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Abstract—An increasing number of location-based service
providers are taking the advantage of cloud computing by out-
sourcing their Point of Interest (POI) datasets and query services
to third-party cloud service providers (CSPs), which answer var-
ious location-based queries from users on their behalf. A critical
security challenge is to ensure the integrity and completeness of
any query result returned by CSPs. As an important type of
queries, a location-based skyline query (LBSQ) asks for the POIs
not dominated by any other POI with respect to a given query
position, i.e., no POI is both closer to the query position and more
preferable with respect to a given numeric attribute. While there
have been several recent attempts on authenticating outsourced
LBSQ, none of them support the shortest path distance that is
preferable to the Euclidian distance in metropolitan areas. In this
paper, we tackle this open challenge by introducing AuthSkySP,
a novel scheme for authenticating outsourced LBSQ under the
shortest path distance, which allows the user to verify the integrity
and completeness of any LBSQ result returned by an untrusted
CSP. We confirm the effectiveness and efficiency of our proposed
solution via detailed experimental studies using both real and
synthetic datasets.

I. INTRODUCTION

The widespread use of Internet-capable and location-aware

mobile devices is driving the rapid growth in location-based

services (LBSes). Mobile users are increasingly accustomed to

quering nearby points of interests (POIs) such as restaurants

from various location-based service providers (LBSPs). As

an important type of queries, location-based skyline queries

(LBSQs) [1] allow users to retrieve the most ”interesting” POIs

based on both location proximity and user’s preferences among

a large collection of POIs while filtering out those that are

clearly inferior. Specifically, an LBSQ asks for the POIs that

are not dominated by any other POI with respect to the query

position. One POI dominates another with respect to a user’s

query position if and only if the former is both closer to the

query position and more preferable in terms of the numeric

attributes of interest such as price. For example, a budget-

sensitive user may issue an LBSQ to find restaurants, for each

of which there is no other restaurant that is simultaneously

cheaper and closer to his current location.

Recent years have witnessed a growing number of LBSPs

have outsourced their POI datasets and query services to third-

party cloud service providers (CSPs), which in turn answer

various queries from mobile users on their behalf. For ex-

ample, Yelp, a popular LBSP that offers POI searching and

crowdsourced review sharing, hosts its dataset and services

on Amazon Web Services. Data outsourcing offers several

advantages over LBSPs operating their own dedicated private

servers, including flexible access, elasticity, and reduced storage

and operation costs [2]. Meanwhile, a well-known security

challenge is that CSPs cannot be fully trusted, which may

return forged or incomplete query results in favor of POIs

willing to pay. This situation requires sound mechanisms for

authenticating any query result returned by an untrusted CSP.

In particular, a query result is considered authentic if it does

not include forged POI information and complete if it contains

all the POIs that satisfy the query condition.

Despite the significant efforts on authenticating outsourced

query processing, there are only a few attempts [3]–[7] on

authenticating outsourced LBSQ. Common to these efforts

is the assumption that the distance between any POI and

query position is measured by the Euclidean distance. While

Euclidean distance is a widely used distance metric, it cannot

accurately capture a user’s true travel distance between two

locations in metropolitan areas. In particular, two locations with

a small Euclidean distance may be far apart due to buildings and

obstacles in a metropolitan area. As a result, the shortest path

distance is a much better metric for LBSQ. Unfortunately, since

the shortest path distance between any two positions depends

on the underlying road network, a small change in the query

position may result in drastically different LBSQ results. This

makes authenticating LBSQ a much more challenging problem

and renders existing solutions [3]–[7] inapplicable. To the best

of our knowledge, how to authenticate outsourced LBSQ under

the shortest path distance remains unknown.

In this paper, we tackle this open challenge by AuthSkySP,

a novel scheme for authenticating outsourced LBSQ processing

under the shortest path distance metric by exploiting two unique

properties of LBSQs. First, any LBSQ over a large region

can be decomposed into multiple LBSQs with each over a

subregion. Second, the skyline POIs of a road subnetwork that

does not contain the query position must be a subset of a special

POI set that can be precomputed without knowing the query

position. Based on these two properties, AuthSkySP divides the

road network into multiple subnetworks and authenticates the

local skyline POI set in each subnetwork to allow the user to

verify both the integrity and completeness of any LBSQ result.
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Our contributions can be summarized as follows.

• To the best of our knowledge, we are the first to study

authenticating outsourced LBSQ processing under the

shortest path distance.

• We introduce AuthSkySP, a novel scheme that allows a

user to verify the integrity and completeness of any LSBQ

result returned by an untrusted CSP.

• We implement AuthSkySP and confirm its efficacy and

efficiency via detailed experimental studies using both real

and synthetic datasets.

II. RELATED WORK

As mentioned in Section I, authenticating outsourced LBSQ

has been studied in [3]–[7]. In [3], Lin et al. considered LBSQs

over a general 2D area and introduced a solution based on

MR-Sky-tree and pre-computed skyline scope. This work was

subsequently improved in [4] and [5] to support continuous

LBSQ processing and LBSQs involving multiple numeric at-

tributes, respectively. Authenticating outsourced LBSQ over

a road network were studied in [6], [7]. Common to these

efforts is that the distance between query position and POI

is measured by the Euclidean distance, while the shortest path

distance provides better indication for the user’s traveling time

in metropolitan areas. Since the shortest path between two

positions depends on the underlying road network, none of

these solutions [3]–[7] is applicable to our target problem.

Authenticating query processing in data outsourcing has

received much attention in recent years. Various types of

queries have been studied, including range queries [8]–[10],

top-k queries [11]–[14], kNN queries [15], SQL queries [16],

centerpoint query [17], social graph query [18], and so on. We

tackle a totally different problem from them in this paper.

Skyline queries have been studied extensively in the data

management community. Since the seminar work on skyline

operator by Borzsony et al. [19], significant efforts have been

made on efficient skyline query processing. For example,

Chomicki et al. [20] introduced sort-filter-skyline algorithm to

improve the efficiency of basic algorithm in [19] by pre-sorting

tuples according to a particular dimension and no tuples can be

dominated by the subsequent tuples. Zhang et al. [21] improved

skyline computation efficiency by maintaining a much shorter

skyline candidate list. Tang et al. [22] partitioned input datasets

into disjoint subsets and compute skyline candidates in parallel

for better efficiency. LShape [23] further improved the process-

ing efficiency using a grid-based partitioning strategy. However,

none of these work considers the integrity and completeness of

the query result, and they are orthogonal to our work.

III. PROBLEM FORMULATION

A. System Model

We consider a data outsourcing system consisting of an

LBSP, a CSP, and many mobile users. The LBSP outsources

its POI dataset to the CSP, which in turn answers LBSQs from

mobile users on the LBSP’s behalf. Every mobile user carries

a smartphone and may issue LBSQs at any location through

the LBSP’s mobile app.
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Fig. 1: Shortest path between s and t in the same road seg..

We assume that all the POIs reside over a road network.

We model the road network as an undirected and weighted

planar graph G = (V,E) on the 2D plane, where V is the

set of vertices each corresponding to one road junction, and

E = {e1, . . . , em} is the set of road segments, where m is the

number of road segments. We leave the extension of our work

to directed graph as our future work. Each road segment ei
connects its two vertices (i.e., road conjunctions), denoted by

vli and vri , respectively, and has a weight wi. In this paper, we

assume that road segments may be of arbitrary shape and that

the weight of a road segment is the arc length of ei, i.e., the

distance between vli and vri along the road segment ei.
The POIs are commonly organized into different categories,

such as gas stations, restaurants, and bars. For simplicity, this

paper considers a set of POIs O in a single category. Let Oi =
{oi,j |1 ≤ j ≤ ni} be the set of POIs that reside along road

segment ei and oi,j denotes the jth POI in ei. It follows that

O =
⋃m

i=1 Oi, and Oi

⋂
Oj = ∅ for all i �= j.

Each POI oi,j corresponds to one POI record Di,j in the

LBSP’s dataset represented as

Di,j = 〈idi,j , xi,j , γi,j , auxi,j〉, (1)

where idi,j is an ID assigned by the LBSP uniquely identifying

oi,j , xi,j is the arc length between vli and oi,j along road

segment ei, γi,j ∈ [γmin, γmax] is the numeric attribute of interest

such as price, and auxi,j denotes any auxiliary information

such as its name, text reviews, and photos that does not affect

whether oi,j satisfies a given LBSQ but is desirable to the

user if it does. It follows that the arc length between oi,j
and vri is wi − xi,j . We assume that each POI has only one

numeric attribute and leave the extension of LBSQ involving

multiple numeric attributes as our future work. Moreover, we

also assume that every POI is associated with one unique

position, i.e., no two POIs share the same address. Our solutions

can be easily adapted to relax the last assumption.

B. Query Model

We first provide the definition of the shortest path distance

between any two vertices.

Definition 1. (Shortest path distance between two vertices)
Given two vertices vs, vt ∈ V , the shortest path between vs and
vt is a sequence of road segments (e1, e2, . . . , ez) that connects
vs to vt, such that the total weight

∑z
j=1 wj is minimized, and

the minimized weight, denoted by dsp(vs, vt), is the shortest
path distance between vs and vt.

We now extend the above definition into the shortest path

distance between any two positions in the road network. Con-

sider Fig. 1 as an example in which two positions s and t are in

the same road segment ei. The shortest path between s and t is

2023 IEEE Conference on Communications and Network Security (CNS)



vlj

vli

dsp(v
l
i, v

l
j)

dsp(v
l
i, v

r
j )

dsp(v
r
i , v

l
j)

dsp(v
r
i , v

r
j )

vrj

vri
s

t
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either a partial segment of ei or traverses two endpoints vli and

vri and the shortest path between vli and vri . Let d(s, vli) and

d(t, vli) be the arc distance between s and vli and the arc distance

between t and vli along road segment ei, respectively. Without

loss of generality, we also assume that d(s, vli) < d(t, vli), i.e.,

s is closer to vli than t along ei. The shortest path distance

between s and t is then given by

dsp(s, t) =min(d(t, vli)− d(s, vli),

d(s, vli) + dsp(v
l
i, v

r
i ) + wi − d(t, vli)),

(2)

where wi is the length of road segment ei. For two positions in

different road segments, let us consider Fig. 2 as an example.

Since the shortest path from s ∈ ei must pass either vli or vri
and that from t ∈ ej must pass either vlj or vrj , we have

dsp(s, t) = min(d(s, vli) + dsp(v
l
i, v

l
j) + d(t, vlj),

d(s, vli) + dsp(v
l
i, v

r
j ) + d(t, vrj ),

d(s, vri ) + dsp(v
r
i , v

l
j) + d(t, vlj),

d(s, vri ) + dsp(v
r
i , v

r
j ) + d(t, vrj )).

(3)

In practice, the shortest path distance between every pair of

vertices can be precomputed and stored in a table so that

the shortest path distance between any two positions can be

efficiently computed by table lookup and Equation (3).

We now provide the definitions of dominance and location-

based skyline query.

Definition 2. (Dominance) For two POIs oi,j and oi′,j′ , we
say oi,j dominates oi′,j′ with respect to query position q if and
only if dsp(q, oi,j) ≤ dsp(q, oi′,j′) and λi,j ≤ λi′,j′ but the two
equalities do not both hold.

Definition 3. (Location-based skyline query(LBSQ)) An LBSQ
skl(O|q) asks for the set of POIs in O that are not dominated
by any other POI with respect to query position q.

C. Adversary Model and Design Goals

We assume that when using the CSP’s service for the first

time, a user downloads an authentic copy of the road network

(V,E) with no POI information. Assume that the user issues

an LBSQ at query position q to the CSP to retrieve the skyline

POI set skl(O|q). The query position can be any position within

any road segment that cannot be predicted in advance.

We assume that the LBSP is trusted to faithfully follow

system operations. In contrast, the CSP is not trusted and

may return LBSQ results that contain forged or tampered POI

records or POI records that are not among the skyline POIs.

The CSP may also purposefully omit some skyline POI records.

We seek to enable verification of the integrity and complete-

ness of any LBSQ result returned by the CSP. A query result

is considered authentic if it does not include any forged or

tampered POI record and complete if it contains all the true

skyline POI records.

IV. AUTHSKYSP

In this section, we introduce AuthSkySP, a novel scheme

for authenticating outsourced LBSQ under the shortest path

distance. We first give an overview and then detail its design.

A. Overview

AuthSkySP is designed by exploring the decomposability of

LBSQ characterized by the following theorem.

Theorem 1. (Decomposability of LBSQ) Let O be a set of
POIs and O1, . . . , Ok a family of subsets of O such that O =⋃k

j=1 Oj . For any query position q, we have

skl(O|q) = skl(O′|q) ,
where O′ =

⋃k
j=1 skl(Oj |q).

Proof. We first prove that skl(O|q) ⊆ skl(O′|q). For any POI

o ∈ skl(O|q), since O =
⋃k

j=1 Oj , there must exist Ox, where

1 ≤ x ≤ k and o ∈ Ox. Since no other POI in O dominates o
and Ox ⊆ O, no other POI in Ox dominates o either. It follows

that o ∈ skl(Ox|q) and that o ∈ O′. Similarly, since O′ ⊆ O,

no other POI in O′ dominates o, and therefore o ∈ skl(O′|q).
We thus have skl(O|q) ⊆ skl(O′|q).

We now prove that skl(O′|q) ⊆ skl(O|q) by contradic-

tion. Assume that there exists POI o ∈ skl(O′|q) such that

o /∈ skl(O|q). Since o /∈ skl(O|q), there must exist POI

o′ ∈ skl(O|q) that dominates o with respect to query position q.

Without loss of generality, suppose that o′ ∈ Oy . There are two

cases. First, if o′ ∈ skl(Oy|q), then o′ ∈ O′. Since o′ dominates

o with respect to query position q, we have o /∈ skl(O′|q),
leading to a contradiction. Second, if o′ /∈ skl(Oy|q), then there

must exist o′′ ∈ skl(Oy|q) that dominates o′. Since o′ dominates

o, it follows that o′′ dominates o. Therefore, o /∈ skl(O′|q),
which also leads to a contradiction. We can thus conclude that

skl(O′|q) ⊆ skl(O|q).
Finally, since skl(O|q) ⊆ skl(O′|q) and skl(O′|q) ⊆

skl(O|q), we have skl(O|q) = skl(O′|q), and the theorem is

proved.

A weaker version of Theorem 1 can be found in [6].

The decomposability of LBSQ makes it possible to authenti-

cate any LBSQ over a large POI set into authenticating multiple

LBSQs with each over a subset of POIs. We hereafter refer to

skl(O|q) as the global skyline set and skl(
⋃

ej∈E′ Oj |q) as a

local skyline set with respect to the subset of road segments

E′. Since the query position q must be in one of the road

segments, we consider the two cases: (1) the road segments

that do not contain query position q and (2) the road segment

containing q.

1) Road Segments Not Containing q: We observe that for

any subgraph G′ = (V ′, E′) of the road network that does not

contain query position q, the local skyline POI set, skl(OE′ |q),
must be a subset of the union of multiple special skyline
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sets that can be precomputed without the knowledge of q.

Specifically, let E′ and E \ E′ be an edge partition of the

road network G = (V,E). Also let G′ = (V ′, E′) and

G′′ = (V ′′, E \ E′) be the two subgraphs induced by E′ and

E \ E′, respectively, where V ′ and V ′′ each consist of every

end vertex of the edges in E′ and E \ E′, respectively. Note

that some vertexes may be replicated in both V ′ and V ′′, as

they are incident to road segments in both E′ and E \E′. We

subsequently call the entry(E′) = V ′ ⋂V ′′ the entry vertex
set of the subgraph induced by E′. Fig. 3 shows an exemplary

edge partition of a road network G, where G′ and G′′ are the

two subgraphs induced by two road segment subsets, and v1, v4
and v7 are the vertices replicated in both G′ and G′′, i.e., the

entry vertexes of E′. We then have the following theorem.

Theorem 2. Let G = (V,E) be a road network. For any E′ ⊆
E, let G′ = (V ′, E′) and G′′ = (V ′′, E \ E′) be the two
subgraphs induced by E′ and E \ E′, respectively. For any
query position q /∈ E′, we have

skl(OE′ |q) ⊆
⋃

v∈entry(E′)

skl(OE′ |v), (4)

where OE′ =
⋃

ei∈E′ Oi and entry(E′) = V ′ ⋂V ′′.

Proof. We prove this theorem by contradiction. For any query

position q /∈ E′, assume that there exists a POI oi,j such that

oi,j ∈ skl(OE′ |q) and oi,j /∈ ⋃
v∈entry(E′) skl(OE′ |v).

Since oi,j /∈ ⋃
v∈entry(E′) skl(OE′ |v), for every v ∈

entry(E′), there must exist oiv,jv ∈ OE′ such that γiv,jv ≤ γi,j
and dsp(oiv,jv , v) ≤ dsp(oi,j , v), but the two equalities do not

both hold.

In addition, since the shortest path from oi,j to q must pass

one of entry vertexes in entry(E′), we have

dsp(oi,j , q) = min{(dsp(oi,j , v) + dsp(v, q))|v ∈ entry(E′)}
≥ min{(dsp(oiv,jv , v) + dsp(v, q))|v ∈ entry(E′)}
≥ min{dsp(oiv,jv , v)|v ∈ entry(E′)}.

It follows that oi,j cannot be closer to q than all POIs

in {oiv,jv |v ∈ entry(E′)}. Since γiv,jv ≤ γi,j for all

v ∈ entry(E′), there exist at least one POI in {oiv,jv |v ∈
entry(E′)} that dominates oi,j with respect to query position

q. Therefore, oi,j cannot be in skl(OE′ |q), leading to a contra-

diction. The theorem is therefore proved.

We refer to
⋃

v∈entry(E′) skl(OE′ |v) as the local skyline union
of subgraph G′ hereafter.

The decomposability of LBSQ along with Theorem 2

provides us with a general way to authenticate local sky-

line sets skl(
⋃m

j=1,j �=i Oj |q) for any query position q ∈
ei. Let G1, . . . , Gk be a family of subgraphs of G =
(V,E) such that

⋃k
i=1 Ei = E \ {ei}. If we can re-

quire the CSP to return skl(
⋃m

j=1,j �=i Oj |q) as well as

the local skyline union of each subgraph G1, . . . , Gk, i.e.,⋃
v∈entry(E1)

skl(OE′ |v), . . . ,⋃v∈entry(Ek)
skl(OE′ |v), then the

user would be able to verify if skl(
⋃m

j=1,j �=i Oj |q) is a subset

of
⋃m

j=1,j �=i(
⋃

v∈entry(Ei)
skl(OE′ |v)).

2) Road Segment Containing q: For road segment ei that

contains query position q, we extend the 1D-SKY scheme in

[6] to enable authenticating skl(Oi|q) under the shortest path

distance. 1D-SKY [6] was designed to support authenticating

skl(Oi|q) over a single straight road segment under the Euclid-

ian distance. However, the shortest path distance between two

positions may not be the partial road segment connecting them

as shown in Fig. 1. Fortunately, we find a novel transformation

of POI set Oi that makes it possible for us to apply 1D-SKY.

The key idea behind the transformation is a novel skyline
preserving mapping that maps every position in road segment

ei with an arc length wi into a virtual straight road segment

such that skyline queries on the original road segment ei under

the shortest path distance is equivalent to skyline queries on the

virtual road segment under the Euclidian distance. Since any

position in ei can be uniquely identified by its arc distance from

vli, we can represent the road segment ei by the range Ri =
[0, wi]. The mapping takes the range Ri = [0, wi], the shortest

path distance dsp(v
l
i, v

r
i ) between vli and vri , and a reference

position p ∈ Ri as input and assigns every position x ∈ Ri a

new coordinate fp(x) in the virtual road segment in two steps.

First, we divide the range Ri into two subranges Rp−
i and

Rp+
i , where Rp−

i (or Rp+
i ) consists of all positions x ∈ Ri

such that the shortest path from x to p reaches p from the left

(or right). For any position x ∈ Ri, we can easily determine

whether x ∈ Rp−
i or Rp+

i . Denote by d→sp (x, p) and d←sp (x, p)
the distance of the shortest path from x to p that reaches p
from the left and right, respectively. We have

d→sp (x, p) =

{
p− x if x ≤ p,

wi − x+ dsp(v
l
i, v

r
i ) + p if x > p ,

(5)

and

d←sp (x, p) =

{
x+ dsp(v

l
i, v

r
i ) + wi − p if x ≤ p,

x− p if x > p .
(6)

It follows that x ∈ Rp−
i if d→sp (x, p) ≤ d←sp (x, p) and x ∈ Rp+

i

if d→sp (x, p) > d←sp (x, p).

The second step of the mapping is to assign every position

x ∈ Ri a new coordinate in the virtual straight road segment.

Specifically, for any position x ∈ Ri, its new coordinate in the

virtual road segment is given by

fp(x) =

{
−dsp(x, p) if x ∈ Rp−

i ,

dsp(x, p) if x ∈ Rp+
i .

(7)

where dsp(x, p) = min(d→sp (x, p), d
←
sp (x, p)), which is equiva-

lent to the one given in Eq. (2). It is easy to see that under this
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transformation fp(p) = 0 for reference position p.

The above mapping has a number of important properties.

First, the mapping is invertible. Since no two positions in the

original road segment will be mapped to the same position

in the virtual road segment, the inverse mapping must exist

for any valid fp(x). In fact, given any coordinate y in the

virtual road segment, the arc length wi of ei, the shortest path

distance dsp(v
l
i, v

r
i ), and reference position p ∈ Ri, the position

y’s coordinate in the original road segment can be computed

according to the following three cases.

• Case 1: if dsp(v
l
i, v

r
i ) < wi p >

dsp(v
l
i,v

r
i )+wi

2 , and wi −
p+ dsp(v

l
i, v

r
i ) ≤ y <

dsp(v
l
i,v

r
i )+w

2 , then

f−1
p (y) = y + p− wi − dsp(v

l
i, v

r
i ) . (8)

• Case 2: if dsp(v
l
i, v

r
i ) < wi, p ≤ w−dsp(v

l
i,v

r
i )

2 , and
−dsp(v

l
i,v

r
i )−w

2 ≤ y ≤ −p− dsp(v
l
i, v

r
i ), then

f−1
p (y) = y + p+ wi + dsp(v

l
i, v

r
i ) . (9)

• Case 3: if other than Cases 1 or 2, then

f−1
p (y) = y + p . (10)

We apologize for omitting the detailed derivation of Eqs. (8)

to (10) due to space limitations. For convenience, we also

postulate that fp(−∞) = −∞ and f−1
p (−∞) = −∞ for all

p ∈ Ri.

Second, for any reference position p ∈ Ri, we can divide POI

set Oi into Op−
i and Op+

i depending on whether xi,j ∈ Rp−
i

or Rp+
i . Third, the shortest path distance between any POI

and reference location p remain the same after the mapping. It

follows that skl(Op−
i |p) and skl(Op+

i |p) in the original road

segment do not change after mapping to the virtual road

segment. Moreover, the decomposability of LBSQ indicates that

skl(Oi|p) = skl(skl(Op−
i |p)⋃ skl(Op+

i |p)).
We further introduce a few key concepts based on the above

mapping which are similar to those in [6]. For any two POIs

oi,j , oi,k ∈ Oi, we say oi,k is the right skyline neighbor 1

of oi,j with respect to query position q ∈ ei if and only if

(1) both oi,j , oi,k ∈ skl(Oq−
i |q)⋃ skl(Oq+

i |q) where Oq−
i and

Oq+
i are defined based on the skyline preserving mapping with

q being the reference position, (2) fq(xi,j) < fq(xi,k), i.e.,

oi,k is on the right of oi,j in the virtual road segment, and

(3) no other POI in skl(Oq−
i |q)⋃ skl(Oq+

i |q) reside between

them. Furthermore, for any two POIs oi,j and oi,k, we call oi,k
a possible right skyline neighbor of oi,j if there exists at least

one query position q ∈ ei such that oi,k is the right skyline

neighbor of oi,j with respect to q. Let N(oi,j) ⊂ Oi be the

set of possible right skyline neighbors of POI oi,j . For each

oi,k ∈ N(oi,j), there exists a neighbor query range, denoted by

range(oi,k|oi,j) ⊆ ei, such that oi,k is the right skyline neighbor

of oi,j with respect to q if and only if q ∈ range(oi,k|oi,j).
A key observation is that for every POI oi,j ∈ Oi, the set of

possible right skyline neighbors N(oi,j) and the neighbor query

1Left skyline neighbor can be defined accordingly but is not used.

range range(oi,k|oi,j) of each oi,k ∈ N(oi,j) can be efficiently

computed in a similar way as 1D-SKY [6].

Consider POI oi,j at position xi,j as an example. We first

perform a skyline preserving mapping for Oi with xi,j being

the reference position such that every POI oi,k ∈ Oi obtains

a new coordinate fxi,j (xi,k) according to Eq. (7). After the

mapping, the POI set Oi can be viewed as residing on a straight

road segment where the shortest path distance between any two

POIs is equivalent to their Euclidean distance. We can then use

Algorithm 1 in 1D-SKY [6] to compute N(oi,j) and the neigh-

bor query range for every oi,k ∈ N(oi,j). More specifically,

Algorithm 1 in [6] takes {(fxi,j (xi,k), λi,k)|1 ≤ k ≤ ni} as

input and returns oi,j’s possible skyline neighbor set N(oi,j)
and a neighbor query range (lj,k, rj,k) for every oi,k ∈ N(oi,j).
Since the range (lj,k, rj,k) is defined over the virtual road

segment, we need to take an extra step to convert it back to

the neighbor query range in the original road segment via the

inverse mapping as range(oi,k|oi,j) = (f−1
xi,j

(lj,k), f
−1
xi,j

(rj,k)),

where f−1
xi,j

(·) is given in Eqs. (8) to (10). We refer readers to

[6] for details of Algorithm 1 due to space limitations.

In summary, for every POI oi,j ∈ Oi, we can compute

its set of possible skyline neighbors N(oi,j), and the query

range range(oi,k|oi,j) for each oi,k ∈ N(oi,j) such that oi,k
is the right skyline neighbor of oi,j with respect to query

position q if and only if q ∈ range(oi,k|oi,j). As we will see

shortly, the precomputed skyline neighbor relationship allows

us to chaining adjacent skyline neighbors via cryptographic

primitives to allow the user to verify the completeness of

skl(Oq−
i |q)⋃ skl(Oq+

i |q) for any q ∈ ei.
In what follows, we first introduce how to construct a graph

partition tree from road network G = (V,E) and then detail the

AuthSkySP operations, which consist of data preprocessing

at the LBSP, query processing at the CSP, and query-result

verification at the user.

B. Graph Partition Tree Construction

To facilitate efficient authentication of skl(
⋃m

j=1,j �=i Oj |q),
we construct a graph partition tree over the set of road segments

E. A graph partition tree is a binary tree, in which the root

corresponds to the entire road network G, every leaf node

corresponds to the subgraph induced by a single road segment,

and every non-leaf node corresponds to the subgraph induced

by the union of its two childrens road segments.

Given road network G = (V,E), we construct a graph

partition tree T in a top-down fashion. Starting from the root

that corresponds to the whole road network G, for every non-

leaf node v that corresponds to subgraph Gv = (Vv, Ev),
we construct two children nodes by finding a balanced 2-
way vertex-cut [24] of Gv. Specifically, we divide its edge

set Ev into two subsets Ev,0 and Ev,1 of approximately equal

size while minimizing the number of vertices replicated in

the two subgraphs Gv,0 and Gv,1 induced by Ev,0 and Ev,1,

respectively. We then construct the two children of node v as

v.0 = Gv,0 and v.1 = Gv,1. Since the set of replicated vertices

is always a subset of the entry vertex set of each subgraph,

doing so can keep the size of each subgraph’s entry vertex
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set small. While finding the a balanced 2-way vertex cut of a

graph is NP-hard [25], we adopt the algorithm in [26] that runs

in polynomial-time with a guaranteed approximation ratio. The

process continues until every node only has one road segment.

C. Data Preprocessing

The LBSP preprocesses its POI dataset {Di,j |1 ≤ i ≤
m, 1 ≤ j ≤ ni} before outsourcing it to the CSP.

First, for each road segment ei, 1 ≤ i ≤ m, the LBSP inserts

a special virtual POI oi,0 and POI record Di,0 = 〈id∗, x∗, γ∗〉,
where id∗ is a publicly known special string, x∗ = −∞, and

γ∗ is a special public value smaller than γmin. Since γ∗ < γmin

and ds,p(x
∗, q) = ∞ for any query position q ∈ ei, POI oi,0 ∈

skl(Oi|q) for any q ∈ ei and is always the leftmost skyline POI

in skl(Oq−
i |q)⋃ skl(Oq+

i |q). oi,0 will serve as an anchor POI

for ei and can prevent the CSP from claiming that Oi = ∅.

Second, for every POI record Di,j , 1 ≤ i ≤ m, 0 ≤
j ≤ ni, the LBSP constructs a compressed POI record as

Ci,j = 〈idi,j , di,j , λi,j , h(auxi,j)〉, where h(·) denotes a good

cryptographic hash function such as SHA-256.

Third, for every non-root node v of the graph partition

tree T, the LBSP finds its entry vertex set entry(Ev), com-

putes the local skyline union of subgraph Ev as Uv =⋃
v∈entry(Ev)

skl(OEv |v) and constructs a local skyline union

record as Cv = ||oi,j∈UvCi,j .

Fourth, for every road segment ei with POI set Oi, 1 ≤ i ≤
m, the LBSP creates a chaining relationship among skyline

neighboring POIs. Next, for every POI oi,j , 0 ≤ j ≤ ni, the

LBSP computes oi,j’s possible right skyline neighbor set and

corresponding query ranges as

nbi,j = {〈idi,k, range(oi,k|oi,j)〉|oi,k ∈ N(oi,j)} (11)

using Algorithm 1 in [6] in combination with mapping

fxi,j (·) given in Eq. (7) and inverse mapping f−1
xi,j

(·) giv-

en in Eqs. (8) to (10) as discussed in Section IV-A2.

Moreover, the LBSP computes a neighbor-embedded POI
record as D+

i,j = 〈idi,j , di,j , γi,j , nbi,j , auxi,j and a

compressed neighbor-embedded POI record as C+
i,j =

〈idi,j , di,j , γi,j , nbi,j , h(auxi,j).
Fifth, the LBSP builds one Merkle hash tree T c over all

compressed neighbor-embedded POI records {C+
i,j |1 ≤ i ≤

m, 0 ≤ j ≤ ni} and another Merkle hash tree Tu over

all local skyline record unions {Cv}v∈T with each leaf node

corresponding to one non-root node in graph partition tree T
and signs the roots of both T c and Tu.

Finally, the LBSP sends road network G, graph partition tree

T, all neighbor-embedded POI records {D+
i,j |1 ≤ i ≤ m, 0 ≤

j ≤ ni} and its signatures on both Merkle root hashes to the

CSP. Anyone can computes Di,j , C
+
i,j , and Ci,j given D+

i,j .

D. Query Processing

Assume that the user issues an LBSQ at position q in road

segment ei. The CSP computes the global skyline POI set

skl(O|q) and constructs the query result as follows.

First, the CSP constructs a partial query result for road

segments other than ei according to the graph partition tree

T. Specifically, the CSP first finds a minimal-size subset S of

internal nodes of the graph partition tree T such that the union

of their edge sets covers E \ {ei}. This can be done easily by

traversing T from the root to the leaf node corresponding to

road segment ei. For each non-root node we visit, we add its

sibling node to S. For each node v ∈ S, the CSP includes the

following information as partial query result

Rv = {Xj,k|oj,k ∈ Uv}, (12)

where Xj,k = Dj,k if oj,k ∈ skl(O|q) and Cj,k otherwise.

Second, the CSP constructs a partial query result for road

segment ei. Specifically, the CSP divides Oi into Oq−
i and Oq+

i

with q being the reference position and computes skl(Oq−
i |q)

and skl(Oq+
i |q). It then constructs the partial query result as

Ri = {Xi,k|oi,k ∈ skl(O−
i |q)

⋃
skl(O+

i |q)}, (13)

where Xi,k = D+
i,k if oi,k ∈ skl(O|q) and C+

i,k otherwise.

Finally, the CSP returns the information needed for the user

to verify the integrity of the query result, which include all

the internal nodes in Tu’s needed for computing the root from

every returned local skyline record union Cv, all the internal

nodes in T c needed for computing the root every returned

neighbor-embedded POI record C+
i,k, and the LSBP’s signatures

on the root hashes of Merkle trees T c and Tu.

E. Query-Result Verification

Every user downloads an authenticated copy of the road

network G and the graph partition tree T upon registration.

On receiving the query result, the user verifies its integrity and

completeness as follows.

1) Integrity Verification: The user first verifies the integrity

of the query result using two Merkle hash trees and the LBSP’s

signatures. Assume that the user has received {Rv|v ∈ S′} and

Ri as the query result, where S′ is the subset of nodes in T
with local skyline unions returned.

For every Rv, v ∈ S′, the user first converts every original

POI record therein into corresponding compressed POI record

whereby to reconstruct local skyline record union Cv. The

user then computes the Merkle hash root using corresponding

internal nodes of Tu. If all the local skyline record unions

lead to the same Merkle hash root, the user further verifies the

LBSP’s signature on the root. Similarly, the user verifies the

integrity of every POI record in Ri using corresponding internal

nodes of T c and the LBSP’s signature. If all verifications

succeed, the user considers the query result authentic.

2) Completeness Verification: The user then verifies the

completeness of the query result in three steps. First, the user

checks if
⋃

v∈S′ Ev = E \ {ej}. If so, he extracts the local

skyline union Uv =
⋃

v∈entry(Ev)
skl(OEv |v) for every v ∈ S′,

where Uv =
⋃

v∈entry(Ev)
skl(OEv |v)

Second, the user verifies whether Ri includes all POIs in

skl(Oq−
i |q)⋃ skl(Oq+

i |q). Specifically, the user first converts

every neighbor-embedded POI record into the corresponding

compressed neighbor-embedded POI record. For every C+
i,j

in Ri, the user performs a skyline preserving mapping with
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TABLE I: Summary of Real Datasets

Dataset # of POIs # of Road Segments
MAN 4,840 8,035
CHI 1,427 2,899
LA 1,589 11,070
SF 3,168 5,030

reference position q to compute a new coordinate fq(xi,j)
according to Eqs. (5) to (7). The user then sorts all the C+

i,js

according to fq(xi,j) in an ascending order. Without loss of

generality, assume that Ri consists of compressed neighbor-

embedded POI records C+
i,j1

, . . . , C+
i,jk

where fq(xi,j1) <
· · · < fq(xi,jk). The user first checks if the leftmost record

C+
i,j1

= 〈id∗, x∗, γ∗, nbi,0〉, which should correspond to the

special virtual POI inserted by the LBSP. Then for every pair

of adjacent POI records C+
i,jy

and C+
i,jy+1

, 0 ≤ y ≤ k − 1, the

user checks if oi,jy+1 ∈ N(oi,jy ) and q ∈ range(oi,jy+1 |oi,jy )
according to nbi,jy in C+

i,jy
. Last, the user checks if nbi,jk in

C+
i,jk

shows that POI oi,jk has no right skyline neighbor with

respect to query position q. If all the verifications succeed, the

user considers Ri includes all POIs in skl(Oq−
i |q)⋃ skl(Oq+

i |q).
Finally, the user verifies the completeness of returned global

skyline POIs based on the decomposability of LBSQ. Let Oq

be the set of POIs for which either a neighbor-embedded POI

record or POI record is returned. The user checks whether Oq =
skl(O′) where O′ = skl(Oq−

i |q)⋃ skl(Oq+
i |q)⋃v∈S′ Uv. If so,

the user considers the query result complete.

V. EXPERIMENT RESULTS

A. Datasets

We collect four real restaurant datasets from Yelp via Yelp

Fusion APIs [27] using a customized Python program, which

consists of the records of restaurants in (1) the Manhattan area,

New York (MAN), (2) Chicago, Illinois (CHI), (3) Los Ange-

les, California (LA), and (4) San Francisco, California (SF),

respectively. Each restaurant record consists of its ID, name,

rating, price, street address, coordinates, and other information

such as category, phone number, user reviews, and images, and

we use the rating as the numeric attribute.

For each dataset, we construct the corresponding road net-

work using the OpenStreetMap Overpass API [28]. Specifically,

we first collect all road segments and construct a connected

graph as the road network. We then map every restaurant to

one road segment based on its latitude and longitude. Table I

summarizes the four datasets.

We also generate two synthetic datasets from the MAN
dataset to evaluate the impacts of the number of POIs and

the number of road segments, respectively. The first synthetic

dataset is generated by fixing the number of road segments

to 8,035, while randomly generating different numbers of POIs

distributed uniformly in the road network with numeric attribute

drawn from (0, 5] uniform at random. The second synthetic

dataset is generated by randomly selecting different numbers of

connected road segments from the MAN dataset while keeping

the POIs in the selected road segments.

TABLE II: Default Experiment Settings

Para. Value Description
|idi,j | 16 The length of id in bit
|di,j | 32 The length of distance in bits
|λi,j | 32 The length of numeric attribute in bits
|nbri,j | 80 The length of neighbor information in bits

|h(·)| 256 The length of hash function h(·) in bits
1024 The length of LBSP’s signature in bits

B. Experimental Settings

We implement AuthSkySP in Python using packages ne-
towrkx, cryptography, and hashlib for efficient shortest path dis-

tance calculation, signature and verification, and hash compu-

tation, respectively. We deploy AuthSkySP on three desktops,

which act as the LBSP, the CSP, and the user, respectively. Each

desktop has a i7-6700 CPU, 16GB RAM, and 64-bit Win10

operating system, and they communicate with each other using

the socket API [29]. We choose SHA-256 as the cryptographic

hash function and 1024-bit RSA for digital signature. Table II

summarizes other default parameters.

Since there is no prior work on authenticating out-

sourced LBSQ under the shortest path distance, we compare

AuthSkySP with an intuitive Baseline which lets the user

retrieve all the POI records and calculate the LBSQ result

locally. Specifically, the LBSP first generates a barebone POI

record for each POI that includes only the ID, location, and

numeric attribute. It then signs the hash of their concatenation.

On receiving an LBSQ, the CSP returns the compressed POI

record for every global skyline POI, the barebone POI record

for every other POI, and the LBSP’s signature. The user verifies

the integrity of the query result using the LBSP’s signature and

verifies its completeness by computing the global skyline set.

We use four metrics for performance comparison, including

(1) LBSP computation cost, which is the time needed for

preprocessing the dataset, (2) LBSP-CSP communication cost,
which is the amount of extra information in bits transmitted

from the LBSP to the CSP, (3) CSP-user communication cost,
which is the amount of extra information in bits incurred by a

single LBSQ, and (4) user computation cost, which is the time

needed for verifying an LBSQ result by the user.

C. Results from Real Datasets

Figs. 4(a) to 4(d) compares the LBSP computation cost,

LBSP-CSP communication cost, CSP-user communication cost,

and user computation cost, respectively, under AuthSkySP and

Baseline on the four datasets. As we can see in Fig. 4(a),

AuthSkySP incurs much higher LBSP’s computation cost than

Baseline, which is anticipated because Baseline does not in-

volve any preprocessing other than signing the concatenation

of the POI records. In contrast, AuthSkySP also needs to

construct graph partition tree T and Merkle hash tree Tu where

all the non-root nodes of the graph partition tree T are its

leaf nodes. Fig. 4(b) shows that Baseline also incurs lower

LBSP-CSP communication cost and shares similar trend with

Fig. 4(a). The reason is that, the LBSP only needs to transmit

POI records with no skyline neighbor information to the CSP
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Fig. 4: The performance of AuthSkySP from real datasets.
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Fig. 5: The impact of the total number of POIs on AuthSkySP from synthetic datasets.

under Baseline. In contrast, under AuthSkySP, LBSP needs

to send one local skyline union for every non-root node of

T. From Fig. 4(c), we can see that AuthSkySP outperforms

Baseline with a much reduced CSP-user communication cost.

The reason is that under Baseline, the CSP needs to return all

POI information in the form of either compressed POI record

or POI record to the users. In contrast, under AuthSkySP, the

CSP only needs to return one local skyline union for every node

along the path from the root of the graph partition tree T to the

leaf node containing the query position. We can also see that

the user computation cost under AuthSkySP is approximately

one order of magnitude lower than that under Baseline in

Fig. 4(d). The main reason is that the user needs to verify

all compressed POI records and compute the global skyline set

under Baseline. In contrast, the number of POI records returned

under AuthSkySP is much fewer than that under Baseline so

computing the global skyline set is much faster.

Despite the fact that AuthSkySP incurs higher LBSP com-

putation and LBSP-CSP communication cost than Baseline,

data preprocessing is one-time process, while the CSP needs

to process many LBSQs from possibly many users. The above

results from the four real datasets consistently demonstrate the

significant advantages of AuthSkySP over Baseline.

D. Results from Synthetic Datasets

Impact of Number of POIs. Figs. 5(a) to 5(d) compare

the performance of AuthSkySP and Baseline with the number

of POIs varying from 1,000 to 1,000,000. As we can see

from Fig. 5(a), AuthSkySP has a higher LBSP computation

cost than Baseline, which coincides with the results from the

real datasets. In addition, the LBSP computation cost grows

slowly for Baseline as the number of POIs increases with

AuthSkySP being faster. The reason is that when the number

of POIs further increases, each subgraph in graph partition

tree T contains more POIs and so it takes more time to

compute the local skyline unions. Fig. 5(b) shows that the

LBSP-CSP communication cost increases nearly linearly as

the number of POIs increases under the two schemes, which

is resulted from the increase in the number of compressed

POI records that need be transmitted. We can also see that

AuthSkySP incurs higher LBSP-CSP communication cost than

Baseline, which is anticipated as the LBSP needs to transmit the

local skyline unions of T’s internal nodes under AuthSkySP.

Fig. 5(c) shows that CSP-user communication cost increases as

the number of POIs increases under the two schemes. This

is anticipated, as the number of POI records that need be

returned increase as the number of POIs increases. Moreover,

the CSP-user communication cost under Baseline increases

linearly as the number of POIs increases. In contrast, the CSP-

user communication cost of the AuthSkySP increases much

slower than Baseline as there is no need to return any records

for non-local skyline POI under AuthSkySP. As a result, the

gap of the CSP-user communication cost between AuthSkySP
and Baseline continuously grows as the number of POIs further

increases. Similar to Fig. 5(c), the user computation cost for

verifying an LBSQ result exponentially increases as the number

of POIs increases under Baseline. In contrast, user computation

cost under AuthSkySP is significantly lower than Baseline and

relatively insensitive to the increase in the number of POIs.

Impact of Number of Road Segments. Figs. 6(a) to 6(d)

compare the performance of AuthSkySP and Baseline with the

number of road segments varying from 1,000 to 8,035. Similar

to what we have seen from Figs. 5(a) to 5(d), AuthSkySP
incurs the higher LBSP’s computation cost and LBSP-CSP

communication cost but the lower CSP-user communication

cost and user computation cost. As we mentioned earlier, data
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Fig. 6: The impact of number of road segments on AuthSkySP from synthetic datasets.

preprocessing is a one-time process while the CSP needs to

process many LBSQs. It is thus favorable to significantly reduce

CSP-user communication cost and user computation cost at

a moderate sacrifice of LBSP computation cost and LBSP-

CSP communication cost. These results further confirm the

significant advantages of AuthSkySP.

VI. CONCLUSION

This paper has presented the design and evaluation of

AuthSkySP, a novel scheme for authenticating outsourced

LBSQ under the shortest path distance. AuthSkySP explores

several unique properties of LBSQs to enable a user to verify

both the integrity and completeness of any LBSQ result re-

turned by an untrusted CSP. We have confirmed the efficiency

of AuthSkySP via detailed experimental studies using both real

and synthetic datasets.
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