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Abstract Dynamical analysis of manufacturing and
natural systems provides critical information about pro-
duction of manufactured and natural resources, respec-
tively. Current dynamic models for full industrial pro-
cess plants exist as highly accurate first-principle rela-
tionships. However, their integration is computation-
ally intensive and provides no simplified understand-
ing of the underlying mechanisms driving the overall
dynamics. Similarly, for natural systems, most dynam-
ical models are first principle based, with high data
requirements and low state accuracy. Consequently,
lower-order models that may sacrifice accuracy for sim-
plicity and ease of training can prove useful. Yet, there
have been few attempts at finding low-order models of
chemical manufacturing processes and natural systems,
with work focusing on modeling individual mecha-
nisms. We seek to fill this research gap by using a
machine learning (ML) approach, SINDy, validated on
a soybean-diesel process plant and watershed system.
This ML method combines sparse, grey-box modeling
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with additional nonlinear optimization to identify gov-
erning dynamics as ODEs. We find a linear ODE model
for the process plant that gives an accurate relation
between input and output and selected internal molar
flow rates reflective of underlying linear stoichiometric
mechanisms and an internal mass balance. For the nat-
ural system, we modify the SINDy approach to include
the effect of past dynamics on training the model, which
gives a nonlinear model for streamflow dynamics. This
improves dynamical transitions, but falls short of accu-
rate state estimation. We conclude that the proposed
ML approach works well for non-chaotic systems with
minimal hysteresis, but is limited when this condition
is not met.

Keywords Machine learning - Dynamical equations -
Reduced order - Manufacturing systems - Natural
systems

1 Introduction

Models that describe, predict, and lend understanding
of the dynamics of a system are crucial tools across
the scientific fields. Often, models found via system
identification or mathematical modeling are broken
into white-box, grey-box, and black-box models. Pure
white-box models are based wholly on first-principle
knowledge [1]. This mechanistic understanding typi-
cally drives both the structure and parameter values in
a white-box model. Grey-box models refer to models
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with first-principle-determined structure where param-
eters are further tuned based on training data [1]. Thus,
model components have physical meaning since the
structure of the model is derived from this understand-
ing. Black-box models, however, rely on a generalized
model structure that is then further specified through
parameter tuning [2]. These models can be highly
accurate, but lack a structure with physical interpre-
tation [3].

Yet for certain large, dynamic systems where numer-
ous mechanisms drive state transition, traditional white-
box, grey-box, and black-box modeling techniques
may be insufficient to develop reduced order, inter-
pretable, and sufficiently accurate models. Take, for
example, the models for overall plant dynamics in
chemical process engineering. While highly accurate
mechanistic models based on first-principle relation-
ships exist for each unit-operation and are used to sim-
ulate chemical process dynamics in modeling software
like Aspen Plus™, the overall relationship between
internal state variables, inputs, and outputs is difficult
to decipher from these aggregate white-box models due
to the size and complexity of interactions [4]. Simi-
larly, for dynamic models of natural systems, such as
a watershed system, existing models are often grey-
box: based on first-principle relationships and mass bal-
ances with parameters fit to a specific location based
on environmental data [5]. These mechanistic relation-
ships are only accurate when computed with average
values over monthly or longer long periods of time [6].
As aresult, short-term temporal variations (time scales
smaller than a month) in flowrate are not captured, thus
limiting their use in applications of model-based con-
trol and optimization of water usage habits.

Recently, data-driven approaches for system iden-
tification have been proposed to develop dynamical
models bypassing the traditional model identification
approaches. One approach is the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm, which is a
data-driven system identification technique with grow-
ing popularity across a variety of fields [7-14].The
initial publication by Brunton et al. [15], first intro-
ducing the core SINDy algorithm, provides a method
of system identification that makes minimal assump-
tions about the physics of the system or the necessary
model structure. Rather, the model structure is defined
to be a sum of candidate functions, with coefficients
tuned via regression with intermittent thresholding to
maximize accuracy and ensure sparsity [16]. In [15],
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the SINDy algorithm is expanded to include control or
forcing inputs to a system. Further, Stender et al. [17]
suggest that the SINDy algorithm described in [16] and
[15] may be further improved by employing bounded
nonlinear optimization of the model coefficients. These
previous works have mainly focused on simple systems
with minimal complexity and low dimensionality; thus,
the validity of approach for large-scale system is not
established.

In this paper, we share our results and continue our
discussion from [18], where we propose that SINDy
can be further applied to recover accurate, interpretable,
simplified models for a variety of different complex
systems, such as process plants and watershed dynam-
ics. We utilize this SINDy approach with simulated and
observational data on these large-scale complex sys-
tems. We chose two distinct systems to model dynam-
ics in our study—a chemical transesterification pro-
cess converting soybean-oil to soybean-diesel and the
streamflow dynamics of North Fork Vermilion River.
For the chemical system we use mechanistic, simulated
data while for the natural system we rely on historical
streamflow values and downscaled climate data.

The remaining paper is organized as follows. Sec-
tion 2 provides background on data-driven system iden-
tification and existing dynamical modeling approach
for chemical processes and natural processes. Section 3
describes our approach including the mathematical set
up of the SINDy algorithm, selection of relevant state
variables for our systems, and data generation or selec-
tion. Section 4 describes the model recovery results,
and Sect. 5 follows with relevant conclusions and dis-
cussion.

2 Background

2.1 Background data-driven
approach for nonlinear system identification

Since the publication of [16] formalizing the SINDy
method, this sparse regression technique has grown
popular with researchers across natural sciences and
engineering who require differential models to charac-
terize the dynamics of their respective systems. Con-
sequently, SINDy, or SINDy-like methods, have been
applied to a wide range of systems. In [7], the SINDy
method is used to recover a model that allows the
authors to predict the required input force for a given
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vibrational response in machine tools that experience
cutting forces. The authors of [8] use the SINDy method
to find a low-order stochastic model for interaction
between the geomagnetic field axial dipole and non-
dipole components. In [9], a proposed dimensionless
learning approach based on dimensional invariance
with the SINDy method is shown to recover dimen-
sionless differential equations with a physically inter-
pretable parameterization. SINDy is used by [10] to
recover stochastic differential equations for a vibra-
tional energy harvester. The authors of [11] use the
SINDy algorithm to form a model of seismic response
in steel-braced beams. To detect load-altering attacks in
a power grid, [12] looks for parameterization changes
in an online version of the SINDy algorithm. In [19],
SINDy is combined with stepwise sparse regression to
recover dynamic models for use in control of longitudi-
nal missiles. A modified version of the SINDy method
is applied to experimental data in [13] to recover gov-
erning dynamic equations of a duffing oscillator. The
SINDy method has also been applied to chemical and
chemical process systems. In [20], the authors uti-
lize SINDy to recover dynamic equations governing a
chemical reaction network. Further, in [14], SINDy is
compared against symbolic regression in model recov-
ery of a chemical distillation column. The diverse set
of applications discussed previously suggests that the
SINDy method may have widespread utility in system
identification. However, the ability of this algorithm to
recover governing or predictive dynamical equations
for a large scale complex system such as overall chem-
ical plant dynamics and watershed has yet to be shown.
We next describe the existing approaches and need of
reduced order dynamical models in two distinct type of
systems—chemical process industries and watersheds.

2.2 Modeling dynamics in chemical process industries

Process industries can be defined as those which apply
chemical or mechanical changes to their system inputs
to output a product in a continuous or semi-continuous
fashion [21]. System identification of these processes is
crucial within their respective industries for developing
models that can be used for plant design, observation
or control. This system identification is typically iter-
ative and data-driven since a priori model structure is
often minimal [22]. To limit the amount of disturbance
to plant operation, these system identification meth-

ods must be “plant-friendly,” meaning industries go to
great lengths to use data collection experiments that
minimizes equipment degradation, plant output devia-
tions, and experiment time [22]. However, because of
data confidentiality of plants, the recovered dynamical
models from these efforts are rarely published or made
publicly available by industry. In our work, we use the
SINDy algorithm to recover a dynamical model for a
soybean-oil to soybean-diesel transesterification pro-
cess using simulated time-series data to show how this
approach can develop informative models using syn-
thetic data. In particular, we model the dynamic behav-
ior of material flow rates at various points in the pro-
cess. While models capturing the kinetics of soybean-
oil transesterification and the dynamics within the plant
reactor [23-25] do exist, plant-wide models that also
contain the dynamic relationship between the internal
molar flow rates, the output soybean-diesel flow rate,
and the input flows is not available. Thus, we aim to
develop a reduced order model to capture the overall
plant dynamics for the soybean-oil to soybean-diesel
process, to demonstrate the application of SINDy for
overall chemical plant dynamics.

2.3 Modeling streamflow dynamics in watershed

Streamflow dynamics is an important system to study
as it provides insights into water availability over the
short and long term. Several standard approaches exist
for system identification of watershed models with
the earliest simple water-balance models developed in
the 1940s [26,27]. These models relate known spatial
inputs (precipitation, temperature, etc.) to characteris-
tics that are difficult to measure (evapotranspiration,
total-runoff, etc.) [5]. Because full sets of these spatial
inputs may not readily available data in all scenarios,
models have been developed with various degrees of
input resolution [5]. The applicability of these mod-
els to various locations and problems is dependent on
their timescale and potential accuracy [5]. Their struc-
ture can be relatively simple, with only precipitation
and temperature used to predict seasonal streamflow
with high accuracy [28]. Conversely, these models per-
form poorly at a finer time-resolution, thus lacking
state estimation ability for the system as a whole [6].
Hence, in this work, we demonstrate development of a
finer scale model using the data-driven system iden-
tification approach. As a representative of a natural
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system, we apply the SINDy algorithm to recover a
low-level dynamic equation for streamflow dynamics
of the North Fork Vermilion River, providing water to
the town of Danville, Illinois, via training on historical
streamflow and climate data.

3 Materials and methods

3.1 Algorithm
for model identification and modifications

3.1.1 SINDy algorithm

The SINDy method, as described in [16], assumes the
system in question can be modeled using ordinary dif-
ferential equation type state equations of the form

x(1) =f(x(1)), ey

where x(#) € R” is a vector of state variables at time 7,
and f(x(¢)) are the equations defining the dynamics of
the system. To determine an optimal model structure
and parameterization for the function, f, we begin by
collecting time-series data for the system states, x(t)
sampled at times 71, 7, ..., t;;. This can be arranged in
a matrix, X, as

xT (1) x1(t1) x2(t1) -+ xu(t1)
x'(12) x1(12) x2(t2) +++ xp(12)

X = . = . . . . @)
XT(tm) x1(tm) X2(tm) -+ Xn(tm)

We then numerically determine the time derivative of
these states, X(7), and arrange it in a similar matrix, X, as

x7 (1)) x1(t1) X2(t1) -+ xu(t1)
X7 (1) x1(t2) X2(t2) -+ xu(t2)

- : - : ST - 3
XT(tm) )'Cl (tm) x2(tm) e xn(tm)

While we know the model will be composed of a sum of
different component functions, we do not know which
functions the sparse regression algorithm will select.
Therefore, we provide a library of candidate functions,
®(X), in the form

where X*2 are possible quadratic nonlinearities in x,
XP3 are possible cubic nonlinearities, and so on. For
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example,

xH(t) o) x3@t) - xa(t)
xH ) o) x3() - x2(k)

X" = )

XF(tm) @ (tm) X3 (tw) - -+ X5 (tm)
where w () = x1(t)x2(¢) for compactness.
We determine which functions in ® (X) will be included
in the model by solving the sparse regression problem
given by

X=0X)E (6)
where
E=[&& &) 7

is a matrix of sparse vectors of coefficients. When data
is collected from real world experiments or is known
to be noisy, an additional Z matrix can be added to the
right side of the sparse regression problem to account
for this noise. However, we exclude this term since our
simulation data is known to not contain noise, owing
to the functioning of the ASPEN Plus Dynamics sim-
ulation.
After solving E, the model can be written as

% = 0(x")E, (8)

for every row k of the state equations.

To account for some set of input signals, u(z), driv-
ing the system, we assume the system can instead be
modeled using state equations of the form

x(1) = f£(x(1), (1)), €))

as shown by [15]. The SINDy algorithm remains
unchanged with the regression problem now written as

X =0, U)E. (10)

3.1.2 SINDy improvement:
nonlinear optimization of coefficients

To improve the performance of our SINDy-recovered
models, we further optimize the associated sparsity
matrix, E, using a constrained nonlinear optimization
scheme. This optimization beyond the SINDy method
is based on the work of [17], which suggests that while
SINDy is capable of finding the location of nonzero ele-
ments of &, it cannot necessarily find optimal values for

each since E is discontinuous over A , the sequential
least squares thresholding parameter. This parameter
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determines the complexity of final model, resulting into
sparse models as the parameter is tuned [17]. We apply
the method outlined in [17] of sequential quadratic
programming (SQP) implemented using MATLAB’s
fmincon. Here we set upper and lower bounds for each
nonzero element of E as the given constraints to finin-
con and construct an optimization function using the
mean absolute error (MAE) across all state variables
between the training data and the integrated model.

3.1.3 SINDy
improvement: inclusion of input derivatives

We consider the time-derivative of each input as an
additional input to the system to try to account for hys-
teresis when modeling streamflow using the SINDy
method. For example, the streamflow response will
be different for a day of heavy rain following a drought
versus following a week of heavy rain, due to water
saturation in the soil. We now assume that the system
can be represented as a state equation in the form of

X(1) = £(x(2), u(r), (1)), 1D
where the sparse regression problem becomes
X =0X,UUU)E. (12)

This additional input ties the current state of the system
to past inputs that otherwise could not assert current
influence on the system trajectory in the model struc-
ture. It should be noted, however, that noise in the mea-
sured input signals will propagate to the input derivative
and may negatively impact recovered models. Second-
and third-order derivatives were tested in the model as
well, but discarded when accuracy decreased, possibly
due to the propagation of noise mentioned before.

3.2 System selection and data collection

3.2.1 Industrial
system: soybean-oil to soybean-diesel plant

For an industrial system case study, we selected a
widely used plant system that converts soybean-oil to
soybean-diesel. This process uses a series of transester-
ification reactions in the presence of sodium hydrox-
ide (NaOH) mixed with methanol (MeOH) (Fig. 1).
The chemical content of this soybean-oil is provided in
[29]. The soybean-oil undergoes a transesterification

process in a continuous stirred-tank reactor (CSTR).
This reaction produces a mixture of methylated fatty
acid molecules, glycerol, unreacted intermediate prod-
ucts, NaOH, and MeOH. The remaining MeOH is then
separated from the other components using a Rad-
Frac separation column and reused. A wash column
removes the glycerol from the remaining mixture. The
soybean-diesel and unreacted intermediate products
pass through another RadFrac separation column to
separate these two components. The unreacted inter-
mediate products are then mixed with the input stream
of soybean-oil to repeat the transesterification process
until fully converted. These series produces a com-
plex dynamics due to interaction of several underlying
mechanisms. To simplify our model, we fix a number
of system parameters to be constant values including:

MeOH molar flowrate, temperature and pressure;
NaOH molar flowrate, temperature and pressure;
Pressure difference of pumps:

Duty of heat exchangers;

Vessel geometry of Reactor, MeOH and Diesel
RadFrac blocks;

e RadFrac block stage pressures.

State variable selection Selection of state variables to
include in a model is a crucial elements of system iden-
tification. Failure to select relevant and adequate vari-
ables will lead to poor model performance, no matter
the tuning of model parameters. In traditional system
identification, model structure is typically derived from
some understanding of the underlying physics of sys-
tem. However, with a complex dynamic system, such
as the chemical process plant or streamflow system
considered here, drawing from first principle under-
standing may be difficult or impossible due to the sheer
number of available measurements or the lack of causal
understanding among multiple mechanisms.

Since our primary objective is to achieve a model
structure relating the soybean-diesel output to the
soybean-oil and water input as molar flow rates, x1, u,
and u; in Fig. 1, respectively, we select similar molar
flow rate state variables with likely relevant dynam-
ics and operating on similar time-scales. We originally
chose all molar flowrates between unit operations as the
model state variables. However, training and testing of
these models quickly reduced to the choice of state vari-
ables marked in Fig. 1 as xy, ..., xg, since inclusion of
other variables was found to either decrease or at least
not increase the accuracy of the model. Additionally,
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Fig.1 Soybean-oil to soybean-diesel process with state variables labeled in bold

the glycerol output in Fig. 1 is excluded as preliminary
results indicated that the inclusion of this state variable
greatly reduced model performance, likely due to non-
linearities in the wash column or dependencies on other
variables not considered in the model.

System excitation and data collection Based on [30] we
assume that for a system composed of dynamic linear-
ities and static nonlinearities that can be expressed as a
block structure, there exists an optimal pseudo-random
multilevel sequence generated from Galois field poly-
nomials that is sufficiently exciting. The authors of [30]
here define optimal as the minimal number of levels
required for excitation. However, they also state that
levels beyond this minimum level are not necessar-
ily more exciting to the system. Thus we assume that
levels beyond the optimal level are unnecessary but
not detrimental to system identification. This last point
allows us to make use of the Pseudo-Random Binary
Sequence (PRBS) block in ASPEN Plus Dynamics
with random amplitude for excitation of the system.
By choosing the amplitude to be variable (random), the
signal switches from a two-level PRBS to a Galois Field
polynomial generated sequence with an arbitrarily high
level. Amplitude bounds and period of the signal are
then varied until the state variable response appears to
oscillate and not simply decrease or increase in the long
term. Unfortunately, while this visual observation and
adjustment cycle is a successful yet crude strategy for
determining an amplitude and frequency that is suffi-
ciently exciting, it fails to detect which of these might
drive the system outside of standard operating bounds,
or into other dynamic regimes entirely. The system is
then simulated for 200 h, and the state variable values
are measured every 0.02 h providing 10,000 data points.
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3.2.2 Natural system: Lake Vermilion water supply

Lake Vermilion, located in the town of Danville, Illi-
nois, is fed by the North Fork Vermilion River with a
watershed of approximately 295 square miles situated
in Vermilion and Iroquois Counties, Illinois as well as
Warren and Benton Counties, Indiana [31]. The lake
was originally formed by damning the North Fork Ver-
milion River in 1925 and currently holds around three
billion gallons of water after the lake level was raised
in 1991 due to projected population increase and sedi-
mentation [31]. Sedimentation is estimated to continue
at a rate that will reduce the lake water storage capacity
by around one-percent per year [32].As of 2008, Lake
Vermilion was the municipal water supply for a popu-
lation of 61,500 spread across the City of Danville, four
nearby villages, and much of the surrounding rural area.
State variable selection and data collection To recover
a model of water supplied to Lake Vermilion, we
use historical climate and streamflow data for the
North Fork Vermilion watershed and river, respec-
tively, to train the SINDy algorithm. Climatic factors
of solar radiation (R4 ), precipitation (P), maximum
daily temperature (Tax), minimum daily temperature
(Timin), and vapor pressure deficit (V) between 1950
to 2005 were averaged over the watershed area above
the streamflow sampling station located near Bismark,
Illinois. This data was obtained from [33]. Streamflow
data from the Bismark station is available from Novem-
ber 3, 1988, to September 30, 2010, in 15-min intervals
with brief periods (no longer than a week) of missing
data [34]. Since the SINDy algorithm requires a numer-
ical time-derivative of state variable data, we use linear
interpolation to fill all missing time values. To match
the resolution of the climate data, the streamflow data
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is summed to daily values. The resulting time period,
for which data is available for both the climatic factors
as well as streamflow, ranges from 1988 until 2005
resulting in 5589 data points for use in either training
or testing at daily resolution.

3.3 Evaluation criteria for selection of models

3.3.1 Evaluation
criteria of soybean-diesel plant models

To make an initial determination of model performance
that would allow us to select a set of “successful” mod-
els, we divide the first 150 h of the process simulation
data into five distinct folds, and implement a fivefold
cross-validation training scheme. This results in five
different models recovered across the training data. We
vary the value of the sparsity parameter A and use this
fivefold cross-validation scheme on each value. Each
model is integrated over time and the mean absolute
error (MAE) is computed using Eq. 13.
Z [Xri — Xm,il

MAE = &=— " 13)
n

InEq. 13, x, and x,, are the state variable measurements
from the test data and the model estimations, respec-
tively, for each time index i, and n is the size of the test
data, between the integrated model and the simulation
data from the fold. The model with the lowest MAE
of these five models is selected as the representative of
this value of A.

Of these selected models, we make an additional
selection based on the lowest MAE value. These high-
performing models are then tested on the remaining
50 h of data from the same simulation source as the
training data. We also test the model for long term
accuracy and stability by testing on 200 h of simulation
data-driven by inputs with different random seeds than
those in the training, validation, and 50-h test set.

3.3.2 Evaluation criteria of streamflow models

Due to the limited number of data points available for
training and testing of the SINDy recovered streamflow
models, we use the fivefold validation technique pre-
viously described for evaluation of the soybean-diesel
plant model as our sole evaluation criteria. Whereas for
the soybean-diesel plant we only consider first-order
polynomials in the SINDy function library, we expand

our search to include second-order polynomials in the
streamflow models. Subsequently, we vary the model
degree as well as the sparsity parameter and utilize the
fivefold cross-validation scheme with MAE (Eq. 13) as
the error metric in order to reduce the space of possible
models.

4 Results
4.1 Soybean-diesel plant model

4.1.1 Sparsity
adjustment for SINDy and model training

We explore a range of thresholding values to vary the
sparsity of the coefficient matrix for models with a
function library including only first-order functions.
As a metric of comparison between models, we use
MAE averaged over all five validation folds for each
model. We first explore the model performance for
0 < A < 0.1 with a resolution of 0.0025. Values of
A around 0.1 result in an overly sparse matrix with all
terms equal to zero, while A = 0 results in no forced
sparsity. Theresulting plot of mean error between all six
state variables as well as for x; individually is shown
in Fig. 2 for both the SINDy derived models as well
as those further optimized. We see in Fig. 2 that the
optimized models do not necessarily result in lower
error versus the standard SINDy models when com-
pared against the validation data.

In Fig. 2, we see minimized error between all six
state variables at A = 0.025, and minimized error for
x1 at A = 0.01 and A = 0.08. The ranges of A around
these values are further explored with a resolution of
0.001 to verify that error cannot be reduced further,
however, adjacent values of A with higher performing
models were not found.

4.1.2 Fivefold cross-validation

The MAE for each of the five validation folds is shown
in Table 1 for the three models with sparsity parameters
of A = 0.01, 0.025, 0.08. We look at the model results
for the average of the six state variables as well as x;
specifically, since accurate modeling of the output is
a priority. Looking at the MAE values for each fold,
we see that the model with the lowest error for both
x1 (soybean-diesel out) as well as the average of all
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Fig. 2 Minimum mean error over each set of five validation folds for 0 < A < 0.1

variables varies between the standard SINDy derived
model and the optimized model. This matches what
can be seen in Fig. 2 across all models, which suggests
that the added optimization is not necessarily resulting
in overfitting to the training data. Additionally, we see
that validating on the first fold tends to yield the high-
est error, which indicates there may be certain dynam-
ics during the initialization of the system that do not
continue in normal operation. For the models with A =
0.01, 0.025, the lowest error is found in the third valida-
tion fold, while for the model with A = 0.08, the lowest
error is found in the fifth validation fold. Lowest error in
the third validation fold is expected due to the symmetry
of training data and the placement of the third validation
fold in the middle. Overall, the lowest error is found in
the third validation fold of the model with A = 0.025.

4.1.3 Model testing

We use the same error metric of MAE to judge the per-
formance of the the models with A = 0.01, 0.025, 0.08
on the test datasets of 50 h and 200 h. These results are
tabulated in Table 2.

We see that for the dataset comprised of the 50 h of
simulation data following the training data, the stan-
dard SINDy model outperforms the optimized model

@ Springer

for both the average error between all six state variables
as well as the x| individually. However, for the long
term test data of 200 h, the optimized model performs
significantly better. For the 50 h of test data, the stan-
dard SINDy model with A = 0.01 results in the lowest
error. However, for the long term dataset of 200 h, the
optimized model with & = 0.025 results in the lowest
error, while the standard SINDy model with A = 0.01
results in the highest amount of error. This seems to sug-
gest that the standard SINDy models may be overfitting
to a particular aspect of the simulation data from which
both the training dataset and 50 h dataset are taken.
Both the standard SINDy derived model with A =
0.025 and the further optimized versions are integrated
over time using the 50 h and 200 h test dataset inputs.
The resulting plots can be seen in Figs. 3 and 4, respec-
tively. In Fig. 3, we see that both the standard and opti-
mized models fit x4 and x¢ very well. For x1, x7, and
x3 in Fig. 3, the model captures the lower frequency
oscillations, but fails to reconstruct higher frequency
changes. The model recreation of these state variable
dynamics over time also appears to be slowly diverging
from the test data, likely due to accumulation of error
in the numerical integration. The worst model perfor-
mance is clearly seen in the model reconstruction of xs.
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Table 1 Error as MAE between five validation folds and inte-
grated models, where x| is the molar flow rate of soy-diesel out,
x7 is MeOH/water mixture out, x3 is the flow rate between the
WashCol and diesel RadFrac blocks, x4 is the flow rate between

the reactor and MeOH RadFrac blocks, x5 is the oil recycling
loop from the diesel RadFrac column bottom, and x¢ is the recy-
cling loop from the top of the MeOH RadFrac block (see Fig. 1)

Variable(s) Optimized A Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
avg(xy, ..., Xp) No 0.01 1.0980 0.3590 0.2537 0.6823 0.3175
X1 No 0.01 0.9920 0.4983 0.1565 0.8518 0.4125
avg(xy, ..., X6) Yes 0.01 0.6116 1.1461 0.1939 0.4164 0.3649
X1 Yes 0.01 0.4408 1.8151 0.1404 0.3614 0.5263
avg(xy, ..., X6) No 0.025 1.4653 0.9635 0.1690 0.8549 0.1716
X1 No 0.025 1.7164 1.4017 0.1376 1.1080 0.2227
avg(xy, ..., X6) Yes 0.025 0.9535 1.9236 0.1280 0.7845 0.2754
X1 Yes 0.025 0.9513 2.8761 0.1479 0.9826 0.3526
avg(xy, ..., X6) No 0.08 1.7184 0.5653 0.4265 0.5408 0.2991
X1 No 0.08 2.3015 0.9276 0.7369 0.5225 0.3998
avg(xy, ..., X6) Yes 0.08 1.2498 0.3070 0.4016 0.5083 0.3022
X1 Yes 0.08 1.7074 0.4128 0.6963 0.3952 0.4149

Table 2 Error as MAE between both short and long sets of test
data and integrated models, where x| is the molar flow rate of
soy-diesel out, x is MeOH/Water mixture out, x3 is the flow rate
between the WashCol and Diesel RadFrac blocks, x4 is the flow

rate between the Reactor and MeOH RadFrac blocks, x5 is the
oil recycling loop from the Diesel RadFrac column bottom, and
Xe 1s the recycling loop from the top of the MeOH RadFrac block
(see Fig. 1)

Variable(s) Optimized Test data A =0.01 A =0.025 A =0.08
avg(xy, ..., Xp) No 50 h 0.1521 0.4734 0.2678
X1 No 50h 0.1672 0.6620 0.3921
avg(xy, ..., Xp) Yes 50 h 0.6038 0.5370 0.2945
X1 Yes 50 h 0.8847 0.7570 0.4422
avg(xy, ..., Xp) No 200 h 5.3239 2.1925 1.3440
X1 No 200 h 8.5559 3.3656 0.7230
avg(xy, ..., X6) Yes 200 h 0.5255 0.2522 1.2656
X1 Yes 200 h 0.7524 0.2948 0.5924

Interestingly, across all state variables the reconstruc-
tion of the standard SINDy model is closer to the 50 h
test data than the reconstruction using the optimized
model, which further suggests some type of overfitting
to a particular aspect of this particular set of simulation
data.

In Fig. 4, we see that in the case of all variables but
x4 and xg, the standard SINDy model quickly diverges
from the 200 h test data. However, unlike in Fig. 3, this
divergent behavior is not seen in the optimized model,
which while still failing to capture all high frequency
oscillations in x, x2, and x3, is a much closer recon-

struction. Additionally, the reconstruction of x5 using
the optimized model in Fig. 4 is accurate.

4.1.4 Soybean-diesel model structure

To compare the structure of terms between models, we
use the optimized model from each of the lowest error
validation folds in Table 1. Since the optimization is
only applied to nonzero terms and is bounded above
and below, the structure of these state equations is iden-
tical to the standard SINDy recovered equations with
only some changes to parameter values. For A = 0.01
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Fig. 3 Integrated model results over 50 h of test data forA = 0.025
we have the model from the third validation fold of

X1 =0.0243uy — 1.31x] — 1.72x2 + 0.451 x3
—0.0344 x4 — 0.0696 x5 — 0.0289 x¢

X2 =1.27x1 —0.0273 u2 — 0.00935u1 + 1.66 x
—0.431 x3 + 0.0215 x4 + 0.0735 x5 + 0.0282 x4
X3 =1.09x1 —0.0332u2 —0.0738 u1 + 1.72 x;
—0.605x3 + 0.151 x4 4+ 0.0844 x5
—0.123 x¢ + 0.027
X4 = 0.0117up — 1.73 u1 4 0.0626 x2 — 0.0823 x3
— 1.3 x4 4+ 0.0192 x 4 0.00423
X5 = 0.0385 xg — 0.534 x — 0.00384 x3 — 0.0693 x5

—0.544 x; —0.0233
X6 = 0.174 u; — 0.0055 u2 — 0.607 x1 — 0.945 x

+0.354 x3 + 0.472 x4 — 0.0775 x5 — 0.135 x¢
(14)

for A = 0.025 the third validation fold model is given
by
X1 =0.0317uy — 1.16 x; — 1.57x2 4+ 0.436 x3
—0.046 x4 — 0.0685 x5 — 0.0218 x¢
X2 =1.12x1 —0.0331up + 1.52x2 — 0.424 x3
=+ 0.0455 x4 4+ 0.0702 x5 + 0.0171 x6
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X3 =0.885x1 —0.0886 11 + 1.56x2 — 0.659 x3
4+ 0.138 x4 + 0.0737 x5 — 0.124 x¢

X4 =0.138x2 —1.63u; —0.142x3 — 1.18 x4

X5 = 0.0367 xg — 0.441 x2 — 0.0457 x5 — 0.454 x|

X6 = 0.181u; —0.548 x1 — 0.893 x2 + 0.36 x3

4 0.469 x4 — 0.0739 x5 — 0.139 x¢ (15)

and for A = 0.08 we have the fifth validation fold model
in the form of

X1 =0.373x3 —0.729 x2 — 0.399 x;

X2 = 0.328 x1 + 0.634 x, — 0.35x3

X3 =0.993x1 + 1.77 x5 — 0.751 x3 + 0.245 x4
4+ 0.0816 x5 — 0.147 x¢

X4 =—1.8u;1 —1.35x4

x5=0

X6 = 0.168u; — 0.65x; — 1.02x3 + 0.381 x3

+0.456 x4 — 0.086 x5 — 0.13 x¢ (16)

We see that as the sparsity parameter A increases, the
sparsity of the model increases as expected with terms
dropping out between A = 0.01 to A = 0.08. Several of

these terms include the water input u;, which falls out
of x4 and x¢ between Eqgs. 14 and 15. With A = 0.08,
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Fig. 4 Integrated model results over 200 h of test data for A = 0.025.

terms including u» in any of the state equations are
gone. Additionally, with A = 0.08, the equation for x5
is overly sparse with only a constant zero term. Ulti-
mately, as the sparsity is increased all state equations
will go to zero.

As terms fall out due to the increased sparsity, some
remaining terms retain coefficients in the same vicinity
as the previous equations, while others change signif-
icantly. For example, x4 loses all terms except for u
and x4, but keeps similar coefficients, while x| loses all
terms except for x1, x2, and x3, of which x; and x; are
significantly different.

From these equations, we can see that a basic mass
balance is captured along with other expected linear
behavior. In Eq. 15, we see that the rate of change of
x1, the soybean diesel output, is impacted positively by
x3, the input to the Diesel RadFrac column in Fig. 1,
and u», the water input driving the separation process in
the WashCol in Fig. 1. Likewise, this rate of change is
negatively impacted by x» and x5, both additional out-
puts from the Diesel RadFrac distillation column. The
recycling stream from the MeOH RadFrac distillation
column, xg, also has a negative impact on the rate of
change in x1. Perhaps surprisingly, x| has a large nega-
tive impact on its own rate of change. This is likely due
to the dynamics of saturation in the distillation column

100
Simulation Time [hr]

(i.e., a larger value of x; means that in the next time
step the Diesel RadFrac column produces lesser output
possibly due to hold up in the column). The structure of
the state equation for x, inversely mirrors that of x1 . For
the rate of change of x3, the non-Glycerol output of the
WashColin Fig. 1, we see a positive impact from xp, x2,
x5, and x4, and a negative impact from xg, which makes
intuitive sense from a mass balance view. Additionally,
we see a negative impact from the soybean oil input, u1,
and x3 itself likely due to saturation dynamics. In the
state equation for x4, the reactor output, we see a posi-
tive impact from x, and large negative impacts from the
soybean oil input, u1, as well as x3 and x4 also likely
capturing the dynamics of over saturation. For the state
equation for x5, we see a negative impact from x| and
X7, reflecting the mass balance at the Diesel RadFrac
column, and a small negative impact from x5 itself,
likely capturing the effect of over saturation. Lastly, for
the recycled flow stream, x¢, emerging from the MeOH
RadFrac column, we see a strong positive impact from
x4 and u1, which makes sense from a mass balance
perspective. Interestingly, there is an additional posi-
tive impact from x3, while x1, x2, and x5 all provide
a negative impact on the rate of change of xg, indicat-
ing a reduction in mass being recycled as the outputs
are increased. These terms and approximate parame-
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Fig. 5 Minimum mean error over each set of five validation folds for 0 < A < 0.02

ter values persist even when the sparsity is somewhat
increased, as evidenced in Eq. 16.

4.2 Stream flow model

4.2.1 Sparsity
adjustment for SINDy and model training

We again explore the range of thresholding values for
which the model sparsity will change. However, unlike
the soybean-diesel plant models discussed previously,
we also consider second-order polynomials in the func-
tion library supplied to the SINDy algorithm. Addition-
ally, we consider models for which the input derivatives
are included as inputs themselves. The accuracy met-
ric of MAE is averaged over all five validation folds
for each standard SINDy and further optimized model.
We explore model performance over 0 < A < 0.02 for
both the linear and nonlinear function libraries as seen
in Figs. 5, 6, and 7 for the first-order polynomial func-
tion library, second-order polynomial function library,
and second-order polynomial library with inclusion of
input derivatives, respectively.

From Fig. 5 we choose to further examine A =
0.006, as there is no change in performance in the sur-
rounding space. From Fig. 6, we see lowest error values

@ Springer

for A at 0.0005 and 0.00125; however, we also choose
to further examine A = 0.012 as a model in the last
range of A before model reduction to 0. Lastly, from
Fig. 7, we choose to further examine models for which
A = 0.00175 and A = 0.00325. As seen in Figs. 6
and 7, the further optimized models no longer result in
reduced MAE for all values of X, despite providing a
better approximation of abrupt changes in streamflow
than that of the standard model.

4.2.2 Fivefold cross-validation and model testing

The MAE for each of the five validation folds is
shown in Table 3, where the sparsity parameter of
A = 0.006 is considered as a linear model and A =
0.0005, 0.00125, 0.012 are considered for nonlinear
models. Models that failed during integration, due
either to stiffness or unbounded behavior, are marked
with ‘NaN’ rather than an MAE error value.

In Figs. 8 and 9 we plot the results of the inte-
grated optimized nonlinear models for A = 0.0005 and
A = 0.00125, respectively. We see that both models
appear to capture seasonal streamflow tendencies, yet
fail to respond to more abrupt changes happening over
weeks or months.
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Table 3 Error as MAE between five validation folds and integrated models

Optimized Order i A Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No 1 No 0.006 0.6978 0.9285 0.6334 1.0732 0.8815
Yes 1 No 0.006 0.6978 1.1298 0.6416 0.8998 1.2655
No 2 No 0.0005 0.5171 NaN 0.7712 NaN 1.1387
Yes 2 No 0.0005 0.4701 NaN 0.8118 NaN 1.2165
No 2 No 0.00125 1.0376 1.2995 0.9083 1.2114 0.9594
Yes 2 No 0.00125 0.6302 5.1275 0.7418 16.9459 1.2391
No 2 No 0.012 0.6978 8.2418 9.8995 1.4322 6.0414
Yes 2 No 0.012 0.6978 0.9560 0.7268 1.4322 1.3760
No 2 Yes 0.00175 0.5825 0.7522 0.6061 6.8310 1.0880
Yes 2 Yes 0.00175 0.9897 3.1199 0.6834 27.9328 NaN

No 2 Yes 0.00325 0.8024 0.7121 0.6966 0.8955 1.1799
Yes 2 Yes 0.00325 0.5688 4.8437 0.8218 1.3573 1.5917

By contrast, in Figs. 10 and 11 of integrated mod-
els containing input derivative terms, we see much
better model reconstruction of individual streamflow
peaks within a season of increased streamflow. How-
ever, these models still fail to reach the upper ranges of
streamflow values and also fail to remain at low values
for periods where streamflow is minimal.

4.2.3 Streamflow model structure

We compare the structure of terms between the opti-
mized nonlinear models for A = 0.00125, the stan-
dard SINDy model, and A = 0.00175, the model
containing input derivative terms. These equations are
given by Eqs. 17 and 18, respectively, where Qgyreams,
Rsotars P, Tmax,> Tmin, and V refer to the river flow rate,
solar radiation, precipitation, maximum daily temper-
ature, minimum daily temperature, and vapor pressure
deficit.

Ostream = 0.00781 P — 0.024 Typin + 0.0191 Typax
—0.0112V — 0.0138 P Qsream
— 0.0048 P Rolar — 0.00284 Qgiream Rsolar
4 0.00352 P Tiyin — 0.0144 P Ty
+0.0276 Qstream Tmin —0.0248 Qstream Timax
+0.0157 P V + 0.009 Ryolar Tmin
+0.00673 Rsolar Tmax — 2.71¢ — 4 Ryolar V

@ Springer

+0.00329 Tonin Trmax Timax V. — 0.0159 Tiin>

— 0.00754 Tyax> — 0.00347 V2 — 7.85¢—4
17

We see terms present in Eq. 17 repeated again in
Eq. 18 with different magnitudes but the same posi-
tive or negative impact on Qstream. For example the
term —0.00754T;2,, present in Eq. 17 is also present
as —0.01587;2,, in Eq. 18. The fact that these terms
remain even with consideration of additional inputs,
suggests that, while unknown, they do have some rel-
evant physical interpretation and are not the result
of overfitting to noise in the streamflow or climate
data.

In Eq. 18 we see that for many terms the positive
or negative impact is switched when one of the com-
ponent input variables is switched with its derivative.
For example, the positive Rglar V term becomes neg-
ative when either Ry or V is substituted for Rgojar
or V, respectively, but remains positive when both
are substituted. This makes sense if we consider the
effect of past system inputs on current system state.
A positive value for either Rsolar or V implies that
the current value is larger than the previous input
value and this previously smaller value exerts a neg-
ative impact on the rate of change of streamflow. Con-
versely, a negative value for either Rsolar orV implies
that the current value is smaller and this past large
value exerts a positive impact on Qstream. The num-
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ber of input derivative terms appearing in the sum-
mation suggests a heavy dependence on input his-
tory and additional steps to address this hysteresis
are likely necessary to improve the accuracy of the
model.

Ostream = 0.00619 P — 0.00656 Rsolar + 0.0167 Ryojar
—0.0475 Tinin + 0.0707 Tinax + 0.0121 Tin
—0.0141 Tiax — 0.0208 V — 0.00707 V
—0.0235 P Qgtream + 0.0133 P Qgream
—0.00506 Qtream Rsolar + 0.00593 Qgtream Rsolar
+0.0334 P Tinin — 0.0497 P Tyax — 0.0156 P Timin
—0.0343 P Tyax — 0.0173 P Tinin
40.0314 P Tyax + 0.0129 P Tiyin
+0.0224 P Tinax + 0.00748 Qtream Timin
—0.00738 Qstream Tmax + 0.0128 Qstream Tmax
+0.0304 P V + 0.00566 P V — 0.0201 P V
—0.0112 Ryolar Tinin + 0.0282 Ryotar Tmax
+0.0253 Rotar Timin — 0.0233 Reglar Timax
—0.0198 Ryolar Tmax — 0.0266 Ryoar Tmax
+0.00654 Qgiream V + 0.00344 O giream V
+0.00506 Reolar V — 0.0218 Ryotar V — 0.0171 Reglar V
+0.0384 Ryotar V + 0.0211 Tin Tonax + 0.0572 Tin Tinin
—0.0239 Tinin Timax — 0.0462 Trmax Tmin
40.0579 Trmax Timax — 0.00872 Tinin Timax
+0.0099 Tmin V + 0.0289 Tpax V. — 0.0646 Tnax V
+0.0163 Tiin V — 0.0112 Tinax V + 0.0623 Tinax V
+0.0189 V'V — 0.00742 R,,>

—0.0195 TiinZ — 0.0158 Thnax > — 0.0374 T2

max

—0.0113 V2 — 0.0206 V> — 0.0112 (18)

5 Conclusion and discussion

In this paper, we propose using a recent system iden-
tification method based on sparse regression and opti-
mization of model coefficients for fast recovery of low-
order dynamic models of process industries and natural
systems. For the industrial system, we utilize a hybrid
mechanistic-machine learning approach by using the
simulated data for process flow obtained from high-
order mechanistic models and identify a low-order
model using machine learning. Similarly, for the nat-
ural system we use data from observations and com-
plex climate models based on physical principles. We
modify the original SINDy method and find that fur-
ther nonlinear optimization of the sparsity matrix coef-
ficients improves model performance and limits drift
over time. This SINDy-plus-optimization method is

able to recover an accurate low-order linear model and
can likely be extended to nonlinear process models
with some modifications to the forcing functions and
selection process for state variables. We also demon-
strate that the data-driven methods for creating reduced
order models for highly chaotic natural systems may
not be adequate, despite modifications to capture sys-
tem memory. Hence, greater efforts are required to
develop appropriate machine learning methods for cre-
ating reduced order models of complex natural systems
where there is a higher memory in the system. There
are two main hindrances to improving the performance
of the streamflow model: the low number of data points
available for training and testing as well as missing val-
ues in what data is available. This lack of data availabil-
ity/completeness may be addressed through interpola-
tion between data points to generate additional data
for use. One such technique that could be utilized is
the construction of a cubic smoothing spline. Further,
additional nonlinearity in the model functions may be
required to reproduce the apparent chaotic behavior of
this natural system. This might be achieved through the
addition of higher-order polynomials to the function
library or even the heaviside function as an operator on
inputs and state variables.

Future research would benefit from expanding the
scope of state variables included in the process model
to include other variables such as temperature and pres-
sure of unit operation blocks and internal flows. Particu-
larly for model applications involving control or obser-
vation, a more complete picture of the state space may
be required. Incorporating these new state variables into
the SINDy method will require greater consideration of
the input excitation function frequency and amplitude,
and measurement frequency used during data collec-
tion to account for differing time-scales among hetero-
geneous state variables. Additionally, some physics-
based a prior knowledge of what function classes will
likely appear in the model structure will become more
important to limit the possible function space and thus
reduce the computational time required to solve the
SINDy regression problem.
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