét differentiable,
v(0) = vy, and for all £ > 0, v(t) € Xy(), and (v(t), 2(t))
satisfies Eqn. (11) with the operators {A,B,C, D, &y, &1}
defined as in (13) and (14).

B. A Bijection Between the Fundamental and PDE State
In the PDE (11) defined by {Aij)B)Cij7 D,EQ,El}, the
state V(1) € X, at each time ¢ > 0 is constrained
to satisfy continuity constraints and boundary conditions,
defined by Ej and E;. For any such v € X, we define an
associated fundamental state v € Lj*[Q%%], free of boundary
and continuity constraints, using a differential operator @:

Vo Ino Vo
Vi=|Vvi| = 8m8y vi| = Dv.
Vo 3385 \72

@D
In this subsection, we show that if the parameters Ey, F
define well-posed boundary conditions, then there exist as-
sociated PI operators 7, 71 such that

v=ToDv+Tiw, and v=D2D[Tov+ Tiwl,

for any v € X, and v € Ls. To prove this result, we recall
the following lemma from [13], expressing the PDE state in

terms of the fundamental state and a set of boundary values.
Lemma 10: Let v € Ly° x W™ x W3 and define Ay :
LSO ><I/V1n1 ><VV2n2 — Zl;b with n, = {n1 +4ngy, ny +2n2} as

F 0 AZAS 0 -
0 0 AZAS
0 0 ASAE 9,
0 0 INIXT'
0 0 AZAL 9,0,
Aei= | 0 A5, 0O . (16)
0 0 AS 02
00 AS 920,
0 A8, 0
0 0 Ny
L0 0 AL 9,02 |
Then, if parameters Ky € NypX"t , and Ky € NJ3™" are

as defined in Lemma 10 in [13], then
v = P[K]ApV + P[Ks]v,
Proof: A proof can be found in [13]. [ ]

where v = ©Dv.

Corollary 11: Let v € Ly°xW"' xW3'? and let Ay be as
defined in Eqn. (15). Then, if parameters H; € Nji;™ and
Hs € NS{TJ_LI’QD with ny = {4n1 + 16n9,2n1 + 4712} are as

defined in Corollary 11 in [13], then
Aprv = P[Hl]AbCV + P[HQ]V,

where v = DV, and where Ay, is as defined in Eqn. (16).
Using these results, we can express v € X,, directly in
terms of DV € Ly* and the input signal w, as shown in the
following theorem. For a full proof of this result, we refer
to Appx. II of the arXiv version of this paper [14].
Theorem 12: Let Ey = [5‘33 £ 5} € NDX™ and By =
P E20 E21 E22

b | € 2 with By o= (B, B B € N

for j € {1,2} be given, and such that the operator
P[Eo]P[H1] is invertible, where H; € NgI™ is
as in Cor. 11. Let w be a given input signal, with
associated set X,, as defined in Eqns. (12) and (14).
Then, there exist parameters T, € o " and
Ty € Ly Q4] such that if To = P[Tp] € 15 ™ and
Ti =M[T1] € Hétl)’l(;’"”}x{"w’o’o}, then for any v € X,, and
v EeLD,

Vv="TyDv+Tiw  and Vz@[%erle},

where @ =

To € Ny "™ and Ty € Ly *™ Q0] as in Eqn. (17) in the
outline of the proof of this theorem.

. In particular, we may define

Outline of proof: The result follows from application of
Lemma 10 and Corollary 11. In particular, by Cor. 11, there
exist parameters H; € N{i5° and Hy € Nji75" such that

Apsv = P[Hl]Abc{’ + P[HQ]V.
Substituting this expression into that for the boundary con-
ditions, 0 = P[Ey|ApeV + P[E1|w, it follows that

0= P[Eo]P[Hl]AbC\_f + P[Eo]P[Hg]V + P[El]w

= ,P[Rl]AbC\_’ + P[RQ]V + ”P[El]w7
where we define R; = L, (Ey, H;) for i € {1,2}. Since (by
assumption) P[R;] = P[Eo|P[H;] is invertible, there exist
parameters Ry = Liw(R1) € NG ™ such that P[R,] =
P[R]™1, and we can express AV in terms of v and w as
ApeV = —P[R1]P[Ra]v — P[R1]P[E1|w
= P[Go]v + P[Gﬂw,
where Go = —Lx(Rh RQ) and G1 = —l:x (Rl, El).

Finally, by Lemma 10, there exist parameters K € NJ35™
and Ky € Njy5™ such that

V= P[Kl]Abc‘_’ + P[KQ]V,
and thus, imposing the relation Ay.v = P[Go]v + P[G1]w,
v = (P[K2] + P[K1]P[Go])v + PIK1|P[G]w
= P[Tolv + P[T1w = Tov + Thw,
where

To = L4 (K2, L4 (K1,Go)), Th=Lx(K,G1). (17



C. PDE to PIE Conversion

Having constructed the PI operators 7g,7; mapping
fundamental states v € L5°[Q%] to PDE states v € X,
we can now define an equivalent PIE representation of
the standardized PDE. In particular, for given PI operators
{To, T1,A, B,C, D}, we define the associated PIE as

Tiw(t) + Tov(t) = Av(t) + Bw(t), v(t)e Ly,
z(t) = Cv(t) + Dw(t). (18)

Definition 13 (Solution to the PIE): For a given input
signal w and given initial conditions v; € L3, we say that
(v, z) is a solution to the PIE defined by {7¢, 71, 4, B,C, D}
if v is Frechét differentiable, v(0) = vy, and for all ¢ > 0,
(v(t),2(t)) satisfies Eqn. (18).

The following lemma shows that for any PDE of the
form (11) for which P[E,]|P[H:] in Theorem. 12 is invert-
ible, there exists an equivalent PIE of the form (18).

Lemma 14: Suppose Ty, 71 are as defined in Thm. 12. Let

A:=AoTy e TIpxs, B:=B+AoT; € Ip5y,

C:=CoToecllyyyy, D:=D+CoTy €llfi}s",
where the operators {A,B,C,D} are parameterized by
{Ai;, B,Cj;, D}, as in Eqn. (13), and where we define n, :=
{0,0,n4}, ny := {ny, 0,0} and n, := {n,,0,0}. Then, for
a given input w and initial values vi € L3, (v, z) solves
the PIE (18) defined by {70, 71, A, B,C, D} with initial con-
ditions vy if and only if (v, z) with v(¢) = Tov(t) + Trw(t)
solves the PDE (11) defined by {A,;, B,C;;, D, Eo, E1}
with initial conditions vy := Tovy + Trw(0).

Proof: The result follows directly by substituting the
relation v = 7yv + 7w into the PDE (11). A full proof is
provided in the extended version of this paper [14]. [ ]

V. PARAMETERIZING POSITIVE PI OPERATORS

Using the results from Sections III and IV, a bound on the
Ly-gain of a large class of 2D PDEs can be verified using the
LPI (10). In this section, we show how feasibility of such
LPIs can be tested using LMIs, by parameterizing a cone
of positive PI operators P € Hé?fgo +n2}><{no,0,n2} mapping
z{m0.0m2} by positive matrices. Since positive PI operators
must be self-adjoint, we first show that the adjoint of any PI
operator acting on Z{"%"2} i also a PI operator.

Lemma 15: Let G = [ES] € Ngi9* for some

D N
n, = {mg,0,m2} and n, = {ng,0,n2}, and with N =
Noo No1 No2 no Xmo A
€ NJ2*™2. Define G :=

T 5T
Nig N11 Ni2 [B b ] S
N2g Na1 N2
. ~ Noo No1 No2

with N = | 819 811 812 | €

cT N
. Nog Nop N
[ANOO(JJ,?J ]\%01 x,y,V )

Ny XNy
0112

572" where

]%2(1’, y,v)
]Ylo(%y»@) N11($,y,9,v)
Noo(x,y,0)  Nai(w,y,0,v)

[ Noo(z,y)  Noz(z,v,y)

]Y12(‘T7y,077/)
Naz(z,y,6,v)
Vi Vi Ngi (2, v,y)
N20(9:y7$) N22(07V7I7y) N21(07V7:r7y)
NIIE)(OJJ’:E) ng(97l/7$7y) NlTl(07V7m7y)

Then for any u € Z™[Q%] and v € Z™[Q29),
(v, PIGI), = (PIGIv,u)
Proof: A proof of this result can l%e found in Ap-
pendix I-B of the arXiv version of this paper [14]. [ ]

We now propose a parameterization of a cone of positive
PI operators on Z{™0:0"2} A proof of this result can be
found in Appx. III of the arXiv version of this paper [14].

Proposition 16: For any Z € L3*"?[Q%4 x 0%] and scalar
function g € Lo[Q%] satisfying g(z,y) > 0 for any (z,y) €
Qb let Lp : ROGFN0)xOatn0) o \xh pe as defined
in Eqn. (51) in Appx. III of [14], where n, := {ng, 0, n2}.
Then, for any P > 0, if B = Lp(P), then P := P[B] €
II3y75" satisfies P* = P and (u, Pu),,, > 0 forany u € Z™.

Parameterizing positive PI operators as in Prop. 16, we
use a monomial basis Z; of degree at most d to define
Z, yielding polynomial paramaters B = Lp(P) for any
(positive) matrix P. For the scalar function g(z,y) > 0, we
include the candidates

go(z,y)=1, g1(z,y)=(r—a)(b—z)(y—c)(d—y), (19)
which are both nonnegative on the domain 2% :=[a, b]x]c, d].
We denote the resulting set of operators as =4, so that

Ea —{ZP ’B = Lpi(P;) for some P; > 0,

with Z = Zg and g;(x,y) as in (19)}
where now P € Z4 is an LMI constraint implying P > 0.
Computational complexity: Since the number of mono-
mials of degree at most d in 2 variables is of the order
O(d?), the size of the matrix P € S79%7 parameterizing
a 2D-PI operator P[P] € Z4 will be ¢ = O(nd?), for
P[P] € II5™. As such, the number of decision variables in
the LMI P > 0 will scale with ¢> = O(n2?d*) — a substantial
increase compared to the O(n?d?) scaling for 1D PDEs, and
the O(n?) scaling for ODEs. Nevertheless, accurate Lo-gain
bounds for 2D PDEs can already be verified with d = 1, as
we illustrate in Section VIL

VI. AN LMI FOR L2-GAIN ANALYSIS OF 2D PDES

Combining the results from the previous sections, we
finally construct an LMI test for verifying an upper bound
on the Ly-gain of a 2D PDE.

Theorem 17: Let parameters {A;;, B,C;;, D, Ey, E1}
with 4 = 0 define a PDE of the form (11)
as in Subsection IV-A. Let associated operators

{T0,T1,A,B,C,D} be as defined in Lemma 14 in
Subsection IV-C. Finally, let v > 0, and suppose there exists
a PI operator P € II37,*"™ such that P — el € Z4, and
—Q € £, for some dj,dz € N and € > 0, where

—-—~I D C
Q=) -1 BPL |. (20)
GO ()" ()" +TPA

Then, for any w € L3*[0,00), if (w(t),z(t)) satisfies the
PDE (11) for all ¢t > 0, then z € L+ [0, 00) and |‘|'Z"'|L2 <.

Proof:  Let the parameters {A;;, B,C;;, D, EO,El}
and operators {7, 71, A, B,C, D} be as proposed. Let w €
L5*[0,00) be arbitrary, and let (v, z) be a solution to the
PDE (11) with input w. Then, by Lem. 14, letting v = @DV,
(v,z) is a solution to the PIE (18) with input w. Since
E; =0, it follows by Thm. 12 that 7; = 0, and therefore
(v, z) is a solution to the PIE (9) with 7 = 7. Finally, by
Prop. 16, it P — el € E4, and —Q € E4,, we have P > 0
and Q < 0. Then, all conditions of Lem. 8 are satisfied, and

we find that z € L5*[0, 00) and \ll‘ ||“LL2 <7. u
2




VII. NUMERICAL EXAMPLES

In this section, results of several numerical tests are
presented, computing an upper bound on the Lo-gain of
2D PDEs using the LPI methodology proposed in the
previous sections, incorporated into the MATLAB toolbox
PIETOOLS [15]. Results are shown using monomials of
degree at most d = 1 to parameterize the positive operator
P € E4 in Theorem 17. Estimates of the Ly-gain computed
using discretization are also shown, using a finite difference
scheme on N x N uniformly distributed grid points.

For each of the proposed PDEs, a regulated output
2(t) = [on Jou V(t, 2, y)dydz is considered, corresponding
to Cop = I and C;; = 0 for all other 4,5 € {0,1,2} in
Eqns. (13) defining the parameters for the PDE (11).

A. KISS Model

Consider first a particular instance of the KISS model as
presented in [1], with uniformly distributed disturbances on
[0,1] x [0, 1], and Dirichlet boundary conditions,

(t) = [aﬁv(t) + agv(w} V(L) + w(t)

0=v(t,0,y) =v(t,1,y) = v(t,z,0) = v(t,z,1). (21)
Figure 1 presents bounds on the Lo-gain of this system
for A € [9,19], computed using the LPI approach. Gains
estimated using discretization with N = 12 grid points are
also displayed. The results show that the LPI method is able
to achieve (provably valid) bounds on the L,-gain that are
lower than the values estimated through discretization.

100 F T T T |
----- Discretization Y,
LPI 4
R/
Y
= 2
= 2
< L
)
&
~_
107 F 1
9 10 11 12 13 14 15 16 17 18 19
A
Fig. 1. Bounds on the L2-gain of System (21) computed using the LPI

methodology, parameterizing P € =4 in Thm. 17 using monomials of
degree at most d = 1. Estimates of the gain computed through discretization
are also shown, using a grid of 12 x 12 uniformly distributed points.

B. Other Parabolic Systems

Consider now a bound on the Ls-gain computed using
the LPI approach, and an estimated gain computed using
discretizaion, for each of the following variations on Sys-
tem (21), where g(z,y) := 1 —2(z — 0.5)2 +2(y — 0.5)%:

1) Using an inhomogeneously distributed reaction term:

V(1) = [Vao (t) + Vyy ()] + g(2, )V () + w(t).

2) Using an inhomogeneously distributed disturbance:

V() = [Vaa(t) + Vi (O] +9() + g(z, y)w ().

3) Using Neumann boundary conditions:

0=v(t,0,y) = 0,v(t,1,y) = v(t,2,0) = 0y v(t,x,1).

The results of each test are provided in Table II, along
with the required CPU times. The results once more show
that the LPI method is able to produce bounds on the Lo-
gain which are smaller than the estimates obtained through
discretization, in relatively short time.

H l Discretization l LPI

N=6 N=9 N =12 d=1

D L>-Gain 0.0404 0.0384 0.0376 0.0367
CPU Time (s) | 5.56 6.58-102 3.75-10% | 1.73-10%

2) Lo-Gain 0.0315  0.0302 0.0298 0.0293
CPU Time (s) | 3.91 6.59-10% 3.76-10* | 2.64-10°

3) Lo-Gain 0.1793  0.1767 0.1758 0.1747
CPU Time (s) | 3.77 6.59-102  4.09-10% | 1.32-10%

TABLE II

Bounds on the L2-gain for variations 1 through 3 on System (21)
computed using the LPI approach, along with the CPU time required for
each test. Estimates computed using discretization are also provided, using
N X N uniformly distributed grid points.

VIII. CONCLUSION

In this paper, a new method for estimating the Ly-gain of
linear, 2nd order, 2D PDEs, using semidefinite programming
was presented. To this end, it was proved that any such
PDE can be equivalently represented by a PIE, and the
necessary formulae to convert between the representations
was derived. It was further proved that the problem of
verifying an upper bound on the Ls-gain of a PIE can be
posed as an LPI, and a method for parameterizing such LPIs
as LMIs was presented. Implementing this approach in the
MATLAB toolbox PIETOOLS, relatively accurate bounds on
the Lo-gain of several PDEs could be numerically computed.
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