2022 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-2159-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISIT50566.2022.9834760

2022 IEEE International Symposium on Information Theory (ISIT)

Statistical Minimax Lower Bounds for Transfer
Learning in Linear Binary Classification

Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi, and A. Salman Avestimehr
Ming Hsieh Department of Electrical Engineering, University of Southern California, CA, USA
Email: mmousavi@usc.edu, soltanol@usc.edu, avestimehr@ee.usc.edu

Abstract—Modern machine learning models require a
large amount of labeled data for training to perform well.
A recently emerging paradigm for reducing the reliance of
large model training on massive labeled data is to take
advantage of abundantly available labeled data from a
related source task to boost the performance of the model
in a desired farget task where there may not be a lot
of data available. This approach, which is called transfer
learning, has been applied successfully in many application
domains. However, despite the fact that many transfer
learning algorithms have been developed, the fundamental
understanding of “when” and “to what extent” transfer
learning can reduce sample complexity is still limited. In
this work, we take a step towards foundational understand-
ing of transfer learning by focusing on binary classification
with linear models and Gaussian features and develop
statistical minimax lower bounds in terms of the number
of source and target samples and an appropriate notion
of similarity between source and target tasks. To derive
this bound, we reduce the transfer learning problem to
hypothesis testing via constructing a packing set of source
and target parameters by exploiting Gilbert-Varshamov
bound, which in turn leads to a lower bound on sample
complexity. We also evaluate our theoretical results by
experiments on real data sets.

I. INTRODUCTION

Modern machine learning models have achieved un-
precedented success in numerous applications spanning
computer vision to natural language processing. Most of
these models consist of millions of parameters which
require an abundance of labeled data for training. In
many applications however due to scarcity of data train-
ing models that also generalize well is challenging. Yet
another challenge is that these models do not adapt well
to new environments. In particular, their performance
degrades with modest changes in the data set and they
may require as much data as training from scratch in the
new environment.

Transfer learning is a recent promising approach
to tackle the aforementioned challenges by effectively
utilizing the samples of a different but related source
task, where there are typically many labeled samples,
in order to improve the performance of the model on a

target task with only a few available labeled samples for
training. Indeed, in modern deep learning literature such
transfer learning approaches that use pretrained models
and fining tuning have enjoyed wide empirical success
[1]. Nevertheless, fundamental limits and benefits of
transfer learning have not been well understood and
many key questions remain unanswered. How can we
measure the similarity of two tasks to decide whether
they are appropriate for transfer learning? Given access
to a limited number of samples what would be the best
possible accuracy we can achieve using any algorithms
regardless of the computational complexity? How can we
characterize the generalization error of the target task as
a function of the number of source and target samples
as well as a measure of similarity between them?

In this paper, we focus on answering these questions
for linear models. This serves as a stepping stone for
more general models and provides guidelines for devel-
opment of more effective transfer learning algorithms.
To this aim, we first define a measure to quantitatively
capture the similarity distance of different tasks. We
then derive statistical minimax lower bounds for binary
classification with Gaussian features as a function of
source and target samples as well as the measure of
similarity. Our lower bounds consist of different regimes.
When the distance of source and target tasks is high
the corresponding lower bound is only a function of
the target samples indicating that the target error is
determined by the number of target samples and source
samples are useful only up to a point. On the other hand,
in the regime where the distance of source and target
is low the target error depends on both the number of
source and target samples which demonstrate that source
samples are useful when source is similar to target.
Finally, we perform various experiments on real data sets
to corroborate our theoretical findings and investigate the
utility of the measure defined in this paper in practical
scenarios.
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II. PRIOR WORKS

Related to transfer learning, [2]-[8] study domain
adaptation problem where the goal is to adapt the hy-
pothesis learned on the source domain for the target
domain to achieve small target generalization error. The
common assumption in domain adaptation is that the
source and target share the same labeling function which
is denoted as covariate shift, and the marginal distri-
butions have a small shift under an appropriate notion
of similarity measure. There are numerous results in
this literature that provide sufficiency results by finding
upper bounds on the target generalization error. These
upper bounds guarantee that some types of algorithms
achieve a small target generalization error not exceeding
a threshold. [9], [10] first introduce a similarity measure
of source and target which can be estimated by a finite
number of unlabeled source and target samples. Then,
they provide an upper bound for the target generalization
error of a hypothesis in terms of the error of the hypothe-
sis in the source domain as well as the distance of source
and target using the introduced measure. [11] introduces
a new discrepancy distance utilizing Radamacher com-
plexity which extends the results of [9], [10] for a broad
family of loss functions. More recently, [12] develops
novel algorithms that achieve near optimal minimax risk
in linear regression for two scenarios: 1- source and
target share the same conditional distribution which is
also denoted as covariate shift 2- Marginal distributions
of the source and target are the same which is denoted
as model shift.

There are also a few results providing lower bounds
for the target generalization error and necessary results
for successful learning. [13] studies the assumptions of
covariate shift, existence of a joint optimal hypothesis,
as well as similarity of distributions in the domain
adaptation problem and provides scenarios where one
cannot guarantee successful learning in a PAC-style
learning model. [14] by defining a new discrepancy
measure, called transfer exponent, derives a minimax
lower bound for target generalization error. [14] makes
a relaxed covariate-shift assumption as well as Bernstein
Class Condition assumption on label noise. More closely
related to this work, [15] derives minimax lower bounds
for transfer learning with one-hidden layer neural net-
works for regression. [15] unlike the most of results
in this literature does not make the covariate shift as-
sumption. Our paper without making the covariate shift
assumption derives minimax lower bounds for classifi-
cation with linear models.

III. PROBLEM FORMULATION

In this section we formalize the transfer learning
in binary classification. First we introduce the model
considered in this paper and then describe the minimax
framework to derive the desired lower bounds.

A. Transfer Learning model

We consider a problem where there are ng and np
number of labeled samples from a source and a target
domain. Specifically, we denote the labeled source and
target samples by (zs,ys) ~ P and (zr,yr) ~ Q where
xg,xr € R as well as yg,yr € {~1,1} denote the
features/inputs and labels/outputs. Moreover, P and Q
denote the underlying joint distributions of the source
and target samples. We also assume that features are
generated by normal distributions, g,z ~ N(0, Iy),
and the distribution of the labels are as follows

Prob(ys = 1|xs) = €]

1+exp(-z%0s)
1

1+exp(-zL0r) @

Prob(yr = 1jar) =

where 05,07 € R? are the ground truth parameters

of the source and target tasks. Then, the optimal Bayes
classifier of the target is as follows

1 if (L'%BT >0
-1 ow.

Cor(xT) = { 3)
In a transfer learning problem we aim at finding Or
by exploiting both the source and target samples such
that the corresponding classifier, i.e. C 5> is close to the
optimal Bayes classifier by the following risk

PrOb{Cé‘T(wT) # Cop(z7)}

Note that the Bayes and estimated classifiers do not
depend on the magnitude of @p and 0}. Therefore,
without loss of generality we can assume that they lie
on the unit sphere in R%.

B. Minimax Framework

In order to develop a minimax framework for the
transfer learning problem, we need to define a class of
transfer learning problems consisting of pairs of source
and target tasks. Here we denote each pair of source and
target tasks by (Pg.,Qg, ) parametrized by Og as well
as Or, and the distributions Pg, and Qg, denote the
joint distributions of features and labels over the source
and target, i.e. (zg,ys) ~ Pos and (x7,yr) ~ Po,. In
a transfer learning problem we use the source and target
samples to find an estimate éT of O7. In other words, éT
is a function of source and target samples. In a minimax
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framework, the target parameter, 87, is chosen in an ad-
versarial manner, and we are interested in minimizing the

risk sup E source and target [Prob{C’ (xr) # Co, (scT)}

samples
where the supremum is taken over an appropriate class

of source and target tasks within a distance to reflect
the difficulty of transfer learning. In order to define the
classes of source and target tasks, we need to define
an appropriate notion of transfer distance between them.
First we state the following proposition regarding the
considered risk for measuring the performance of the
estimate of the target parameter.

Proposition 1. Let 01 be the target parameter in Equa-
tion (2) and Cog,. be the optimal Bayes classifier defined
in (3). Furthermore, let CéT be an estimate of the Bayes

classifier using an estimate Or of Or. Then the risk
measuring the performance of the estimation is given
by

1 A
Prob{C'éT(:cT) # Cop(z7)} = = arccos(07-67)

Proposition 1 motivates us to define the transfer dis-
tance between a source and target as follows.
Definition 1. (Transfer distance) For a source and target
with parameters Og and Op, we define the transfer
distance between them as

p(0s,07) = — arccos(HSOT)
Remark 1. Definition 1 is inspired from Proposition 1
which is based on the assumption of Gaussian features.

However, the Transfer distance defined here works for
any source and target tasks with arbitrary distributions.

Equipped with the notion of transfer distance, we can
now state the transfer learning minimax risk.

RT =inf sup
Or p(6s,07)<A

E N[Pé:;w,s Prob{CgT (x7) # OBT(OUT)}

S.pgs

Ting
SQ@T NQOT

4)
Here, S[P,, and SQe denote 1i.i.d. samples
(@ ¥} and {(w(Tz),y(Tl)) "1 generated

from the source and target distributions. Moreover, the
parameter 0 < A < 1 captures the class of pairs of
source and target tasks within a distance over which
the supremum is taken. Furthermore, we would like to
highlight that 67 is a function of samples S[pes and

So, -

IV. MAIN RESULTS

We now present our lower bounds for the transfer
learning minimax risk (4)
Theorem 1. Consider the transfer learning model de-
fined in Section IlI-A consisting of ng and nt source and
target training data generated i.i.d. according to a class
of source/target tasks with transfer distance at most A
per Definition 1. Furthermore assume the dimension d
obeys d > 300 and ny > 800 Then, the transfer learning
minimax risk (4) obeys the following lower bounds.

cﬁ, if A>B1
RT 24 (1-cos?(A))[1- —"T‘l’““fjf’)“"ﬂ], if B2< A < Bl
c—4 | if A < B2
ng+ng
)
where
1 d 1 100log?2
Bl=—arccos|y/1- [- - o8 ]
™ 200n 4 d
.04d - log 2
B2 - 0 og

167 (ng + nr)
and c is a numerical constant.

Theorem 1 consists of three regimes:

« Large transfer distance (A > B1). In this regime,
the lower bound is independent of number of source
samples, ng, which indicates that source samples
are helpful until the target error for estimating the
Bayes classifier reaches c— Beyond this point,
increasing ng is no longer helpful in reducing the
target error, since in this regime source is far from
the target and the similarity between them is low.

« Moderate distance (B2 < A < B1). The distance
between source and target in this regime is lower
than that in the previous regime. In this regime, the
lower bound also does not depend on ng which
shows that even in the case that the distance is not
high but it is strictly positive, i.e. A > 0, number
of source samples cannot compensate for the target
samples. Because even if there are infinitely many
source samples, the error does not go to zero.

o Small distance (A < B2). In this regime, since
the source and target are similar to each other,
source samples are as useful as target samples in
reducing the target error. Furthermore, in a non-
transfer learning setting, the minimax risk is pro-
portional to the dimension and reciprocal of the
number of samples. Similarly in this regime the
risk is proportional to the dimension and reciprocal
of combination of the source and target samples
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as if the source samples are as effective as target
samples.

V. EXPERIMENTAL RESULTS

In this section we evaluate our theoretical formulations

on a subset of DomainNet data set [16]. By plotting
the theoretical lower bounds as well as upper bounds
obtained by weighted empirical risk minimization we
investigate the sharpness of the lower bounds. Further-
more, we investigate that the semantic transfer distance
defined in 1 conforms with practical settings.
Experimental setup. We use DomainNet to perform
image classification task. We first pick three pairs of
source and target tasks as described in Table I. Then
we extract features of dimension 2048 by passing the
raw images through a ResNet50 network pretrained on
Imagenet.
Training. For each pair, We train linear networks sepa-
rately for the source and target tasks. Using the estimated
parameters appearing in Definition 1 we calculate the
semantic distance for each pair as shown in Table I.
For finding the corresponding upper bounds, we run
weighted empirical risk minimization using the follow-
ing formulation

L 1-ASK (i)
min —— " Cost(Co (1), Y7 )
o nr ;3

ns .
+ A5 Cost(Colas) o)) (©)
ns i=1

where A € {0,0.2,0.4,0.6,0.8,1} and the cost func-

tion is logistic regression. We run each experiment for 5
times and report the average of the results.
Results. As Table I shows, the pair (Sourcel, Target)
has the lowest transfer distance among other pairs since
both the source and target share the same objects, namely
Clock and Ambulance. The semantic distance of pair
2 is less than that of pair 3, because in pair 2 the
source and target share at least one common object
which is Clock. For plotting the theoretical lower bounds
one needs to know the numerical constants appearing
in Theorem 1. We will discuss how to estimate the
corresponding numerical constant in the proof section
of the long version [17].

Fig 1 demonstrates that pairs with small semantic
distance have lower target generalization error when
the number of target samples is small. Because source
samples would be more useful and compensate for the
target samples. Furthermore, Fig 2 shows that pairs with
lower semantic distance have higher A used in (6) which
suggests the effectiveness of source samples when the
distance is small.

Tasks Transfer

distance
Target: Clock vs. Ambulance (Clipart) -
Sourcel: Clock vs. Ambulance (Sketch) 0.35
Source2: Clock vs. apple (Sketch) 0.41
Source3:apple vs. animal-migration || 0.48
(Sketch)

TABLE I: Three pairs of source and target tasks along
with corresponding semantic distance

T T
— Lower Bound
— Sourcel-Target
— Source2-Target

Source3-Target ||

02| i)

Wbtdopomtehs
oo

| . | | . |
0 20 40 60 80 100
Number of Target Samples

Generalization Error

Fig. 1: Theoretical lower bound along with upper bounds
for three pairs of source and target obtained by weighted
empirical risk minimization.

. .

03] f

02} f

0.1} m y
0 . : e T

Fig. 2: Average A used in weighted ERM (6) for three
different pairs of source and target tasks shown in Table
L

Average A

VI. PROOF OUTLINE
A. Proof of Proposition 1

Prob{CéT(:cT) # CeT(SUT)}
=Prob{:c§éT >0, il?%aT < 0}
+Prob{z 1.0 < 0,z7.07 > 0}

Let w; = 107 and wy = %07 Since 1 ~ N(0, 1),

we have
w1 0 ||9A||§2 éT@
o] (o} 5% 6,
Hence,

PI‘Ob{CéT ((L‘T) * CQT ((L‘T)}

= Prob{w; > 0, w; < 0} + Prob{w; < 0,w, >0}
11 6%6

=1-2(- + — arcsin ———)
4 2m 1101e,161]e

670 1 R
ccos ————— = — arccos(67 9)
161lc.[161]c
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Where in the last equation we use the fact that 6 and
6 lie on the unit sphere.

B. Sketch of Proof of Theorem 1

By using Proposition 1 we can write the minimax risk
as follows

'R? = inf sup E
1 p(0g.07)<A SIPBS

SQBT

1;715 I:PrOb{CéT (ZT) * CQT (J:T)}:I

1 '”T
QBT

) 19an P(HSSL;E)“RA Spg P;:S [p(eT(SPQS’SPeT )VGT)]
Qo NQ}’;T
where O = gT(SPeSaSFaT) is a function of samples
(Spo, s Spy,. ). Note that the distance p, that is the
Geodesic distance on the unit sphere, is a metric, which
would be necessary in the sequel. Then we follow the
usual technique of reducing the minimax risk to hypoth-
esis testing inspired by the proof [15] (See also [18,
Chapter 15] for non-transfer learning minimax risk). [15]
provides lower bounds for minimax risk in regression
problems. In this paper we use some ideas of [15] to
find minimax lower bounds for classification.
Since our goal is to estimate the the target parameter
using the source and target data, we need to pick [V pairs
of distributions (Pg”,Q5)), ..., (PSY),Q%Y’) such that

p(0¥),0¥))226 foreachzqtje[N]x[N], (7
p(G(Si)ﬁ(Ti))sA for each i € [N] 3)

(7) assures that the target parameters are 2d-separated
uing the p distance defined in 1, and (8) assures that
the source and target distributions belong to the class of
transfer learning problem over which the supremum of
the minimax risk is taken.

Now by considering the following hypothesis testing:

o Let J be a random sample from the uniform distri-
bution over [N]:={1,2,..., N}.
« Given J = j, sample S[p o0 ~ [PB(J)S and SQ9<TJ') ~

1: nrt
|P0(J)

We aim at finding the true index using the ng + nr
samples using a testing function.
Using the proof [15], one can find the following lower
bound for the minimax risk:
R%zé(l—nSI(J;E)+nTI(J;F)+IOg2) ©)
log N

where E and F are random variables such that F|{.J =
j} ~ [PO(J) and F{J = j} ~ QB(J), and I denotes the
mutual information.

Then by using the convexity of KL-
divergence and mixture representation
I(J7E) = NZJ 1DKL([PG(J)||N j 1[Pe(ﬂ)) and

I(J;F) = %) 1DKL(Q9(J)HN i 1Q9<3>) we can
bound the mutual information appearmg in (9) as
follows

I(J;E) < N2 ZDKL([P

I(J; F) ZDKL(QG(Z)HQB(J))

(10)
Following lemma bounds the KL-divergence in (10).
Lemma 1. Let Pg,, Fgrs be two joint distributions of the
features and labels in the source task and Qg, Qg;, be
those in the target task according to the model defined
in Section III-A. Then

Drr(PeslIPey) + Drc1(PoylIPes) <105 - 0517,

Di1(Qor Qo) + Dicr.(Qoy |10y ) < (|07 - 677,

See the long version [17] for the proof. Based on the
distance of source and target, A, we divide the proof
of Theorem 1 into two parts and one can conclude the
proof using the following two lemmas.

Lemma 2. Assume that

Azlarccos \/1— d [1_10010g2]
s 200n7 "4 d

where nr and d are the number of target samples and
the dimension. Then we would have R% > c— Further-

i 1 . _ _d 1l _100log2
more, if A < - arccos (\/1 S00me L4 2]

then

np(1-cos2(A))+log 2
RE > (1-cos?(A))[1- il ,Oid ))+log ]
Lemma 3. Suppose that there are ng and np number of

.04d-log 2
source and target samples and A < Tor(natnr) ° Then

See [17] for the proof of Lemma 2 and 3.
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