
IFAC PapersOnLine 55-30 (2022) 97–102

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.11.035

10.1016/j.ifacol.2022.11.035 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Control of Large-Scale Delayed Networks:
DDEs, DDFs and PIEs

Matthew M. Peet ∗, Sachin Shivakumar ∗,

∗ School for the Engineering of Matter, Transport and
Energy, Arizona State University, Tempe, AZ, 85298 USA.

(e-mail: mpeet@asu.edu, sshivak8@asu.edu)

Abstract: Delay-Differential Equations (DDEs) are the most common representation for
systems with delay. However, the DDE representation has limitations. In network models with
delay, the delayed channels are typically low-dimensional and accounting for this heterogeneity
is challenging in the DDE framework. In addition, DDEs cannot be used to model difference
equations. In this paper, we examine alternative representations for networked systems with
delay and provide formulae for conversion between representations. First, we examine the
Differential-Difference (DDF) formulation which allows us to represent the low-dimensional
nature of delayed information. Next, we consider the coupled ODE-PDE framework and
extend this to the recently developed Partial-Integral Equation (PIE) representation. The PIE
framework has the advantage that it allows the H∞-optimal estimation and control problems to
be solved efficiently using the recently developed software package PIETOOLS. In each case, we
consider a very general class of networks, specifically accounting for four sources of delay - state
delay, input delay, output delay, and process delay. Finally, we use a scalable network model
of temperature control to show that the use of the DDF/PIE formulation allows for optimal
control of a network with 40 users, 80 states, 40 delays, 40 inputs, and 40 disturbances.

Keywords: Delay, PDEs, Networked Control

1. INTRODUCTION

Delay-Differential Equations (DDEs) are a convenient
shorthand notation used to represent what is perhaps the
simplest form of spatially-distributed phenomenon - trans-
port. Because of their notational simplicity, it is common
to use DDEs to model very complex systems with multiple
sources of delay - including almost all models of control
over and of “networks”.

To illustrate the DDE framework, consider a swarm of N
Uncrewed Aerial Vehicles (UAVs) over a wireless network.
Each UAV, i, has a state, xi(t) ∈ Rni which represents
displacement from a desired state (the concatenation of
all such states is denoted x). Each UAV has local sensors
which measure yi and this information is transmitted to
a centralized control authority. There is also an input, u,
a regulated output, z, and a vector of disturbances, w -
including both process and sensor noise. We model this
system as follows.
ẋi(t) = aixi(t) +

∑N

j=1
aijxj(t− τ̂ij)

+ b1iw(t− τ̄i) + b2iu(t− hi)

z(t) = C1x(t) +D12u(t)

yi(t) = c2ixi(t− τ̃i) + d21iw(t− τ̃i) (1)

This relatively simple model shows that delayed channels

are often low dimensional (Rni vs. R
∑

ni) and specifies
four separate yet individually significant sources of delay.
Specifically, we have: state delay (τ̂ij); input delay (hi);
process delay (τ̄i); and output delay (τ̃i).

1 This work was supported by the NSF and NIH under grants No.
1935453 and 2054354.

This network is modeled as a DDE - a structure formulated
in Eqns. (2) in Section 2 and applied to this example
problem in Subsection 6.1. If we were to consider control
of such a network, however, we find that while there
are algorithms for control of DDEs, these algorithms are
complex and are memory-limited to a relatively small
number of UAVs (perhaps 4-5). The premise of this paper,
however, is that the limitations of these algorithms are
not caused by inefficient algorithms, but rather the cause
is the failure to account for the low dimensional nature
of the delayed channels. Specifically, we note that in our
UAV model, that while the concatenated state, x(t), is
high-dimensional, the individual delayed channels, xi(t),
are of much lower dimension. If we represent the network
as a DDE using the formulation in Subsection 6.1, then
this low-dimensional nature of the delayed channels is lost.
Furthermore, we note that DDEs cannot represent some
important system designs - See Subsection 3.1.

For these reasons, we consider the use of Differential Differ-
ence Equations (DDFs) in Section 3. The DDF formulation
allows for the representation of delayed information in
heterogeneous low-dimensional channels. Specifically, the
infinite-dimensional component of state-space (as defined
in Gu (2010); Pepe et al. (2008)) in this DDF framework

is then
∏

i L2[−τi, 0]
ni as opposed to

∏
i L2[−τi, 0]

∑
ni ,

which would be the traditional (e.g. Bensoussan et al.
(1993)) infinite-dimensional component of the state-space
in the DDE model of this network. In addition to providing
a more compact notion of state, in Subsection 3.1 DDFs
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will allow us to represent the difference equations which
arise in some network models.

From the DDF model, in Section 4 we briefly turn to the
class of coupled ODE-PDE models. Backstepping meth-
ods have been developed for ODE-PDE models of delay
in Krstic and Smyshlyaev (2008); Zhu et al. (2015) and the
formulae we present in this section for conversion of DDFs
to the ODE-PDE framework may prove useful if the reader
is interested in application or further development of these
backstepping methods. However, the primary reason for
including the ODE-PDE formulation in this manuscript is
that it is relatively easy to convert a coupled ODE-PDE
model to a PIE.

Specifically, in Section 5, we consider the Partial Integral
Equation (PIE) representation of a delayed network. PIE
representations have the advantage that they are defined
by Partial Integral (PI) operators. Unlike Dirac and dif-
ferential operators, PI operators are bounded and form an
algebra. Furthermore, as discussed in Peet. (2021), PIE
models do not require boundary conditions or continuity
constraints - simplifying analysis and optimal control prob-
lems. Indeed, it has been recently shown that many prob-
lems in analysis, optimal estimation and optimal control
of coupled ODE-PDE models can be formulated as opti-
mization over the cone of positive PI operators. Indeed, in
Section 7, we will show that use of the PIE formulation
allows for optimal control of a 40 user, 80-state, 40-delay,
40-input, 40-disturbance network model of temperature
control on a desktop computer with 128GB RAM.

Finally, we note that while subsets of the DDF and ODE-
PDE representations of delay systems can be found in,
e.g. Bensoussan et al. (1993); Hale (1971); Curtain and
Zwart (1995); Gu et al. (2003); Niculescu (2001); Richard
(2003), previous models only considered a subset of the
possible signals and sources of delay.

2. THE DDE REPRESENTATION

A Delay-Differential Equation (DDE) has the form[
ẋ(t)
z(t)
y(t)

]
=

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

][
x(t)
w(t)
u(t)

]
(2)

+

K∑
i=1

[
Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

][
x(t− τi)
w(t− τi)
u(t− τi)

]

+
K∑
i=1

0∫

−τi

[
Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)

][
x(t+ s)
w(t+ s)
u(t+ s)

]
ds

where the signals are defined as:

• The present state x(t) ∈ Rn

• The disturbance or exogenous input, w(t) ∈ Rm

• The controlled input, u(t) ∈ Rp

• The regulated or external output, z(t) ∈ Rq

• The observed or sensed output, y(t) ∈ Rr

For convenience, we combine all sources of delay (state,
input, output, process) into a single set of delays {τi}Ki=1.
In Subsection 6.1, the UAV network is formulated in this
DDE representation.
2.1 Advantages of the DDE Formulation

The DDE formulation is the prima facie modeling tool
for systems with delay and as such is used in almost

all network models. The DDE representation has a clear
and intuitive meaning. Furthermore, most algorithms and
analysis tools are built for this representation. Specifically,
Lyapunov-Krasovskii and Lyapunov-Razumikhin stability
tests are naturally formulated in this framework.

As mentioned in the introduction, however, the DDE
framework does not allow for the representation of dif-
ference equations and does not allow us to identify which
of the states and inputs are delayed by which amount. For
this reason, we consider next the DDF representation.

3. THE DDF REPRESENTATION

A generalization of the DDE formulation is the Differential-
Difference (DDF) representation. Simplified versions of
this formulation were previously considered in, e.g. Gu
(2010); Pepe et al. (2008). In addition to the signals consid-
ered in the DDE representation, the DDF representation
adds the following.

• The items stored in the signal ri(t) ∈ Rpi are the
parts of x(t), w(t), u(t), v(t) which can be delayed
by amount τi. The signals ri may be considered the
infinite-dimensional parts of the system.

• The “output” signal v(t) ∈ Rnv extracts informa-
tion from the infinite-dimensional signals ri and dis-
tributes this information to the state, sensed output,
and regulated output. This information can also be
re-delayed by feeding back directly into the ri.

The governing equations may now be represented in the
more compact form of Eqns. (3).

ẋ(t) = A0x(t) +B1w(t) +B2u(t) +Bvv(t) (3)

z(t) = C10x(t) +D11w(t) +D12u(t) +D1vv(t)

y(t) = C20x(t) +D21w(t) +D22u(t) +D2vv(t)

ri(t) = Crix(t) +Br1iw(t) +Br2iu(t) +Drviv(t)

v(t) =
K∑
i=1

Cviri(t− τi) +

K∑
i=1

∫ 0

−τi

Cvdi(s)ri(t+ s)ds

Although Eqns. (3) are more compact, they are signifi-
cantly more general than the DDE in (2). Specifically, if
we define the conversion formula

Drvi = 0, Bv = [In 0 0] , D1v = [0 Iq 0] , D2v = [0 0 Ir]

Cri =

[
In
0
0

]
, Br1i =

[
0
Im
0

]
, Br2i =

[
0
0
Ip

]
,

Cvi=

[
Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

]
, Cvdi=

[
Adi B1di B2di

C1di D11di D12di

C2di D21di D22di

]
, (4)

then the solution to the DDF is also a solution to the DDE
and vice-versa.

Lemma 1. Suppose u, w, x, y, and z satisfy Eqn. (2). If
Cvi, Cvdi, Cri, Br1i , Br1i, Drvi, Bv, D1v, and D2v are as
defined in Eqns. (4), then u, w, x, y, and z also satisfy

Eqns. (3) with ri(t) =
[
x(t)T w(t)T u(t)T

]T
.

Lemma 2. Suppose u, w, x, y, ri and z satisfy Eqns. (3)
where Cvi, Cvdi, Cri, Br1i , Br1i, Drvi, Bv, D1v, and D2v

are as defined in Eqns. (4). Then u, w, x, y, and z also
satisfy Eqn. (2).

It is not possible, in general, to convert a DDF to a DDE
as the class of DDFs is more general than the DDEs.
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will allow us to represent the difference equations which
arise in some network models.

From the DDF model, in Section 4 we briefly turn to the
class of coupled ODE-PDE models. Backstepping meth-
ods have been developed for ODE-PDE models of delay
in Krstic and Smyshlyaev (2008); Zhu et al. (2015) and the
formulae we present in this section for conversion of DDFs
to the ODE-PDE framework may prove useful if the reader
is interested in application or further development of these
backstepping methods. However, the primary reason for
including the ODE-PDE formulation in this manuscript is
that it is relatively easy to convert a coupled ODE-PDE
model to a PIE.

Specifically, in Section 5, we consider the Partial Integral
Equation (PIE) representation of a delayed network. PIE
representations have the advantage that they are defined
by Partial Integral (PI) operators. Unlike Dirac and dif-
ferential operators, PI operators are bounded and form an
algebra. Furthermore, as discussed in Peet. (2021), PIE
models do not require boundary conditions or continuity
constraints - simplifying analysis and optimal control prob-
lems. Indeed, it has been recently shown that many prob-
lems in analysis, optimal estimation and optimal control
of coupled ODE-PDE models can be formulated as opti-
mization over the cone of positive PI operators. Indeed, in
Section 7, we will show that use of the PIE formulation
allows for optimal control of a 40 user, 80-state, 40-delay,
40-input, 40-disturbance network model of temperature
control on a desktop computer with 128GB RAM.

Finally, we note that while subsets of the DDF and ODE-
PDE representations of delay systems can be found in,
e.g. Bensoussan et al. (1993); Hale (1971); Curtain and
Zwart (1995); Gu et al. (2003); Niculescu (2001); Richard
(2003), previous models only considered a subset of the
possible signals and sources of delay.

2. THE DDE REPRESENTATION

A Delay-Differential Equation (DDE) has the form[
ẋ(t)
z(t)
y(t)

]
=

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

][
x(t)
w(t)
u(t)

]
(2)

+

K∑
i=1

[
Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

][
x(t− τi)
w(t− τi)
u(t− τi)

]

+
K∑
i=1

0∫

−τi

[
Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)

][
x(t+ s)
w(t+ s)
u(t+ s)

]
ds

where the signals are defined as:

• The present state x(t) ∈ Rn

• The disturbance or exogenous input, w(t) ∈ Rm

• The controlled input, u(t) ∈ Rp

• The regulated or external output, z(t) ∈ Rq

• The observed or sensed output, y(t) ∈ Rr

For convenience, we combine all sources of delay (state,
input, output, process) into a single set of delays {τi}Ki=1.
In Subsection 6.1, the UAV network is formulated in this
DDE representation.
2.1 Advantages of the DDE Formulation

The DDE formulation is the prima facie modeling tool
for systems with delay and as such is used in almost

all network models. The DDE representation has a clear
and intuitive meaning. Furthermore, most algorithms and
analysis tools are built for this representation. Specifically,
Lyapunov-Krasovskii and Lyapunov-Razumikhin stability
tests are naturally formulated in this framework.

As mentioned in the introduction, however, the DDE
framework does not allow for the representation of dif-
ference equations and does not allow us to identify which
of the states and inputs are delayed by which amount. For
this reason, we consider next the DDF representation.

3. THE DDF REPRESENTATION

A generalization of the DDE formulation is the Differential-
Difference (DDF) representation. Simplified versions of
this formulation were previously considered in, e.g. Gu
(2010); Pepe et al. (2008). In addition to the signals consid-
ered in the DDE representation, the DDF representation
adds the following.

• The items stored in the signal ri(t) ∈ Rpi are the
parts of x(t), w(t), u(t), v(t) which can be delayed
by amount τi. The signals ri may be considered the
infinite-dimensional parts of the system.

• The “output” signal v(t) ∈ Rnv extracts informa-
tion from the infinite-dimensional signals ri and dis-
tributes this information to the state, sensed output,
and regulated output. This information can also be
re-delayed by feeding back directly into the ri.

The governing equations may now be represented in the
more compact form of Eqns. (3).

ẋ(t) = A0x(t) +B1w(t) +B2u(t) +Bvv(t) (3)

z(t) = C10x(t) +D11w(t) +D12u(t) +D1vv(t)

y(t) = C20x(t) +D21w(t) +D22u(t) +D2vv(t)

ri(t) = Crix(t) +Br1iw(t) +Br2iu(t) +Drviv(t)

v(t) =
K∑
i=1

Cviri(t− τi) +

K∑
i=1

∫ 0

−τi

Cvdi(s)ri(t+ s)ds

Although Eqns. (3) are more compact, they are signifi-
cantly more general than the DDE in (2). Specifically, if
we define the conversion formula

Drvi = 0, Bv = [In 0 0] , D1v = [0 Iq 0] , D2v = [0 0 Ir]

Cri =

[
In
0
0

]
, Br1i =

[
0
Im
0

]
, Br2i =

[
0
0
Ip

]
,

Cvi=

[
Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

]
, Cvdi=

[
Adi B1di B2di

C1di D11di D12di

C2di D21di D22di

]
, (4)

then the solution to the DDF is also a solution to the DDE
and vice-versa.

Lemma 1. Suppose u, w, x, y, and z satisfy Eqn. (2). If
Cvi, Cvdi, Cri, Br1i , Br1i, Drvi, Bv, D1v, and D2v are as
defined in Eqns. (4), then u, w, x, y, and z also satisfy

Eqns. (3) with ri(t) =
[
x(t)T w(t)T u(t)T

]T
.

Lemma 2. Suppose u, w, x, y, ri and z satisfy Eqns. (3)
where Cvi, Cvdi, Cri, Br1i , Br1i, Drvi, Bv, D1v, and D2v

are as defined in Eqns. (4). Then u, w, x, y, and z also
satisfy Eqn. (2).

It is not possible, in general, to convert a DDF to a DDE
as the class of DDFs is more general than the DDEs.

3.1 Advantages of the DDF Representation

The first advantage of the DDF representation is that it
is more general than the DDE representation in that it
may include difference equations (which are incompatible
with the DDE framework). To illustrate, suppose we set
all matrices to zero except Drvi and Cvi. Then we have
the following set of difference equations

ri(t) =
K

j=1
DrviCvjrj(t− τj) i = 1, · · · ,K.

The second advantage of the DDF representation occurs
when the delayed channels only include subsets of the
state. For example, if the matrices Ai have low rank
(ignoring input and disturbance delay), then Ai = ÃiÂi

for some Âi, Ãi where Âi ∈ Rli×n with li < n and we
may choose Cvi = Ãi and Cri = Ai. The dimension
of ri(t) now becomes Rli . This decomposition may be
used to reduce complexity in the DDF formulation if
li < n. This reduction is illustrated in detail using the
UAV network model in Subsection 6.2 and the temperature
control network in Section 7.

A disadvantage of the DDF formulation is that fewer tools
are available for systems in this representation. This is
partially due to the fact that the class of DDFs is larger
than the DDEs and thus the tools must be more general.
However, we do note that versions of both the Lyapunov-
Krasovskii (Gu (2010)) and Lyapunov-Razumikhin (Zhang
and Chen (1998)) stability tests have been formulated in
the DDF framework.

4. THE COUPLED ODE-PDE REPRESENTATION

Before proceeding to the PIE representation, we briefly
consider the coupled ODE-PDE representation. Use of
the DDF formulation facilitiates conversion to the ODE-
PDE formulation in that the inputs and outputs to the
infinite-dimensional channels have already been identified.
Conversion of a DDF to an ODE-PDE can be done directly
as follows, where the matrices in the ODE-PDE model are
the same ones used to define the DDF.

ẋ(t) = A0x(t) +B1w(t) +B2u(t) +Bvv(t) (5)

z(t) = C10x(t) +D11w(t) +D12u(t) +D1vv(t)

y(t) = C20x(t) +D21w(t) +D22u(t) +D2vv(t)

ϕ̇i(t, s) =
1

τi
ϕi,s(t, s)

ϕi(t, 0) = Crix(t) +Br1iw(t) +Br2iu(t) +Drviv(t)

v(t) =
K
i=1

Cviϕi(t,−1) +

K
i=1

 0

−1

τiCvdi(τis)ϕi(t, s)ds

In Eqns. (5), the infinite-dimensional part of the state is
clearly defined as ϕi - which represents a pipe through
which information is flowing. This representation pre-
sented here is somewhat atypical, however, in that we have
scaled all the pipes to have unit length and accelerated or
decelerated flow through the pipes according to the desired
delay. Clearly, solutions to Eqns. (5) and Eqns. (3) are
equivalent, as in the following lemma.

Lemma 3. Suppose u, w, x, ri, v, y, and z satisfy Eqns. (3).
Then u, w, x, v, y, and z also satisfy Eqns. (5) with

ϕi(t, s) = ri(t+ τis).

Similarly, if u, w, x, v, y, ϕi and z satisfy Eqns. (5), then
u, w, x, v, y, and z satisfy Eqns. (3) with ri(t) = ϕi(t, 0).

5. THE PIE REPRESENTATION

A Partial Integral Equation (PIE) has the form

T ẋ(t) + BT1
ẇ(t) + BT2

u̇(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t) +D22u(t), (6)

where the operators T ,A,Bi, Ci,Dij are Partial Integral
(PI) operators and have the form


P


P, Q1

Q2,{Ri}

 
x
Φ


(s) :=


Px+

 0

−1

Q1(s)Φ(s)ds

Q2(s)x+
�
P{Ri}Φ


(s)




where�
P{Ri}Φ


(s) :=

R0(s)Φ(s) +

 s

−1

R1(s, θ)Φ(θ)dθ +

 0

s

R2(s, θ)Φ(θ)dθ.

Heretofore, we have shown that the DDE is a special
case of the DDF, which is equivalent to a coupled ODE-
PDE, where coupling occurs at the boundary. Given a
coupled ODE-PDE representation, it is relatively straight-
forward to convert to a PIE by defining the operators
T ,A,Bi, Ci,Dij for which solutions to Eqns. (6) also define
solutions to Eqns. (3) and Eqns. (5). Specifically, these
operators are defined in Eqns. (7)

Lemma 4. Suppose u, w, x, ϕi, v, y, and z satisfy
Eqns. (5). Then u, w, y, and z also satisfy Eqns. (6) with
T ,A,Bi, Ci,Dij as defined in (7) and

x(t) :=




x(t)
ϕ1,s(t, ·)

...
ϕK,s(t, ·)


 .

Lemma 5. Suppose u, w, y, x and z satisfy Eqns. (6) with
T ,A,Bi, Ci,Dij as defined in (7). Then u, w, y, and z
satisfy Eqns. (5) with




x(t)
ϕ1(t, ·)

...
ϕK(t, ·)


 = T x(t) + BT1w(t) + BT2u(t).

Note that when Drvi = 0, DI = I.

Proof. See Peet (2020b) at Arxiv for the proof.

5.1 Advantages of the PIE Representation

The structure of the PIE representation is inherited from
the DDF and ODE-PDE representations and can thus be
used to represent low-dimensional delay channels. How-
ever, the primary benefit of using the PIE representation
is computational. First, PIE representations contain no
implicit dynamics. In the DDE formulation, there is an
implicit relationship between x(t) and x(t − τi) which is
typically leveraged through integration by parts or some
other analysis tool. This implicit constraint extends to the
DDF representation, although in this case, it is confined
to the definition of the vector v(t). In the ODE-PDE
representation, the implicit dynamics are defined by the
boundary condition and differentiability of the infinite-
dimensional state, ϕ. Such implicit constraints are often
represented in a compact form as the “domain of the
infinitesimal generator”. By contrast, in the PIE represen-
tation, the state is ϕs which is assumed to be in L2 but is
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A = P

A0, A

0, {Iτ , 0, 0}


, T = P


I, 0

T0,{0,Ta,Tb}


, BT1 = P


0, ∅
T1,{∅}


, BT2 = P


0, ∅
T2,{∅}


,

B1 = P

B1, ∅
0, {∅}


, B2 = P


B2, ∅
0, {∅}


, C1 = P


C10,C11

∅, {∅}


, C2 = P


C20,C21

∅, {∅}


, Dij = P


Dij , ∅
∅, {∅}


(7)

where

Ĉvi = Cvi +

 0

−1

τiCvdi(τis)ds, DI =


Inv −


K
i=1

ĈviDrvi

−1

, CIi(s) = −DI


Cvi + τi

 s

−1

Cvdi(τiη)dη



[T0 T1 T2] =



Cr1 Br11 Br21

...
...

...
CrK Br1K Br2K


+



Drv1

...
DrvK


 [Cvx Dvw Dvu] , [Cvx Dvw Dvu] = DI

K
i=1

Ĉvi [Cri Br1i Br2i]

Ta(s, θ) =



Drv1

...
DrvK


 [CI1(θ) · · · CIK(θ)] , Tb(s, θ) = −I

i
pi

+Ta(s, θ), Iτ =




1

τ1
Ip1

. . .
1

τK
IpK



,


A(s)
C11(s)
C21(s)


=


Bv

D1v

D2v


[CI1(s) · · · CIK(s)] ,


A0 B1 B2

C10 D11 D12

C20 D21 D22


=


A0 B1 B2

C10 D11 D12

C20 D21 D22


+


Bv

D1v

D2v


[Cvx Dvw Dvu] . (8)

otherwise unconstrained. As a result, the PIE representa-
tion is well-suited for computation. Furthermore, the rep-
resentation is defined using the algebra of Partial Integral
(PI) operators. If we define the sub-algebra of PI operators
parameterized by polynomials, then the software package
PIETOOLS described in Shivakumar et al. (2020a) allows
for: manipulation of PI operators as a class object; decla-
ration of PI operator variables; enforcement of PI operator
positivity constraints; and solution of convex optimization
problems defined by linear operator inequality constraints.
For a more extensive discussion of the optimization of PI
operators and their use in analysis and optimal estimation
and control of infinite dimensional systems, we refer to
the PIETOOLS manual in Shivakumar et al. (2021) or
any of the recent papers on analysis and control in the
PIE framework - e.g. Shivakumar et al. (2020b); Wu et al.
(2019). Without embarking on an exhaustive discussion of
these results, we note that the consensus seems to be that
analysis and control in the PIE framework is possible when
the distributed-parameter part of the state is in LN

2 where
N ≤ 50.

We also briefly note some disadvantages of the PIE frame-
work. The disadvantage is primarily due to the LHS of
Eqn. (6) which is of the form

T ẋ(t) + BT1ẇ(t) + BT2 u̇(t).

The presence of u̇ in the LHS can be eliminated if the
feedback controller is of the form u(t) = Kx(t). However,
if we have process delay (τ̄i), then BT1

̸= 0 and hence ẇ
appears in the equation. Accounting for the relationship
between w and ẇ is an unsolved problem in the analysis
and control of systems in the PIE representation.

6. MODELING OF A NETWORK OF UAVS

To illustrate some of the differences between the DDE,
DDF and PIE representations, we again consider control
of a network of UAVs. In this section, we focus on the
DDE and DDF representations, as the state dimension
in the PIE formulation is inherited from the DDF and
conversion is straightforward using the formulae provided.
For simplicity, we initially ignore the state delays gov-
erning interactions between UAVs. Furthermore, we map
the process, input, and output delays to a common set of

delays, {τj}3Nj=1 where we identify the index for the process
delay for state xi as τi, the index for input delay in state
xi as τN+i, and the index of the output delay from state
xi as τ2N+i. The process noise is dimension w(t) ∈ Rm,
the input is dimension u(t) ∈ Rp, all states are dimension
xi(t) ∈ Rn and the outputs are all dimension yi(t) ∈ Rr.
In this case, we re-write the network as in Eqns. (1):

ẋi(t) = aixi(t) +
N

j=1
aijxj(t)

+ b1iw(t− τi) + b2iu(t− τN+i)

z(t) = C1x(t) +D12u(t)

yi(t) = c2ixi(t− τ2N+i) + d21iw(t− τ2N+i).
6.1 DDE Representation

To model this network as a DDE, we consider Eqn. (2)
where K = 3N for a given C10 and D12. First, we define
A0 blockwise as

[A0]ij =


ai, i = j

aij otherwise
and define the following matrices blockwise for i =
1, · · · , N as

B1,i = ei ⊗ b1i, B2,N+i = ei ⊗ b2i,

C2,2N+i = ei ⊗ c2i, D21,2N+i = ei ⊗ d2i.

All other undefined matrices in Eqn. (2) are 0. The DDE
representation of the network has the obvious disadvantage
that there are 3N delays and each delayed channel contains
all states and inputs - yielding an aggregate delayed
channel of size R3N(nN+m+p).

6.2 DDF Representation

To efficiently model the network model as a DDF, we
retain the matrix A0 from the DDE model in Subsec. 6.1,
set C1 = C10 and leave D12 unchanged. First, we define
the vectors ri(t) and v(t) using Br1i, Br2i,Cri, Cvi, Bv,
and B2v (all other matrices are 0). The first 3 sets of
matrices are defined for i = 1, · · · , N as Br1,i = b1i,
Br1,2N+i = d21i, Br2,N+i = b2i, and Cr,2N+i = c2i. We
presume the UAV state dimensions (n) are less than the
size of the aggregate input (m) and disturbance vectors (p)
(i.e. n < m and n < p). In this case it is preferable to delay
only the part of the input and disturbance signals which
affects each UAV. We now have the following definition for
ri for i = 1, · · · , 3N .
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A = P

A0, A

0, {Iτ , 0, 0}


, T = P


I, 0

T0,{0,Ta,Tb}


, BT1 = P


0, ∅
T1,{∅}


, BT2 = P


0, ∅
T2,{∅}


,

B1 = P

B1, ∅
0, {∅}


, B2 = P


B2, ∅
0, {∅}


, C1 = P


C10,C11

∅, {∅}


, C2 = P


C20,C21

∅, {∅}


, Dij = P


Dij , ∅
∅, {∅}


(7)

where

Ĉvi = Cvi +

 0

−1

τiCvdi(τis)ds, DI =


Inv −


K
i=1

ĈviDrvi

−1

, CIi(s) = −DI


Cvi + τi

 s

−1

Cvdi(τiη)dη



[T0 T1 T2] =



Cr1 Br11 Br21

...
...

...
CrK Br1K Br2K


+



Drv1

...
DrvK


 [Cvx Dvw Dvu] , [Cvx Dvw Dvu] = DI

K
i=1

Ĉvi [Cri Br1i Br2i]

Ta(s, θ) =



Drv1

...
DrvK


 [CI1(θ) · · · CIK(θ)] , Tb(s, θ) = −I

i
pi

+Ta(s, θ), Iτ =




1

τ1
Ip1

. . .
1

τK
IpK



,


A(s)
C11(s)
C21(s)


=


Bv

D1v

D2v


[CI1(s) · · · CIK(s)] ,


A0 B1 B2

C10 D11 D12

C20 D21 D22


=


A0 B1 B2

C10 D11 D12

C20 D21 D22


+


Bv

D1v

D2v


[Cvx Dvw Dvu] . (8)

otherwise unconstrained. As a result, the PIE representa-
tion is well-suited for computation. Furthermore, the rep-
resentation is defined using the algebra of Partial Integral
(PI) operators. If we define the sub-algebra of PI operators
parameterized by polynomials, then the software package
PIETOOLS described in Shivakumar et al. (2020a) allows
for: manipulation of PI operators as a class object; decla-
ration of PI operator variables; enforcement of PI operator
positivity constraints; and solution of convex optimization
problems defined by linear operator inequality constraints.
For a more extensive discussion of the optimization of PI
operators and their use in analysis and optimal estimation
and control of infinite dimensional systems, we refer to
the PIETOOLS manual in Shivakumar et al. (2021) or
any of the recent papers on analysis and control in the
PIE framework - e.g. Shivakumar et al. (2020b); Wu et al.
(2019). Without embarking on an exhaustive discussion of
these results, we note that the consensus seems to be that
analysis and control in the PIE framework is possible when
the distributed-parameter part of the state is in LN

2 where
N ≤ 50.

We also briefly note some disadvantages of the PIE frame-
work. The disadvantage is primarily due to the LHS of
Eqn. (6) which is of the form

T ẋ(t) + BT1ẇ(t) + BT2 u̇(t).

The presence of u̇ in the LHS can be eliminated if the
feedback controller is of the form u(t) = Kx(t). However,
if we have process delay (τ̄i), then BT1

̸= 0 and hence ẇ
appears in the equation. Accounting for the relationship
between w and ẇ is an unsolved problem in the analysis
and control of systems in the PIE representation.

6. MODELING OF A NETWORK OF UAVS

To illustrate some of the differences between the DDE,
DDF and PIE representations, we again consider control
of a network of UAVs. In this section, we focus on the
DDE and DDF representations, as the state dimension
in the PIE formulation is inherited from the DDF and
conversion is straightforward using the formulae provided.
For simplicity, we initially ignore the state delays gov-
erning interactions between UAVs. Furthermore, we map
the process, input, and output delays to a common set of

delays, {τj}3Nj=1 where we identify the index for the process
delay for state xi as τi, the index for input delay in state
xi as τN+i, and the index of the output delay from state
xi as τ2N+i. The process noise is dimension w(t) ∈ Rm,
the input is dimension u(t) ∈ Rp, all states are dimension
xi(t) ∈ Rn and the outputs are all dimension yi(t) ∈ Rr.
In this case, we re-write the network as in Eqns. (1):

ẋi(t) = aixi(t) +
N

j=1
aijxj(t)

+ b1iw(t− τi) + b2iu(t− τN+i)

z(t) = C1x(t) +D12u(t)

yi(t) = c2ixi(t− τ2N+i) + d21iw(t− τ2N+i).
6.1 DDE Representation

To model this network as a DDE, we consider Eqn. (2)
where K = 3N for a given C10 and D12. First, we define
A0 blockwise as

[A0]ij =


ai, i = j

aij otherwise
and define the following matrices blockwise for i =
1, · · · , N as

B1,i = ei ⊗ b1i, B2,N+i = ei ⊗ b2i,

C2,2N+i = ei ⊗ c2i, D21,2N+i = ei ⊗ d2i.

All other undefined matrices in Eqn. (2) are 0. The DDE
representation of the network has the obvious disadvantage
that there are 3N delays and each delayed channel contains
all states and inputs - yielding an aggregate delayed
channel of size R3N(nN+m+p).

6.2 DDF Representation

To efficiently model the network model as a DDF, we
retain the matrix A0 from the DDE model in Subsec. 6.1,
set C1 = C10 and leave D12 unchanged. First, we define
the vectors ri(t) and v(t) using Br1i, Br2i,Cri, Cvi, Bv,
and B2v (all other matrices are 0). The first 3 sets of
matrices are defined for i = 1, · · · , N as Br1,i = b1i,
Br1,2N+i = d21i, Br2,N+i = b2i, and Cr,2N+i = c2i. We
presume the UAV state dimensions (n) are less than the
size of the aggregate input (m) and disturbance vectors (p)
(i.e. n < m and n < p). In this case it is preferable to delay
only the part of the input and disturbance signals which
affects each UAV. We now have the following definition for
ri for i = 1, · · · , 3N .

ri(t) =


b1iw(t) i ∈ [1, N ]

b2,i−Nu(t) i ∈ [N + 1, 2N ]

c2,i−2Nxi−2N (t) + d21,i−2Nw(t) i ∈ [2N + 1, 3N ].

Next, we construct output v(t) by defining Cvi for i =
1, · · · , 3N as Cvi = ei ⊗ Ipi

which yields

v(t) =

r1(t− τ1)

T · · · r3N (t− τ3N )T
T

.

Finally, we feed v(t) back into the dynamics using

Bv = [I · · · I I · · · I 0] , D2v = [0 · · · 0 0 · · · 0 I] ,

which recovers the network model.

6.3 Complexity Analysis

Notice that in the DDFmodel, each delay increases the size
of r(t). Specifically: each process delay add n states; each
input delay adds n states; and each output delay adds r
states. The resulting size of the infinite-dimensional part of
the state is then (2n+r)N . Assuming that optimal control
and estimation problems are tractable when the number
of infinite-dimensional states is less than 50, we may infer
something about the relative merits of the DDF vs. DDE
representations for control purposes. First, we note that
if we had used the naive conversion in Section 3, this
dimension would be much larger - (m+ p+ r)(3N) where
recall we assume m, p > n. This type of representation
would then reduce the number of controllable UAVs by at
least 1/3 and probably much more. Second, if n = r = 1,
then it is possible to control 17 UAVs. However, if we had
used the naive representation or the DDE formulation (and
assuming only a single shared disturbance and input), we
would only be able to control at most 5 or 6 UAVs. This
number would be further reduced if each UAV has its own
input and disturbance (a likely scenario).

7. CONTROL OF A LARGE NETWORK
7.1 The Temperature Network Model

To illustrate the computational advantages of the DDF
and PIE frameworks, we use the scalable network model
in Peet (2020a). This is a problem in hotel management
with a centralized hot-water source and multiple show-
ering customers. Specifically, consider a user attempting
to achieve a desired shower temperature by adjusting a
hot-water tap. The model assumes user i will adjust their
tap position (T1i(t)) at a rate proportional to the dif-
ference between current temperature (T2i(t)) and desired
temperature (wi(t)) and with constant of proportionality
αi. When multiple users are present and available hot
water pressure is finite, the actions of each user will affect
the temperature of all other users. This is modeled using
γij , which represents the fractional reduction of user i’s
hot water pressure caused by an increase in hot water
consumption by user j. There is also a large transport
delay caused by flow of hot water from the source to
the showerhead of user i, τi. Next, we add a centralized
tracking control system which senses both tap position
and water temperature. However, this controller can not
sense the desired water temperatures, wi(t) - which is thus
modeled as a disturbance. The regulated output is sum
of the tap actions of all users: T1i and the sum of the
centralized interventions, ui. Obviously, we do not wish to
regulate actual water temperature, T2i as this would result
in cold showers.

Ṫ1i(t) = T2i(t)− wi(t) (9)

Ṫ2i(t) = −αi (T2i(t− τi)− wi(t))

+


j ̸=i
γijαj (T2j(t− τj)− wj(t)) + ui(t)

z(t) =
N

i=1
T1i(t) .1

N

i=1
ui(t)

T
.

For a scalable instance of this problem with N users, we
may choose αi = 1, γij = 1/N , τi = i, and wi(t) = N .
We find that for these values, the optimal closed-loop gain
from disturbance to regulated output remains in the range
of .35− .4, irrespective of the number of users.

DDE Formulation of the problem Aggregating these
dynamics as in Eqn. (2), we have the state vector

x(t) = [T11(t) · · · T1N (t) T21(t) · · · T2N (t)]
T

and the defining matrices as follows.

A0 =


0N×N I
0N×N 0N×N


, Ai =


0N×N 0N×N

0N×N Âi



Âi = Γ ∗ diag(ei) = Γ ∗ diag([01×i−1 1 01×N−i])

B1 =


−IN
−Γ


, B2 =


0N×N

IN



[Γ]ij =


γijαj i ̸= j

−αi i = j
i, j = 1, · · · , N

C1 =


1T
N 01×N

01×N 01×N


, D11 = [02×N ] , D12 =


01×N

.11T
N



where 1N is the length-N vector of all ones. In this
formulation, we have 2N states, N disturbances, N inputs,
2 regulated outputs and N delays. In Peet (2020a), this
meant we were limited to approximately 4 users - implying
2N ∗ N = 32 infinite-dimensional channels. As will be
seen, in the DDF formulation, these algorithms are able
to handle optimal control with 40 users.

DDF Formulation of the problem In the DDF formu-
lation, x(t) is unchanged. However, we now define the
delayed channels as

ri(t) = [01×N+i−1 1 01×N−i]x(t) = T2i(t).

This is done by defining Cri, Br1i, Br2i and Drvi as

Cri = [01×N+i−1 1 01×N−i]

Br1i = 01×N Br2i = 01×N Drvi = 01×N .

We would like the output of the delayed channels to be
the delayed states as

v(t) = [T21(t− τ1) · · · T2N (t− τN )]
T
.

This is accomplished by defining

Cvi = ei = [01×i−1 1 01×N−i]
T
, Cvdi = 02×N .

Finally, we retain A0, B1, B2, C1, C2, D11, D12 from the
DDE formulation, and use Bv and D1v to model how the
delayed terms affect the state dynamics and output signal.

Bv =


0N×N

Γ


, D1v = 0

7.2 Implementation and Numerical Results

For this analysis, we used the PIETOOLS DDF toolbox,
which may be executed directly on CodeOcean at Peet
(2020c). This toolbox converts a DDF representation to
a PIE representation and may also be used to convert
a DDE to a DDF, if desired. Once in PIE formulation,
H∞-optimal controller synthesis is performed using the
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# of users 1 3 5 10 20 30 40

IPM CPU sec .48 .638 2.42 94.7 5455 35620 157200

Table 1. CPU sec indexed by # of users (N)

PIETOOLS toolbox as described in Shivakumar et al.
(2020a). The Linear Operator Inequality (LOI) for H∞-
optimal controller synthesis for PIEs is as given in Shiv-
akumar et al. (2020b). This LOI is defined as follows.

Theorem 6. (Shivakumar et al. (2020b)). Suppose BT1 =
BT2 = 0 and there exist bounded linear operators P :
Ln
2 [a, b] → Ln

2 [a, b] and Z : Ln
2 [a, b] → R, such that P is

coercive and[−γI D∗
11 (PC∗

1 + Z∗D∗
12)

(·)∗ −γI B1

(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

]
≺ 0. (10)

Then P−1 is a bounded and coercive linear operator on
L2 and if u(t) = ZP−1x(t), for any w ∈ L2, any solution
of (6) satisfies ∥z∥L2

≤ γ ∥w∥L2
.

All numerical tests were performed on a desktop computer
with 128GB RAM and a 3 GHz intel processor. CPU
seconds indicates time for the interior-point calculations
determined by the SDP solver Sedumi. In this run, the
PIETOOLS extreme performance option was used to de-
crease computation times and reduce memory usage. The
computation times, indexed by number of users, are listed
in Table 1. Numerically, we observe that the controller
synthesis problem is tractable up to 40 users. Recall that
for 40 users, we have 80 states, 40 inputs, 40 disturbances
and 40 delays. In Peet (2020a), for the same problem with
the DDE framework, control was memory limited to 4
users.

8. CONCLUSION

This paper summarizes four possible representations
for systems with delay: the Delay-Differential Equation
(DDE) form; the Differential-Difference (DDF) form; the
ODE-PDE form; and the Partial-Integral Equation (PIE)
form. Formulae are given for conversion between these
representations. We have shown that some networks can-
not be modeled in the DDE formulation and, using an
example of a network of UAVs, that careful choice of
representation can significantly reduce the complexity of
the underlying analysis and control problems. Using a
scalable network model of temperature control, we have
shown that formulation in the DDF/PIE framework allows
for optimal control of up to 40 users with an aggregate
80 states, 40 inputs, 40 disturbances and 40 delays on a
desktop computer with 128GB RAM, while formulation in
the DDE framework (or inefficient conversion to the DDF
framework) only allows for control of 4 users.
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