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AbstractÐModern machine learning models require a
large amount of labeled data for training to perform well.
A recently emerging paradigm for reducing the reliance of
large model training on massive labeled data is to take
advantage of abundantly available labeled data from a
related source task to boost the performance of the model
in a desired target task where there may not be a lot
of data available. This approach, which is called transfer
learning, has been applied successfully in many application
domains. However, despite the fact that many transfer
learning algorithms have been developed, the fundamental
understanding of ªwhenº and ªto what extentº transfer
learning can reduce sample complexity is still limited. In
this work, we take a step towards foundational understand-
ing of transfer learning by focusing on binary classification
with linear models and Gaussian features and develop
statistical minimax lower bounds in terms of the number
of source and target samples and an appropriate notion
of similarity between source and target tasks. To derive
this bound, we reduce the transfer learning problem to
hypothesis testing via constructing a packing set of source
and target parameters by exploiting Gilbert-Varshamov
bound, which in turn leads to a lower bound on sample
complexity. We also evaluate our theoretical results by
experiments on real data sets.

I. INTRODUCTION

Modern machine learning models have achieved un-

precedented success in numerous applications spanning

computer vision to natural language processing. Most of

these models consist of millions of parameters which

require an abundance of labeled data for training. In

many applications however due to scarcity of data train-

ing models that also generalize well is challenging. Yet

another challenge is that these models do not adapt well

to new environments. In particular, their performance

degrades with modest changes in the data set and they

may require as much data as training from scratch in the

new environment.

Transfer learning is a recent promising approach

to tackle the aforementioned challenges by effectively

utilizing the samples of a different but related source

task, where there are typically many labeled samples,

in order to improve the performance of the model on a

target task with only a few available labeled samples for

training. Indeed, in modern deep learning literature such

transfer learning approaches that use pretrained models

and fining tuning have enjoyed wide empirical success

[1]. Nevertheless, fundamental limits and benefits of

transfer learning have not been well understood and

many key questions remain unanswered. How can we

measure the similarity of two tasks to decide whether

they are appropriate for transfer learning? Given access

to a limited number of samples what would be the best

possible accuracy we can achieve using any algorithms

regardless of the computational complexity? How can we

characterize the generalization error of the target task as

a function of the number of source and target samples

as well as a measure of similarity between them?

In this paper, we focus on answering these questions

for linear models. This serves as a stepping stone for

more general models and provides guidelines for devel-

opment of more effective transfer learning algorithms.

To this aim, we first define a measure to quantitatively

capture the similarity distance of different tasks. We

then derive statistical minimax lower bounds for binary

classification with Gaussian features as a function of

source and target samples as well as the measure of

similarity. Our lower bounds consist of different regimes.

When the distance of source and target tasks is high

the corresponding lower bound is only a function of

the target samples indicating that the target error is

determined by the number of target samples and source

samples are useful only up to a point. On the other hand,

in the regime where the distance of source and target

is low the target error depends on both the number of

source and target samples which demonstrate that source

samples are useful when source is similar to target.

Finally, we perform various experiments on real data sets

to corroborate our theoretical findings and investigate the

utility of the measure defined in this paper in practical

scenarios.
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II. PRIOR WORKS

Related to transfer learning, [2]±[8] study domain

adaptation problem where the goal is to adapt the hy-

pothesis learned on the source domain for the target

domain to achieve small target generalization error. The

common assumption in domain adaptation is that the

source and target share the same labeling function which

is denoted as covariate shift, and the marginal distri-

butions have a small shift under an appropriate notion

of similarity measure. There are numerous results in

this literature that provide sufficiency results by finding

upper bounds on the target generalization error. These

upper bounds guarantee that some types of algorithms

achieve a small target generalization error not exceeding

a threshold. [9], [10] first introduce a similarity measure

of source and target which can be estimated by a finite

number of unlabeled source and target samples. Then,

they provide an upper bound for the target generalization

error of a hypothesis in terms of the error of the hypothe-

sis in the source domain as well as the distance of source

and target using the introduced measure. [11] introduces

a new discrepancy distance utilizing Radamacher com-

plexity which extends the results of [9], [10] for a broad

family of loss functions. More recently, [12] develops

novel algorithms that achieve near optimal minimax risk

in linear regression for two scenarios: 1- source and

target share the same conditional distribution which is

also denoted as covariate shift 2- Marginal distributions

of the source and target are the same which is denoted

as model shift.

There are also a few results providing lower bounds

for the target generalization error and necessary results

for successful learning. [13] studies the assumptions of

covariate shift, existence of a joint optimal hypothesis,

as well as similarity of distributions in the domain

adaptation problem and provides scenarios where one

cannot guarantee successful learning in a PAC-style

learning model. [14] by defining a new discrepancy

measure, called transfer exponent, derives a minimax

lower bound for target generalization error. [14] makes

a relaxed covariate-shift assumption as well as Bernstein

Class Condition assumption on label noise. More closely

related to this work, [15] derives minimax lower bounds

for transfer learning with one-hidden layer neural net-

works for regression. [15] unlike the most of results

in this literature does not make the covariate shift as-

sumption. Our paper without making the covariate shift

assumption derives minimax lower bounds for classifi-

cation with linear models.

III. PROBLEM FORMULATION

In this section we formalize the transfer learning

in binary classification. First we introduce the model

considered in this paper and then describe the minimax

framework to derive the desired lower bounds.

A. Transfer Learning model

We consider a problem where there are nS and nT

number of labeled samples from a source and a target

domain. Specifically, we denote the labeled source and

target samples by (xS , yS) ∼ P and (xT , yT ) ∼ Q where

xS ,xT ∈ Rd as well as yS , yT ∈ {−1,1} denote the

features/inputs and labels/outputs. Moreover, P and Q

denote the underlying joint distributions of the source

and target samples. We also assume that features are

generated by normal distributions, xS ,xT ∼ N (0, Id),
and the distribution of the labels are as follows

Prob(yS ≙ 1∣xS) ≙ 1

1 + exp(−xT
SθS) (1)

Prob(yT ≙ 1∣xT ) ≙ 1

1 + exp(−xT
TθT ) (2)

where θS ,θT ∈ Rd are the ground truth parameters

of the source and target tasks. Then, the optimal Bayes

classifier of the target is as follows

CθT (xT ) ≙ { 1 if xT
TθT ≥ 0

−1 o.w.
(3)

In a transfer learning problem we aim at finding θ̂T
by exploiting both the source and target samples such

that the corresponding classifier, i.e. C
θ̂T

, is close to the

optimal Bayes classifier by the following risk

Prob{C
θ̂T
(xT ) ≠ CθT

(xT )}
Note that the Bayes and estimated classifiers do not

depend on the magnitude of θT and θ̂T . Therefore,

without loss of generality we can assume that they lie

on the unit sphere in Rd.

B. Minimax Framework

In order to develop a minimax framework for the

transfer learning problem, we need to define a class of

transfer learning problems consisting of pairs of source

and target tasks. Here we denote each pair of source and

target tasks by (PθS
,QθT

) parametrized by θS as well

as θT , and the distributions PθS
and QθT

denote the

joint distributions of features and labels over the source

and target, i.e. (xS , yS) ∼ PθS
and (xT , yT ) ∼ PθT

. In

a transfer learning problem we use the source and target

samples to find an estimate θ̂T of θT . In other words, θ̂T
is a function of source and target samples. In a minimax

2022 IEEE International Symposium on Information Theory (ISIT)

283
Authorized licensed use limited to: University of Southern California. Downloaded on January 02,2024 at 06:17:45 UTC from IEEE Xplore.  Restrictions apply. 



framework, the target parameter, θT , is chosen in an ad-

versarial manner, and we are interested in minimizing the

risk supE source and target
samples

[Prob{C
θ̂T
(xT ) ≠ CθT

(xT )}]
where the supremum is taken over an appropriate class

of source and target tasks within a distance to reflect

the difficulty of transfer learning. In order to define the

classes of source and target tasks, we need to define

an appropriate notion of transfer distance between them.

First we state the following proposition regarding the

considered risk for measuring the performance of the

estimate of the target parameter.

Proposition 1. Let θT be the target parameter in Equa-

tion (2) and CθT
be the optimal Bayes classifier defined

in (3). Furthermore, let C
θ̂T

be an estimate of the Bayes

classifier using an estimate θ̂T of θT . Then the risk

measuring the performance of the estimation is given

by

Prob{C
θ̂T
(xT ) ≠ CθT

(xT )} ≙ 1

π
arccos(θ̂T

T θT )
Proposition 1 motivates us to define the transfer dis-

tance between a source and target as follows.

Definition 1. (Transfer distance) For a source and target

with parameters θS and θT , we define the transfer

distance between them as

ρ(θS ,θT ) ∶≙ 1

π
arccos(θT

S θT )
Remark 1. Definition 1 is inspired from Proposition 1

which is based on the assumption of Gaussian features.

However, the Transfer distance defined here works for

any source and target tasks with arbitrary distributions.

Equipped with the notion of transfer distance, we can

now state the transfer learning minimax risk.

R
∆
T ∶≙ inf

θ̂T

sup
ρ(θS ,θT )≤∆
E
SPθS

∼P
1∶nS
θS

SQθT
∼Q

1∶nT
θT

[Prob{C
θ̂T
(xT ) ≠ CθT

(xT )}]
(4)

Here, SPθS
and SQθT

denote i.i.d. samples{(x(i)S , y
(i)
S )}nS

i≙1 and {(x(i)T , y
(i)
T )}nT

i≙1 generated

from the source and target distributions. Moreover, the

parameter 0 ≤ ∆ ≤ 1 captures the class of pairs of

source and target tasks within a distance over which

the supremum is taken. Furthermore, we would like to

highlight that θ̂T is a function of samples SPθS
and

SQθT
.

IV. MAIN RESULTS

We now present our lower bounds for the transfer

learning minimax risk (4)

Theorem 1. Consider the transfer learning model de-

fined in Section III-A consisting of nS and nT source and

target training data generated i.i.d. according to a class

of source/target tasks with transfer distance at most ∆

per Definition 1. Furthermore, assume the dimension d

obeys d ≥ 300 and nT >
d

800
. Then, the transfer learning

minimax risk (4) obeys the following lower bounds.

R
∆
T ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c d
nT

, if ∆ ≥ B1

(1 − cos2(∆))[1 − nT (1−cos
2(∆))+log 2

.04d
], if B2 ≤∆ < B1

c d
nS+nT

, if ∆ < B2

(5)

where

B1 ≙
1

π
arccos(

√
1 −

d

200nT

∥1
4
−

100 log 2

d
∥)

B2 ≙
.04d − log 2

16π(nS + nT )
and c is a numerical constant.

Theorem 1 consists of three regimes:

● Large transfer distance (∆ ≥ B1). In this regime,

the lower bound is independent of number of source

samples, nS , which indicates that source samples

are helpful until the target error for estimating the

Bayes classifier reaches c d
nT

. Beyond this point,

increasing nS is no longer helpful in reducing the

target error, since in this regime source is far from

the target and the similarity between them is low.

● Moderate distance (B2 ≤ ∆ < B1). The distance

between source and target in this regime is lower

than that in the previous regime. In this regime, the

lower bound also does not depend on nS which

shows that even in the case that the distance is not

high but it is strictly positive, i.e. ∆ > 0, number

of source samples cannot compensate for the target

samples. Because even if there are infinitely many

source samples, the error does not go to zero.

● Small distance (∆ < B2). In this regime, since

the source and target are similar to each other,

source samples are as useful as target samples in

reducing the target error. Furthermore, in a non-

transfer learning setting, the minimax risk is pro-

portional to the dimension and reciprocal of the

number of samples. Similarly in this regime the

risk is proportional to the dimension and reciprocal

of combination of the source and target samples
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as if the source samples are as effective as target

samples.

V. EXPERIMENTAL RESULTS

In this section we evaluate our theoretical formulations

on a subset of DomainNet data set [16]. By plotting

the theoretical lower bounds as well as upper bounds

obtained by weighted empirical risk minimization we

investigate the sharpness of the lower bounds. Further-

more, we investigate that the semantic transfer distance

defined in 1 conforms with practical settings.

Experimental setup. We use DomainNet to perform

image classification task. We first pick three pairs of

source and target tasks as described in Table I. Then

we extract features of dimension 2048 by passing the

raw images through a ResNet50 network pretrained on

Imagenet.

Training. For each pair, We train linear networks sepa-

rately for the source and target tasks. Using the estimated

parameters appearing in Definition 1 we calculate the

semantic distance for each pair as shown in Table I.

For finding the corresponding upper bounds, we run

weighted empirical risk minimization using the follow-

ing formulation

min
θ

1 − λ

nT

nT

∑
i≙1

Cost(Cθ(xT ), y(i)T )
+

λ

nS

nS

∑
i≙1

Cost(Cθ(xS), y(i)S ) (6)

where λ ∈ {0,0.2,0.4,0.6,0.8,1} and the cost func-

tion is logistic regression. We run each experiment for 5

times and report the average of the results.

Results. As Table I shows, the pair (Source1, Target)

has the lowest transfer distance among other pairs since

both the source and target share the same objects, namely

Clock and Ambulance. The semantic distance of pair

2 is less than that of pair 3, because in pair 2 the

source and target share at least one common object

which is Clock. For plotting the theoretical lower bounds

one needs to know the numerical constants appearing

in Theorem 1. We will discuss how to estimate the

corresponding numerical constant in the proof section

of the long version [17].

Fig 1 demonstrates that pairs with small semantic

distance have lower target generalization error when

the number of target samples is small. Because source

samples would be more useful and compensate for the

target samples. Furthermore, Fig 2 shows that pairs with

lower semantic distance have higher λ used in (6) which

suggests the effectiveness of source samples when the

distance is small.

Tasks Transfer
distance

Target: Clock vs. Ambulance (Clipart) -
Source1: Clock vs. Ambulance (Sketch) 0.35
Source2: Clock vs. apple (Sketch) 0.41
Source3:apple vs. animal-migration
(Sketch)

0.48

TABLE I: Three pairs of source and target tasks along

with corresponding semantic distance
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Fig. 1: Theoretical lower bound along with upper bounds

for three pairs of source and target obtained by weighted

empirical risk minimization.
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Fig. 2: Average λ used in weighted ERM (6) for three

different pairs of source and target tasks shown in Table

I.

VI. PROOF OUTLINE

A. Proof of Proposition 1

Prob{C
θ̂T
(xT ) ≠ CθT (xT )}

≙Prob{xT
T θ̂T > 0,x

T
TθT < 0}

+ Prob{xT
T θ̂T < 0,x

T
TθT > 0}

Let w1 ≙ x
T
T θ̂T and w2 ≙ x

T
TθT . Since xT ∼ N (0, Id),

we have

[w1

w2
] ∼N([0

0
] , [∣∣θ̂∣∣2ℓ2 θ̂

T
θ

θ̂
T
θ ∣∣θ∣∣2ℓ2])

Hence,

Prob{C
θ̂T
(xT ) ≠ CθT (xT )}

≙ Prob{w1 > 0, w2 < 0} + Prob{w1 < 0, w2 > 0}
≙ 1 − 2(1

4
+

1

2π
arcsin

θ̂
T
θ∣∣θ̂∣∣ℓ2 ∣∣θ∣∣ℓ2 )

≙
1

π
arccos

θ̂
T
θ∣∣θ̂∣∣ℓ2 ∣∣θ∣∣ℓ2 ≙

1

π
arccos(θ̂T

θ)
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Where in the last equation we use the fact that θ̂ and

θ lie on the unit sphere.

B. Sketch of Proof of Theorem 1

By using Proposition 1 we can write the minimax risk
as follows

R
∆
T ≙ inf

θ̂T

sup
ρ(θS,θT )≤∆

E
SPθS

∼P
1∶nS
θS

SQθT
∼Q

1∶nT
θT

[Prob{C
θ̂T
(xT ) ≠ CθT

(xT )}]

≙ inf
θ̂T

sup
ρ(θS,θT )≤∆

E
SPθS

∼P
1∶nS
θS

SQθT
∼Q

1∶nT
θT

[ρ(θ̂T (SPθS
, SPθT

),θT )]

where θ̂T ≙ θ̂T (SPθS
, SPθT

) is a function of samples(SPθS
, SPθT

). Note that the distance ρ, that is the

Geodesic distance on the unit sphere, is a metric, which

would be necessary in the sequel. Then we follow the

usual technique of reducing the minimax risk to hypoth-

esis testing inspired by the proof [15] (See also [18,

Chapter 15] for non-transfer learning minimax risk). [15]

provides lower bounds for minimax risk in regression

problems. In this paper we use some ideas of [15] to

find minimax lower bounds for classification.

Since our goal is to estimate the the target parameter

using the source and target data, we need to pick N pairs

of distributions (P(1)
θS

,Q
(1)
θT
), ..., (P(N)

θS
,Q
(N)
θT
) such that

ρ(θ(i)T ,θ
(j)
T ) ≥ 2δ for each i ≠ j ∈ ∥N∥ × ∥N∥, (7)

ρ(θ(i)S ,θ
(i)
T ) ≤∆ for each i ∈ ∥N∥ (8)

(7) assures that the target parameters are 2δ-separated

uing the ρ distance defined in 1, and (8) assures that

the source and target distributions belong to the class of

transfer learning problem over which the supremum of

the minimax risk is taken.

Now by considering the following hypothesis testing:

● Let J be a random sample from the uniform distri-

bution over ∥N∥ ∶≙ {1,2, ...,N}.
● Given J ≙ j, sample SP

θ
(j)
S

∼ P1∶nS

θ
(j)
S

and SQ
θ
(j)
T

∼

P1∶nT

θ
(j)
T

.

We aim at finding the true index using the nS + nT

samples using a testing function.

Using the proof [15], one can find the following lower

bound for the minimax risk:

R
∆
T ≥ δ(1 − nSI(J ;E) + nT I(J ;F ) + log 2

logN
) (9)

where E and F are random variables such that E∣{J ≙
j} ∼ P

θ
(j)
S

and F ∣{J ≙ j} ∼ Q
θ
(j)
T

, and I denotes the

mutual information.

Then by using the convexity of KL-

divergence and mixture representation

I(J ;E) ≙
1
N ∑

N
j≙1DKL(Pθ

(j)
S

∣∣ 1
N ∑

N
j≙1 P

θ
(j)
S

) and

I(J ;F ) ≙ 1
N ∑

N
j≙1DKL(Qθ

(j)
T

∣∣ 1
N ∑

N
j≙1 Q

θ
(j)
T

), we can

bound the mutual information appearing in (9) as

follows

I(J ;E) ≤ 1

N2
∑
i,j

DKL(Pθ
(i)
S

∣∣P
θ
(j)
S

)
I(J ;F ) ≤ 1

N2
∑
i,t

DKL(Qθ
(i)
T

∣∣Q
θ
(j)
T

). (10)

Following lemma bounds the KL-divergence in (10).

Lemma 1. Let PθS
, Pθ′

S
be two joint distributions of the

features and labels in the source task and QθT
, Qθ′

T
be

those in the target task according to the model defined

in Section III-A. Then

DKL(PθS
∣∣Pθ′

S
) +DKL(Pθ′

S
∣∣PθS

) ≤ ∣∣θS − θ′S ∣∣2ℓ2
DKL(QθT

∣∣Qθ′
T
) +DKL(Qθ′

T
∣∣QθT

) ≤ ∣∣θT − θ′T ∣∣2ℓ2
See the long version [17] for the proof. Based on the

distance of source and target, ∆, we divide the proof

of Theorem 1 into two parts and one can conclude the

proof using the following two lemmas.

Lemma 2. Assume that

∆ ≥
1

π
arccos(

√
1 −

d

200nT

∥1
4
−

100 log 2

d
∥)

where nT and d are the number of target samples and

the dimension. Then we would have R∆
T ≥ c

d
nT

. Further-

more, if ∆ < 1
π
arccos(√1 − d

200nT
∥1
4
−

100 log 2

d
∥) then

R∆
T ≥ (1 − cos2(∆))[1 − nT (1−cos2(∆))+log 2

.04d
]

Lemma 3. Suppose that there are nS and nT number of

source and target samples and ∆ < .04d−log 2

16π(nS+nT ) . Then

R
∆
T ≥ c

d

nS + nT

See [17] for the proof of Lemma 2 and 3.
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