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Abstract
In this work, we conduct the first systematic study of stochastic variational inequality
(SVI) and stochastic saddle point (SSP) problems under the constraint of differential
privacy (DP). We propose two algorithms: Noisy Stochastic Extragradient (NSEG)
and Noisy Inexact Stochastic Proximal Point (NISPP). We show that a stochastic
approximation variant of these algorithms attains risk bounds vanishing as a function
of the dataset size, with respect to the strong gap function; and a sampling with
replacement variant achieves optimal risk bounds with respect to a weak gap function.
We also show lower bounds of the same order on weak gap function. Hence, our
algorithms are optimal. Key to our analysis is the investigation of algorithmic stability
bounds, both of which are new even in the nonprivate case. The dependence of the
running time of the sampling with replacement algorithms, with respect to the dataset
size n, is n2 for NSEG and ˜O(n3/2) for NISPP.
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1 Introduction

Stochastic variational inequalities (SVI) and stochastic saddle-point (SSP) problems
have become a central part of the modern machine learning toolbox. The main moti-
vation behind this line of research is the design of algorithms for multiagent systems
and adversarial training, which are more suitably modeled by the language of games,
rather than pure (stochastic) optimization. Applications that rely on these methods
may often involve the use of sensitive user data, so it becomes important to develop
algorithms for these problems with provable privacy-preserving guarantees. In this
context, differential privacy (DP) has become the gold standard of privacy-preserving
algorithms, thus a natural question is whether it is possible to design DP algorithms
for SVI and SSP that attain high accuracy.

Motivated by these considerations, this work provides the first systematic study
of differentially-private SVI and SSP problems. Before proceeding to the specific
results, we present more precisely the problems of interest. The stochastic variational
inequality (SVI) problem is: given a monotone operator F : W �→ R

d in expectation
form F(w) = Eβ∼P [Fβ(w)], find w∗ ∈ W such that

〈F(w∗), w − w∗〉 � 0 ∀w ∈ W. (VI(F))

The closely related stochastic saddle point (SSP) problem is: given a convex-concave
real-valued function f : W �→ R (here W = X × Y is a product space), given in
expectation form f (x, y) = Eβ∼P [ fβ(x, y)], the goal is to find (x∗, y∗) that solves

min
x∈X

max
y∈Y

f (x, y). (SP(f))

In both of these problems, the input to the algorithm is an i.i.d. sample S =
(β1, . . . ,βn) ∼ Pn . Uncertainty introduced by a finite random sample renders the
computation of exact solutions infeasible, so gap (a.k.a. population risk) functions are
used to quantify the quality of solutions. Let A : Zn �→ W be an algorithm for SVI
problems (VI(F)).

We define the strong VI-gap associated with A as

GapVI(A, F) := EA,S

[

sup
w∈W

〈F(w),A(S) − w〉
]

. (1.1)

We also define the weak VI-gap as

WeakGapVI(A, F) := EA sup
w∈W

ES [〈F(w),A(S) − w〉] . (1.2)

Here, expectation is taken over both the sample data S and the internal randomization
of A. For SSP (SP(f)), given an algorithm A : Zn �→ X × Y , and letting A(S) =
(x(S), y(S)), a natural gap function is the following saddle-point (a.k.a. primal-dual)

123



Optimal algorithms for differentially private stochastic monotone…

gap

GapSP(A, f ) := EA,S

[

sup
x∈X , y∈Y

[ f (x(S), y) − f (x, y(S))]
]

. (1.3)

Analogously as above, we define the weak SSP gap as1

WeakGapSP(A, f ) := EA sup
x∈X , y∈Y

ES[ f (x(S), y) − f (x, y(S))]. (1.4)

It is easy to see that in both cases the gap is always nonnegative, and any exact
solution must have zero-gap. For examples and applications of SVI and SSP we refer
to Sect. 2.1. Despite the fact that the strong VI is a more classical and well-studied
quantity, the weak VI gap has been observed to be useful in various contexts. We refer
the reader to [50] for more discussions on the weak VI gap.

On the other hand, we are interested in designing algorithms that are differentially
private. These algorithms build a solution based on a given dataset S of random
i.i.d. examples from the target distribution, andoutput a (randomized) feasible solution,
A(S).We say that two datasets S = (β i )i ,S

′ = (β ′
i )i are neighbors, denoted S � S′, if

they only differ in a single entry i .We say that an algorithmA(S) is (ε, η)-differentially
private if for every event E in the output space2

PA[A(S) ∈ E] � eε
PA[A(S′) ∈ E] + η (∀S � S′). (1.5)

Here ε, η � 0 are prescribed parameters that quantify the privacy guarantee.Designing
DP algorithms for particular data analysis problems is an active area of research.
Optimal risk algorithms for stochastic convex optimization have only very recently
been developed, and it is unclear whether these methods are extendable to SVI and
SSP settings.

1.1 Summary of contributions

Our work is the first to provide population risk bounds for DP-SVI and DP-SSP prob-
lems. Moreover, our algorithms attain provably optimal rates and are computationally
efficient. We summarize our contributions as follows:

1. We provide two different algorithms for DP-SVI and DP-SSP: namely, the
noisy stochastic extragradient method (NSEG) and a noisy inexact stochastic
proximal-point method (NISPP). The NSEG method is a natural DP variant of
the well-known stochastic extragradient method [30], where privacy is obtained

1 The denominations of weak and strong gap functions used in this paper are not standard, but we believe
are the most appropriate in this context. For example, in [50] used the terms weak and strong generaliza-
tion measure for (1.4) and (1.3) respectively, but it is clear that these quantities do not refer to standard
generalization measures used in stochastic optimization.
2 Note that the probabilities in the definition of DP only involve the probability space of algorithmic
randomization, and not of the datasets, which is emphasized by the notation PA. The datasets must be
neighbors, but they are otherwise arbitrary, and this is crucial to certify the privacy for any user.
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by Gaussian noise addition; on the other hand, the NISPP method is an approx-
imate proximal point algorithm [28, 43] in which every proximal iterate is made
noisy to make it differentially private. Our more basic variants of both of these
methods are based on iterations involving disjoint sets of datapoints (a.k.a. single
pass method), which are known to typically lead to highly suboptimal rates in DP
(see the Related Work Section for further discussion).

2. We derive novel uniform stability bounds for the NSEG and NISSP methods. For
NSEG, our stability upper bounds are inspired by the interpretation of the extragra-
dient method as a (second order) approximation of the proximal point algorithm.
In particular, we provide expansion bounds for the extragradient iterates, and solve
a (stochastic) linear recursion. The stability bounds for NISPP method are based
on stability of the (unique) SVI solution in the strongly monotone case. Finally, we
investigate the risk attained by multipass versions of the NSEG and NISPP meth-
ods, leveraging known generalization bounds for stable algorithms [35]. Here, we
show that the optimal risk for DP-SVI and DP-SSP can be attained by running
these algorithmswith their samplingwith replacement variant. In particular, NSEG
method requires n2 stochastic operator evaluations, and NISPP method requires
much smaller ˜O(n3/2) operator evaluations for both DP-SVI and DP-SSP prob-
lems. In particular, these upper bounds also show the dependence of the running
time of each of these algorithms w.r.t. the dataset size.

3. Finally, we prove lower bounds on the weak gap function for any DP-SSP and
DP-SVI algorithm, showing the risk optimality of the aforementioned multipass
algorithms. The main challenge in these lower bounds is showing that existing
constructions of lower bounds for DP convex optimization [5, 7, 46] lead to lower
bounds on the weak gap of a related SP/VI problem.

The following table provides details of population risk and operator evaluation com-
plexity.

1.2 Related work

We divide our discussion on related work in three main areas. Each of these areas
has been extensively investigated, so a thorough description of existing work is not
possible. We focus ourselves on the work which is more directly related to our own.

1. Stochastic Variational Inequalities and Saddle-Point Problems: Variational
inequalities and saddle-point problems are classical topics in applied mathemat-
ics, operations research and engineering (e.g., [3, 18, 33, 38, 40–43, 45]). Their
stochastic counterparts have only gained traction recently, mainly motivated by
their applications in machine learning (e.g., [24, 25, 29, 30, 34] and references
therein). For the stochastic version of (SP(f)), [39] proposed a robust stochastic
approximation method. The first optimal algorithm for SVI with monotone Lips-
chitz operators was obtained by Juditsky, Nemirovski and Tauvel [30], and very
recently Kotsalis, Lan and Li [34] developed optimal variants for the strongly
monotone case (in terms of distance to the optimum criterion, rather than VI gap).
It is important to note that naive adaptation of these methods to the DP setting
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requires adding noise to the operator evaluations at every iteration, which substan-
tially degrades the accuracy of the obtained solution. A careful privacy accounting
and minibatch schedule can lead to optimal guarantees for single-pass methods
[19], however this requires accuracy guarantees for the last iterate, which is cur-
rently an open problem for SVI and SSP (aside from specific cases, typically
involving strongmonotonicity conditions, e.g., [24, 34]).We circumvent this prob-
lem by providing population risk guarantees for multipass methods.

2. Stability and Generalization: Deriving generalization (or population risk)
bounds for general-purpose algorithms is a challenging task, actively studied in
theoretical machine learning. Bousquet and Elisseeff [8] provided a systematic
treatment of this question for algorithms which are stable, with respect to changes
of a single element in the training dataset, and a sequence of works have refined
these generalization guarantees (see [9, 21] and references therein). This idea has
been applied to investigate the generalization properties of regularized empirical
risk minimization [8, 44], and more recently to iterative methods, such as stochas-
tic gradient descent [4, 23].
Using stability to obtain population risk bounds in SVI and SSP is substantially
more challenging, due to the presence of a supremum in the accuracy measure (see
Eqs. (1.1) and (1.3)). Recently, Zhang et al. [50], established stability implies gen-
eralization results for the strong SP gap under strong monotonicity assumptions.
Their proof strategy applies analogously to address the SVI setting, although this
is not carried out in their work. More recently, Lei et al. [35], proved generaliza-
tion bounds on the weak SP gap without strong monotonicity assumptions. We
leverage this result for our algorithms, and further elaborate on its implications for
SVI in Sect. 2.2.

3. Differential Privacy: Differential privacy is the gold standard for private data
analysis, and it has been studied for nearly 20 years [15, 16]. Beyond its classi-
cal definition, multiple variants have been introduced, including local [14, 31],
concentrated [10], Rényi [37], and Gaussian [13]. Relevant to the optimization
community are the applications of differential privacy to combinatorial optimiza-
tion [22].
Differentially private empirical risk minimization and stochastic convex optimiza-

Table 1 Different levels of risk and complexity achieved by NSEG and NISPP methods for (ε, η)-
differentially private SVI/SSP. Here n is the dataset size, and d is the dimension of the solution search
space. We omit the dependence on other problem parameters (e.g., Lipschitz constants and diameter), as
well as the privacy parameter η

Type of sampling Type of sampling
single pass multipass single pass multipass

Method Criterion - Strong Gap Criterion - Weak Gap Number of operator evaluations

NSEG O
(

d1/4√
nε

+
√
d

nε

)

O
(

1√
n

+
√
d

nε

)

n n2

NISPP
(OE subroutine)

O
(

1
n1/3

+
√
d

n2/3ε

)

O
(

1√
n

+
√
d

nε

)

O(n log n) O(n3/2 log n)
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tion have been extensively studied for over a decade (see, e.g. [5, 7, 11, 12, 19,
26, 27, 32, 47]). Relevant to our work are the first optimal risk algorithms for DP-
ERM [7] and DP-SCO [5]. Non-Euclidean extensions have also been obtained
recently [2, 6]. To the best of our knowledge, our work is the first to address DP
algorithms for SVI and SSP. Our approach for generalization of multipass algo-
rithms is inspired by the noisy SGD analysis in [4]. However, our stability analysis
differs crucially from [4]: in the case of NSEG, we need to carefully address the
double operator evaluation of the extragradient step, which is done by using the
fact that the extragradient operator is approximately nonexpansive. In the case of
NISPP, we leverage the contraction properties of strongly monotone VI solutions.
By contrast, SGD in the nonsmooth case is far from nonexpansive [4]. Alternative
approaches to obtain optimal risk in DP-SCO, including privacy amplification by
iteration [19, 20], and phased regularization or phased SGD [19], appear to run into
fundamental limitations when applied to DP-SVI and DP-SSP. It is an interesting
future research direction to obtain faster running times with optimal population
risk in DP-SVI and DP-SSP, which may benefit from these alternative approaches.

The main body of this paper is organized as follows. In Sect. 2, we provide the
necessary background information on SVI/SSP, uniform stability, and differential pri-
vacy, which are necessary for the rest of the paper. In Sect. 3 we introduce the NSEG
method, together with its basic privacy and accuracy guarantee for a single pass ver-
sion. Section4 provides stability bounds for NSEGmethod along with the consequent
optimal rates for SVI and SSP. In Sect. 5, we introduce the single-pass differentially
private NISPP method with bound on expected SVI-gap. Section6 presents stability
analysis of NISPP, together with the resulting optimal rates for SVI/SSP gap. We
conclude in Sect. 7 with lower bounds that prove the optimality of the obtained rates.

2 Notation and preliminaries

Wework on the Euclidean space (Rd , 〈·, ·〉), where 〈·, ·〉 is the standard inner product,
and ‖u‖ = √〈u, u〉 is the �2-norm. Throughout, we consider a compact convex set
W ⊆ R

d with diameter D > 0. We denote the standard Euclidean projection operator
on set W by ΠW (·). The identity matrix on R

d is denoted by Id .
We let P denote an unknown distribution supported on an arbitrary set Z , from

which we have access to exactly n i.i.d. datapoints which we denote by sample set
S ∼ Pn . Throughout, wewill use boldface characters to denote sources of randomness
(coming from the data, or internal algorithmic randomization).We say that twodatasets
S,S′ are adjacent (or neighbors), denoted by S � S′, if they differ in a single data
point. We also denote subsets (a.k.a. batches), or single data points, of S or P by B
and β, respectively. Whether β or B is sampled from P or S is specified explicitly
unless it is clear from the context. For a batch B, we denote its size by |B|. Therefore,
we have |S| = n. Throughout, we will denote Gaussian random variables by ξ .

We say that F : W → R
d is a monotone operator if

〈F(w1) − F(w2), w1 − w2〉 � 0, ∀w1, w2 ∈ W.
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Given L > 0, we say that F is L-Lipschitz continuous, if

‖F(w1) − F(w2)‖ � L‖w1 − w2‖, ∀w1, w2 ∈ W.

Finally, we say that F is M-bounded if supw∈W ‖F(w)‖ � M . We denote the set of
monotone, L-Lipschitz and M-bounded operators by M1

W (M, L). In this work, we
will focus on the casewhere F is an expectation operator, i.e., F(w) := Eβ∼P [Fβ(w)],
where P is an arbitrary distribution supported on Z ,

and for any β in Z , Fβ(·) ∈ M1
W (M, L), β-a.s.3

In the stochastic saddle point problem (SP(f)), we modify the notation slightly.
Here, X ⊆ R

d1 and Y ⊆ R
d2 are compact convex sets, and we will assume that the

saddle point functions fβ(·, ·) : X × Y �→ R, satisfy the following conditions β-a.s.

– ∇x fβ(·, ·) is Lx -Lipschitz continuous, and ∇y fβ(·, ·) is Ly-Lipschitz continuous,
and;

– fβ(·, y) is convex, for any given y ∈ Y , and fβ(x, ·) is concave, for any given
x ∈ X (we will say in this case the function is convex-concave).

If the assumptions above are met, we will denote L �
√

L2
x + L2

y . Under the assump-

tions above, it is well-known that SSP [42, 45] (and SVI [18], respectively) have a
solution.

In the case of saddle-point problems, given the convex-concave function fβ(·, ·) :
X × Y �→ R, it is well-known that the operator F : X × Y �→ R

d × R
d below is

monotone
Fβ(x, y) = (∇x fβ(x, y),−∇y f (x, y)). (2.1)

Wewill call this operator themonotone operator associatedwith fβ(·, ·). Furthermore,
if ∇x fβ(·, y) has Lx -Lipschitz continuous gradient and ∇y fβ(x, ·) has Ly-Lipschitz

continuous gradient, then F is
√

L2
x + L2

y-Lipschitz continuous.

It is easy to see that, given a SSP problem with function fβ(·, ·) and sets X , Y ,
an (exact) SVI solution (VI(F)) for the monotone operator associated to f (x, y) =
Eβ [ fβ(x, y)] over the set W = X × Y , yields an exact SSP solution for the start-
ing problem. Unfortunately, such reduction does not directly work for approximate
solutions to (1.1) and (1.3), so the analysis must be done separately for both problems.

For batch B, we denote the empirical (a.k.a. sample average) operator FB(w) :=
1

|B|
∑

β∈B Fβ(w).On the other hand, for a batchB, the empirical saddle point function

is denoted as fB(x, y) = 1
|B|

∑

β∈B fβ(x, y). Given a distribution P , the expectation
operator and function are denoted by FP (w) := Eβ∼P [Fβ(w)], and fP (x, y) =
Eβ∼P [ fβ(x, y)], respectively. For brevity, whenever it is clear from context we will
drop the dependence on P .

3 Here, we mean that for almost every β, we have Fβ ∈ M1
W (M, L).

123



D. Boob, C. Guzmán

2.1 Examples and applications of SVI and SSP

An interesting problemwhich can be formulated as a SSP-problem is theminimization
of a max-type convex function:

min
x∈X

{

φ(x) := max
1� j�m

φ j (x)
}

,

where φ j : X → R is a stochastic convex function φ j (x) := Eζ j∼P j [φ j,ζ j
(x)] for

all j ∈ [m]. This problem is essentially a structured nonsmooth optimization problem
which can be reformulated into a convex-concave saddle point problem:

min
x∈X

max
y∈Δm

Eζ 1...ζm
[∑m

j=1yiφ j,ζ j
(x)]

Here, β = (ζ j )
m
j=1 is the random input to the saddle point problem: fβ(x, y) =

∑m
j=1 y jφ j,ζ j

(x). Note that a substantial generalization of the max-type problem
above is the so called compositional optimization problem:

min
x∈X

φ(x) := Φ(φ1(x), . . . , φm(x)),

where φ j (x) are convex maps and Φ(u1, . . . , um) is a real-valued convex function
whose Fenchel-type representation is assumed to have the form

Φ(u1, . . . , um) = max
y∈Y

∑m
j=1〈u j , A j y + b j 〉 − Φ∗(y),

where Φ∗ is a convex, Lipschitz and smooth. Then, overall optimization problem can
be reformulated as a convex-concave saddle point problem:

min
x∈X

max
y∈Y

∑m
j=1〈φ j (x), A j y + b j 〉 − Φ∗(y),

where stochasticity is introduced due to constituent functions φ j (x) = Eζ j
[φ j,ζ j

(x)].
To conclude, we remark that these types of models have been recently proposed

in machine learning to address approximate fairness [49] and federated learning on
heterogeneous populations [36]. In these examples, the different indices j ∈ [m]
may denote different subgroups from a population, and we are interested in bounding
the (excess) population risk on these subgroups uniformly (with the motivation of
preventing discrimination against any subgroup). This clearly cannot be achieved by
a stochastic convex program, and a stochastic saddle-point formulation is effective in
certifying accuracy across the different subgroups separately.

For further examples and applications of stochastic variational inequalities and
saddle-point problems, we refer the reader to [29, 30, 50].
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2.2 Algorithmic stability

In general, an algorithm is a randomized function mapping datasets to candidate
solutions, A : Zn �→ R

d , which is measurable w.r.t. the dataset. Two datasets,
S = (β1, . . . ,βn), S

′ = (β ′
1, . . . ,β

′
n) ∈ Zn are said to be neighbors (denotedS � S′)

if they only differ in at most one data point, namely

β j = β ′
j (∃i ∈ [n])(∀ j �= i).

Algorithmic stability is a notion of sensitivity analysis of an algorithm under neigh-
boring datasets. Of particular interest to our work is the notion of uniform argument
stability (UAS).

Definition 1 (Uniform Argument Stability) Let A : Zn �→ R
d be a randomized

mapping and δ > 0. We say thatA is δ-uniformly argument stable (for short, δ-UAS)
if

sup
S�S′

EA‖A(S) − A(S′)‖ � δ.

Occasionally, we may denote δA(S,S′) � ‖A(S) − A(S′)‖, for convenience. The
importance of algorithmic stability inmachine learning comes from the fact that stabil-
ity implies generalization in stochastic optimization and stochastic saddle point (SSP)
problems [8, 9, 50]. Below, we restate existing results on stability implies generaliza-
tion for SSP problems below. Before doing so we need to briefly introduce the (strong)
empirical gap function: given a dataset S and an algorithmA, we define the empirical
gap function for a saddle point and variational inequality problem respectively as

EmpGapSP(A, fS) := EA[sup
x,y

fS(x(S), y) − fS(x, y(S))] (2.2)

EmpGapVI(A, FS) := EA[sup
w

〈FS(w),A(S) − w〉]. (2.3)

Notice that in these definitions the dataset S is fixed.

Proposition 1 [35, 50]Consider the stochastic saddle point problem (SP(f)) with func-
tions fβ(·, y) and fβ(x, ·) being M-Lipschitz for all x ∈ X , y ∈ Y and β-a.s.. Let
A : Zn → X × Y be an algorithm, where A(S) = (x(S), y(S)). If x(·) is δx -UAS
and y(·) is δy-UAS, and both are integrable, then

WeakGapSP(A, f ) � ES[EmpGapSP(A, fS)] + M[δx + δy]. (2.4)

This result can be extended for SVI problems aswell.We provide a formal statement
below and prove it in Appendix A.

Proposition 2 Consider a stochastic variational inequalitywith M-bounded operators
Fβ(·) : W �→ R

d . If A : Zn �→ W is integrable and δ-UAS, then

WeakGapVI(A, F) � ES[EmpGapVI(A, FS)] + Mδ. (2.5)
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2.3 Background on differential privacy

Differential privacy is an algorithmic stability type of guarantee for randomized algo-
rithms, that certifies that the output distribution of the algorithm “does not change
too much” by changes in a single element from the dataset. The formal definition is
provided in Eq. (1.5). Next we provide some basic results in differential privacy, which
we will need for our work. For further information on the topic, we refer the reader to
the monograph [16].

2.3.1 Basic privacy guarantees

In this work, most of our privacy guarantees will be obtained by the well-known
Gaussian mechanism, which performs Gaussian noise addition on a function with
bounded sensitivity. Given a function A : Zn �→ R

d , we define its �2-sensitivity as

sup
S�S′

‖A(S) − A(S′)‖. (2.6)

If A is randomized, then the supremum must hold with high-probability over the
randomization of A (this will not be a problem in this work, since our randomized
algorithms enjoy sensitivity bounds w.p. 1). The Gaussian mechanism (associated to
function A) is defined as AG(S) ∼ N (A(S), σ 2 I ).

Proposition 3 Let A : Zn �→ R
d be a function with �2-sensitivity s > 0. Then, for

σ 2 = 2s2 ln(1/η)/ε2, the Gaussian mechanism is (ε, η)-DP.

Our algorithms will adaptively use a DP mechanism such as the above. Certifying
privacy of a composition can be achieved in different ways. The most basic result
establishes that if we use disjoint batches of data at each iteration, then the composition
will preserve the largest privacy parameter among its building blocks. This result
is known as parallel composition, and its proof is a direct application of the post-
processing property of DP.

Proposition 4 (Parallel composition of differential privacy) Let S = (S1, . . . ,SK ) ∈
Zn be a dataset partitioned on blocks of sizes n1, . . . , nK , respectively. Ak : Znk ×
R
d×(k−1) �→ R

d , k = 1, . . . , K, be a sequence of mechanisms, and letA : Zn �→ R
d

be given by

B1(S) = A1(S1)

Bk(S) = Ak(Sk,B1(S),B2(S), . . . ,Bk−1(S)) (∀k = 2, . . . , K − 1)

A(S) = AK (SK ,B1(S),B2(S), . . . ,BK−1(S)).

Then, If each Ak is (εk, ηk)-DP in its first argument (i.e., w.r.t. Sk) then A is
(maxk εk,maxk ηk)-DP.

Some of the algorithms we develop in this work make repeated use of the data, and
certifying privacy for these algorithms requires the use of adaptive composition results
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in DP (see, e.g. [16, 17]). For our algorithms, it is particularly important to leverage the
sampling with replacement procedure to select the data that is used at each iteration,
for which sharp bounds on DP can be obtained by themoments accountant method [1].
Below we summarize a specific version of this method that suffices for our purposes.4

Theorem 1 [1] Consider sequence of functions A1, . . . ,AK , where Ak : Znk ×
R
d×(k−1) �→ R

d is a function with sensitivity bounded as a function of the last data
batch size, as follows

sup
L∈Rd×(k−1),Sk�S′

k

‖Ak(Sk, L) − Ak(S′
k, L)‖ � s.

Consider the mechanism obtained by sampling a random subset of size m from the
dataset, i.e., letting Sk ∼ (Unif([S]))m, and composing it with a Gaussian mechanism
with noise σ 2, i.e.

B1(S) = (A1)G(S1)

Bk(S) = (Ak)G(Sk,B1(S),B2(S), . . . ,Bk−1(S)) (∀k = 2, . . . , K ).

There exists an absolute constant c1 > 0, such that if ε < c1K (m/n)2 and the noise
parameter σ �

√
2K ln(1/η)sm/[nε], then A(S) := {B1(S), . . . ,BK (S)} is (ε, η)-

differentially private.

3 The noisy stochastic extragradient method

To solve the DP-SVI problem we propose a noisy stochastic extragradient method
(NSEG) in Algorithm 1.

Algorithm 1 Noisy Stochastic Extragradient (NSEG) Method
1: Input: Starting point u0 ∈ W , dataset S = (βi )i∈[n] ∼ Pn ,

stepsizes (γt )t∈[T ]
2: for t = 1, . . . , T do
3: F1,t (·) = FB1t

(·) + ξ1t , where B
1
t ⊆ S and ξ1t ∼ N (0, σ 2

t )

4: wt = ΠW (ut−1 − γt F1,t (ut−1))

5: F2,t (·) = FB2t
(·) + ξ2t , where B

2
t ⊆ S and ξ1t ∼ N (0, σ 2

t )

6: ut = ΠW (ut−1 − γt F2,t (wt ))

7: end for
8: return �wT = (

∑T
t=1γt )

−1∑T
t=1γtwt

The name noisy and stochastic in Algorithm 1 is justified by the sequence of oper-
ators F1,t , F2,t we use:

F1,t (·) � FB1
t
(·) + ξ1t , F2,t (·) � FB2

t
(·) + ξ2t . (3.1)

4 In our casewe use uniform sampling on each iteration, as opposed to the Poisson sampling of [1]; however,
it is possible to verify that similar moment estimates lead to our stated result.
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where B1
t ,B

2
t are batches extracted from dataset S, and ξ1t , ξ

2
t
i .i .d.∼ N (0, σ 2

t ). We will
denote the batch size of batchB1

t andB
2
t as Bt := |B1

t | = |B2
t |. The exact details of the

sampling method for Bt will depend on the variant of the algorithm. Here, we detail
some key features of the above algorithm. Stochastic extragradient was proposed in
[30] where they do not have any noise addition in F1,t , F2,t (stochasticity only arises
from the dataset randomness), and where disjoint batches are used for all iterations, as
well as within iterations. This choice is motivated by the goal of extracting population
risk bounds for their algorithm.

Another important consideration is that this algorithm can also be applied to an SSP
problem by using as stochastic oracle the monotone operator associated to the stochas-
tic convex-concave function (2.1), over the setW = X ×Y . From here onwards, when
we say that a certain SVI algorithm is applied to an SSP, we mean using the choices
above for the operator and feasible set, respectively.

We start by stating the convergence guarantees for the single-pass NSEG method.
This is obtained as a direct corollary of [30, Thm. 1], where we use an explicit bound
on the oracle error with the variance of the Gaussian.

Theorem 2 [30] Consider a stochastic variational inequality (VI(F)), with operators
Fβ inM1(L, M). LetA be the NSEGmethod (Algorithm 1) where 0 < γt � 1/[√3L]
and (B1

t ,B
2
t )t are independent random variables from a product distributionB1

t ,B
2
t ∼

P Bt , satisfies

GapVI(A, F) � K0(T )

ΓT
,

where K0(T ) �
(

D2 + 7
∑

t∈[T ] γ 2
t [M2/2 + dσ 2

t ]
)

, ΓT = ∑T
t=1γt , A(S) is the

output of Algorithm 1 on the dataset S = ⋃

t Bt ∼ Pn and expectation in the left hand
side is taken over the dataset draws, random sample batch choices, as well as noise
ξ t1, ξ

t
2.

On the other hand, A applied to a stochastic (SP(f)) problem attains saddle point
gap

GapSP(A, f ) � K0(T )

ΓT
.

3.1 Differential privacy analysis of NSEG method

We now proceed to establish the privacy guarantees for the single-pass variant of
Algorithm 1. This is a direct consequence of Propositions 3 and 4, and the fact that
each operator evaluation has sensitivity bounded by 2M/Bt .

Proposition 5 Algorithm 1 with batch sizes (Bt )t∈[T ] and variance σ 2
t = 8M2

B2
t

ln(1/η)

ε2

is (ε, η)-differentially private.

We now apply the previous results to obtain population risk bounds for DP-SVI by
the NSEG method.

Corollary 1 Algorithm1withdisjoint batches of size Bt = B = min{√d(ln(1/η)/ε, n},
constant stepsize γt ≡ γ = D/

[

M
√

7T
(

1 + 8d
B2

ln(1/η)

ε2

)]

and variance σ 2
t = σ 2 =
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8M2

B2
ln(1/η)

ε2
is (ε, η)-differentially private and achieves GapVI(A, F) (for SVI) or

GapSP(A, f ) (for SSP) of

O

(

MDmax

{ [d ln(1/η)]1/4√
nε

,

√
d ln(1/η)

nε

})

.

Remark 1 Notice that in the corollary above, the gap is nontrivial iff
√
d ln(1/η)/[nε] <

1, which means that the left hand side attains the max on the range where the gap is
nontrivial.

Proof Consider a SVI or SSP problem. Let us recall that by Theorem 2, Algorithm 1
achieves expected gap

D2

γ T
+ 7M2γ

(

1 + 8d

B2

ln(1/η)

ε2

)

.

Choosing γ = D/
[

M
√

7T
(

1 + 8d
B2

ln(1/η)

ε2

)]

, we obtain an expected gap

2
√
7MD√
T

(

1 +
√
8d

Bε

√

ln(1/η)
)

= 2
√
14MD

√
B√

n
+ 8

√
7MD

√
d√

nBε

√

ln(1/η),

where we used that for a single-pass algorithm, n = 2T B (this choice of T exhausts
the data when disjoint batches are chosen).

Recalling that B = min{√d ln(1/η)/ε, n}. Then the expected gap is bounded by

O

(

MDmax
{ [d ln(1/η)]1/4√

nε
,

√
d ln(1/η)

nε

}

)

.

Hence, we conclude the prrof. ��
We observe that excess risk bounds of the same order for DP-SCO based on noisy

SGDand theuniformstability of differential privacyhavebeen established [7]. Improv-
ing these bounds in DP-SCO required substantial efforts, which was only achieved
recently [4, 5, 19]. Furthermore, to the best of our knowledge, the upper bounds on the
risk above are the first of their type for DP-SVI and DP-SSP, respectively. To improve
upon them, we will follow the approach of [4], based on a multi-pass empirical error
convergence, combined with weak gap generalization bounds based on uniform sta-
bility.

4 Stability of NSEG and optimal risk for DP-SVI and DP-SSP

The bounds established for DP-SVI are potentially suboptimal, and many of the past
approaches used to attain optimal rates for DP-SCO, such as privacy amplification by
iteration, phased regularization, etc. appear to encounter substantial barriers for their
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application to DP-SVI. In order to resolve this gap, we show that for both DP-SVI and
DP-SSP we can indeed obtain optimal rates, which match those of DP-SCO. In order
to achieve this we develop a multi-pass variant of the NSEG method, which enjoys
generalization performance due to its stability.

4.1 Stability of NSEGmethod

To analyze the stability of NSEG it is useful to interpret the extragradient method as an
approximation of the proximal point algorithm. This connection has been established
at least since [38]. Given a monotone and 1-Lipschitz operator G : Rd �→ R

d , we
define the s-extragradient operator inductively as follows. First, R0(·;G) : Rd �→ R

d

is defined as R0(u;G) = ΠW (u). Then, for s � 0

Rs+1(u;G) = ΠW (u − G(Rs(u;G))). (4.1)

Given such operator, the (deterministic) extragradient method [33] corresponds to,
starting from u0 ∈ W , iterating

ut+1 = R2(ut ; γ F) (∀t ∈ [T − 1]).

It is known that ifG is contractive, the recursion (4.1) leads to a fixed point R(u;G),
satisfying

R(u;G) = ΠW (u − G(R(u;G))). (4.2)

It is also easy to see that R(·;G) : Rd �→ W is nonexpansive.

Proposition 6 (Near nonexpansiveness of the extragradient operator) Let F ∈
M1

W (L, M) and W ⊆ R
d compact convex set with diameter D > 0. Then, for

all s nonnegative integer, and u, v ∈ R
d ,

‖Rs(u; γ F) − R(u; γ F)‖ � (γ L)s‖R0(u; γ F) − R(u; γ F)‖ (4.3)

and
‖Rs(u; γ F) − Rs(v; γ F)‖ � ‖u − v‖ + 2D(γ L)s . (4.4)

Proof The first part, Eq. (4.3), is proved by induction on s. The result clearly holds
for s = 0, and if s � 1, we use (4.1) and (4.2) to obtain

‖Rs(u; γ F) − R(u; γ F)‖
= ‖ΠW (u − γ F(Rs−1(u; γ F)) − ΠW (u − γ F(R(u; γ F)))‖
� γ ‖F(Rs−1(u; γ F)) − F(R(u; γ F))‖ � γ L‖Rs−1(u; γ F) − R(u; γ F)‖
� (γ L)s‖R0(u; γ F) − R(u; γ F)‖,

where in the first inequality we used the nonexpansiveness of the projection operator,
next we used the L-Lipschitzness of F , and finally we used the inductive hypothesis
to conclude.
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The second part, Eq. (4.4), is a direct consequence of (4.3), the triangle inequality,
and that R0(u; γ F), R(u; γ F), R0(v; γ F), R(v; γ F) ∈ W . ��

The next lemma shows an expansion upper bound for extragradient iterations. This
type of bound will be later used to establish the uniform argument stability of the
NSEG algorithm.

Lemma 1 (Expansion of the extragradient iteration) Let F1, F2 : Rd �→ R
d monotone

L-Lipschitz operators, and 0 � γ < 1/L. Let u, v ∈ W , and w, z, u′, v′ ∈ W such
that

w = ΠW (u − γ F1(u)) z = ΠW (v − γ F1(v))

u′ = ΠW (u − γ F2(w)) v′ = ΠW (v − γ F2(z)).

Then,

‖w − z‖ � ‖u − v‖ + 2LDγ, (4.5)

‖u′ − v′‖ � ‖u − v‖ + ( ˜M1 + ˜M2 + 2LD)Lγ 2, (4.6)

where ˜M1 � ‖F1(R(u; γ F1)) − F2(R(u; γ F2))‖ and ˜M2 � ‖F1(R(v; γ F1)) −
F2(R(v; γ F2))‖.
Proof By definition of w and z, we have,

‖w − z‖ = ‖ΠW (u − γ F1(u)) − ΠW (v − γ F1(v))‖
� ‖R(u; γ F1) − R(v; γ F1)‖ + ‖ΠW (u − γ F1(u)) − R(u; γ F1)‖

+‖ΠW (v − γ F1(v)) − R(v; γ F1)‖
� ‖u − v‖ + γ L[‖R0(u; γ F1) − R(u; γ F1)‖ + ‖R0(v; γ F1) − T γ F1v‖],

where we used the nonexpansiveness of the operator R(·; γ F1) and Proposition 6.
Moreover, since u, v, R0(u; γ F1), R0(v; γ F1) ∈ W , we have ‖w − z‖ � ‖u − v‖ +
2LDγ , proving (4.5).

Next, to prove (4.6), we proceed as follows:

‖u′ − v′‖ = ‖ΠW (u − γ F2(w)) − ΠW (v − γ F2(z))‖
� ‖R(u; γ F2) − R(v; γ F2)‖

+‖ΠW (u − γ F2(w)) − ΠW (u − γ F2(R(u; γ F2)))‖
+‖ΠW (v − γ F2(z)) − ΠW (v − γ F2(R(v; γ F2)))‖

� ‖u − v‖ + γ L‖w − R(u; γ F2)‖ + γ L‖z − R(v; γ F2)‖.

Using again Proposition 6, we have that

‖w − R(u; γ F2)‖ = ‖R1(u; γ F1) − R(u; γ F2)‖
� ‖R1(u; γ F1) − R(u; γ F1)‖ + ‖R(u; γ F1) − R(u; γ F2)‖
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� LDγ + ‖ΠW
(

u − γ F1(R(u; γ F1))
)

−ΠW
(

u − γ F2(R(u; γ F2))
)‖

� LDγ + γ ‖F1(R(u; γ F1)) − F2(R(u; γ F2))‖
� LDγ + ˜M1γ.

An analog bound can be obtained for ‖z − R(v; γ F2)‖:

‖z − R(v; γ F2)‖ � LDγ + ˜M2γ,

concluding the claimed bound (4.6):

‖u′ − v′‖ � ‖u − v‖ + L[ ˜M1 + ˜M2 + 2LD]γ 2.

��
The Expansion Lemma above allows us to bound howmuch would two trajectories

of the NSEG method may deviate, given two pairs of sequences of operators F1,t , F2,t
and F ′

1,t , F
′
2,t . The bounds we will obtain from this analysis will give us direct bounds

on the UAS for the NSEG method.

Lemma 2 Let F1,t , F2,t and F ′
1,t , F

′
2,t be L-Lipschitz operators, and 0 � γt < 1/L

for all t ∈ [T ]. Let {(ut , wt )}t∈[T ] and {(vt , zt )}t∈[T ] be the sequences resulting from
Algorithm 1, with operators {(F1,t , F2,t )}t∈[T ] and {(F ′

1,t , F
′
2,t )}t∈[T ], respectively;

and starting from u0 = v0. Let

Δ1,t � sup
u∈W

‖F1,t (u) − F ′
1,t (u)‖,

Δ2,t � sup
u∈W

‖F2,t (u) − F ′
2,t (u)‖,

˜M1,t � ‖F1,t (R(ut−1; γ F1,t )) − F2,t (R(ut−1; γ F2,t ))‖, and
˜M2,t � ‖F1,t (R(vt−1; γ F1,t )) − F2,t (R(vt−1; γ F2,t ))‖;

then, for al t = 0, . . . , T ,

νt � ‖ut − vt‖ �
t

∑

s=1

(

[ ˜M1,t + ˜M2,t + 2LD]Lγ 2
s + LΔ1,sγ

2
s + Δ2,sγs

)

(4.7)

δt � ‖wt − zt‖ �
t−1
∑

s=1

(

[ ˜M1,t + ˜M2,t + 2LD]Lγ 2
s + LΔ1,sγ

2
s + Δ2,sγs

)

+Δ1,tγt + 2LDγt . (4.8)

Proof Clearly, ν0 = 0. Let us now derive a recurrence for both νt and δt .

δt = ‖R1(ut−1; γt F1,t ) − R1(vt−1; γt F
′
1,t )‖
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� ‖R1(ut−1; γt F1,t ) − R1(vt−1; γt F1,t )‖ + ‖R1(vt−1; γt F1,t ) − R1(vt−1; γt F
′
1,t )‖

� ‖ut−1 − vt−1‖ + 2LDγt + ‖R1(vt−1; γt F1,t ) − R1(vt−1; γt F
′
1,t )‖,

where in the last inequality we used inequality (4.5). Let us bound now the rightmost
term above,

‖R1(vt−1; γt F1,t ) − R1(vt−1; γt F
′
1,t )‖

= ‖ΠW (vt−1 − γt F1,t (vt−1)) − ΠW (vt−1 − γt F
′
1,t (vt−1))‖

� γt‖F1,t (vt−1) − F ′
1,t (vt−1)‖

� Δ1,tγt . (4.9)

We conclude that
δt � νt−1 + 2LDγt + Δ1,tγt . (4.10)

Now,

νt =‖ut − vt‖ � ‖ΠW (ut−1 − γt F2,t (wt )) − ΠW (vt−1 − γt F
′
2,t (zt ))‖

=‖ΠW (ut−1 − γt F2,t (wt )) − ΠW (vt−1 − γt F2,t (zt ))‖
+ ‖ΠW (vt−1 − γt F2,t (zt )) − ΠW (vt−1 − γt F

′
2,t (zt ))‖

�‖ΠW (ut−1 − γt F2,t (R1(ut−1; γt F1,t ))) − ΠW (vt−1 − γt F2,t (R1(vt−1; γt F
′
1,t )))‖

+ γt‖F2,t (zt ) − F ′
2,t (zt )‖

�‖ΠW (ut−1 − γt F2,t (R1(ut−1; γt F1,t ))) − ΠW (vt−1 − γt F2,t (R1(vt−1; γt F1,t )))‖
+ ‖ΠW (vt−1 − γt F2,t (R1(vt−1; γt F1,t )))

− ΠW (vt−1 − γt F2,t (R1(vt−1; γt F
′
1,t )))‖ + γtΔ2,t

(i)
�‖ut−1 − vt−1‖ + [ ˜M1,t + ˜M2,t + 2LD]Lγ 2

t + γt L‖R1(vt−1; γt F1,t )

− R1(vt−1; γt F
′
1,t )‖ + γtΔ2,t

(ii)
�νt−1 + [ ˜M1,t + ˜M2,t + 2LD]Lγ 2

t + LΔ1,tγ
2
t + Δ2,tγt ,

where in inequality (i), we used Lemma 1 (more precisely, inequality (4.6)), and in
inequality (ii), we used (4.9). Unraveling the above recursion, we get that for all
t ∈ [T ],

νt �
t

∑

s=1

(

[ ˜M1,t + ˜M2,t + 2LD]Lγ 2
s + LΔ1,sγ

2
s + Δ2,sγs

)

.

Finally, we combine the bound above with (4.10), to conclude that for all t ∈ [T ]:

δt �
t−1
∑

s=1

(

[ ˜M1,t + ˜M2,t + 2LD]Lγ 2
s + LΔ1,sγ

2
s + Δ2,sγs

)

+ Δ1,tγt + 2LDγt .

��

123



D. Boob, C. Guzmán

The next theorem provides in-expectation and high probability upper bounds for the
NSEG method. Despite the fact that we will not particularly apply the latter bounds,
we believe these may be of independent interest.

Theorem 3 The NSEG method (Algorithm 1) for closed and convex domainW ⊆ R
d

with diameter D, operators inM1
W (L, M) and stepsizes 0 < γt � 1/L, satisfies the

following uniform argument stability bounds:

1. Let Abatch-EG denote the Batch method where given dataset S, F1,t = FS + ξ t1, and
F2,t = FS + ξ t2. Then, in expectation,

sup
S�S′

EAbatch-EG
[δAbatch-EG

(S,S′)]

�
T−1
∑

t=0

(

[4M + 2LD + 4
√
dσ ]Lγ 2

t + 2ML

n
γ 2
t + 2M

n
γt

)

+ 1

T

T
∑

t=1

(

2ML

n
+ 2LD

)

γt ,

and for constant stepsize γt ≡ γ , there exists a universal constant K > 0, such
that for any 0 < θ < 1, with probability 1 − θ :

sup
S�S′

δAbatch-EG
(S,S′) � 4[T√

dσ + σ
√

Kd ln(1/θ)]Lγ 2 + [4M + 2LD]LTγ 2

+ 2ML

n
T γ 2 + 2M

n
T γ +

(

2ML

n
+ 2LD

)

γ. (4.11)

2. LetArepl-EG denote Sampledwith replacementmethodwhere given dataset S, F1,t =
Fβi(1,t)

+ξ t1, and F2,t = Fβi(2,t)
+ξ t2, for i(1, t), i(2, t) ∼ Unif([n]), independently.

Then, in expectation,

sup
S�S′

E[δArepl-EG
(S,S′)]

�
T−1
∑

t=0

(

[4M + 2LD + 4
√
dσ ]Lγ 2

t + 2ML

n
γ 2
t + 2M

n
γt

)

+ 1

T

T
∑

t=1

(

2ML

n
+ 2LD

)

γt . (4.12)

And for constant stepsize γt ≡ γ , there exists a universal constant K > 0, such
that for any 0 < θ < 1/[2n], with probability 1 − θ :

sup
S�S′

δArepl-EG
(S,S′) � 4[T√

dσ + σ
√

Kd ln(2/θ)]Lγ 2

+[4M + 2LD]LTγ 2 + 2LDγ
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+(

1 + 3 log
(2n

θ

))2MT

n
(Lγ 2 + γ /T + γ ). (4.13)

Proof Let S � S′. Then

1. Batchmethod.Notice that for the batch case F1,t = FS+ξ t1, and F ′
1,t = FS′ +ξ t1;

and F2,t = FS+ ξ t2, and F ′
2,t = FS′ + ξ t2. Then, it is easy to see thatΔ1,t � 2M/n

and Δ2,t � 2M/n. On the other hand, since the operators are M bounded and
since noise addition is Gaussian

E[ ˜M1,t ] = E[‖F1,t (R(ut−1; γ F1,t )) − F2,t (R(ut−1; γ F2,t ))‖]
� E[‖FB1

t
(R(ut−1; γ F1,t )) + ξ t1‖] + E[‖FB2

t
(R(ut−1; γ F2,t )) + ξ t2‖]

� 2M + E[‖ξ t1‖ + ‖ξ t2‖] � 2[M + √
dσ ], (4.14)

and an analog bound holds for E[ ˜M2,t ]. Hence, by Lemma 2:

EAbatch-EG
[δAbatch-EG

(S, S′)] �
T−1
∑

t=0

(

[4M + 2LD + 4
√
dσ ]Lγ 2

t + 2ML

n
γ 2
t + 2M

n
γt

)

+ 1

T

T
∑

t=1

(2ML

n
+ 2LD

)

γt ,

which proves the claimed bound.
For the high probability bound, we use that the norm of a Gaussian vector is
Kdσ 2-subgaussian, for a universal constant K > 0 (see, e.g. [48, Thm. 3.1.1]),
and therefore E[exp{λ(‖ξ ti‖ − σ

√
d)}] � exp{Kdσ 2λ2}; hence by the Chernoff-

Crámer bound, for any α > 0

P

⎡

⎣

∑

t∈[T ]

(‖ξ t1‖ + ‖ξ t2‖
)

> (2 + α)T
√
dσ)

⎤

⎦ � exp{−λαT
√
dσ }

(

exp{2Kdσ 2λ2}
)T

= exp{T (2Kdσ 2λ2 − α
√
dσλ)}.

Choosing λ = α/[4K√
dσ ] and α = 2

√
K

T

√
ln(1/θ), we get

P

⎡

⎣

∑

t∈[T ]

(‖ξ t1‖ + ‖ξ t2‖
)

> 2T
√
dσ + 2σ

√

Kd ln(1/θ)

⎤

⎦ � θ. (4.15)

This guarantee, together with the rest of the terms appearing in our previous sta-
bility bound (which hold w.p. 1) proves (4.11).

2. Sampled with replacement. Let i ∈ [n] be the coordinate where S and S′ may
differ. Let i(1, t), i(2, t) ∼ Unif([n]) i.i.d., for t ∈ [T ]. Now we apply Lemma 2
with F1,t = Fβi(1,t)

+ ξ t1, and F ′
1,t = Fβ ′

i(1,t)
+ ξ t1; and F2,t = Fβi(2,t)

+ ξ t2, and

F ′
2,t = Fβ ′

i(2,t)
+ ξ t2. Hence we have that (Δ1,t )t∈[T ] and (Δ2,t )t∈[T ] are sequences
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of independent r.v. with expectation bounded by 2M/n. Therefore, by Lemma 2
(Eq. (4.8)), and following the steps that lead to inequality (4.14), we have:

E[δA(S,S′)] �
T−1
∑

t=0

(

[4M + 2LD + 4
√
dσ ]Lγ 2

t + 2ML

n
γ 2
t + 2M

n
γt

)

+ 1

T

T
∑

t=1

(

2ML

n
+ 2LD

)

γt .

Finally for the high-probability bound, note that for any realization of the algorithm
randomness, we have

δA(S,S′) �
T
∑

t=1

[4M + 2(‖ξ t1‖ + ‖ξ t2‖) + 2LD]Lγ 2
t

+2LD

T

T
∑

t=1

γt + L
T
∑

t=1

γ 2
t Δ1,t + 1

T

T
∑

t=1

Δ1,tγt +
T
∑

t=1

Δ2,tγt .

We additionally assume constant stepsize, γt ≡ γ > 0. Hence, we can resort on
concentration of sums of Bernoulli random variables, which guarantees that

P

[

T
∑

t=1

Δ1,t > (1 + 3 log(2/θ))
2MT

n

]

� exp{− log(2/θ)} = θ

2
.

An analog bound can be established for Δ2,t , which together with bound (4.15)
leads to

PArepl-EG

[

δArepl-EG
(S,S′) > 4[T√

dσ + σ
√

Kd ln(1/θ)]Lγ 2

+[4M + 2LD]LTγ 2 + 2LDγ

+(

1 + 3 log
(2

θ

))2MT

n
(Lγ 2 + γ /T + γ )

]

� 2θ.

Notice this bound only depends on our choice of i , and it is otherwise uniform over
all S � S′. Finally, by a union bound on i ∈ [n] (together with a renormalization
of θ ), we have that

PArepl-EG

[

sup
S�S′

δArepl-EG
(S,S′) > 4[T√

dσ + σ
√

Kd ln(2/θ)]Lγ 2

+[4M + 2LD]LTγ 2 + 2LDγ

+(

1 + 3 log
(4n

θ

))2MT

n
(Lγ 2 + γ /T + γ )

]

� θ.

��
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4.2 Optimal risk for DP-SVI and DP-SSP by NSEGmethod

Now we use our stability and risk bounds for NSEG to derive optimal risk bounds for
DP-SSP. For this, we use the sampled with replacement variant, Arepl-EG.

F1,t (·) = Fβi(1,t)
(·) + ξ t1; F2,t (·) = Fβi(2,t)

(·) + ξ t2. (4.16)

Using the moments accountant method (Theorem 1) one can show the following.

Proposition 7 (Privacy of sampled with replacement NSEG) Algorithm 1 with oper-
ators given by Eq. (4.16) and σ 2

t = 8M2 log(1/η)/ε2, is (ε, η)-differentially private.

Theorem 4 (Excess risk of sampled with replacement NSEG) Consider an instance
of the (VI(F)) or (SP(f)) problem. Let A be the sampled with replacement variant
(4.16) of NSEG method (Algorithm 1), with γt = γ = min{D/M, 1/L}/[nmax{√n,√
d ln(1/η)/ε}], σ 2

t = 8M2 log(1/η)/ε2, T = n2. Then, WeakGapVI(A, F) (for SVI)
or WeakGapSP(A, f ) (for SSP) are bounded by

O
(

(MD + LD2)max
{ 1√

n
,

√
d ln(1/η)

nε

}

+ MLD

n5/2

)

.

Remark 2 Notice that assuming n = Ω(min{√L,
√
M/D}) the bound of the Theorem

simplifies to

O

(

(MD + LD2)max
{ 1√

n
,

√
d ln(1/η)

nε

}

)

.

This is quite a mild sample size requirement. In this range, when M � LD, our upper
bound matches the excess risk bounds for DP-SCO [5], and we will show these rates
are indeed optimal for DP-SVI and DP-SSP as well

Proof Given that our bounds for SVI andSSPare analogous,weproceed indistinctively
for both problems.

First, let us bound the empirical accuracy of the method. By Theorem 2, together
with the fact that sampling with replacement is an unbiased stochastic oracle for the
empirical operator:

ES

[

EmpGap(A,S)
]

� 1

γ T

(

D2

2
+ 7M2T γ 2

(

1 + 8d log(1/η)

ε2

))

� D2

2n
max{M/D, L}max{√n,

√

d ln(1/η)/ε}

+ 7M2 min{D/M, 1/L}
nmax{√n,

√
d ln(1/η)/ε}

9d ln(1/η)

ε2

= O

(

(MD + LD2)max
{ 1√

n
,

√
d ln(1/η)

nε

}

)

,
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where EmpGap(A,S) is EmpGapVI(A, FS) or EmpGapSP(A, fS) for an SVI or SSP
problem, respectively.

Next, by Theorem 3, we have thatA (or x(S) and y(S), for the SSP case) are UAS
with parameter

δ = [4M + 2LD + 4
√
dσ ]LT γ 2 + 2ML

n
T γ 2 + 2M

n
T γ +

(

2ML

n
+ 2LD

)

γ

�
(4LD2

M
+ 2D

)1

n
+ 8LD2√2d ln(1/η)

Mεn
+ 2LD2

M

1

n3/2
+ 2D√

n
+ 2LD

n5/2
+ 2D

n3/2

= O
( 1

M
·
(MD + LD2

n
+ LD2√d ln(1/η)

εn
+ MLD

n5/2

))

.

Hence, noting that empirical risk upper bounds weak empirical gap and using Propo-
sition 1 or Proposition 2 (depending on whether the problem is an SSP or SVI,
respectively), we have that the risk is upper bounded by its empirical risk plus Mδ,
where δ is the UAS parameter of the algorithm; in particular, is bounded by

WeakGapVI(A, F) � ES[EmpGapVI(A, FS)] + Mδ

= O
(

(MD + LD2)max
{ 1√

n
,

√
d ln(1/η)

nε

}

+ MLD

n5/2

)

,

Similar claims can be made WeakGapSP(A, fS). Hence, we conclude the proof. ��

5 The noisy inexact stochastic proximal point method

In the previous sections,wepresentedNSEG methodwith its single-pass andmultipass
variants and provided optimal risk guarantees for DP-SVI and DP-SSP problems in
O(n2) stochastic operator evaluations. In the rest of the paper, our aim is to provide
another algorithm that can achieve the optimal risk for both of these problems with
much less computational effort. Towards that end, consider the following algorithm:

Algorithm 2 Noisy Inexact Stochastic Proximal Point (NISPP) Method
1: Input: w0 ∈ W
2: for k = 0, 1, . . . , K do
3: Sample a batch Bk+1 ⊆ S.
4: uk+1 ← VIν(W, FBk+1 (·) + λk (· − wk )).

5: wk+1 ← uk+1 + ξk+1, where ξk+1 ∼ N (0, σ 2
k+1Id )

6: end for
7: �wK := (

∑K
k=0γkwk+1)/(

∑K
k=0γk )

8: Output: ΠW (�wK )

In the above algorithm, we leave a few things unspecified which will be stated later
during convergence and privacy analysis. Here, we detail some key features of the
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above algorithm. In line 3, we sample a batch Bk+1 of size Bk+1 = |Bk+1|. Similar
to the NSEG, we will look at two different variants of NISPP method: single-pass
and multi-pass. Depending on the type of the method, we will specify the sampling
mechanism. In line 4 of Algorithm 2, we have uk+1 is a ν-approximate strong VI
solution of the mentioned VI problem for some ν � 0, i.e.,

〈FBk+1(uk+1) + λk(uk+1 − wk), w − uk+1〉 � −ν (∀w ∈ W). (5.1)

Note that if ν = 0 then this is an exact solution satisfying (VI(F)) with operator F
replaced by F(·) + λk(· − wk). For ν > 0, we obtain that uk+1 is an inexact solution
satisfying solution criterion up to ν additive error. In line 5, we add a Gaussian noise
to uk+1 in order to preserve privacy. The resulting iterate wk+1 can be potentially
outside the set W . Hence, in line 7, the ergodic average �wK can be outside W . In
order to preserve feasibility of the solution, we project �wK onto set W and output it
as a solution in line 8. Projection of the average in line 8, as opposed to projection
individual wk+1 in line 5 is crucial for convergence guarantee of Algorithm 2.

In the rest of this section, we exclusively deal with the single-pass version of NISPP
method, i.e., we assume that batches {Bk+1}k=0,...,K are disjoint subsets of the dataset
S. We start with the convergence guarantees of single-pass NISPP method. In order to
prove convergence, we show a useful bound on distW (�wK ) := minw∈W‖w − �wK ‖.

Proposition 8 Let�uK := 1
ΓK

∑K
k=0γkuk+1. Then,

distW (�wK )2 � ‖�uK − �wK ‖2 = 1

Γ 2
K

‖∑K
k=0γkξ k+1‖2. (5.2)

Moreover, we have

E[distW (�wK )2] � 1

Γ 2
K

∑K
k=0γ

2
k E‖ξ k+1‖2 (5.3)

Proof Note that�uK ∈ W . Hence, first relation in (5.2) follows by definition of distW (·)
function. Equality follows from definition of �uK and �wK . To obtain (5.3), note that
{ξ k}K+1

k=1 are i.i.d. random variable with mean 0. Expanding ‖∑K
k=0γkξ k+1‖2, using

linearity of expectation and noting E[ξTi ξ j ] = 0 for all i �= j , we conclude (5.3).
Hence, we conclude the proof. ��

We prove the following convergence rate result for Algorithm 2 for the risk of
SVI/SSP problem. In particular, we assume that the algorithm performs a single-pass
over the dataset S ∼ Pn containing n i.i.d. datapoints.

Theorem 5 Consider the stochastic (VI(F)) problemwithoperators Fβ ∈ M1
W (L, M).

LetAbe the single-passNISPPmethod (Algorithm2)where sequence {γk}k�0, {λk}k�0
satisfy

γkλk = γ0λ0 (5.4)
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for all k � 0. Moreover, Bk+1 are independent samples from a product distribution
Bk+1 ∼ P Bk+1 and Bk+1 ⊂ S. Then, we have

GapVI(A, F) � ν + Z0(K )

ΓK
+ M

√

1

Γ 2
K

∑K
k=0γ

2
k σ 2

k+1d, (5.5)

where, Z0(K ) := 3γ0λ0
2 D2 + 4M2+3 L2D2

γ0λ0

∑K
k=0γ

2
k + 5γ0λ0d

2

∑K
k=1σ

2
k+1 and ΓK :=

∑K
k=0γk .
Similarly, A applied to stochastic (SP(f)) problem achieves

GapSP(A, f ) � ν + Z0(K )

ΓK
+ M

√

1

Γ 2
K

∑K
k=0γ

2
k σ 2

k+1d. (5.6)

Proof Let w ∈ W . Then

〈F(w),wk+1 − w〉 = 〈F(w), uk+1 − w〉 + 〈F(w),wk+1 − uk+1〉. (5.7)

We will analyze each term above separately. First, note that

〈F(w),wk+1 − uk+1〉 � 1

2λk
‖F(w)‖2 + λk

2
‖ξ k+1‖2 � M2

2λk
+ λk

2
‖ξ k+1‖2. (5.8)

Note that

〈F(w), uk+1 − w〉
� 〈F(uk+1), uk+1 − w〉
= 〈FBk+1(uk+1), uk+1 − w〉 + 〈F(uk+1) − FBk+1(uk+1), uk+1 − w〉
� λk〈uk+1 − wk, w − uk+1〉 + ν + 〈F(uk+1) − FBk+1(uk+1), uk+1 − w〉
= λk

2

[

‖w − wk‖2 − ‖w − uk+1‖2 − ‖uk+1 − wk‖2
]

+ ν

+ 〈F(uk+1) − FBk+1(uk+1), uk+1 − w〉, (5.9)

where first inequality follows from monotonicity and second inequality follows from
(5.1). Now note that

〈F(uk+1) − FBk+1(uk+1), uk+1 − w〉
= 〈F(uk+1) − FBk+1(uk+1) − [F(wk) − FBk+1(wk)], uk+1 − w〉

+ 〈F(wk) − FBk+1(wk), uk+1 − wk〉 + 〈F(wk) − FBk+1(wk), wk − w〉

� λk

6L2 ‖F(uk+1) − F(wk)‖2 + 3L2

2λk
‖uk+1 − w‖2

+ λk

6L2 ‖FBk+1(uk+1) − FBk+1(wk)‖2 + 3L2

2λk
‖uk+1 − w‖2
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+ 3

2λk
‖F(wk) − FBk+1(wk)‖2

+ λk

6
‖uk+1 − wk‖2 + 〈F(wk) − FBk+1(wk), wk − w〉

� λk

2
‖uk+1 − wk‖2 + 3L2

λk
‖uk+1 − w‖2 + 3

2λk
‖F(wk) − FBk+1(wk)‖2

+ 〈F(wk) − FBk+1(wk), wk − w〉,

where last inequality follows from L-Lipschitz continuity of F and FBk+1 . Noting that
‖uk+1 − w‖ � D for all w ∈ W and using the above bound in (5.9), we have

〈F(w), uk+1 − w〉
� 〈F(uk+1), uk+1 − w〉
� λk

2

[

‖w − wk‖2 − ‖w − uk+1‖2
]

+ ν + 3L2D2

λk
+ 3

2λk
‖F(wk) − FBk+1(wk)‖2 + 〈F(wk) − FBk+1(wk), wk − w〉

︸ ︷︷ ︸

Ek

(5.10)

Letting u0 := w0 and consequently ξ0 = 0, we have from (5.10)

〈F(w), uk+1 − w〉
� 〈F(uk+1), uk+1 − w〉
� λk

2

[

‖w − uk‖2 − ‖w − uk+1‖2 + 2〈w − uk, uk − wk〉 + ‖uk − wk‖2
]

+ Ek

= λk

2

[

‖w − uk‖2 − ‖w − uk+1‖2
]

+ λk〈ξ k, uk − w〉 + 1

2
λk‖ξ k‖2 + Ek

(5.11)

Let us define an auxiliary sequence {zk}k�0, where z0 = w0 and for all k � 1, we
have

zk = ΠW [zk−1 − ξ k].

Then, due to the mirror-descent bound, we have

∑K
k=1〈ξ k, zk − w〉 � 1

2‖w − w0‖2 − 1
2‖w − zK ‖2 + ∑K

k=1‖ξ k‖2. (5.12)

Moreover, noting that

〈ξk , uk − zk〉 = 〈ξk , uk − zk−1〉 + 〈ξk , zk−1 − zk〉 � 〈ξk , uk − zk−1〉 + ‖ξk‖‖zk − zk−1‖
� 〈ξk , uk − zk−1〉 + ‖ξk‖2.
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Combining above relation with (5.12), we have

∑K
k=1〈ξ k, uk − w〉 � 1

2‖w − w0‖2 + 2
∑K

k=1‖ξ k‖2 +∑K
k=1〈ξ k, uk − zk−1〉. (5.13)

Now multiplying (5.7) by γk then summing from k = 0 to K ; noting the definition of
�wK and ΓK ; and using (5.8), (5.11) and (5.13) along with assumption (5.4) implies

Γk〈F(w), �wK − w〉
� γ0λ0‖w − w0‖2

+ ∑K
k=0

[

γk M2

2λk
+ γ0λ0

2 ‖ξ k+1‖2 + 5γ0λ0
2 ‖ξ k‖2 + γk Ek + γ0λ0〈ξ k, uk − zk−1〉

]

⇒ Γk〈F(w),ΠW [�wK ] − w〉
� γ0λ0‖w − w0‖2 + ΓK 〈F(w),ΠW [�wK ] − �wK 〉
+ ∑K

k=0

[

γk M2

2λk
+ γ0λ0

2 ‖ξ k+1‖2 + 5γ0λ0
2 ‖ξ k‖2 + γk Ek + γ0λ0〈ξ k, uk − zk−1〉

]

� γ0λ0‖w − w0‖2 + ΓK M distW (�wK )

+ ∑K
k=0

[

γk M2

2λk
+ γ0λ0

2 ‖ξ k+1‖2 + 5γ0λ0
2 ‖ξ k‖2 + γk Ek + γ0λ0〈ξ k, uk − zk−1〉

]

(5.14)

Now note that

∑K
k=0γk Ek = ΓK ν + 3L2D2

γ0λ0

∑K
k=0γ

2
k + 3

2γ0λ0

∑K
k=0γ

2
k ‖FBk+1(wk) − F(wk)‖2

+ γ0λ0
∑K

k=0〈 1
λk

(F(wk) − FBk+1(wk)), wk − w〉 (5.15)

Define Δk := 1
λk

(F(wk) − FBk+1(wk)). Note that EBk+1 [Δk |wk] = 0. Moreover,
define an auxiliary sequence {hk}k�0 with h0 := w0 and

hk+1 := ΠW [hk − Δk].

Then due to mirror descent bound, we have

∑K
k=0〈Δk, hk+1 − w〉 � 1

2‖w − w0‖2 − 1
2‖w − hK+1‖2 + ∑K

k=0‖Δk‖2. (5.16)

Moreover,

〈Δk, hk − hk+1〉 � ‖Δk‖‖hk − hk+1‖ � ‖Δk‖2.

Using above relation along with (5.16), we have

∑K
k=0〈Δk, hk − w〉
= ∑K

k=0[〈Δk, hk+1 − w〉 + 〈Δk, hk − hk+1〉]
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� 1

2
‖w − w0‖2 − 1

2
‖w − hK+1‖2 + 2

∑K
k=0‖Δk‖2

⇒ ∑K
k=0〈Δk, wk − w〉

= ∑K
k=0[〈Δk, wk − hk〉 + 〈Δk, hk − w〉]

�
∑K

k=0〈Δk, wk − hk〉 + 1
2‖w − w0‖2 − 1

2‖w − hK+1‖2 + 2
∑K

k=0‖Δk‖2.

Using the above relation in (5.15), we have

∑K
k=0γk Ek = ΓK ν + 3L2D2

γ0λ0

∑K
k=0γ

2
k + 3

2γ0λ0

∑K
k=0γ

2
k ‖FBk+1(wk) − F(wk)‖2

+ γ0λ0
∑K

k=0〈Δk, wk − w〉

� γ0λ0

2
‖w − w0‖2 + ΓK ν

3L2D2

γ0λ0

∑K
k=0γ

2
k

+ 3

2γ0λ0

∑K
k=0γ

2
k ‖FBk+1(wk) − F(wk)‖2

+ 2γ0λ0
∑K

k=0‖Δk‖2 + γ0λ0
∑K

k=0〈Δk, wk − hk〉. (5.17)

Finally, note that for all valid k, we have

E[‖ξ k‖2] = σ 2
k d, (5.18)

E[‖Δk‖2] = Ewk [EBk+1[‖Δk‖2|wk]]
= 1

λ2k
EwkEBk+1

[

‖FBk+1(wk) − F(wk)‖2|wk

]

� 1

λ2k
EwkEBk+1‖FBk+1(wk)‖2 � M2

λ2k
, (5.19)

E[〈Δk, wk − hk〉] = E[〈E[Δk |wk, hk], wk − hk〉] = 0, (5.20)

E[〈ξ k, uk − zk−1〉] = E[〈E[ξ k |uk, zk−1], uk − zk−1〉] = 0, (5.21)

where, in (5.19), we used the fact that Fβ) is M-bounded for all β ∈ S.
Now, using (5.17) in relation (5.14), noting the bound on distW (�wK ) from Propo-

sition 8 (in particular (5.3)), taking supremum with respect to w ∈ W , then taking
expectation and noting (5.18)-(5.21), we have

ΓkE sup
w∈W

〈F(w),ΠW [�wK ] − w〉

� 3γ0λ0
2

D2 + ∑K
k=0

[

γk (4M2+3L2D2)
λk

+ 5γ0λ0
2 σ 2

k+1d + γkν
]

+ ΓK M

√

1

Γ 2
K

∑K
k=0γ

2
k σ 2

k+1d.

⇒ E sup
w∈W

〈F(w),ΠW [�wK ] − w〉

123



D. Boob, C. Guzmán

� ν + 1

ΓK

[

3γ0λ0
2

D2 + 4M2 + 3L2D2

γ0λ0

∑K
k=0γ

2
k + 5γ0λ0d

2

∑K
k=1σ

2
k+1

]

+ M

√

1

Γ 2
K

∑K
k=0γ

2
k σ 2

k+1d,

where in the first inequality, we used the fact thatE[distW (�wK )] �
√

E[distW (�wK )2].
Hence, we conclude the proof of (5.5).

Now, we extend this for (SP(f)). Denote uk+1 = (̃xk+1, ỹk+1). Then, we have

〈F(uk+1), uk+1 − w〉
= 〈∇x f (̃xk+1, ỹk+1), x̃k+1 − x〉 + 〈−∇y f (̃xk+1, ỹk+1), ỹk+1 − y〉
� f (̃xk+1, ỹk+1) − f (x, ỹk+1) + [− f (̃xk+1, ỹk+1) + f (̃xk+1, y)]
= f (̃xk+1, y) − f (x, ỹk+1).

Using the above in (5.11), we obtain,

f (̃xk+1, y) − f (x, ỹk+1) � λk

2

[

‖w − uk‖2 − ‖w − uk+1‖2
]

+ λk〈ξ k, uk − w〉

+ 1

2
λk‖ξ k‖2 + Ek .

Now, using Proposition 8 to bound the distance between points 1
ΓK

(
∑K

k=0γk x̃k+1,
∑K

k=0γk ỹk+1) and (ΠX [�xK ],ΠY [�yK ]) and using Jensen’s inequality to conclude that

1

ΓK

∑K
k=0γk[ f (̃xk+1, y) − f (x, ỹk+1)]

� f ( 1
ΓK

∑K
k=0γk x̃k+1, y) − f (x, 1

ΓK

∑K
k=0γk ỹk+1)]

� f (ΠX [�xK ], y) − f (x,ΠY [�yK ]) − M‖∗‖⎡
⎣

1
ΓK

∑K
k=0γk x̃k+1 − ΠX [�xK ]

1
ΓK

∑K
k=0γk ỹk+1 − ΠY [�yK ]

⎤

⎦

and retracing the steps of this proof from (5.11), we obtain (5.6). Hence, we conclude
the proof. ��

5.1 Differential privacy of the NISPPmethod

First, we show a simple bound on �2-sensitivity for updates of NISPP method.

Proposition 9 Suppose ν � 2M2

λk B2
k+1

then �2-sensitivity of updates of Algorithm 2 is at

most 4M
λk Bk+1

where Bk+1 = |Bk+1| is the batch size of k-th iteration.
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Proof Let wk be an iterate in the start of k-th iteration of Algorithm 2. Suppose Bk+1
and B′

k+1 be two different batches used in k-th iteration to obtain uk+1 and u′
k+1,

respectively. Also note that Bk+1 and B′
k+1 differ in only single datapoint. Then, due

to (5.1), we have for all w ∈ W

〈FBk+1(uk+1) + λk(uk+1 − wk), w − uk+1〉 � −ν

〈FB′
k+1

(u′
k+1) + λk(u

′
k+1 − wk), w − u′

k+1〉 � −ν

Using w = u′
k+1 in the first relation and w = uk+1 in the second relation above and

then summing, we obtain

〈FBk+1(uk+1) − FB′
k+1

(u′
k+1), uk+1 − u′

k+1〉
� 2ν − λk‖uk+1 − u′

k+1‖2
⇒ 〈FBk+1(uk+1) − FBk+1(u

′
k+1), uk+1 − u′

k+1〉
� 〈FB′

k+1
(u′

k+1) − FBk+1(u
′
k+1), uk+1 − u′

k+1〉
+ 2ν − λk‖uk+1 − u′

k+1‖2

Now, noting that FBk+1 is a monotone operator and denoting ak+1 := ‖FB′
k+1

(u′
k+1)−

FBk+1(u
′
k+1)‖, pk+1 := ‖wk+1 − w′

k+1‖ = ‖uk+1 − u′
k+1‖ we have

0 � 〈FB′
k+1

(u′
k+1) − FBk+1(u

′
k+1), uk+1 − u′

k+1〉 + 2ν − λk‖uk+1 − u′
k+1‖2

� ak+1 pk+1 − λk p
2
k+1 + 2ν. (5.22)

Finally noting that if β and β ′ are the differing datapoints in Bk+1 and B′
k+1, then

ak+1 = 1

Bk+1
‖Fβ ′(u′

k+1) − Fβ(u′
k+1)‖ � 2M

Bk+1
.

Using the above relation in (5.22) and noting that �2-sensitivity pk+1 = ‖wk+1 −
w′
k+1‖ = ‖uk+1 − u′

k+1‖, we have, pk+1 satisfies

p2k+1 − 2M

λk Bk+1
pk+1 − 2ν

λk
� 0.

This implies

pk+1 � M

λk Bk+1
+

√

M2

λ2k B
2
k+1

+ 2ν

λk
� 2M

λk Bk+1
+

√

2ν

λk
.

Setting ν � 2M2

λk B2
k+1

, we have pk+1 � 4M
λk Bk+1

. Hence, we conclude the proof. ��
Using the �2-sensitivity result above alongwithProposition 3 and4,we immediately

obtain the following:
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Proposition 10 Algorithm 2 with batch sizes (Bk+1)k∈[K ]0 , parameters (λk)k∈[K ]0 ,
variance σ 2

k+1 = 32M2

λ2k B
2
k+1

ln(1/η)

ε2
and ν satisfying assumptions of Proposition 9 is (ε, η)-

differentially private.

Now, we provide a policy for setting γk, λk and Bk+1 to obtain population risk
bounds for DP-SVI and DP-SSP problem by the NISPP method.

Corollary 2 Algorithm 2 with disjoint batches Bk+1 is of size Bk+1 = B := n1/3 for
all k � 0 and the following parameters

γk = 1, λk = λ0 := max

{

M

D
, L

}

max

{

n1/3,

√
d ln(1/η)

ε

}

,

σ 2
k+1 = 32M2

Bλ0

ln(1/η)

ε2
, ν = 2M2

λ0B2 ,

is (ε, η)-differentially private and achieves expected SVI-gap (SSP-gap, respectively)

O

(

(M + LD)D

[

1

n1/3
+

√
d ln(1/η)

εn2/3

])

.

Proof Note that values of ν, σk+1 and other required conditions proposed in Proposi-
tions 9 and 10 are satisfied. Hence, this algorithm is (ε, η)-differentially private.

Moreover, all requirements of Theorem 5 are satisfied. In order to maintain single
pass over the dataset,we require K = n

B = n2/3 iterations. Then,weprovide individual
bounds on the terms of (5.5) ((5.6), respectively) and conclude the corollary using
Theorem 5.

Note that we are using a constant parameter policy. Hence, σk+1 = σ = 4M
ρBλ0

for
all k � 0. Substituting appropriate parameter values, we have

ν = 2MD

n2/3 max{n1/3,√d ln(1/η)/ε} � 2MD

n
,

M

√

1

Γ 2
K

∑K
k=0γ

2
k σ 2

k+1d = M
√
dσk+1√
K

= 4M2√2d ln(1/η)

εn2/3λ0
� 4

√
2MD

n2/3
,

3λ0D2

2K
� 3(M + LD)D

2

(

1

n1/3
+

√
d ln(1/η)

εn2/3

)

,

4M2 + 3L2D2

λ0
� 4MD

n1/3
+ 3LD2

n1/3
,

5λ0dσ 2

2
= 40M2d ln(1/η)

ε2B2λ0
� 40MD

√
d ln(1/η)

εn2/3
.

Substituting these bounds in Theorem 5, we conclude the proof. ��
Remark 3 We have the following remarks for NISPP method:
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1. In order to obtain ν-approximate solution of the subproblem of NISPP method
satisfying (5.1), we can use the Operator Extrapolation (OE)method (see Theorem
2.3 [34]). OE method outputs a solution uk+1 satisfying ‖uk+1 − w∗

k+1‖ � ζ in
L+λ0

λ0
ln( D

ζ
) iterations, where w∗

k+1 is an exact SVI solution for problem (5.1).
Furthermore, we have for all w ∈ W ,

0 � 〈F(w∗
k+1) + λk(w

∗
k+1 − wk), w − w∗

k+1〉
= 〈F(uk+1) + F(w∗

k+1) − F(uk+1) + λk(uk+1 − wk)

+ λk(w
∗
k+1 − uk+1), w − w∗

k+1〉
� 〈F(uk+1) + λk(uk+1 − wk), w − w∗

k+1〉
+ (L + λk)‖uk+1 − w∗

k+1‖‖w − w∗
k+1‖

� 〈F(uk+1) + λk(uk+1 − wk), w − w∗
k+1〉

+ (L + λk)D‖uk+1 − w∗
k+1‖

= 〈F(uk+1) + λk(uk+1 − wk), w − uk+1 + uk+1 − w∗
k+1〉

+ (L + λk)D‖uk+1 − w∗
k+1‖

� 〈F(uk+1) + λk(uk+1 − wk), w − uk+1〉 + ‖F(uk+1)

+ λk(uk+1 − wk)‖‖uk+1 − w∗
k+1‖

+ (L + λk)D‖uk+1 − w∗
k+1‖

� 〈F(uk+1) + λk(uk+1 − wk), w − uk+1〉
+ [LD + M + 2λk D]‖uk+1 − w∗

k+1‖

Setting ζ = ν/[LD+M+2λk D], we obtain that uk+1 is a ν-approximate solution

satisfying (5.1).Using the convergence rate above,we require L+λ0
λ0

ln MD+LD2+2λk D2

ν
operator evaluations.
Note that since, λ0 � L , we have L+λ0

λ0
� 2. Moreover,

ln
MD + LD2 + 2λk D2

ν
� ln

4λk D2

ν

= ln

(

2λ20D
2B2

M2

)

= ln

(

n2/3 max

{

n2/3,
d ln(1η)

ε2

}

max

{

1,
L2D2

M2

)}

(5.23)

Hence, each iteration of NISPPmethod requires O(log n) iterations of OEmethod
for solving the subproblem. Moreover, each iteration of the OE method requires
2B stochastic operator evaluations. Hence, we require O(K B log n) stochastic
operator evaluations in the entire run ofNISPP (Algorithm2).Noting that K B = n,
we conclude that this is a near linear time algorithm and also performs only a single
pass over the data in the stochastic outer-loop.We provide the details of OEmethod
in the Appendix B.
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2. For non-DP version of NISPP method, i.e., σk = 0 for all k, we can easily obtain
population risk bound of O(MD√

n
) by setting λ0 = M

D

√
n, B = 1 (or K = n) and

ν = MD√
n
in Corollary 2.

In view of Corollary 2, it seems that running NISPP method for n3/2 stochastic
operator evaluations may provide optimal risk bounds. However, running that many
stochastic operator evaluations requiresmulti-pass over the dataset so, in principle, this
wouldonlyprovidebounds in the empirical risk. In order to compute the population risk
of thismulti-pass version,we analyze the stability ofNISPP and provide generalization
guarantees which result in optimal population risk.

6 Stability of NISPP and optimal risk for DP-SVI and DP-SSP

In this section,we develop amulti-pass variant ofNISPPmethod, and prove its stability
to extrapolate empirical performance to population risk bounds.

6.1 Stability of NISPPmethod

Let us start with two adjacent datasets S � S′. Suppose we run NISPP method on
both datasets starting from the same point w0 ∈ W . Then, in the following lemma,
we provide bound on the how far apart trajectories of these two runs can drift.

Lemma 3 Let (uk+1, wk+1)k�0 and (u′
k+1, w

′
k+1)k�0 be two trajectories of the NISPP

method (Algorithm 2) for any adjacent datasets S � S′ whose batches are denotes
by Bk+1,B′

k+1 respectively. Moreover, denote ak+1 := ‖FBk+1(uk+1)− FB′
k+1

(uk+1)‖
and δk+1 := ‖uk+1 − u′

k+1‖(= ‖wk+1 − w′
k+1‖) for k-th iteration of Algorithm 2.

Then, if i = inf{k : Bk+1 �= B′
k+1},

δ j+1

{= 0 if j + 1 � i

�
∑ j

k=i
2ak+1

λk
+

√

4ν
λk

otherwise.
(6.1)

Proof It is clear from the definition i that B j = B′
j for all j � i . This implies u j = u′

j
and w j = w′

j for all j � i . Hence, we conclude first case of (6.1).
Using (5.1) for ν-approximate strong VI solution, we have,

〈FBk+1(uk+1) + λk(uk+1 − wk), w − uk+1〉 � −ν, (6.2)

〈FB′
k+1

(u′
k+1) + λk(u

′
k+1 − w′

k), w − u′
k+1〉 � −ν. (6.3)

Then, adding (6.2) with w = u′
k+1 and (6.3) with w = uk+1, we have

〈Fβk+1
(uk+1) − Fβ ′

k+1
(u′

k+1), uk+1 − u′
k+1〉

� 2ν − λk〈uk+1 − u′
k+1, (uk+1 − wk) − (u′

k+1 − w′
k)〉
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= 2ν − λkδ
2
k+1 + λk〈uk+1 − u′

k+1, wk − w′
k〉

� 2ν − λkδ
2
k+1 + λk

2
[δ2k + δ2k+1]

� 2ν − λk

2
δ2k+1 + λk

2
δ2k . (6.4)

Also note that

〈FBk+1(uk+1) − FB′
k+1

(u′
k+1), uk+1 − u′

k+1〉
= 〈FB′

k+1
(uk+1) − FB′

k+1
(u′

k+1), uk+1 − u′
k+1〉

+ 〈FBk+1(uk+1) − FB′
k+1

(uk+1), uk+1 − u′
k+1〉

� 〈FBk+1(uk+1) − FB′
k+1

(uk+1), uk+1 − u′
k+1〉

where the last inequality follows from monotonicity of FB′
k+1

. Using above relation
along with (6.4), we obtain

λk

2
δ2k+1 � λk

2
δ2k + 2ν + 〈FB′

k+1
(uk+1) − FBk+1(uk+1), uk+1 − u′

k+1〉

⇒ δ2k+1 � δ2k + 4ν

λk
+ 2

λk
ak+1δk+1,

where we used the definition ak along with Cauchy-Schwarz inequality. Solving for
the quadratic inequality in δk+1, we obtain the following recursion

δk+1 � ak+1

λk
+

√

a2k+1

λ2k
+ δ2k + 4ν

λk

which can be further simplified to

δk+1 � δk + 2ak+1

λk
+

√

4ν

λk
.

Solving this recursion and noting the base case that δi = 0, we obtain (6.1). ��
A direct consequence of the previous analysis are in-expectation and high prob-

ability uniform argument stability upper bounds for the sampling with replacement
variant of Algorithm 2.

Theorem 6 LetA denote the sampling with replacement NISPPmethod (Algorithm 2)
where Bk is chosen uniformly at random from subsets of S of a given size Bk. ThenA
satisfies the following uniform argument stability bounds:

sup
S�S′

EA[δA(S,S′)] �
K
∑

k=1

(

2M

nλk
+

√

4ν

λk

)

.
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Furthermore, if |Bk | = B and λk = λ for all k (i.e., constant batch size and regu-
larization parameter throughout iterations) then w.p. at least 1 − n exp{−K B/[4n]}
(over both sampling and noise addition)

sup
S�S′

[δA(S,S′)] � 4MK

λn
+ K

√

4ν

λ
.

Proof Let S � S′ and (uk+1)k , (u′
k+1)k the trajectories of the algorithm on S and S′,

respectively. By Lemma 3, letting δk+1 = ‖w̃k+1− w̃′
k+1‖, we get δ j �

∑ j
k=1

(

2ak
λk

+
√

4ν
λk

)

, where ak = ‖FBk+1(uk+1) − FB′
k+1

(u′
k+1)‖ is a random variable. By the law

of total probability, E[ak] � |Bk+1|
n

2M
|Bk+1| + (

1 − |Bk+1|
n

) · 0 = 2M
n . Hence, E[δ j ] �

∑ j
k=1

(

2M
nλk

+
√

4ν
λk

)

�
∑K

k=1

(

2M
nλk

+
√

4ν
λk

)

. Since ‖ΠW (�wK ) − ΠW (�w′
K )‖ �

‖�wK − �w′
K ‖ � maxk∈[K ] δk , and since S � S′ are arbitrary,

sup
S�S′

EA[δA(S,S′)] �
K
∑

k=1

(

2M

nλk
+

√

4ν

λk

)

.

We proceed now to the high-probability bound. Let rk ∼ Ber(p), for k ∈ [K ], with
Kp < 1. Then, for any 0 < θ < 1/2,

P

⎡

⎣

K
∑

k=1

rk � Kp + τ

⎤

⎦ � exp
( − θ(τ + Kp))

[

1 + p(eθ − 1)
]K

� exp{Kpθ2 − θτ }.

Choosing θ = τ/[2Kp] < 1/2, we get that the probability above is upper bounded
by exp{−τ 2/[4Kp]}. Finally, choosing τ = Kp, we get

P

[

K
∑

k=1

rk � 2Kp

]

� exp{−Kp/4}.

Next, fix the coordinate i where S � S′ may differ. Noticing that ak is a.s. upper
bounded by (2M/B)rk with rk ∼ Ber(p), with p = B/n, we get

P

[

K
∑

k=1

2ak
λ

� 2

λ

2M

n

]

� exp{−K B

4n
}.

In particular, w.p. at least 1 − exp{− K B
4n }, we have ak � 4M

λn +
√

4ν
λ

. Using a union
bound over i ∈ [n] (and noticing that averaging preserves the stability bound), we
conclude that

P

[

sup
S�S′

δA(S,S′) >
4MK

λn
+ K

√

4ν

λ

]

� n exp{−K B/4n}.
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Hence, we conclude the proof. ��
Remark 4 An important observation, for the high-probability guarantee to be useful,
is necessary that the algorithm is run for sufficiently many iterations; in particular,
we require K = ω(n/B). Whether this assumption can be completely avoided is an
interesting question. Nevertheless, as we will see in the section, our policy for DP-SVI
and DP-SSP problem satisfies this requirement.

6.2 Optimal risk for DP-SVI and DP-SSP by the NISPPmethod

In previous three sections, we provided bounds on optimization error, generalization
error and value of σ for obtaining (ε, η)-differential privacy. In this section, we spec-
ify a policy for selecting λk, Bk, γk, σk and ν such that requirement in the previous
three sections are satisfied and we can get optimal risk bounds while maintaining
(ε, η)-privacy. In particular, consider the multi-pass NISPP method where each sam-
ple batch Bk is chosen randomly from subsets of S with replacement. Then, we have
the following theorem:

Theorem 7 Let A be the multi-pass NISPP method (Algorithm 2). Set the following
constant stepsize and batchsize policy for A:

γk = 1, λk = λ0 = max

{

M

D
, L

}

max

{√
n,

√
d log 1/δ

θ

}

, Bk = B = √
n,

K = n, ν = M2

λ0n2
, σk+1 = 8M

Bλ0

√
ln(1/η)

ε
.

Then, Algorithm 2 is (ε, η)-differential private. Moreover, output A(S) satis-
fies the following bound on EA[WeakGapVI(A(S), F)] for SVI problem (or EA
[WeakGapSP(A(S), f )] for SSP problem)

O

(

(M + LD)D

(

1√
n

+
√
d ln 1/η

εn

))

,

Moreover, such solution is obtained in total of ˜O(n
√
n) stochastic operator evalua-

tions.

Proof Note that since ν satisfies assumption in Proposition 9, we have �2-sensitivity
of the update of uk+1 is 4M

λ0Bk+1
. Then, in view of Theorem 1 along with value of σk+1,

we conclude that Algorithm 2 is (ε, η)-differential private.
Now, for convergence, we first bound the empirical gap. Given that our bounds

for (VI(F)) and (SP(f)) are analogous, we proceed indistinctively for both problems.
By Theorem 5, along with the fact that sampling with replacement is an unbiased
stochastic oracle for the empirical operator, we have for any S

EA[EmpGap(A, FS)] � ν + λ0D2

n
+ 7M2

λ0
+ 160M2d

ε2B2λ0
ln

1

η
+ M

√
2d

8M

Bnελ0
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� O

(

MD

(

1√
n

+
√
d ln 1/η

εn

))

.

Similar claims canbemade for empirical gap for (SP(f)) problem:EA
[

EmpGap(A, fS)
]

where output of A is (x(S), y(S)).
Next, by Theorem 6, we have that A(S) (or x(S) and y(S) for the SSP case) are

UAS with parameter

δ = 2M

λ0
+ n

√

4ν

λ0
= 4M

λ0
� 4D√

n
.

Hence, noting that empirical risk upper bounds weak VI or SP gap, i.e., using Propo-
sition 1 or Proposition 2 (depending on whether the problem is an SSP or SVI,
respectively), we have that the risk is upper bounded by its empirical risk plus Mδ,
where δ is the UAS parameter of the algorithm; in particular, if WeakGap(A;S) is the
(SVI or SSP, respectively) gap function for the expectation objective, then

EA,S
[

WeakGapVI(A, F)
]

� O
(

MD
( 1√

n
+

√
d ln(1/η)

εn

))

+ 20MD√
n

= O
(

MD
( 1√

n
+

√
d ln(1/η)

εn

))

Similar claim can be made for WeakGapSP(A, f ).
Finally, we analyze the running time performance. As in Remark 3, number of OE

method iterations for obtainingν-approximate solution isO
( L+λ0

λ0
ln

( LD2+MD+λ0D2

ν

))

.

Now note that L+λ0
λ0

�
√
n+1√
n

� 2 since n � 1. Moreover, in view of (5.23), we have

ln
( LD2+MD+λ0D2

ν

)

� ln
(

4λ0D2

ν

)

� ln
(

n2 max{1, L2D2

M2 }max{n,
d ln(1/η)

ε2
}
)

. Each

iteration of OE method costs B stochastic operator evaluations and we run outer-loop
of NISPPmethod K times. Hence, total stochastic operator evaluations (after ignoring
the ln-term) ˜O(K B) = ˜O(n

√
n). Hence, we conclude the proof. ��

7 Lower bounds and optimality of our algorithms

In this section, we show the optimality of our obtained rates from Sects. 4.1 and 6.1.
The first observation is that, since DP-SCO corresponds to a DP-SSP problem where
Y is a singleton, the complexity of DP-SSP is lower bounded by Ω(MD

( 1√
n

+
min

{

1,
√
d

εn

}))

: this is a known lower bound for DP-SCO [5]. It is important to note
as well that this reduction applies to the weak generalization gap, as defined in (1.4),
as in the case Y = {ȳ} is a singleton:

WeakGapSP(A, f ) = EA[sup
y∈Y

ES[ f (x(S), y)] − inf
x∈X

ES[ f (x, y(S))]]
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= EAES[ f (x(S), ȳ)] − inf
x∈X

f (x, ȳ)

= EA,S[ f (x(S), ȳ) − inf
x∈X

f (x, ȳ)],

which is simply the expected optimality gap. Using this reduction, together with a
lower bound for DP-SCO [5], we conclude that

Proposition 11 Let n, d ∈ N, L, M, D, ε > 0 and δ = o(1/n). The class of prob-
lems DP-SSP with gradient operators within the class M1

W (L, M), and domain W
containing an Euclidean ball of diameter D/2, satisfies the lower bound

Ω
(

MD
( 1√

n
+ min

{

1,

√
d

εn

}))

.

Next, we study the case of DP-SVI. The situation is more subtle here. Our approach
is to first prove a reduction from population weakVI gap to empirical strongVI gap for
the case where operators are constant w.r.t. w. In fact, it seems unlikely this reduction
works for more general monotone operators, however this suffices for our purposes,
as we will later prove a lower bound construction used for DP-ERM [7] leads to a
lower bound for strong VI gap with constant operators.

The formal reduction to the empirical version of the problem is presented in the
following lemma. Its proof follows closely the reduction from DP-SCO to DP-ERM
from [5]. Below, given a dataset S ∈ Zn , let PS = 1

n

∑

β∈S δβ be the empirical
distribution associated with S.

Lemma 4 Let A be an (ε/[4 log(1/η)], e−εη/[8 log(1/η)])-DP algorithm for SVI
problems. Then there exists an (ε, η)-DP algorithm B such that for any empirical
VI problem with constant operators,

EmpGapVI(B, FS) � WeakGapVI(A, FPS) (∀S ∈ Zn).

Proof Consider the algorithm B that does the following: first, it extracts a sample T ∼
(PS)

n ; next, executesA onT; and finally, outputsA(T).We claim that this algorithm is
(ε, η)-DP w.r.t. S, which follows easily by bounding the number of repeated examples
with high probability, together with the group privacy property applied to A (for a
more detailed proof, see Appendix C in [5]). Now, given a constant operator Fβ(w),
let R(β) ∈ R

d be its unique evaluation. Let now RS be the unique evaluation of FS, and
given a distribution P let RP be the unique evaluation of FP (w) = Eβ∼P [Fβ(w)].

Noting that ET[RT] = RS, we have that

EmpGapVI(B(S), FS) = EB[ sup
w∈W

〈RS,B(S) − w〉]
= EA,T[〈RS,A(T)〉 − inf

w∈W
〈RS, w〉]

= EA sup
w∈W

ET[〈RS,A(T) − w〉]
= WeakGapVI(A, FPS),
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where third equality holds since the optimal choice of w is independent of T, and the
last equality holds by definition of the weak gap function and the fact that T ∼ (PS)

n .
��

Next, we prove a lower bound for the empirical VI problem over constant operators.

Proposition 12 Let n, d ∈ N, L, M, D, ε > 0 and 2−o(n) � δ � o(1/n). The class of
DP empirical VI problems with constant operators within the classM1

W (L, M), and
domain W containing an Euclidean ball of diameter D/2 satisfies the lower bound

Ω
(

MD
(

min
{

1,

√

d log(1/η)

εn

}))

.

Proof Consider the following empirical VI problem: Fβ(u) = Mβ,W = B(0, D) and
dataset Swith points contained in {−1/

√
d,+1/

√
d}d . Notice that, since the operator

in this case is constant, the VI gap coincides with the excess risk of the associated
convex optimization problem

(P) min
u∈W

〈M

n

∑

i∈[n]
β i , u

〉

.

Indeed, for any u ∈ W ,

EmpGapVI(u, FS) = sup
v∈B(0,D)

〈M

n

∑

i∈[n]
β i , u − v

〉

=
〈M

n

∑

i∈[n]
β i , u + D

∑

i β i

‖∑

i β i‖
〉

=
∥

∥

∥

MD

n

∑

i∈[n]
β i

∥

∥

∥ + MD
〈 u

D
,
1

n

∑

i

β i
〉

.

This, together with the lower bounds on excess risk proved for this problem in [7,
AppendixC] and [46, Theorem5.1] show that any (ε, η)-DP algorithm for this problem

must incur in worst-case VI gapΩ(MDmin{1,
√

d log(1/η)

εn }), which proves the result.
��

The two results above provide the claimed lower bound for the weak SVI gap of
any differentially private algorithm.

Theorem 8 Let n, d ∈ N, L, M, D, ε > 0 and 2−o(n) � δ � o(1/n). The class of DP-
SVI problems with operators within the classM1

W (L, M), and domainW containing
an Euclidean ball of diameter D/2 satisfies a lower bound for the weak VI gap

Ω̃
(

MD
( 1√

n
+ min

{

1,

√
d

εn

}))

.

Before we prove the result, let us observe that the presented lower bound shows
the optimality of our algorithms in the range where M � LD. Obtaining a matching
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lower bound for any choice of M, L, D is an interesting question, which unfortunately
our proof technique does not address: this is a limitation that the lower bound is based
on constant operators, and therefore their Lipschitz constants are always zero.

Proof Let A be any algorithm for SVI. By the classical (nonprivate) lower bounds
for SVI [30, 40], we have that the minimax SVI gap attainable is lower bounded
by Ω(MD/

√
n). On the other hand, using Lemma 4 the accuracy of any (ε, η)-

DP algorithm for weak SVI gap is lower bounded by the strong gap achieved by
(4ε ln(1/η), eε Õ(η))-DP algorithms on empirical VI problems with constant oper-
ators. Finally, by Proposition 12, the latter class of problems enjoys a lower bound

Ω(min{1,
√

d ln(1/[eε Õ(η)])/[εn ln(1/η)]}) = Ω̃(min{1,√d/[nε]), which implies
a lower bound on the former class of this order. We conclude by combining both the
private and nonprivate lower bounds established above. ��
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A Proof of Proposition 2

Let S′ = (β ′
1, . . . ,β

′
n) be independent of S. For i ∈ [n], we denote Si =

(β1, . . . ,β i−1,β
′
i ,β i+1, . . . ,βn). Then, for any w ∈ W , we have

ES〈F(w),A(S) − w〉

= ES,S′
1

n

n
∑

i=1

〈Fβ ′
i
(w),A(S) − w〉

= ES,S′
1

n

n
∑

i=1

〈Fβi
(w),A(Si ) − w〉

= ES,S′
1

n

n
∑

i=1

〈Fβi
(w),A(S) − w〉 + 〈Fβi

(w),A(Si ) − A(S)〉

� ES,S′
1

n

n
∑

i=1

〈Fβi
(w),A(S) − w〉 + ‖Fβi

(w)‖‖A(Si ) − A(S)‖
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� ES,S′
1

n

n
∑

i=1

〈Fβi
(w),A(S) − w〉 + M‖A(Si ) − A(S)‖

= ES〈FS(w),A(S) − w〉 + ES,S′
1

n

n
∑

i=1

M‖A(Si ) − A(S)‖ (A.1)

Now, taking supremum over w ∈ W and taking expectation over A which is δ-UAS,
we have,

EA[WeakGapVI(A(S), F)]

� EA[ sup
w∈W

ES〈FS(w),A(S) − w〉] + ES,S′
1

n

n
∑

i=1

MEA‖A(Si ) − A(S)‖

� EA,S[ sup
w∈W

〈FS(w),A(S) − w〉] + ES,S′
1

n

n
∑

i=1

MEA‖A(Si ) − A(S)‖

� ES[EmpGapVI(A, FS)] + Mδ.

B Operator extrapolationmethod [34]

Suppose we want to solve VI problem associated with operator Fk(·) = F(·)+λk(·−
wk) whose (unique) solution be w∗

k+1. It is clear that Fk is an (L + λk)-Lipschitz

continuous operator which is λk-strongly monotone as well. Denote κ := λk
L+λk

+ 1
and consider the following algorithm for solving this problem:

Algorithm 3 Operator Extrapolation (OE) method
1: Let z0 = z1 = wk be given.
2: for t = 1, . . . , T do
3: zt+1 = argminw∈W 1

2(L+λk )
〈Fk (zt ) + 1

κ

[

Fk (zt ) − Fk (zt−1)
]

, w〉 + 1
2 ‖w − zt‖2

4: end for

We have the following convergence guarantee for this algorithm:

‖zT − w∗
k+1‖2 � κ−T ‖z1 − w∗

k+1‖2

In particular, in order to ensue that ‖zT − w∗
k+1‖ � ν

LD2+MD+2λk D2 , we require

T = 2κ ln
( LD2 + MD + 2λk D2

ν

)

= 2(L + 2λk)

L + λk
ln

( LD2 + MD + 2λk D2

ν

)

itearations.
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