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Abstract: Inspired by the recently proposed Partial Integral Equality(PIE) representation for
linear delay systems, this paper proposes a fuzzy-PIE representation for T-S fuzzy systems with
delays for the first time. Inspired by the free-weighting matrix technique, this paper introduces
the free-weighting Partial Integral (PI) operators. Based on the novel representation and free-
weighting PI operators, the stability issue is investigated for the T-S fuzzy systems with delays.
The corresponding conditions are given as Linear Partial Inequality (LPI) and can be solved by
the MATLAB toolbox PIETOOLS. Compared with the existing results, our method has no need
of the bounding technique and a large amount of matrix operation. The numerical examples
show the superiority of our method. This paper adds to the expanding field of LPI approach to

fuzzy systems with delays.
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1. INTRODUCTION

T-S fuzzy model with time delays is a vital and efficient
tool for solving the nonlinear systems with delays. It
allows us to project the advances of linear delayed systems
analysis to nonlinear delayed systems. The appearance of
the commonly used techniques for solving linear delay
systems has led to an increase in research on T-S fuzzy
systems with delays in these years (An and Wen, 2011;
Kwon et al., 2016; Hua et al., 2020; Datta et al., 2020).
Among the researches, stability assessment is one major
issue aiming at finding a maximum allowable upper bound
for assuring the stability of the system. There are two
directions to improve the results.

One is to utilize the continuously developing techniques
used in studies on linear delay systems, mainly about
choosing a novel LKF with less restriction, and getting a
tighter lower bound for the LKF derivative. Combing the
augmented LKF and Wirtinger-based integral inequality,
some results are presented for T-S fuzzy systems with
delays in Zeng et al. (2014); Kwon et al. (2016); Tan
et al. (2018); Lian et al. (2020); Qiu et al. (2021). The
delay-decomposition augmented LKF and the LKF comb-
ing delay-product-type functional were proposed in Zeng
et al. (2014) and Lian et al. (2020), respectively. Sheng
et al. (2021) presented less conservative stability and sta-
bilization conditions with lower computational complexity,
where an symmetric membership-function-dependent LKF
was used. By using Bessel-Legendre integral inequality,

some enhanced results can be found in Datta et al. (2020);
Sadek et al. (2022); Li et al. (2021).

Another is to make more use of the properties of fuzzy
system itself, called the membership-function-dependent
approach. It introduces the membership functions into
the LKFs and adds more decision variables. However,
the derivatives of membership function come into the
LKF derivatives subsequently. To deal with this problem,
analyzing the time derivative of membership function is
necessary. For the cases where the bounds of membership
function derivatives exist and are known, less conservative
global and local stability conditions of T-S fuzzy system
with constant delay are given in Wang and Liu (2018).
Recently, a linear switching method was presented in Wang
and Lam (2018) where a switched LKF was employed
assuming that the switching is in finite time and the
switching rule is dependent on the membership function
derivative. The linear switching method has been improved
in Wang et al. (2022) as polynomial matrix switching.
Recently, combining membership-function-dependent ap-
proach and the improved inequality technique, many re-
sults have been presented in Lian et al. (2020); Zhi et al.
(2021); Sheng et al. (2021); Wang et al. (2022).

Unfortunately, all the papers above exploit the integral
inequality and thus the conservatism of inequality tech-
nique itself limits the superiority of results. Nowadays, one
delay-free compact representation called Partial Integral
Equation (PIE) was proposed for linear delay systems
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in Peet (2020). Using this representation, the LPI-based
conditions for stability and control issue of linear delay
systems are obtained in Peet and Gu (2019); Wu et al.
(2019). Since there are no delay terms on the outside,
commonly used inequality technique and complex matrix
operation were no longer necessary. However, such results
have not been extended to T-S fuzzy systems with delays.

This paper aims to apply the recently proposed PIE rep-
resentation and LPI-based method to T-S fuzzy systems
with delays. Firstly, a class of fuzzy-PIE system is pro-
posed, and its stability is studied using LPI method. Then
we prove this fuzzy-PIE system can be used to equivalently
represent the solutions of a set T-S fuzzy systems with de-
lays. Based on the representation and novel free-weighting
PI operators, LPI-form stability condition for T-S fuzzy
systems with delays is given, which can be solved efficiently
using the MATLAB toolbox PIETOOLS Shivakumar et al.
(2020a). Numerical examples are given to illustrate the
proposed method.

Notations: I denotes the identity matrix with dimension
clear from context. A block-diagonal matrix is denoted
by diag{---}. We use LY[T] to denote the vector-valued
Lesbesque square integrable functions which map 7" — R™.
The space Z,, ,,:=R™x Ly[—1, 0] is an inner-product space
with the inner product defined as

([2]- T <o [ wtsrrotsyas

where x,y € R™ and ¢, ¢ € Ly[—1,0]. The inner product
(,) is in Z,, , space without any special notation and
Ix|| = V/<x,x>,Yx € Zp, . There are actually two
kinds of PI operators given in Shivakumar et al. (2020a),
in this paper, “PI operator” specifically refers to the 4-PI
operator.

2. PRELIMINARIES

The definition of PI operators, PIE system and LPI to-
gether with the properties of PI operators are introduced.
A commonly used lemma in the stability research on T-S
fuzzy system with delays is also given here.

2.1 (4-)PI operator

Partial Integral (PI) operators are an extension of matrices
to infinite-dimensional spaces. The class of PI operators
form an algebra of bounded linear multiplier and integral
operators defined jointly on R™ and Lo.

A (4-)PI operator P : R™ x L%[a,b] — RP x Li[a,b] is in
the form of

<P [QPQ “gil}?:o] {é]) (s) =

and

0
Pz + /71 Q1(s)®(s)ds
Qa() + (Prye, ) @(s)

s

0
Pryyz 8(s) = Ro(s)¢>(8)+/ Rl(s,e)me)dm/ Ra(s,0)6(0)d0

—1
where P : R™ — R%, Q; : [a,b] = RP*™ Qs : [a,b] —
RY*™ Ry : [a,b] — R"™*™ R, : [a,b] X [a,b] — R™*™ for
i=1,2.

Remark 1. This PI operator can represent the most rela-
tions that appears in the time delay systems and partial
differential equations with boundary conditions. It con-
tributes to the creation of PIE representation.

2.2 PIE system

A PIE system is a class of system described by a set
of differential equations that are parameterized by PI
operators. Specifically, we say z € Z,, , solves the PIE
for initial condition zy € Z,, ,, if

Tz(t) = Az(t), z(0) =20 € Znn (1)
where z € R, T and A : Z,, , = Z,, » are PI operators.
The PIE formulation provides a new alternative represen-
tation to a large class of linear infinite dimensional systems
including delay differential formulation (Peet, 2020; Shiv-
akumar et al., 2020b). The stability of a PIE system is
defined as follows.

Definition 1. The PIE system (1) defined by {7, A} is said
to be stable if any solution to the PIE system (1) satisfies
lim;, o || 72| — 0.

2.3 LPI

Linear Partial Integral Inequality (LPI) is an equality
constraint involved with PI operator variables, which is
used to solve a convex feasibility or optimization problem.

For example, if A and P are PI operators, then
ATP+PA<0,

is an LPI. The LPI constraint involves the operations
between PI operator variables, such as addition, adjoint,
composition, and concatenation. A simple declaration is
given here.

For any two PI operators, P; and Ps, we have

a. Py + P> is also a PI operator.
b. P; stands for the adjoint of P; and is also a PI
operator.
c. P1P5 represents the composition of P; and Ps is also
a PI operator.
d. P1(: X - Z2)>=0if Vo € X, (o, P10) > 0.
Remark 2. LPD’s definition is similar to that for Linear
Matrix Inequality (LMI). The operation among the PI
operators such as the addition, adjoint, composition and
verification of the positivity of a LPI do not need any
manual involvement and can be solved directly by MAT-
LAB package PIETOOLS. More calculation details on how
the PIETOOLS works can be found in Shivakumar et al.
(2020a).

2.4 Lemma

Lemma 2. (Wang and Lam, 2018) Suppose there exist a
positive integer v and functions r; satisfying Y ;_, 7;(t) =
1. For matrices X;,i = 1,2,--- ,v, define a matrix function
Xp =Y, ri(t)X;. Then
X, <0

is satisfied if the switched situations are true:

if 7;(¢) > 0, then X; — X, < 0, @

if Tl(t) < 0,then X; — X, <0,

fori=1,---,v—1.
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3. FUZZY-PIE SYSTEM AND ITS STABILITY

This section first defines a class of fuzzy-PIE system, and
investigate the stability issue of the fuzzy-PIE system via
the LPI method.

3.1 Fuzzy-PIE system

Inspired by the T-S fuzzy system model, the fuzzy-PIE
system is put forward as

= ri(t) Ax(t) (3)
i=1

X(O) = Xp € Zm,n
where z € RY, T, A; : Zpy = Zyp,Vi=1,--- v are PI
operators. 7; are fuzzy membership functions with respect
to t satisfying
v
ri(t) >0, ri(t) =1,V (4)

i=1

Before we proceed, inspired by the Definition 1, we first
present the definition of stability for fuzzy-PIE system.
Moreover, Lemma 4 is given here, which will be used in
the following analysis.

Definition 3. The fuzzy-PIE system (3) is defined to be
quadratically stable if from any initial condition xg, the
solution x(t) satisfies

Jim [ Tx()] =0,

for any r; satisfying Eqn (4).
Lemma 4. Suppose there exist PI operators &; : Z,,, ,, —
Zmmp for i = 1,2,--- v, functions r; are with respect
to t satisfying Eqn (4). Define a PI operator X; =
>, ri(t)X;. Then
X, =0

is satisfied if the following situations are true:

if 7(t) <0, then X; — X, = 0, (5)

if Tl(t) > 0, then X; — X, <0,

fori=1,---,v—1.

Proof. Suppose the conditions (5) are satisfied for ¢ =
L,---,v—1and Y . ,7;(t) = 1. Then r;(¢t) and X; satisfy

v
Zn

X,) 20, Y ri(t) =0.
i=1
Further, we get

v—1

Xy = Fi(t)X + 7y (1) X,

i=1
v—1 v—1

=Y F()X =D rb)A,
i=1 i=1
v—1

=> F(t)(X - X,) 20
i=1

This completes the proof.

Remark 3. Lemma 4 is one PI-form version of the Lemma 2.

The switching rules are dependent on the derivative of the
function r;(t) and there exist 27! cases in total. Instead of
using the simple condition that X; < 0 for i =1,2,--- v

to ensure A, < 0, this lemma makes use of the property
of the multiplier function r;(¢) and gets a less conservative
condition without changing the number of the PI operator
variables. For the cases that functions r;(¢) are monotone
changing, i.e., 7;(t) > 0 or 7;(t) < 0 always hold, this
lemma becomes the case without switching.

8.2 LPI-based stability analysis of fuzzy-PIE system

In this subsection, a sufficient LPI-based robust condition
of fuzzy-PIE system (3) is obtained. Inspired by the free-
weighting matrix, the novel free-weighting PI operators
are first introduced into the LPI-form stability condition.
The free-weighting matrix was proposed for linear delay
system in Wu et al. (2004). It is usually used to express the
relationships between terms in Leibniz—Newton formula
and proposed to overcome the conservatism of methods
involving a fixed model transformation. The common
use of free-weighting matrix in the research proves its
effectiveness.

Theorem 5. Suppose there exist bounded PI operators P;
satisfying P; = P; > 0 and any PI operators Mj, My
with the appropriate dimensions satisfying

Pr = Zrl(t)Pl7 ,Ph = Oa
i=1
o — —MIA; — A M, M* (6)
L M T MET +T " MoT
where M = T*P, T — T*M3A; + T*My. T, A; and r;(t)
as defined in system (3) and (4). Then system (3) is stable.

Proof. Define the Lyapunov function as

Vi(x) = (Tx,PrTx) (7)

Since P; are bounded, coercive and 7;(t) € [0, 1], then Py,
is bounded, coercive and there exist positive scalars «, 8

satisfying o [|x||> < V(x) < 8 |x|.
Since the solution x must satisfy Eqn (3), for the free-
weighting-PI operators M and Ms, we get

Ti(G(t))A¢X(t)>

v

>

i=1

MW= <M1x(t) + MoTx(t), Tx(t) —

+ <T>'<(t) —zvj

=0 (8)
Then combined with Eqn (8), differentiating V' (x(t)) gets

r;(0(t))Ax(t), Mix(t) + M2T5{(t)>

v

V() = (Tx(0), BaTx()) + > rilt) (Tx(0), PiT(1))

+Zn 1), PiT(1))
< Zn ), PTX(t)) + (Tx(t), PyT%(£)} + H

o))

Then if Eqn (6) is satisfied, V() < 0 comes true. With
the assumption that the sw1tch1ng times is finite, from the
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Lyapunov theory and Definition 3, we get the system is
stable. This proof is complete.

4. APPLICATION TO THE T-S FUZZY SYSTEMS
WITH DELAYS

This section investigates the stability of a class of T-S fuzzy
systems with constant delays. To apply the LPI-condition
obtained for the fuzzy-PIE system to our case, we will first
represent the T-S fuzzy system with delays in the form
fuzzy-PIE representation (3). Then the LPI-form stability
condition of the T-S fuzzy system with delays is given.

4.1 Problem formulation

Consider the fuzzy system described as the following rules.
Plant rules i: IF 6y is M;; and --- and 6,, is M;,,, THEN

k
x(t) = Aiox(t) + Z Aila:(t — Tl) (9)
=1

where i is a positive integer satisfying 1 < i < v and v
is the number of the IF-THEN rules. M1, Mg ,- -+ , My,
are the fuzzy sets, 01(t),02(t), - , 0, (t) are the previous
variables. z(t) € R™ is the state vector. 4,9 and A;; denote
constant matrices of proper dimensions. 7; are constant
delays for [ =0,1,--- ,k and 7 = max{r, -+ ,7x}.

Define the fuzzy membership function as
4 ei(0(t
b)) = et 00
>ict Hj:l € (05(1))
where 6(t) = [01(t),02(t),---,0,(t)] and €;(0;(t)) > 0

represent the grade of membership of 6;(t) in fuzzy sets
M;;. Then we get

ri(0(t) > O,i:m(ﬁ(t)) — 1,V
i=1

To simplify, we use r;(¢) as an shorthand of 7;(0(t)) in the
following analysis.

(10)

(11)

Using a standard fuzzy inference method (using a singleton
fuzzifier, product fuzzy inference, and weighted average
defuzzifier), the system is expressed as follows

v k
l‘(t) = Z Ti(t) (Azox(t) + Z Ailﬂi(t — Tl)>

i=1 1=1
x(t) = xzo,t € [-7,0] (12)
4.2 An Equivalent Fuzzy-PIE Representation

This part will give the conversion and additionally, prove

the solutions of the system (12) are equivalent to the
converted system (3) with

k
AiIZP A10+E Aila_[Ailx"'vAik] \
=1

0, {H,0,0}
I, o0
T:= P[f,{o,o, 71}}7
j = [Invjna e 7In]T7
—_—————
k

. 1 1
H:= dlag{?l, tee 75} (13)

In Peet (2020), combining Lemma 1 and Lemma 4 proves
non-conservative conversion between linear DDEs and a
PIE form. We extend to the fuzzy system with delay case
as follows.

Lemma 6. Given function 6, positive constants 7,1 =
1,2,--- ,k, and function zy € L%[—7,0] where 7 =
max{Ty,- -, 7k}, the function z satisfies the T-S fuzzy de-
lay system (12) defined by {A;o, Ai1, 71,7} where r; are as
defined in Eqn (10) if and only if x satisfies the fuzzy-PIE
(3) defined by {T,.A;, r;} parameterized by Eqn (13), and

x(t),x¢ are defined as x(t) = [agz((g 5):| X0 = [385(?(5)

where ¢(t,s) = [z(t+ms)T, 2t + TkS)T]T 8 €
[—1,0] and ¢p(s) = [xg, e ,xg]T.

Proof. Let us to prove the sufficiency firstly. Suppose
X, Xg, ¢, ¢o, T, A; and r; are as defined in this Lemma
and x satisfies the fuzzy-PIE (3). From the definition of
PI operators and Fundamental Theorem of Calculus and
boundary conditions, we get
o |E(t)
TX(t) = [@(ﬁ(t,S)] )
k
Ax(p) = | Aoal) + 2 +Aaz(t =)
HO9(t, s)
at¢(t7 5) = H69¢(t7 5)7
T
$(0,5) = [x(m18)T, -, x(mks)T] (14)

Then if x satisfies the fuzzy-PIE (3), the function
satisfies Eqn (12). The sufficiency is proved. The necessity
comes as the sufficiency and is omitted here.

4.8 LPI-based stability condition of the fuzzy delay system

Theorem 7. Given positive constants k,v, 7 for [ =
1,2,--- ,k, function zy € L%[—7,0], and function 6,
suppose there exist matrix P; € R™ ™, matrix P, €
R™ "™ matrix P € R™ ™ matrix-valued polynomials
Qi : [—1,0] — Rnxm’RiO : [—1,0] — Rmxm, R,y €
[-1,0] = R™*™ Ry :[-1,0] = R™*™ Q1 : [-1,0] —
R™ ™ R0 : [—1,0] = R™ ™ R,.q11 : [—1,0] — R™*™,
Ryi2 ¢ [-1,0] x [-1,0] — R™™ Qo : [-1,0] —
R™ ™ Rmao : [—1,0] = R™*™ R0 : [—1,0] — R™*™,
Rino2 : [—1,0] x [-1,0] — R™*™ such that the operator
P = PI:QI?Z{R:O’R?LR:'Z}} satisfying P} = P; > 0 for i =
Ppaj, Qmj .
1,2,---,v and M; = P|:Q3,1jy{ijOaijlvaJ'Z}:|"7 = 1,2,
such that
Pn=Y_ri(t)Pi, Pn=0,
i=1
| =MTA = AT My M*
©; = [ M T MT + T M7 | <0 (15)

fori=1,---,v, where M = T*P;T —T*M5A; +T* My,
m = n-k T,A; and r;(¢t) are as defined in Eqn (10)
and (13). 7;(¢t) satisfies (11). Then the system (12) is
asymptotically stable.
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Proof. For any solution x(t) of the system (12), we

define x(t) = [a%)s)} X0 [855(?(8)]’ Bt 5) =

[2(t +718)T, - a(t+7s)T] and go(s) = [« ,2Z]".

T, A; are as defined in Eqn (13). Then from Lemma 6, x(¢)
satisfies the system (3). Suppose constraints (15) are satis-
fied, from Theorem 5 and Definition 3, the parameterized
system (3) is stable and

T [ Tx(0)] 0.
A simple calculation gives Tx(t) = [(;Et(tl)} and ||z(t)]| <
‘ [ z(t)

o(t 5)] H Hence we get for any xz(t) that satisfies sys-
tem (12),

Jim [l=(t)] 0.

This implies that the system (12) is asymptotically stable.
The proof is complete.

5. NUMERICAL IMPLEMENTATION

In this section, two numerical examples are presented to
prove the competitive performance of our method. The
MATLAB PIETOOLs are used to solve the derived LPI
stability condition.

Example 1 Consider the following nonlinear delayed
system (Wang and Lam, 2019):

i1 () = 0.5 (1 — sin2(0(t))) 22 (t)
—z1 (t—7)— (1+sin®(0(t))) z1(t)

#s(t) = sgn (|t9(t)\ - g) (0.9cos®(0(t)) — 1) 21 (t — 7)
—xa(t —7) — (0.9 + 0.1cos?(0(2))) z2(t).  (16)

where T is a constant delay. This system can be described
by the following two-rule fuzzy model

Rule 1: IF 0(t) is 5, THEN i(t) = Ajz(t)+ Aqx(t—7),
Rule 2: IF 0(t) is 0, THEN &(t) = Asx(t) + Agex(t — 7)
with the membership functions
1 6—291 (t)
nt) =1 om0 = me

-2 0 -1 0
Al:[o —0.9}’ Adl:[—l —1]

—-10.5 -1 0

AQ[ 0 —1}’ Adaz = {0.1 —1']
The stability bound of this system has been widely studied
in Kwon et al. (2016); Zhao et al. (2018); Wang and Lam
(2018) and so on. Using Theorem 7, the maximum delay
bound 7y is 4.1495 under the condition 71(¢) < 0, and
the maximum delay bound 72 is 4.690 under the condition
71(t) > 0. For the case that only one condition exists, for
example, 6(t) =t and then 74 (t) > 0 always holds, we get
Tmaz = To = 4.690.

Suppose both conditions possibly exist for this system, for
example, 0(t) = x1(t) and the sign of 71(¢t) depend on
the state, then we get the maximum delay bound 75, =
min{7, 72} = 4.1495. For this case, different maximum
delay obtained in the existing papers and by Theorem are
listed in Table I. Apparently, using the method in this

—21

0 50 100 150
t/s

Fig. 1. State response for Example 1

paper yields a larger maximum bound. When 7 = 4.1495,
the state response is given as Fig.1, and it shows that the
system is asymptotically stable.

Table 1. The maximum admissible bound 7,
for Example 1

Methods Delay interval
Kwon et al. (2016) 2.5932
Zhao et al. (2018) 3.3116
Wang and Lam (2018) 3.4859
Sheng et al. (2021) 3.6167
Wang et al. (2022) Corollary (q=3) 3.6947
Wang et al. (2022) Theorem™ (q=3) 3.6928
Theorem 7 4.1495

Example 2 Consider the T-S fuzzy system (12) with

_[-2.1 01 _[-1.1 01
A= [—0.2 —0.9] yAar = {—0.8 —0.9]

-19 0 —09 0
Az = {—0.2 —1.1} , Aaz = [—1.1 —1.2} :

For this example, we get by applying Theorem 7, m =
5.9999 for ¥y < 0 and 75 = 7.1376 for 7y > 0. Since the
derivatives are unknown, the final maximum delay bound
which can assure the stability is 7,4, = min{7, 72 }. Table
2 lists the computed upper bounds by our method and
different approaches in An and Wen (2011); Zeng et al.
(2014); Kwon et al. (2016); Zhi et al. (2021); Tan et al.
(2018); Zhang et al. (2021). It shows that our result is less
conservative.

Table 2. The maximum admissible bound 7,
for Example 2

Methods Delay interval
An and Wen (2011)(m=10) 4.41
Zeng et al. (2014)(m=3) 4.37
Kwon et al. (2016) 5.5826
Zhi et al. (2021) 5.5973
Tan et al. (2018) 5.73
Zhang et al. (2021) 5.92
Theorem 7 5.9999

6. CONCLUSION

This paper provides a new approach to stability analysis
of a class of T-S fuzzy systems with delays. A fuzzy-PIE
equation is first proposed, which provides an alternative,
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compact and delay-free representation for T-S fuzzy sys-
tems with delays. By means of the LPI method, a less
conservative LPI-form stability condition for the fuzzy-
PIE system is presented and then applied to the T-S fuzzy
systems with delays. The effectiveness has been shown
through two numerical examples. Future work will extend
the problems of stability and constant delay to control and
time-varying delay case.
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