2023 IEEE Conference on Communications and Network Security (CNS)

Authenticating Outsourced Location-Based Skyline
Queries under Shortest Path Distance

Yidan Hu*, Yukun Dong’, Wenxin Chen?, Yingfei Dong?, Rui Zhang!

*Department of Cybersecurity, Rochester Institute of Technology, Rochester, NY 14623 USA
TDepa.rtment of Computer and Information Sciences, University of Delaware, Newark DE, 19716 USA
IDepartment of Electrical and Computer Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
yidan.hu@rit.edu, yukun@udel.edu, wenxinc @hawaii.edu, yingfei@hawaii.edu, ruizhang@udel.edu

Abstract—An increasing number of location-based service
providers are taking the advantage of cloud computing by out-
sourcing their Point of Interest (POI) datasets and query services
to third-party cloud service providers (CSPs), which answer var-
ious location-based queries from users on their behalf. A critical
security challenge is to ensure the integrity and completeness of
any query result returned by CSPs. As an important type of
queries, a location-based skyline query (LBSQ) asks for the POIs
not dominated by any other POI with respect to a given query
position, i.e., no POI is both closer to the query position and more
preferable with respect to a given numeric attribute. While there
have been several recent attempts on authenticating outsourced
LBSQ, none of them support the shortest path distance that is
preferable to the Euclidian distance in metropolitan areas. In this
paper, we tackle this open challenge by introducing AuthSkySP,
a novel scheme for authenticating outsourced LBSQ under the
shortest path distance, which allows the user to verify the integrity
and completeness of any LBSQ result returned by an untrusted
CSP. We confirm the effectiveness and efficiency of our proposed
solution via detailed experimental studies using both real and
synthetic datasets.

I. INTRODUCTION

The widespread use of Internet-capable and location-aware
mobile devices is driving the rapid growth in location-based
services (LBSes). Mobile users are increasingly accustomed to
quering nearby points of interests (POIs) such as restaurants
from various location-based service providers (LBSPs). As
an important type of queries, location-based skyline queries
(LBSQs) [1] allow users to retrieve the most “interesting” POIs
based on both location proximity and user’s preferences among
a large collection of POIs while filtering out those that are
clearly inferior. Specifically, an LBSQ asks for the POIs that
are not dominated by any other POI with respect to the query
position. One POI dominates another with respect to a user’s
query position if and only if the former is both closer to the
query position and more preferable in terms of the numeric
attributes of interest such as price. For example, a budget-
sensitive user may issue an LBSQ to find restaurants, for each
of which there is no other restaurant that is simultaneously
cheaper and closer to his current location.

Recent years have witnessed a growing number of LBSPs
have outsourced their POI datasets and query services to third-
party cloud service providers (CSPs), which in turn answer
various queries from mobile users on their behalf. For ex-
ample, Yelp, a popular LBSP that offers POI searching and
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crowdsourced review sharing, hosts its dataset and services
on Amazon Web Services. Data outsourcing offers several
advantages over LBSPs operating their own dedicated private
servers, including flexible access, elasticity, and reduced storage
and operation costs [2]. Meanwhile, a well-known security
challenge is that CSPs cannot be fully trusted, which may
return forged or incomplete query results in favor of POIs
willing to pay. This situation requires sound mechanisms for
authenticating any query result returned by an untrusted CSP.
In particular, a query result is considered authentic if it does
not include forged POI information and complete if it contains
all the POIs that satisfy the query condition.

Despite the significant efforts on authenticating outsourced
query processing, there are only a few attempts [3]-[7] on
authenticating outsourced LBSQ. Common to these efforts
is the assumption that the distance between any POI and
query position is measured by the Euclidean distance. While
Euclidean distance is a widely used distance metric, it cannot
accurately capture a user’s true travel distance between two
locations in metropolitan areas. In particular, two locations with
a small Euclidean distance may be far apart due to buildings and
obstacles in a metropolitan area. As a result, the shortest path
distance is a much better metric for LBSQ. Unfortunately, since
the shortest path distance between any two positions depends
on the underlying road network, a small change in the query
position may result in drastically different LBSQ results. This
makes authenticating LBSQ a much more challenging problem
and renders existing solutions [3]-[7] inapplicable. To the best
of our knowledge, how to authenticate outsourced LBSQ under
the shortest path distance remains unknown.

In this paper, we tackle this open challenge by AuthSkySP,
a novel scheme for authenticating outsourced LBSQ processing
under the shortest path distance metric by exploiting two unique
properties of LBSQs. First, any LBSQ over a large region
can be decomposed into multiple LBSQs with each over a
subregion. Second, the skyline POIs of a road subnetwork that
does not contain the query position must be a subset of a special
POI set that can be precomputed without knowing the query
position. Based on these two properties, AuthSkySP divides the
road network into multiple subnetworks and authenticates the
local skyline POI set in each subnetwork to allow the user to
verify both the integrity and completeness of any LBSQ result.
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Our contributions can be summarized as follows.

o To the best of our knowledge, we are the first to study
authenticating outsourced LBSQ processing under the
shortest path distance.

o We introduce AuthSkySP, a novel scheme that allows a
user to verify the integrity and completeness of any LSBQ
result returned by an untrusted CSP.

o We implement AuthSkySP and confirm its efficacy and
efficiency via detailed experimental studies using both real
and synthetic datasets.

II. RELATED WORK

As mentioned in Section I, authenticating outsourced LBSQ
has been studied in [3]—[7]. In [3], Lin et al. considered LBSQs
over a general 2D area and introduced a solution based on
MR-Sky-tree and pre-computed skyline scope. This work was
subsequently improved in [4] and [5] to support continuous
LBSQ processing and LBSQs involving multiple numeric at-
tributes, respectively. Authenticating outsourced LBSQ over
a road network were studied in [6], [7]. Common to these
efforts is that the distance between query position and POI
is measured by the Euclidean distance, while the shortest path
distance provides better indication for the user’s traveling time
in metropolitan areas. Since the shortest path between two
positions depends on the underlying road network, none of
these solutions [3]-[7] is applicable to our target problem.

Authenticating query processing in data outsourcing has
received much attention in recent years. Various types of
queries have been studied, including range queries [8]-[10],
top-k queries [11]-[14], kNN queries [15], SQL queries [16],
centerpoint query [17], social graph query [18], and so on. We
tackle a totally different problem from them in this paper.

Skyline queries have been studied extensively in the data
management community. Since the seminar work on skyline
operator by Borzsony et al. [19], significant efforts have been
made on efficient skyline query processing. For example,
Chomicki et al. [20] introduced sort-filter-skyline algorithm to
improve the efficiency of basic algorithm in [19] by pre-sorting
tuples according to a particular dimension and no tuples can be
dominated by the subsequent tuples. Zhang et al. [21] improved
skyline computation efficiency by maintaining a much shorter
skyline candidate list. Tang et al. [22] partitioned input datasets
into disjoint subsets and compute skyline candidates in parallel
for better efficiency. LShape [23] further improved the process-
ing efficiency using a grid-based partitioning strategy. However,
none of these work considers the integrity and completeness of
the query result, and they are orthogonal to our work.

III. PROBLEM FORMULATION
A. System Model

We consider a data outsourcing system consisting of an
LBSP, a CSP, and many mobile users. The LBSP outsources
its POI dataset to the CSP, which in turn answers LBSQs from
mobile users on the LBSP’s behalf. Every mobile user carries
a smartphone and may issue LBSQs at any location through
the LBSP’s mobile app.
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Fig. 1: Shortest path between s and ¢ in the same road seg..
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We assume that all the POIs reside over a road network.
We model the road network as an undirected and weighted
planar graph G = (V, E) on the 2D plane, where V is the
set of vertices each corresponding to one road junction, and
E ={ey,...,en} is the set of road segments, where m is the
number of road segments. We leave the extension of our work
to directed graph as our future work. Each road segment e;
connects its two vertices (i.e., road conjunctions), denoted by
vl and o], respectively, and has a weight w;. In this paper, we
assume that road segments may be of arbitrary shape and that
the weight of a road segment is the arc length of e;, i.e., the
distance between v! and v! along the road segment e;.

The POIs are commonly organized into different categories,
such as gas stations, restaurants, and bars. For simplicity, this
paper considers a set of POIs O in a single category. Let O; =
{0i ;11 < j < n;} be the set of POIs that reside along road
segment e; and o; ; denotes the jth POI in ¢;. It follows that
O=U",0;,and O;(NO; =0 for all i # j.

Each POI o, ; corresponds to one POI record D; ; in the
LBSP’s dataset represented as

ey

where id; ; is an ID assigned by the LBSP uniquely identifying
0ij, x;j is the arc length between v! and o, ; along road
segment €;, ; j € [Ymin, Ymax] is the numeric attribute of interest
such as price, and aux;; denotes any auxiliary information
such as its name, text reviews, and photos that does not affect
whether o; ; satisfies a given LBSQ but is desirable to the
user if it does. It follows that the arc length between o; ;
and v] is w; — x; ;. We assume that each POI has only one
numeric attribute and leave the extension of LBSQ involving
multiple numeric attributes as our future work. Moreover, we
also assume that every POI is associated with one unique
position, i.e., no two POIs share the same address. Our solutions
can be easily adapted to relax the last assumption.

D; ; = (id; j, @i j, 7,5, aux; 5),

B. Query Model

We first provide the definition of the shortest path distance
between any two vertices.

Definition 1. (Shortest path distance between two vertices)
Given two vertices vg, vy € V, the shortest path between vg and
vy is a sequence of road segments (e, es, ..., €,) that connects
vs to vy, such that the total weight Z;:l w; is minimized, and
the minimized weight, denoted by dg,(vs,v:), is the shortest
path distance between vg and vy.

We now extend the above definition into the shortest path
distance between any two positions in the road network. Con-
sider Fig. 1 as an example in which two positions s and ¢ are in
the same road segment e;. The shortest path between s and ¢ is
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Fig. 2: Shortest path between s and ¢ in different road seg..

either a partial segment of e; or traverses two endpoints v} and
v! and the shortest path between v! and v!. Let d(s,v!) and
d(t, v}) be the arc distance between s and v! and the arc distance
between ¢ and v! along road segment e;, respectively. Without
loss of generality, we also assume that d(s,v}) < d(t,v}), i.e.,
s is closer to v} than ¢ along e;. The shortest path distance
between s and ¢ is then given by

dep(s,t) =min(d(t,v}) — d(s,v}),
d(s,v) + dSP(Uzlw vp) + wi — d(t,v})),

where w; is the length of road segment e;. For two positions in
different road segments, let us consider Fig. 2 as an example.
Since the shortest path from s € e; must pass either v! or v}
and that from ¢ € e; must pass either vé- or fu;f, we have

(@)

1 7]

dep(s,t) = min(d(s, vf) + dsp(d vll) + d(t, vé)7
d(s,vl) + dsp(vﬁ7 vy) +d(t,v5),

)

)

‘ o } 3
d(s, vf) + dyp (0], 0h) + d(t, vh),
d(S, U: + dsp(vzﬂa U;) + d(t7 U;))

In practice, the shortest path distance between every pair of
vertices can be precomputed and stored in a table so that
the shortest path distance between any two positions can be
efficiently computed by table lookup and Equation (3).

We now provide the definitions of dominance and location-
based skyline query.

Definition 2. (Dominance) For two POIs o;; and oy ji, we
say o; ; dominates o;/ j» with respect to query position q if and
OI’lly lfdsp(q,oi,j) < dsp(qaoi’,j’) and )\i,j < )\i’,j’ but the two
equalities do not both hold.

Definition 3. (Location-based skyline query(LBSQ)) An LBSQ
skl(O|q) asks for the set of POIs in O that are not dominated
by any other POI with respect to query position q.

C. Adversary Model and Design Goals

We assume that when using the CSP’s service for the first
time, a user downloads an authentic copy of the road network
(V, E) with no POI information. Assume that the user issues
an LBSQ at query position ¢ to the CSP to retrieve the skyline
POI set skl(O|q). The query position can be any position within
any road segment that cannot be predicted in advance.

We assume that the LBSP is trusted to faithfully follow
system operations. In contrast, the CSP is not trusted and
may return LBSQ results that contain forged or tampered POI
records or POI records that are not among the skyline POlIs.
The CSP may also purposefully omit some skyline POI records.

We seek to enable verification of the integrity and complete-
ness of any LBSQ result returned by the CSP. A query result

is considered authentic if it does not include any forged or
tampered POI record and complete if it contains all the true
skyline POI records.

IV. AUTHSKYSP

In this section, we introduce AuthSkySP, a novel scheme
for authenticating outsourced LBSQ under the shortest path
distance. We first give an overview and then detail its design.

A. Overview

AuthSkySP is designed by exploring the decomposability of
LBSQ characterized by the following theorem.

Theorem 1. (Decomposability of LBSQ) Let O be a set of
POIs and O+, ...,Oy a family of subsets of O such that O =
U§:1 Oj. For any query position q, we have

skl(O|q) = skI(O0'|q) ,
where O' = U§=1 skl(Ojq).

Proof. We first prove that skl(O|q) C skl(O’|¢). For any POI
o € skl(O|q), since O = Ule O, there must exist O, where
1 <z <kand o€ O,. Since no other POI in O dominates o
and O, C O, no other POI in O, dominates o either. It follows
that o € skl(O,|q) and that o € O’. Similarly, since O’ C O,
no other POI in O’ dominates o, and therefore o € skl(O’|q).
We thus have skl(O|q) C ski(O’|q).

We now prove that skl(O'|q) C skl(O|q) by contradic-
tion. Assume that there exists POI o € skl(O’|¢) such that
o ¢ ski(O|g). Since o ¢ skl(O|q), there must exist POI
o' € skl(O|q) that dominates o with respect to query position g.
Without loss of generality, suppose that o’ € O,,. There are two
cases. First, if o’ € skl(Oy|q), then o' € O’. Since o’ dominates
o with respect to query position g, we have o ¢ skl(O'|q),
leading to a contradiction. Second, if o’ ¢ skl(O,|q), then there
must exist 0" € skl(O,|q) that dominates o’. Since o’ dominates
o, it follows that o” dominates o. Therefore, o ¢ skl(O’|q),
which also leads to a contradiction. We can thus conclude that
skl(O'|q) C skl(O]q).

Finally, since skl(Olq) C skl(O’|q) and skl(O'|¢) C
skl(O|q), we have skl(O|q) = skl(O’|q), and the theorem is
proved. O

A weaker version of Theorem 1 can be found in [6].

The decomposability of LBSQ makes it possible to authenti-
cate any LBSQ over a large POI set into authenticating multiple
LBSQs with each over a subset of POIs. We hereafter refer to
ski(Olq) as the global skyline set and skl(lJ, cg/ Ojlq) as a
local skyline set with respect to the subset of road segments
E’. Since the query position ¢ must be in one of the road
segments, we consider the two cases: (1) the road segments
that do not contain query position ¢ and (2) the road segment
containing q.

1) Road Segments Not Containing q: We observe that for
any subgraph G’ = (V', E’) of the road network that does not
contain query position ¢, the local skyline POI set, skl(Og/|q),
must be a subset of the union of multiple special skyline
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Fig. 3: An example of edge partition.

sets that can be precomputed without the knowledge of q.
Specifically, let £’ and E \ E’ be an edge partition of the
road network G = (V,E). Also let G’ = (V',E’) and
G" = (V",E \ E’) be the two subgraphs induced by E’ and
E\ E', respectively, where V' and V" each consist of every
end vertex of the edges in E’ and E \ F’, respectively. Note
that some vertexes may be replicated in both V' and V", as
they are incident to road segments in both E’ and FE \ E’. We
subsequently call the entry(E') = V' (V" the entry vertex
set of the subgraph induced by E’. Fig. 3 shows an exemplary
edge partition of a road network G, where G’ and G” are the
two subgraphs induced by two road segment subsets, and vy, v4
and v; are the vertices replicated in both G’ and G”, i.e., the
entry vertexes of E’. We then have the following theorem.

Theorem 2. Let G = (V, E) be a road network. For any E' C
E, let G = (V,E') and G" = (V',E \ E') be the two
subgraphs induced by E' and E \ E’, respectively. For any
query position q ¢ E', we have

kOl c
vEentry(E’)
where OE’ = Ue,jEE’ OL and entl’y(E/) = V/ ﬂV//-

skl(Og|v), “

Proof. We prove this theorem by contradiction. For any query
position ¢ ¢ E’, assume that there exists a POI o, ; such that
0;5 € skI(OE/|q) and 0; 5 ¢ UvEentry(E’) Sk|(OE/|’U).

Since 0;; & U,centry(s) SKI(Op|v), for every v €
entry(E’), there must exist 0;, j, € Opr such that ;, ;. <, ;
and dsp (05, j,,v) < dsp(0;5,v), but the two equalities do not
both hold.

In addition, since the shortest path from o; ; to ¢ must pass
one of entry vertexes in entry(E’), we have

dip 04,7, 4) = min{(dsp 0.5, v) + dep(v, @) € entry(E)}
> min{(dp(04, 5, v) + dyp(v,0)) v € entry(E")}
> min{dy(0r, 5, v)|v € entry(E)}.

It follows that o;; cannot be closer to ¢ than all POIs
in {o;, j,|v € entry(E")}. Since v, ,;, < 7, for all
v € entry(E’), there exist at least one POI in {o;, ;,|v €
entry(E’)} that dominates o; ; with respect to query position
q. Therefore, o; ; cannot be in skl(Og/|q), leading to a contra-
diction. The theorem is therefore proved. O

We refer t0 U, centry (5
of subgraph G’ hereafter.
The decomposability of LBSQ along with Theorem 2
provides us with a general way to authenticate local sky-

) skI(Op|v) as the local skyline union

line sets skI(U;.n:L#i Ojlq) for any query position ¢ &
e;. Let G1,...,G) be a family of subgraphs of G =
(V,E) such that Ule E;, = FE\ {e}. If we can re-
quire the CSP to return skI(U;n:l’j# Ojlq) as well as
the local skyline union of each subgraph Gi,...,Gy, ie.,
UUEentry(El) Skl(OE/ "U)J AR UvEentry(Ek) Skl(OE’ |U)’ then the
user would be able to verify if skI(;Z, ;; O;lq) is a subset
of UT:I,j;éi(Uveentry(Ei) skl(Op |v)).

2) Road Segment Containing q: For road segment e; that
contains query position g, we extend the 1D-SKY scheme in
[6] to enable authenticating skl(O;|q) under the shortest path
distance. 1D-SKY [6] was designed to support authenticating
skl(O;|q) over a single straight road segment under the Euclid-
ian distance. However, the shortest path distance between two
positions may not be the partial road segment connecting them
as shown in Fig. 1. Fortunately, we find a novel transformation
of POI set O; that makes it possible for us to apply 1D-SKY.

The key idea behind the transformation is a novel skyline
preserving mapping that maps every position in road segment
e; with an arc length w; into a virtual straight road segment
such that skyline queries on the original road segment e; under
the shortest path distance is equivalent to skyline queries on the
virtual road segment under the Euclidian distance. Since any
position in e; can be uniquely identified by its arc distance from
vl, we can represent the road segment e; by the range R; =
[0,w;]. The mapping takes the range R; = [0, w;], the shortest
path distance d, (v}, v}) between v! and v!, and a reference
position p € R; as input and assigns every position x € R; a
new coordinate fy,(z) in the virtual road segment in two steps.

First, we divide the range R; into two subranges R?~ and
RP*, where RP™ (or R'") consists of all positions = € R;
such that the shortest path from x to p reaches p from the left
(or right). For any position z € R;, we can easily determine
whether # € R’ or RP". Denote by dgy (z,p) and d, (z, p)
the distance of the shortest path from z to p that reaches p
from the left and right, respectively. We have

p—x if x < p,
dgy (x,p) = . . (5
w; —x +dy(v;,v])+p ifz>p,
and
z+dp(vh,0f) +w; —p if @ <p,
dyp (I,p)={ (0300 . ©6)
r—0p ifx>p.

It follows that = € R}™ if dg; (x,p)
if dgy (z,p) > dg, (z,p).

The second step of the mapping is to assign every position
x € R; a new coordinate in the virtual straight road segment.
Specifically, for any position = € R;, its new coordinate in the
virtual road segment is given by

fole) = {d“’(“”

dsp(.’IJ, P)

< d§ (w,p) and x € RVt

if z € R,

if v € RET. @

where dsp(x,p) = min(dg; (z, p), dg; (v, p)), which is equiva-
lent to the one given in Eq. (2). It is easy to see that under this
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transformation f,(p) = 0 for reference position p.

The above mapping has a number of important properties.
First, the mapping is invertible. Since no two positions in the
original road segment will be mapped to the same position
in the virtual road segment, the inverse mapping must exist
for any valid fj,(z). In fact, given any coordinate y in the
virtual road segment, the arc length w; of e;, the shortest path
distance dsp(vﬁ, v;) and reference position p € R;, the position
y’s coordinate in the original road segment can be computed
according to the following three cases.

- I oy dj, (v%,vr)+w,;
o Case I:if dg(v;,v]) < w; p > ==—5— and w; —
L, r
p+dyplol) <y< M then
F ) =y +p—wi — de(vl,0]) . (8)
L, r
o Case 2: if dyp(vl,0]) < w;, p < %@““’), and
—dy (vt 0l — -
7“’(”127”) Y <y < —p—dyp(vh,ol), then
£ ) =y 4 p+wi + de(vl,0]) . ©)
o Case 3: if other than Cases 1 or 2, then
Lty =y+p. (10)

We apologize for omitting the detailed derivation of Eqgs. (8)
to (10) due to space limitations. For convenience, we also
postulate that f,(—o00) = —oo and f,'(—o00) = —oc for all
pER;.

Second, for any reference position p € R;, we can divide POI
set O; into OF~ and O?" depending on whether z; ; € RY~
or RY *. Third, the shortest path distance between any POI
and reference location p remain the same after the mapping. It
follows that skl(OF~ |p) and ski(O?*|p) in the original road
segment do not change after mapping to the virtual road
segment. Moreover, the decomposability of LBSQ indicates that
skl(O:[p) = ski(skI(0?~[p) UskI(O7* |p)).

We further introduce a few key concepts based on the above
mapping which are similar to those in [6]. For any two POIs
0ij,0ik € O;, we say o0 is the right skyline neighbor !
of o;; with respect to query position ¢ € e; if and only if
(1) both 0; j, 01 € skl(OZ|q) Uskl(OfF|q) where O~ and
O;H are defined based on the skyline preserving mapping with
g being the reference position, (2) fy(z; ;) < fo(xik), ie.
0; 1 s on the right of o;; in the virtual road segment, and
(3) no other POI in skl(O? " |q) Uskl(O9*|q) reside between
them. Furthermore, for any two POIs o; ; and o; 3, we call 0;
a possible right skyline neighbor of o; ; if there exists at least
one query position g € e; such that o; j, is the right skyline
neighbor of o, ; with respect to ¢. Let N(o; ;) C O; be the
set of possible right skyline neighbors of POI o; ;. For each
0i.1 € N(0; ;), there exists a neighbor query range, denoted by
range(0; 1|0:,;) C e;, such that o, i, is the right skyline neighbor
of 0; ; with respect to ¢ if and only if ¢ € range(0; 1]0; ;).

A key observation is that for every POI o; ; € O;, the set of
possible right skyline neighbors N (o; ;) and the neighbor query

ILeft skyline neighbor can be defined accordingly but is not used.

range range(o; 1|0; ;) of each 0; , € N(o0; ;) can be efficiently
computed in a similar way as 1D-SKY [6].

Consider POI o; ; at position x; ; as an example. We first
perform a skyline preserving mapping for O; with x; ; being
the reference position such that every POI o0; ;, € O; obtains
a new coordinate fmi.j (x;,) according to Eq. (7). After the
mapping, the POI set O; can be viewed as residing on a straight
road segment where the shortest path distance between any two
POIs is equivalent to their Euclidean distance. We can then use
Algorithm 1 in 1D-SKY [6] to compute N (o0; ;) and the neigh-
bor query range for every o;, € N(o; ;). More specifically,
Algorithm 1 in [6] takes {(fz, (i), Aix)|l < k < n;} as
input and returns o; ;’s possible skyline neighbor set N (o; ;)
and a neighbor query range (; i, ;1) for every o; 1, € N(0; ;).
Since the range ([, 7;) is defined over the virtual road
segment, we need to take an extra step to convert it back to
the neighbor query range in the original road segment via the
inverse mapping as range(o;k0; ;) = (f5;", (i k)s f2." (rjn))s
where f;}j (+) is given in Egs. (8) to (10). We refer readers to
[6] for details of Algorithm 1 due to space limitations.

In summary, for every POI o;; € O;, we can compute
its set of possible skyline neighbors N(o; ;), and the query
range range(o; |0; ;) for each 0;, € N(o;;) such that o;
is the right skyline neighbor of o;; with respect to query
position ¢ if and only if ¢ € range(o; k|0 ;). As we will see
shortly, the precomputed skyline neighbor relationship allows
us to chaining adjacent skyline neighbors via cryptographic
primitives to allow the user to verify the completeness of
skl(O™ |q) U skI(OF"|q) for any ¢ € e;.

In what follows, we first introduce how to construct a graph
partition tree from road network G = (V, E') and then detail the
AuthSkySP operations, which consist of data preprocessing
at the LBSP, query processing at the CSP, and query-result
verification at the user.

B. Graph Partition Tree Construction

To facilitate efficient authentication of skI(U;.n:L i Oila)s
we construct a graph partition tree over the set of road segments
E. A graph partition tree is a binary tree, in which the root
corresponds to the entire road network G, every leaf node
corresponds to the subgraph induced by a single road segment,
and every non-leaf node corresponds to the subgraph induced
by the union of its two childrens road segments.

Given road network G = (V| FE), we construct a graph
partition tree T in a top-down fashion. Starting from the root
that corresponds to the whole road network G, for every non-
leaf node v that corresponds to subgraph G, = (V,, E,),
we construct two children nodes by finding a balanced 2-
way vertex-cut [24] of G,. Specifically, we divide its edge
set I, into two subsets F, o and E, ; of approximately equal
size while minimizing the number of vertices replicated in
the two subgraphs G ¢ and G, ; induced by E, o and E, 1,
respectively. We then construct the two children of node v as
v.0 = G\, and v.1 = G, ;. Since the set of replicated vertices
is always a subset of the entry vertex set of each subgraph,
doing so can keep the size of each subgraph’s entry vertex
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set small. While finding the a balanced 2-way vertex cut of a
graph is NP-hard [25], we adopt the algorithm in [26] that runs
in polynomial-time with a guaranteed approximation ratio. The
process continues until every node only has one road segment.

C. Data Preprocessing

The LBSP preprocesses its POI dataset {D; ;|1 < i <
m,1 < j < n;} before outsourcing it to the CSP.

First, for each road segment e;, 1 < ¢ < m, the LBSP inserts
a special virtual POI o; o and POI record D; o = (id", z*,v*),
where id™ is a publicly known special string, 2* = —oo, and
~* is a special public value smaller than vy, Since v* < Ymin
and d,,(z*, q) = oo for any query position ¢ € e;, POI 0; ¢ €
skl(O;|q) for any ¢ € e; and is always the leftmost skyline POI
in skl(O9~ |q) Uskl(O%|q). 0;0 will serve as an anchor POI
for ¢; and can prevent the CSP from claiming that O; = ().

Second, for every POI record D;;,1 < i < m,0 <
7 < n;, the LBSP constructs a compressed POI record as
C;; = (idi j, dij, Ni j, h(aux; ;)), where h(-) denotes a good
cryptographic hash function such as SHA-256.

Third, for every non-root node v of the graph partition
tree T, the LBSP finds its entry vertex set entry(E,), com-
putes the local skyline union of subgraph FE, as U, =
Useentry(z,) SKI( v) and constructs a local skyline union
record as Cy = [|o, ;ev,Ci ;-

Fourth, for every road segment e; with POI set O;,1 <17 <
m, the LBSP creates a chaining relationship among skyline
neighboring POIs. Next, for every POI o0; ;,0 < j < ny, the
LBSP computes o0; ;’s possible right skyline neighbor set and
corresponding query ranges as

Y

using Algorithm 1 in [6] in combination with mapping
Jz,;(-) given in Eq. (7) and inverse mapping f, 1]() giv-
en in Egs. (8) to (10) as discussed in Section IV-A2.
Moreover, the LBSP computes a neighbor-embedded POI
record  as D;fj = (id;;,dij, i s nb;j ,aux;; and a
compressed neighbor-embedded POI record as C’;f i =
<idi,j, d@j, Yigs nbi,j, h(aUXi,j).

Fifth, the LBSP builds one Merkle hash tree 7°¢ over all
compressed neighbor-embedded POI records {C’Z+ j|1 <3 <
m,0 < j < n;} and another Merkle hash tree 7" over
all local skyline record unions {C\},ct with each leaf node
corresponding to one non-root node in graph partition tree T
and signs the roots of both 7°¢ and 7.

Finally, the LBSP sends road network G, graph partition tree
T, all neighbor-embedded POI records {DJr 1 <i<m,0<
Jj < n;} and its signatures on both Merkle root hashes to the

CSP. Anyone can computes D; ;, C; ", and € ; given Dm

nb; j = {(idi x, range(0; k|0; j))|0i x € N(0i;)}

D. Query Processing

Assume that the user issues an LBSQ at position ¢ in road
segment e;. The CSP computes the global skyline POI set
skl(Olq) and constructs the query result as follows.

First, the CSP constructs a partial query result for road
segments other than e; according to the graph partition tree

T. Specifically, the CSP first finds a minimal-size subset S of
internal nodes of the graph partition tree T such that the union
of their edge sets covers E \ {e;}. This can be done easily by
traversing T from the root to the leaf node corresponding to
road segment e;. For each non-root node we visit, we add its
sibling node to S. For each node v € S, the CSP includes the
following information as partial query result

Ry = {Xjklojr € Uy}, (12)

where X, = D; j if 0j 1 € skl(Olq) and C} ;. otherwise.
Second, the CSP constructs a partial query result for road
segment ¢;. Specifically, the CSP divides O; into O~ and Of"
with ¢ being the reference position and computes skl(Of |q)
and skl(Of"|q). It then constructs the partial query result as

Ri = {Xikloir € sK(O] ) [ JsKI(OF |g)},  (13)

where X , = D+k if 0; 1, € skl(O|q) and C ). otherwise.

Finally, the CSP returns the information needed for the user
to verify the integrity of the query result, which include all
the internal nodes in 7“’s needed for computing the root from
every returned local skyline record union C|, all the internal
nodes in 7° needed for computing the root every returned
neighbor-embedded POI record C*k, and the LSBP’s signatures
on the root hashes of Merkle trees 7°¢ and 7.

E. Query-Result Verification

Every user downloads an authenticated copy of the road
network G and the graph partition tree T upon registration.
On receiving the query result, the user verifies its integrity and
completeness as follows.

1) Integrity Verification: The user first verifies the integrity
of the query result using two Merkle hash trees and the LBSP’s
signatures. Assume that the user has received {R,|v € S’} and
R; as the query result, where S’ is the subset of nodes in T
with local skyline unions returned.

For every R,,v € S', the user first converts every original
POI record therein into corresponding compressed POI record
whereby to reconstruct local skyline record union C,. The
user then computes the Merkle hash root using corresponding
internal nodes of 7. If all the local skyline record unions
lead to the same Merkle hash root, the user further verifies the
LBSP’s signature on the root. Similarly, the user verifies the
integrity of every POI record in R; using corresponding internal
nodes of 7T and the LBSP’s signature. If all verifications
succeed, the user considers the query result authentic.

2) Completeness Verification: The user then verifies the
completeness of the query result in three steps. First, the user
checks if UVGS’ = E\ {e;}. If so, he extracts the local
skyline union Uy = U, centry(p,) SKI(OE,
where Uy = U, centry(,) SKI(OE, [v)

Second, the user verifies whether R; includes all POIs in
skl(O77|q) Uskl(OF|q). Specifically, the user first converts
every neighbor-embedded POI record into the corresponding
compressed neighbor-embedded POI record. For every C;L j
in R;, the user performs a skyline preserving mapping with
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TABLE I: Summary of Real Datasets

Dataset | # of POIs | # of Road Segments
MAN 4,840 8,035
CHI 1,427 2,899
LA 1,589 11,070
SF 3,168 5,030

reference position ¢ to compute a new coordinate f,(z; ;)
according to Egs. (5) to (7). The user then sorts all the C’L+ ;8
according to f,(z; ;) in an ascending order. Without loss of
generality, assume that R; consists of compressed neighbor-
embedded POI records C;F ,...,C" . where fy(z;;) <

- < fqlwij, ). The user first checks if the leftmost record
Cf = (id",z*,~*,nb; ), which should correspond to the
special virtual POI inserted by the LBSP. Then for every pair
of adjacent POI records C;,'jy and C’;ijﬂ, 0<y<k-—1,the
user checks if 0; ;, ., € N(o;;,) and ¢ € range(0;j,,,[0:j,)
according to nb; ; in C;L ;,- Last, the user checks if nb; ;, in
C’f ;. shows that POI o; ;, has no right skyline neighbor with
respect to query position ¢. If all the verifications succeed, the
user considers R; includes all POIs in skI(OZ ™ |q) |J skl(O¢"|q).

Finally, the user verifies the completeness of returned global
skyline POIs based on the decomposability of LBSQ. Let O,
be the set of POIs for which either a neighbor-embedded POI
record or POl record is returned. The user checks whether O, =
skl(O’) where O’ = skl(OZ ™ |¢) Uskl(O¢"|q) U, e Uy If so,
the user considers the query result complete.

ves’

V. EXPERIMENT RESULTS
A. Datasets

We collect four real restaurant datasets from Yelp via Yelp
Fusion APIs [27] using a customized Python program, which
consists of the records of restaurants in (1) the Manhattan area,
New York (MAN), (2) Chicago, Illinois (CHI), (3) Los Ange-
les, California (L2), and (4) San Francisco, California (SF),
respectively. Each restaurant record consists of its ID, name,
rating, price, street address, coordinates, and other information
such as category, phone number, user reviews, and images, and
we use the rating as the numeric attribute.

For each dataset, we construct the corresponding road net-
work using the OpenStreetMap Overpass API [28]. Specifically,
we first collect all road segments and construct a connected
graph as the road network. We then map every restaurant to
one road segment based on its latitude and longitude. Table I
summarizes the four datasets.

We also generate two synthetic datasets from the MAN
dataset to evaluate the impacts of the number of POIs and
the number of road segments, respectively. The first synthetic
dataset is generated by fixing the number of road segments
to 8,035, while randomly generating different numbers of POIs
distributed uniformly in the road network with numeric attribute
drawn from (0, 5] uniform at random. The second synthetic
dataset is generated by randomly selecting different numbers of
connected road segments from the MAN dataset while keeping
the POIs in the selected road segments.

TABLE II: Default Experiment Settings

Para. Value | Description

lid; ;] 16 The length of id in bit

|d;, ;] 32 The length of distance in bits

[Xi ;] 32 The length of numeric attribute in bits

[nb} j 80 The length of neighbor information in bits

|h(-)| 256 The length of hash function h(-) in bits
1024 | The length of LBSP’s signature in bits

B. Experimental Settings

We implement AuthSkySP in Python using packages ne-
towrkx, cryptography, and hashlib for efficient shortest path dis-
tance calculation, signature and verification, and hash compu-
tation, respectively. We deploy AuthSkySP on three desktops,
which act as the LBSP, the CSP, and the user, respectively. Each
desktop has a 17-6700 CPU, 16GB RAM, and 64-bit Winl0
operating system, and they communicate with each other using
the socket API [29]. We choose SHA-256 as the cryptographic
hash function and 1024-bit RSA for digital signature. Table II
summarizes other default parameters.

Since there is no prior work on authenticating out-
sourced LBSQ under the shortest path distance, we compare
AuthSkySP with an intuitive Baseline which lets the user
retrieve all the POI records and calculate the LBSQ result
locally. Specifically, the LBSP first generates a barebone POI
record for each POI that includes only the ID, location, and
numeric attribute. It then signs the hash of their concatenation.
On receiving an LBSQ, the CSP returns the compressed POI
record for every global skyline POI, the barebone POI record
for every other POI, and the LBSP’s signature. The user verifies
the integrity of the query result using the LBSP’s signature and
verifies its completeness by computing the global skyline set.

We use four metrics for performance comparison, including
(1) LBSP computation cost, which is the time needed for
preprocessing the dataset, (2) LBSP-CSP communication cost,
which is the amount of extra information in bits transmitted
from the LBSP to the CSP, (3) CSP-user communication cost,
which is the amount of extra information in bits incurred by a
single LBSQ, and (4) user computation cost, which is the time
needed for verifying an LBSQ result by the user.

C. Results from Real Datasets

Figs. 4(a) to 4(d) compares the LBSP computation cost,
LBSP-CSP communication cost, CSP-user communication cost,
and user computation cost, respectively, under AuthSkySP and
Baseline on the four datasets. As we can see in Fig. 4(a),
AuthSkySP incurs much higher LBSP’s computation cost than
Baseline, which is anticipated because Baseline does not in-
volve any preprocessing other than signing the concatenation
of the POI records. In contrast, AuthSkySP also needs to
construct graph partition tree T and Merkle hash tree 7" where
all the non-root nodes of the graph partition tree T are its
leaf nodes. Fig. 4(b) shows that Baseline also incurs lower
LBSP-CSP communication cost and shares similar trend with
Fig. 4(a). The reason is that, the LBSP only needs to transmit
POI records with no skyline neighbor information to the CSP
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Fig. 4: The performance of AuthSkySP from real datasets.
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Fig. 5: The impact of the total number of POIs on AuthSkySP from synthetic datasets.

under Baseline. In contrast, under AuthSkySP, LBSP needs
to send one local skyline union for every non-root node of
T. From Fig. 4(c), we can see that AuthSkySP outperforms
Baseline with a much reduced CSP-user communication cost.
The reason is that under Baseline, the CSP needs to return all
POI information in the form of either compressed POI record
or POI record to the users. In contrast, under AuthSkySP, the
CSP only needs to return one local skyline union for every node
along the path from the root of the graph partition tree T to the
leaf node containing the query position. We can also see that
the user computation cost under AuthSkySP is approximately
one order of magnitude lower than that under Baseline in
Fig. 4(d). The main reason is that the user needs to verify
all compressed POI records and compute the global skyline set
under Baseline. In contrast, the number of POI records returned
under AuthSkySP is much fewer than that under Baseline so
computing the global skyline set is much faster.

Despite the fact that AuthSkySP incurs higher LBSP com-
putation and LBSP-CSP communication cost than Baseline,
data preprocessing is one-time process, while the CSP needs
to process many LBSQs from possibly many users. The above
results from the four real datasets consistently demonstrate the
significant advantages of AuthSkySP over Baseline.

D. Results from Synthetic Datasets

Impact of Number of POIs. Figs. 5(a) to 5(d) compare
the performance of AuthSkySP and Baseline with the number
of POIs varying from 1,000 to 1,000,000. As we can see
from Fig. 5(a), AuthSkySP has a higher LBSP computation
cost than Baseline, which coincides with the results from the
real datasets. In addition, the LBSP computation cost grows
slowly for Baseline as the number of POIs increases with
AuthSkySP being faster. The reason is that when the number

of POIs further increases, each subgraph in graph partition
tree T contains more POIs and so it takes more time to
compute the local skyline unions. Fig. 5(b) shows that the
LBSP-CSP communication cost increases nearly linearly as
the number of POIs increases under the two schemes, which
is resulted from the increase in the number of compressed
POI records that need be transmitted. We can also see that
AuthSkySP incurs higher LBSP-CSP communication cost than
Baseline, which is anticipated as the LBSP needs to transmit the
local skyline unions of T’s internal nodes under AuthSkySP.
Fig. 5(c) shows that CSP-user communication cost increases as
the number of POIs increases under the two schemes. This
is anticipated, as the number of POI records that need be
returned increase as the number of POIs increases. Moreover,
the CSP-user communication cost under Baseline increases
linearly as the number of POIs increases. In contrast, the CSP-
user communication cost of the AuthSkySP increases much
slower than Baseline as there is no need to return any records
for non-local skyline POI under AuthSkySP. As a result, the
gap of the CSP-user communication cost between AuthSkySP
and Baseline continuously grows as the number of POIs further
increases. Similar to Fig. 5(c), the user computation cost for
verifying an LBSQ result exponentially increases as the number
of POIs increases under Baseline. In contrast, user computation
cost under AuthSkySP is significantly lower than Baseline and
relatively insensitive to the increase in the number of POIs.

Impact of Number of Road Segments. Figs. 6(a) to 6(d)
compare the performance of AuthSkySP and Baseline with the
number of road segments varying from 1,000 to 8,035. Similar
to what we have seen from Figs. 5(a) to 5(d), AuthSkySP
incurs the higher LBSP’s computation cost and LBSP-CSP
communication cost but the lower CSP-user communication
cost and user computation cost. As we mentioned earlier, data
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Fig. 6: The impact of number of road segments on AuthSkySP from synthetic datasets.

preprocessing is a one-time process while the CSP needs to
process many LBSQs. It is thus favorable to significantly reduce
CSP-user communication cost and user computation cost at
a moderate sacrifice of LBSP computation cost and LBSP-
CSP communication cost. These results further confirm the
significant advantages of AuthSkySP.

VI. CONCLUSION

This paper has presented the design and evaluation of
AuthSkySP, a novel scheme for authenticating outsourced
LBSQ under the shortest path distance. AuthSkySP explores
several unique properties of LBSQs to enable a user to verify
both the integrity and completeness of any LBSQ result re-
turned by an untrusted CSP. We have confirmed the efficiency
of AuthSkySP via detailed experimental studies using both real
and synthetic datasets.
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