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H∞-Optimal Observer Design for Linear Systems with Delays in States,

Outputs and Disturbances

Shuangshuang Wu, Sachin Shivakumar, Matthew M. Peet, Changchun Hua

Abstract— This paper considers the H∞-optimal estimation
problem for linear systems with multiple delays in states,
output, and disturbances. First, we formulate the H∞-optimal
estimation problem in the Delay-Differential Equation (DDE)
framework. Next, we construct an equivalent Partial Integral
Equation (PIE) representation of the optimal estimator design
framework. We then show that in the PIE framework, the H∞-
optimal estimator synthesis problem can be posed as a Linear
PI Inequality (LPI). LPIs are a generalization of LMIs to the
algebra of Partial Integral (PI) operators and can be solved
using the PIETOOLS toolbox. Finally, we convert the PIE
representation of the optimal estimator back into an ODE-PDE
representation - a form similar to a DDE, but with corrections
to estimates of the infinite-dimensional state (the time-history).
Numerical examples show that the synthesis condition we
propose produces an estimator with provable H∞-gain bound
which is accurate to 4 decimal places when compared with
results obtained using Padé-based discretization.

I. INTRODUCTION

In most practical control scenarios, feedback control re-

quires the use of sensors to measure the current state of the

system. However, such sensors are often noisy and can mea-

sure only a small subset of the required state variables [1],

[2], [3]. For Ordinary Differential Equations (ODEs), the

problem of state estimation has been largely solved, with

special cases including the Luenberger observer [4], the

Kalman Filter [5], and the LMI for H∞-optimal state estima-

tion [6]. When delays are introduced, however (e.g. in state,

input or output), estimators designed for the undelayed ODE

can destabilize if applied to the resulting Delay-Differential

Equation (DDE) System. Consequently, the problem of de-

signing stable or optimal observers for systems with delay

has received significant attention in recent years - See, e.g.

[2], [6] and the references therein. Specifically, suppose we

consider the problem of designing a state estimator for a

DDE system of the form

ẋ(t) = A0x(t) +Bw(t) +
K
∑

i=1

(Aix(t− τi) +Biw(t− τi))

z(t) = C1x(t) +D1w(t) +
K
∑

i=1

(C1ix(t− τi) +D1iw(t− τi))

y(t) = C2x(t) +D2w(t) +
K
∑

i=1

(C2ix(t− τi) +D2iw(t− τi))

(1)
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where x(t) ∈ R
n is the state, w(t) ∈ R

r is an external

disturbance input with w(0) = 0, z(t) ∈ R
p is the regulated

output, and y(t) ∈ R
q is the measured output.

Most work on estimator design has assumed the estimator

itself is modelled as a DDE - e.g. [6], [7]. However, an

alternative body of work has recently emerged which argues

that the optimal estimator for a DDE is not itself a DDE,

but rather an ODE coupled with PDE [8], where the PDE

represents not only transport, but also allows for corrections

to the estimate of the state-history of the DDE (See x̂ in

Eqn. (18)). In this context, SOS and backstepping methods

for observer design in the coupled ODE-PDE framework

have been developed wherein the observer simultaneously

estimates both the current state and the history of the

state [9], [10], [8].

Unfortunately, however, there several limitations in these

previous efforts. Specifically, while the backstepping trans-

formation method applied in [9] is guaranteed to produce a

stable estimator if one exists, this estimator is not guaranteed

to be optimal in any sense. Meanwhile, the SOS methods

employed in [8] and [11], while highly accurate and similar

in structure to the observers proposed in this paper, were

unable to handle delays in the inputs or outputs. It is our

belief that this inability to handle input and output delays is

due to problems in formulation arising from use of the cou-

pled ODE-PDE representation. Specifically, disturbances and

output which occur at the boundary of the transport equations

are not well-modeled when using either as inputs/outputs

to either ODE or PDE state (current state or history). For

this reason, in this manuscript, we do not use the ODE-

PDE representation, but rather look to the Partial Integral

Equation (PIE) representation of the DDE system, wherein

boundary conditions are not auxiliary, but rather eliminated

by incorporating their effect directly into the dynamics of

the system.

For an example illustrating the importance of signal delays

in estimator design, we refer to the model of a mining cable

elevator system in [3], which has sensor output delays due to

wireless propagation delay from the elevator at the bottom of

the shaft (over 2000 m underground) to the control center on

the ground, and disturbance delays, where the disturbances

are vibrations caused by deformation of the cage and is

coupled to the shaft structure and cable tension. Failure to

accurately account for output and disturbance delays can lead

to chattering effects or even instability.

Having motivated the need for optimal observer design for

systems with input, output, and state-delay, we now turn to

the contributions of this manuscript. Our first contribution is

http://arxiv.org/abs/2004.04482v1


to reformulate the nominal DDE in Eq. (1) as an equivalent

Partial Integral Equation (PIE) [14]. By eliminating boundary

conditions, the PIE representation allows us to model the

effect of disturbances on the dynamics and consequently

pose an H∞-optimal estimator design problem wherein

the objective is to design an H∞-optimal estimator which

uses the measured output y to construct an estimate of

x and z while minimizing γ := supw∈L2

‖ze‖L2

‖w‖L2
, where

ze(t) = ẑ(t) − z(t) denotes the error between z(t) and its

estimate ẑ(t). Furthermore, the use of the PIE formulation -

parameterized by Partial Integral (PI) operators allows us to

generalize the LMI for H∞-optimal estimation of ODEs to

a convex Linear PI Inequality (LPI) which solves the H∞-

optimal observer synthesis problem for the given class of

PIEs. Next, we solve the resulting LPI for optimal observer

synthesis using the PIETOOLS Matlab toolbox [15]. Finally,

we take the resulting estimator, formulated as a PIE, and

convert this back to a coupled ODE-PDE in order to allow

for efficient implementation.

A. Notation

Shorthand notation used throughout this paper includes the

Hilbert spaces Lm
2 [X ] := L2(X ;Rm) of square integrable

functions from X to R
m and Wm

2 [X ] := W 1,2(X ;Rm) =
H1(X ;Rm) = {x : x, ∂sx ∈ Lm

2 [X ]}; Lm
2 and Wm

2 are

used when domains are clear from context. Furthermore, the

extension Wn×m
2 [X ] := W 1,2(X ;Rn×m) is used to denote

matrix-valued functions. I denotes the identity matrix. A

block-diagonal matrix is denoted by diag{· · · }. An operator

P : Z → Z is positive on a subset X of Hilbert space

Z if 〈x,Px〉Z ≥ 0 for all x ∈ X . P is coercive on X if

〈x,Px〉Z ≥ ǫ‖x‖2Z for some ǫ > 0 for all x ∈ X . If P1 and

P2 are two linear operators then
(

P1
)∗

stands for the adjoint

of P1 and P1P2 represents composition of those operators in

shown order. For brevity, symmetric components of a block-

operator are denoted by (·) and adjoints by (·)∗. The space

Zm,n:=Rm× Ln
2 [−1, 0] is an inner-product space with the

inner product defined as

〈[

y
ψ

]

,

[

x
φ

]〉

Zm,n

= yTx+

∫ 0

−1

ψ(s)Tφ(s)ds,

where x, y ∈ R
m and ψ, φ ∈ Ln

2 [−1, 0].

II. LINEAR PIE REPRESENTATION OF TIME-DELAY

SYSTEMS

In this section, we present the PIE representation of time

delay systems. PIE representation is used, instead of ODE-

PDE representation, because the operators in PIE represen-

tation are bounded. Furthermore, unlike coupled ODE-PDE

representation of time-delay systems, PIE representation do

not require boundary conditions and the solution of PIE

systems do not have additional continuity constraints.

A. Linear PIEs

A general class of linear PIEs system is defined as follows

T ẋ(t) + BT ẇ(t) = Ax(t) + Bω(t)

z(t) = C1x(t) +D1ω(t)

y(t) = C2x(t) +D2ω(t) (2)

where T , BT , A, C1, C2, D1 and D2 are all Partial Integral

(PI) operators with the following form
(

P
[

P, Q1
Q2,

{

Ri
}

]

[

x
φ

])

(s) :=











Px+
∫ 0

−1
Q1(s)φ(s)ds

(QT
2 (s)x+R0(s)φ(s) +

∫ s

−1 R1(s, θ)φ(θ)dθ

+
∫ 0

s
R2(s, θ)φ(θ)dθ)











.

(3)

For any given w ∈ W 1,2[0,∞), and x0 ∈ R× L2[−1, 0],
suppose x is Fréchet differentiable almost everywhere on

[0,∞), x(0) = x0, and Eq. (2) are satisfied for all t ≥ 0.

Then x(t) : [0,∞) → R × L2[−1, 0], z(t) : [0,∞) → R,

y(t) : [0,∞) → R satisfy the PIE defined by Eq. (11). For

more details on PI operators, please see [15].

B. Representing Time Delay Systems as Linear PIEs

Linear time delay systems in the representation of DDEs

can be converted to linear PIEs for special definitions of

the PI operators T ,BT ,A,B, C1, C2,D1,D2. For DDEs (1)

defined by τi and the matrices Ai, Bi, Ci, Cij , Di and Dij

we define the PI operators

T := P
[

I, 0
T0, {0, 0, −I}

]

, BT := P
[

0, 0/
T1, {0/}

]

,

A := P
[

A0 +
∑K

i=1 Ai, Ã

0, {H, 0, 0}

]

, B := P
[

B +
∑K

i=1 Bi, 0/

0, {0/}

]

,

C1 := P
[

C1 +
∑K

i=1 C1i, C̃1
0/, {0/}

]

, C2 := P
[

C2 +
∑K

i=1 C2i, C̃2
0/, {0/}

]

,

D1 := P
[

D1 +
∑K

i=1 D1i, 0/

0/, {0/}

]

, D2 := P
[

D2 +
∑K

i=1 D2i, 0/

0/, {0/}

]

.

(4)

where

Cri =

[

I
0

]

, Bri =

[

0
I

]

, Aki =
[

Ai Bi

]

,

Ck1i =
[

C1i D1i

]

, Ck2i =
[

C2i D2i

]

,

T0 =







Cr1

...
CrK






, T1 =







Br1

...
BrK






, H = diag

{

1

τ1
I, · · · ,

1

τK
I

}

,

Ã = −
[

Ak1, · · · , AkK

]

, C̃1 = −
[

Ck11, · · · , Ck1K

]

,

C̃2 = −
[

Ck21, · · · , Ck2K

]

. (5)

We give the following lemma.

Lemma 1: Suppose T ,BT ,A,B, C1, C2,D1,D2 are as de-

fined in Eq. (4). For given w ∈ W 1,2[0,∞)r, if x, z, and y
satisfy Eq. (1), then z and y also satisfy the PIE (2) with

x(t) =











x(t)
∂sφ1(t, ·)

...

∂sφK(t, ·)











(6)



where φi(t, s) = Crix(t+ τis) +Briw(t+ τis) for Cri and

Bri as defined in (5). Furthermore, if x, z and y satisfy the

PIE defined by Eq.(2), then x, z and y satisfy Eq. (1) where

[

x(t)
·

]

= T x(t) + BTw(t). (7)

Proof: For given w ∈ W 1,2[0,∞)r, suppose x, z, and

y satisfy the DDEs defined by Eq. (1). Define φi(t, s) =
Crix(t+ τis)+Briw(t+ τis) where Cri, Bri are as defined

in Eq. (5).Then from Lemma 3 in [14], we get x, z, and y
satisfy the following ODE-PDE Eq. (8) and vice versa.

ẋ(t) = A0x(t) +Bw(t) +Bvv(t)

z(t) = C1x(t) +D1w(t) +D1vv(t)

y(t) = C2x(t) +D2w(t) +D2vv(t)

φ̇i(t, s) =
1

τi
∂sφi(t, s),

φ(t, 0) = Crix(t) +Briw(t)

v(t) =

K
∑

i=1

Cviφi(t,−1) (8)

where

Bv =
[

I 0 0
]

, D1v =
[

0 I 0
]

,

D2v =
[

0 0 I
]

, Cvi =





Ai Bi

C1i D1i

C2i D2i



 . (9)

Suppose x(t) ∈ Zn,K(n+r) is defined as Eq. (6), where

x, φi satisfy the ODE-PDE form (8), and the PI operators

are as defined in Eq. (4), Then, from Lemma 4 in [14], we

get that x, z and y also satisfy PIEs (2) and vice versa. This

completes the proof.

III. ESTIMATION OF LINEAR PIES

For the linear PIEs Eq. (2), an estimator in the PIE form

is constructed. The coupled system dynamics are as follows

T ẋ(t) + BT ẇ(t) = Ax(t) + Bω(t),

z(t) = C1x(t) +D1ω(t)

y(t) = C2x(t) +D2ω(t),

T ˙̂x(t) = Ax̂(t) + L(ŷ(t)− y(t))

ẑ(t) = C1x̂(t) ŷ(t) = C2x̂(t),

x(0) = x̂(0) = x0 ∈ Z (10)

where L : R → Z is a PI operator. Let e(t) := x̂(t)− x(t),
then we have

T ė(t)− BT ẇ(t) = (A+ LC2)e(t)− (B + LD2)ω(t)

ze(t) = C1e(t)−D1ω(t). (11)

Then e(0) = 0 and the LMI conditions in KYP Lemma for

linear ODEs can be extended to linear PIEs using the LPI

conditions.

Theorem 2: Suppose there exists a scalar γ > 0 and

bounded linear operators P : Z → Z is bounded, self-

adjoint, coercive and Z : R → Z such that




B∗
T (PB + ZD2) + (·)∗ 0 (·)∗

0 0 0
−(PA+ ZC2)

∗BT 0 0





+





−γI −DT
1 −(PB + ZD2)

∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)

∗T + (·)∗



 < 0. (12)

Then P−1 exists and is a bounded linear operator. For any

given w ∈ W2, if z and ẑ satisfy Eqn. (10) where L = P−1Z
for some x and x̂, then we have ‖ze‖L2 ≤ γ‖ω‖L2 where

ze(t) = ẑ(t)− z(t).
Proof: Suppose there exist γ, P and Z that satisfy the

assumptions of the Theorem statement and let L = P−1Z .

Define the storage functional

V (t) = 〈T e(t)− BTw(t),P(T e(t)− BTw(t))〉Z .

Obviously, V (t) ≥ δ ‖T e(t)− BTw(t)‖
2
Z holds for some

δ > 0 since P is coercive. Since P is bounded, self-adjoint,

coercive, from Theorem 1 in [12], P−1 exists and is a

bounded linear operator. Then, for e and ze that satisfy (11),

V̇ (t)− γ‖ω(t)‖2 − γ‖υe(t)‖
2 + 2 〈υe(t), ze(t)〉Z

= 〈T e(t)− BTw(t), (PA + ZC2)e(t)〉Z
+ 〈(PA+ ZC2)e(t), T e(t)− BTw(t)〉Z
− 〈T e(t)− BTw(t), (PB + ZD2)w(t)〉Z
− 〈T e(t)− BTw(t), (PB + ZD2)w(t)〉Z
− 〈(PB + ZD2)w(t), T e(t)− BTw(t)〉Z
− γ‖ω(t)‖2 − γ‖υe(t)‖

2 + 〈υe(t), C1e(t)〉

+ 〈C1e(t), υe(t)〉 − 〈υe(t),D1ω(t)〉 − 〈D1ω(t), υe(t)〉

=





w(t)
ve(t)
x(t)





T
(





B∗
T (PB + ZD2) + (·)∗ 0 (·)∗

0 0 0
−(PA+ ZC2)

∗BT 0 0





+





−γI −DT
1 −(PB + ZD2)

∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)

∗T + (·)∗





)





w(t)
ve(t)
x(t)



 .

Set υe(t) =
1
γ
ze(t). If Eq. (12) is satisfied, then

V̇ (t)− γ‖ω(t)‖2 +
1

γ
‖ze(t)‖

2 ≤ 0.

Integration of this inequality with respect to t yields

V (t)− V (0)− γ

∫ t

0

‖w(s)‖
2
ds+

1

γ

∫ t

0

‖ze(s)‖
2
ds ≤ 0.

V (0) = 0 and V (t) ≥ 0 for any t ≥ 0. Then as t → ∞,

we get ‖ze‖L2 ≤ γ‖ω‖L2 .

IV. ESTIMATION OF TIME DELAY SYSTEMS

In this section, the estimator is constructed and using

Theorem 2, we get the H∞ estimation condition of time

delay systems defined by Eq. (1).



A. Coupling the DDEs and Estimator Dynamics

For the plant system (1) restated here, we construct the

estimator dynamics as a ODE-PDE coupled system. The

coupled system dynamics are as follows,

ẋ(t) = A0x(t) +Bw(t) +
K
∑

i=1

(Aix(t− τi) +Biw(t− τi))

z(t) = C1x(t) +D1w(t) +
K
∑

i=1

(C1ix(t− τi) +D1iw(t− τi))

y(t) = C2x(t) +D2w(t) +
K
∑

i=1

(C2ix(t− τi) +D2iw(t− τi))

˙̂x(t) = A0x̂(t) +Bv v̂(t) + L1(ŷ(t)− y(t))

ẑ(t) = C1x̂(t) +D1v v̂(t)

ŷ(t) = C2x̂(t) +D2v v̂(t)

˙̂
φi(t, s) =

1

τi
∂sφ̂i(t, s) + L2i(s)(ŷ(t)− y(t))

φ̂(t, 0) = Crix̂(t),

v̂(t) =
K
∑

i=1

Cviφ̂i(t,−1) (13)

where x̂(t), ẑ(t) and ŷ(t) are the estimates of x(t), z(t)
and y(t), respectively. The matrix L1 and the polynomials

L2i are observer gains to be determined. The matrices

Bv, Div, Cri, Cvi are the same ones used to define the ODE-

PDE model (8).

The structure of the estimator allows us to represent Eq.

(13) as coupled linear PIE (10) defined by the PI operators in

Eq. (4), where L = P





L1, 0/










L21

.

.

.

L2K











, {0/}



. The equivalence between

Eq. (13) and Eq. (10) is stated as the Lemma 6 in Appendix.

B. Applying Theorem 2 to time delay systems

Theorem 3: Suppose there exists positive scalar γ, matrix

P ∈ R
n×n, matrix H , Γ, W with appropriate dimensions,

polynomial Z(s), function R0 ∈ Wns×ns
2 [−1, 0] with ns =

K(n + r), matrix Z1 ∈ R
n×q , such that the operator P :=

P
[

P, HZ(s)

Z(s)T HT ,
{

Ri
}

]

with R2 = R1 = Z(s)TΓZ(θ) is bounded,

self-adjoint, and coercive, and Z := P
[

Z1, 0/

Z(s)T W, {0/}

]

satisfy





B∗
T (PB + ZD2) + (·)∗ 0 (·)∗

0 0 0
−(PA+ ZC2)

∗BT 0 0





+





−γI −DT
1 −(PB + ZD2)

∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)

∗T + (·)∗



 < 0. (14)

where the operators T ,BT ,A,B, C1, C2,D1,D2 are defined

as Eqn. (4). Then for any given w ∈ W 1,2[0,∞)r, if z(t)
and ẑ(t) satisfy the Eq. (13) where

L1 =
(

I − ĤKH
T
)

P
−1

Z1 + ĤKW






L21

...
L2K






(s) = R0(s)

−1
Z(s)T

(

Ĥ
T
Z1 +W + Γ̂KW

)

(15)

and

Ĥ = P
−1

H
(

KH
T
P

−1
H − I −KΓ

)

−1

K =

∫

0

−1

Z(s)R0(s)
−1

Z(s)T ds,

Γ̂ = −(ĤT
H + Γ)(I +KΓ)−1

,

for some x, x̂ and φ̂i, define ze(t) = ẑ(t) − z(t), then we

have ‖ze‖L2 ≤ γ‖ω‖L2.

Proof: Suppose there exists γ, matrices P , Z1, H , Γ
and W , polynomial Z and function R0 such that P , as de-

fined in the Theorem statement, is bounded and coercive and

satisfies the LPI (14). Further, for given w ∈ W 1,2[0,∞)r,

let z and ẑ satisfy the Eq. (13), where L1 and L2i are as

defined in Eq. (15), for some x and x̂.

Then P−1 exists, is bounded and using Lemma 4 in

Appendix, P−1 is

P−1 := P
[

P̂ , Q̂

Q̂T ,
{

R̂i

}

]

(16)

where

P̂ =
(

I − ĤKHT
)

P−1, Q̂(s) = ĤZ(s)R0(s)
−1

R̂0(s) = R0(s)
−1, R̂1(s, θ) = R̂T

0 (s)Z(s)T Γ̂Z(θ)R̂0(θ).

Define the PI operator L as

L = P





L1, 0/










L21

.

.

.

L2K











, {0/}



 (17)

where L1 and L2i are as defined in Eq. (15). Then, from

Lemma 5, L = P−1Z . Thus, L, P and Z , satisfy the

conditions of Theorem 2.

Since z and ẑ satisfy Eq. (13) for some x, x̂ and φ̂i, from

Lemma 6, we get z(t) and ẑ(t) also satisfy the Eq. (10) for

x(t) =











x(t)
∂sφ1(t, ·)

...

∂sφK(t, ·)











, x̂(t) =











x̂(t)

∂sφ̂1(t, ·)
...

∂sφ̂K(t, ·)











. (18)

where φi(t, s) = Crix(t+τis)+Briw(t+τis). We conclude

that z and ẑ satisfy the conditions of Theorem 2 for the

operators P , Z and L as defined. Since all conditions of

Theorem 2 are satisfied, we conclude that ‖ze‖L2 ≤ γ‖ω‖L2

where ze(t) = ẑ(t)− z(t).

V. NUMERICAL IMPLEMENTATION AND EXAMPLES

The LPI in Theorem 3 is implemented using the Matlab

PIETOOLS toolbox, wherein we minimize γ, the closed-loop

H∞-performance gain. This toolbox is available online for

validation or download from Code Ocean [15]. PIETOOLS

allows for declaration of PI variables, PI inequality con-

straints, and manipulation of PI operators as an object class.

A selection of the code from this implementation is as

follows.



>> pvar s th gam;

>> opvar T Bt A B C1 C2 D1 D2;

>> S=sosprogram([s,th],gam);

>> [H,P] = sos posopvar(H,dim1,X,s,th);

>> [H,Z] = sos opvar(H,dim2,X,s,th);

>> F1=P*B+Z*D2; F2=P*A+Z*C2;

>> E = -gam*eye(r)-Bt’*F1-F1’*Bt;

>> Df =[ E -D1’ -F1’*T-Bt’*F2;

-D1 -gam*eye(p) C1;

-T’*F1-F2’*Bt C1’ F2’*T+T’*F2];

>> H = sosopineq(H,-Df);

>> H = sossetobj(H,gam);

>> H = sossolve(H);

For simulation, a fixed-step forward-difference-based dis-

cretization method is used, with a different set of states

representing each delay channel. In the simulation results

given below, 100 spatial discretization points are used for

each delay channel.

We have applied the resulting code to several represen-

tative examples. In each case, we list: γmin - the provable

bound on the L2-gain from the disturbance w to the regulated

output ze of the H∞-optimized observer obtained from the

LPI; γpade - an estimated achievable L2-gain obtained using

LMI methods and a 10th Padé ODE approximation of the

DDE; and γreal - the observed L2-gain bound obtained by

applying a simulation of our optimized estimator to a simu-

lation of the nominal DDE with a representative disturbance

signal. Note that because there are no works which address

the problem of H∞-optimal control of systems with input,

output, and state delay, we are not able to compare our results

with existing literature. However, this is not because of sub-

optimality, and indeed, our estimators match or significantly

outperform all other estimators when applied to systems

lacking input or output delay.

a) Example 1: The following system is a variation of

an example in [8],

ẋ(t) =

[

0 0
0 1

]

x(t) +

[

−1 −1
0 0.9

]

x(t− 1) +

[

1 0
0 1

]

w(t)

z(t) =
[

1 0
]

x(t) +
[

1 10
]

x(t− 1)

y(t) =
[

1 10
]

x(t− 1) +
[

0 5
]

w(t− 1)

wherein we have added output and disturbance delay to

the dynamics. In this case Theorem 3 yields γmin = 1.8081.

Meanwhile the Padé approximation γpade = 1.8081 - an

exact match. Figure 1 displays the effect of a sinc disturbance

w(t) on error in states e(t) = x̂(t)−x(t) using our optimized

estimator. For this step disturbance, the actual L2-gain is

found to be γreal = 0.5876 - consistent with the predicted

worst-case performance bound.
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Fig. 1. Response in error state to a sinc disturbance for E1

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Disturbance and error in states for sinc disturbance

Fig. 2. Response in error state to a sinc disturbance for E2

b) Example 2: Consider now a slightly version of the

Example in [17].

ẋ(t) =

[

0 3
−4 −5

]

x(t) +

[

−0.1 0
0.2 −0.2

]

x(t− 0.3)

+

[

0 0.1
−0.2 −0.3

]

x(t − 0.5) +

[

−0.4545 0
0 0.9090

]

w(t)

y(t) =
[

0 100
]

x(t) +
[

0 10
]

x(t− 0.3)

+
[

0 2
]

x(t− 0.5) +
[

1 1
]

w(t)

z(t) =
[

0 100
]

x(t)

wherein we have added an extra delay. In this case Theorem 3

yields γmin = 0.9592. Meanwhile the Padé approximation

γpade = 0.9592 - an exact match. Figure 2 displays the effect

of a sinc disturbance w(t) on error in states e(t) = x̂(t)−x(t)
using our optimized estimator. For this step disturbance, the

actual L2-gain is found to be γreal = 0.5792 - consistent

with the predicted worst-case performance bound.

c) Example 3: To test the scalability of our algorithm,

we consider the following unstable n-D system with K

delays, a single disturbance w(t) and a single regulated z(t)
and a single sensed output y(t).

ẋ(t) = −
K
∑

i=1

x(t− i/K)

K
+ 1w(t)

z(t) = y(t) = 1
Tx(t) + 1

Tw(t)

We examine how the computational complexity of the algo-

rithm scales as the product of the number of delays K and

number of states n increases. Table I lists the computation



TABLE I

CPU SECONDS OF SEDUMI SOLVING PROCESS FOR n STATES AND K

DELAYS

P
P
P
P
PP

K

n
1 2 3 4 6

1 0.3610 0.4630 8.488 1.887 16.50

2 0.4380 1.573 11.94 77.94 950.8

3 0.9000 10.14 167.0 913.9 9827

4 1.331 82.92 912.6 4263 24030

6 12.10 967.2 9650 23980 N/A

time as CPU sec on a Intel i7-5960X processor omitting

preprocessing and postprocessing times.

VI. CONCLUSION

We have investigated the problem of H∞-optimal estima-

tor design for systems with multiple delays in the states,

outputs and disturbances. The commonly used DDE repre-

sentation of nominal system and estimator is converted to a

PIE representation. Within the PIE framework, we propose a

convex formulation of the optimal estimator synthesis prob-

lem, in the form of an LPI - a form of convex optimization

for which we have an efficient Matlab Toolbox. We then

convert the optimized observer back into a coupled ODE-

PDE for convenient implementation. Applying the results to

several numerical examples, we find the resulting observers

are non-conservative to 4 decimal places as measured against

a Padé-based ODE approximation of the DDE. Finally, the

scalability of the algorithm is demonstrated for large numbers

of delays and states.
REFERENCES

[1] O. J. M. Smith, Closer control of loops with dead time, Chemical
Engineering Progress, vol. 53, no. 5, 217219, 1957.

[2] B. Zhou, Z. Y. Li, and Z. L. Lin, Observer based output feedback
control of linear systems with input and output delays. Automatica,
vol. 49, no. 7, 2039–2052, 2013.

[3] J. Wang, Y. Pi, Y. Hu, and Z. Zhu, State-observer design of a
PDE-modeled mining cable elevator with time-varying sensor de-
lays. IEEE Transactions on Control Systems Technology, 2019,
doi:10.1109/tcst.2019.2897077.

[4] D. Luenberger, An introduction to observers. IEEE Transactions on
Automatic Control, vol. 16, no. 6, 596–602, 1971.

[5] G. Welch, and G. Bishop, An introduction to the Kalman filter. 41–95,
1995.

[6] E. Fridman, and S. Uri, A new H∞ filter design for linear time delay
systems. IEEE Transactions on Signal Processing, vol. 49, no. 11,
2839–2843, 2001.

[7] A. Fattouh, O. Sename, and J. M. Dion, H∞ controller and observer
design for linear systems with point and distributed time-delays. IFAC
Proceedings Volumes, vol. 33, no. 23, 247–252, 2000.

[8] M. M. Peet, H∞-Optimal estimation of systems with multiple state
delays: Part 2, American Control Conference, 2019.

[9] M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-
order hyperbolic PDEs and application to systems with actuator and
sensor delays. Systems and Control Letters, vol. 57, no. 9, 750–758,
2008.

[10] T. Ahmed-Ali, F. Giri, M. Krstic, M. Kahelras, PDE based observer
design for nonlinear systems with large output delay. Systems and
Control Letters, vol. 113, 1–8, 2018.

[11] M. Peet, LMI parametrization of Lyapunov functions for infinite-
dimensional systems: A framework, American Control Conference,
359–366, 2014.

[12] M. M. Peet, H∞-Optimal control of systems with multiple state
delays: Part 1, American Control Conference, 2019.

[13] J. Hale, Functional differential equations, in Analytic theory of differ-
ential equations. Springer, 9–22, 1971.

[14] M. M. Peet, Representation of Networks and Systems with Delay:
DDEs, DDFs, ODE-PDEs and PIEs. arXiv preprint arXiv:1910.03881,
2019.

[15] S. Sachin, A. Das, and M. M. Peet. PIETOOLS: A matlab toolbox for
manipulation and optimization of Partial Intergral operators, American
Control Conference, in press, 2019.

[16] G. Miao, M. M. Peet, and K. Gu, Inversion of separable kernel
operators in coupled differential-functional equations and application
to controller synthesis. IFAC-PapersOnLine, vol. 50, no. 1, 6513-6518.

[17] C. E. de Souza, R. M. Palhares, and P. D. Peres, Robust H∞ design for
uncertain linear systems with multiple time-varying state delays. IEEE
Transactions on Signal Processing, vol. 49, no. 3, 569-576, 2001.

APPENDIX

A. Getting the inverse of P

Lemma 4: Suppose that Q(s) = HZ(s) and R1(s, θ) =
Z(s)TΓZ(θ) where Z is a polynomial and P := P

[

P, Q

QT ,
{

Ri
}

]

with R2 = R1 is a coercive and self-adjoint operator where

P : X → X . Then P−1 := P
[

P̂ , Q̂

Q̂T ,
{

R̂i

}

]

with R̂1 = R̂2

where

P̂ =
(

I − ĤKHT
)

P−1, Q̂(s) = ĤZ(s)R0(s)
−1

R̂0(s) = R0(s)
−1, R̂1(s, θ) = R̂T

0 (s)Z(s)T Γ̂Z(θ)R̂0(θ),

K =

∫ 0

−1

Z(s)R0(s)
−1Z(s)Tds

Ĥ = P−1H
(

KHTP−1H − I −KΓ
)−1

Γ̂ = −(ĤTH + Γ)(I +KΓ)−1.

Further, P−1 : X → X is self-adjoint, and P−1Px =
PP−1

x = x for any x ∈ X := Zm,n.

Proof: This can be obtained from Theorem 3 in [16]

when we set r = 1.

B. Constructing Estimator Gains

An analytic inverse of a generalized PI operator P :=
P
[

P, Q1
Q2,

{

Ri
}

]

is an open problem. However, an exact formula

is known for the inverse of P when R2 = R1, see [8] and

[12]. We find the observer gains in following Lemma.

Lemma 5: Suppose PI operator P := P
[

P, Q

QT ,
{

Ri
}

]

with

R2 = R1 is bounded, self-adjoint and coercive. If L =
P−1Z where Z := P

[

Z1, 0/
Z2, {0/}

]

and Z2 is a polynomial repre-

sented as Z2(s) = ZT (s)W , then we get L = P





L1, 0/










L21

.

.

.

L2K











, {0/}





with L1 = P̂Z1 + ĤKW and







L21

...

L2K






(s) = R̂0(s)Z(s)T

(

ĤTZ1 +W + Γ̂KW
)

where K , Γ and Ĥ are as defined in Lemma 4.

Proof: Since P is coercive, bounded, P−1 =

P
[

P̂ , Q̂

Q̂T ,
{

R̂i

}

]

exists and can be obtained from Lemma 4. Then

follows from the formula for composition of PI operators

P−1 and Z - see [15] for the formula for the composition

operation.

http://arxiv.org/abs/1910.03881


C. The equivalence between the coupled DDEs with ODE-

PDE Equation and the coupled PIEs

Consider the following coupled system dynamics,











ẋ(t) = A0x(t) +Bw(t) +
∑K

i=1
(Aix(t− τi) +Biw(t− τi))

z(t) = C1x(t) +D1w(t) +
∑K

i=1
(C1ix(t− τi) +D1iw(t− τi))

y(t) = C2x(t) +D2w(t) +
∑K

i=1
(C2ix(t− τi) +D2iw(t− τi))

(19)



























˙̂x(t) = A0x̂(t) +Bv v̂(t) + L1(ŷ(t)− y(t))

ẑ(t) = C1x̂(t) +D1v v̂(t)

ŷ(t) = C2x̂(t) +D2v v̂(t)
˙̂
φi(t, s) =

1

τi
∂sφ̂i(t, s) + L2i(s)(ŷ(t)− y(t))

φ̂(t, 0) = Crix̂(t), v̂(t) =
∑K

i=1
Cviφ̂i(t,−1)

(20)

and the coupled linear PIEs











T ẋ(t) + BT ẇ(t) = Ax(t) + Bω(t)

z(t) = C1x(t) +D1ω(t)

y(t) = C2x(t) +D2ω(t)

(21)

{

T ˙̂x(t) = Ax̂(t) + L(ŷ(t)− y(t))

ẑ(t) = C1x̂(t), ŷ(t) = C2x̂(t).
(22)

These two coupled systems share the same solutions, as in the
following lemma. We define the PI operators as

T := P

[

I, 0
T0, {0, 0, −I}

]

, BT := P

[

0, 0/
T1, {0/}

]

,

A := P

[

A0 +
∑K

i=1 Ai, Ã

0, {H, 0, 0}

]

, B := P

[

B +
∑K

i=1 Bi, 0/

0, {0/}

]

,

C1 := P

[

C1 +
∑K

i=1 C1i, C̃1
0/, {0/}

]

, C2 := P

[

C2 +
∑K

i=1 C2i, C̃2
0/, {0/}

]

,

D1 := P

[

D1 +
∑K

i=1 D1i, 0/

0/, {0/}

]

, D2 := P

[

D2 +
∑K

i=1 D2i, 0/

0/, {0/}

]

,

L = P





L1, 0/










L21

.

.

.

L2K











, {0/}



. (23)

where

Cri =

[

I
0

]

, Bri =

[

0
I

]

, Aki =
[

Ai Bi

]

,

Ck1i =
[

C1i D1i

]

, Ck2i =
[

C2i D2i

]

,

T0 =







Cr1

..

.
CrK






, T1 =







Br1

..

.
BrK






, H = diag

{

1

τ1
I, · · · ,

1

τK
I

}

,

Ã = −
[

Ak1, · · · , AkK

]

, C̃1 = −
[

Ck11, · · · , Ck1K

]

,

C̃2 = −
[

Ck21, · · · , Ck2K

]

, (24)

Lemma 6: Suppose T ,BT ,A,B, C1, C2,D1,D2,L, are as de-

fined above. For given w ∈ W 1,2[0,∞)r , if x, z, y, x̂, ẑ, ŷ, φ̂i

satisfy Eq. (19)–(20), then z, y, ẑ and ŷ also satisfy the PIE defined
by (21)–(22) and

x(t) =









x(t)
∂sφ1(t, ·)

..

.
∂sφK(t, ·)









, x̂(t) =











x̂(t)

∂sφ̂1(t, ·)
..
.

∂sφ̂K(t, ·)











, (25)

where φi = Crix(t+ τis) +Briw(t+ τis). Furthermore, if x, x̂,
z and y satisfy the PIE defined by Eq.(21)–(22), then z, y, ẑ, and
ŷ also satisfy Eq. (19)–(20) where

[

x(t)
·

]

= T x(t) + BTw(t),

[

x̂(t)
·

]

= T x̂(t). (26)

Proof: For given w ∈ W 1,2[0,∞)r , suppose x, z, y, x̂, ẑ, ŷ,

and φ̂i satisfy Eq. (19)–(20). Then, from Lemma 1, x, z y, x̂, ẑ,

ŷ, and φ̂i also satisfy Eq. (21) and (20) where

x(t) =









x(t)
∂sφ1(t, ·)

...
∂sφK(t, ·)









(27)

and φi(t, s) = Crix(t+ τis) +Briw(t+ τis), and vice versa.

For x̂, φ̂i defined in Eq. (20), define

x̂(t) =











x̂(t)

∂sφ̂1(t, ·)
...

∂sφ̂K(t, ·)











. (28)

Using Fundamental Theorem of Calculus and boundary conditions,
we get

T x̂(t) =











x̂(t)

φ̂1(t, ·)
...

φ̂K(t, ·)











, Ax̂(t) =













A0x̂(t) +Bv v̂(t)
1

τ1
∂sφ̂1(t, s)

...
1

τK
∂sφ̂K(t, s)













and

Cix̂(t) = Cix̂(t) +Div v̂(t).

Then

T ˙̂x(t) = Ax̂(t) +









L1(ŷ(t)− y(t))






L21

...
L2K






(ŷ(t)− y(t))









ẑ(t) = C1x̂(t), ŷ(t) = C2x̂(t).

Finally, using PI notation for the observer gains L in Eq. (23), we

get (22). Then, any x̂, φ̂i, ẑ, ŷ, y that satisfies Eq. (20), x̂, ẑ, ŷ, y
also satisfy (22), where

x̂(t) =











x̂(t)

∂sφ̂1(t, ·)
...

∂sφ̂K(t, ·)











, (29)

and vice versa.
Then, for given w ∈ W 1,2[0,∞)r, if x, z, y, x̂, ẑ, ŷ, and φ̂i

satisfy Eq. (19)–(20), then z, y, ẑ and ŷ also satisfy the PIE defined
by (21)–(22) for x and x̂ as defined in Eq. (25).
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