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Abstract—We analyze traffic exchange between Internet Service Providers (ISPs) at an Internet Exchange Point (IXP) as a
non-cooperative game with ISPs as self-interested agents. Each ISP has the choice of exchanging traffic either using the shared IXP
facilities, or outside the IXP — through their transit providers or private peering. We analyze the efficiency (social cost optimality) of the
traffic exchange equilibrium at the IXP taking into consideration the congestion cost experienced by the ISPs at the IXP. To model both
non-profit and for profit IXPs, we consider several cases, i) where the IXP does not charge any price to ISPs for the traffic exchanged
(zero pricing), ii) when it charges a price that is proportional to the aggregate level of congestion at the IXP (proportional pricing), and
iii) when it charges a constant price per unit traffic (constant pricing). Further, we also analyze the profit earned by the IXP under these
pricing policies, under two different models of the congestion cost (delay) functions. Simulations conducted using data for actual IXPs
obtained from PeeringDB demonstrate that the theoretical bounds derived for social cost and profit optimality at equilibrium (measured
as the Price of Anarchy) are fairly tight, and correctly capture the performance trends against the variation of key model parameters.
Further, the results show that for proportional pricing, there is an operating price range that attains near-optimal social cost and
near-optimal IXP profit simultaneously. We also demonstrate - through both theoretical analysis and simulations - that as compared to
zero and constant pricing policies, proportional pricing attains better tradeoff between social cost and IXP profit, and also results in a
performance that is more robust to price variations.

Index Terms—Traffic exchange games, traffic pricing, traffic equilibrium.
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1 INTRODUCTION
1.1

INTERNET service providers typically connect (mostly
peer) with each other at Internet eXchange Points (IXPs).
In most basic terms, an IXP is a data center with network
switches through which ISPs form connections (peering
relationships) to exchange traffic [2], [3]. In return, IXPs
recover their operating costs by charging fees to each mem-
ber/client ISP; and the operating costs of an IXP is largely
determined by the cost of the infrastructure needed for
traffic exchange [4]. A number of IXPs, especially in Europe,
operate on a non-profit basis [5], whereas other IXPs, both in
Europe and particularly US, operate for profit, e.g., Equinix
[6]. In both cases, while IXPs provide the platform for ISPs
to connect (peer) with each other, they play a passive role
focused on infrastructure cost recovery or profit-making,
and the peering decisions are determined bilaterally by the
ISPs themselves. Nevertheless, ISPs at an IXP make these
peering decisions taking into account the potential quality
of service (bandwidth, delay etc.) improvements due to
peering, the prices charged by the IXP, and comparing those
with alternatives such as sending the traffic through their
transit providers.

In recent years, transit prices per unit bandwidth have
been steadily declining [7]. Despite falling transit costs,
peering between ISPs has been on the rise, and content
and access ISPs are increasingly getting into peering rela-
tionships [8], [9], a phenomenon known as the flattening of
the Internet [3], [10], [11], [12]. It has been shown [13] that
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almost 80% of the IP addresses can be reached via public
peering, and 20% of all the traffic traces go through IXPs.
Peering between ISPs, which is typically settlement-free, can
help bring contents closer to customers, resulting in lower
delays and losses, and thus better Quality-of-Experience
(QoE) for the end users (content consumers). Some of the
recent literature has therefore argued that paid peering is
necessary for overall stability and efficiency of inter-domain
traffic [14], though its interplay with traditional settlement-
free peering needs careful treatment [15].

The importance of IXP-driven innovation in shaping
and redefining the ISP traffic exchange marketplace (which
is already happening in Europe) has been highlighted in
several recent studies such as [16], [17].

With recent developments in software-defined network-
ing, more controls are enabled at IXPs in terms of managing
flows [18], [19], maintaining peering relationships [20], [21],
and practicing more scalable architectures [22], [23] in the
face of growing amount of traffic passing through their dat-
acenters. These innovations help in reducing peering costs
and invite IXPs to a more active role in Internet peering.

The peering decisions are ultimately left up to the ISPs,
which make these decisions based on not only the cost of
using the IXP but also other costs (such as transit costs) that
are not generally known to the IXP. Even though the IXPs
play a passive role in the ISP connectivity by providing peer-
ing facilities for a price, the pricing policy applied by the
IXP to facilitate this traffic exchange needs to be designed
carefully for making the peering relationships and traffic
flows between the ISPs stable and efficient. The price paid
for traffic exchange at an IXP can include costs that are not
shared with other ISPs, such as cost of transport to the IXP
and co-location cost [24], [25]. In this paper, we only focus on
pricing of the shared resource — the public switch at the IXP
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where ISPs exchange traffic with each other. The price levied
on an ISP for the use of this shared resource has to account
for the overall congestion (or in other words the traffic sent
by other ISPs) necessitating a game theoretic treatment. In
current practice, the price paid by an ISP for sharing an
IXP switch depends only on the port capacity it purchases
and not on the port capacity of the other ISPs [24], [26].
Therefore, the current pricing policy, at least in the short
term, do not directly factor in the overall congestion level
of the switch measured in terms of the total port capacity
purchased or the total traffic exchanged through the switch.
However, congestion-insensitive pricing can lead to poor
traffic exchange solutions at equilibrium. This motivates
us to analyze congestion-dependent IXP pricing policies,
which, when designed carefully, can lead to efficient traffic
exchange as we show in this paper.

Since the ISPs can be expected to make peering decisions
in self-interest, the traffic pricing policy can be modeled as a
non-cooperative game, where the quality of the equilibrium
(resulting from an IXP’s pricing policy) must be measured
in terms of the efficiency of the equilibrium traffic flow.
The consideration of profit-making IXPs introduces another
dimension to this game, and the IXP can now be considered
as a selfish player that would ideally like to set prices to
maximize its profit. Not suprisingly, it can be shown that
pricing policies that minimize social cost (i.e., maximize
traffic flow efficiency between the ISPs connected to the IXP)
can result in poor IXP profit, and vice versa. The question
that naturally arises is whether there exists a pricing policy
that can attain a good trade-off between social cost and IXP
profit, i.e., it will result in a solution that is guaranteed to
be within a small factor of the optimum in terms of both
objectives (social cost as well as IXP profit).

1.2 Contribution of this Work

This paper investigates how the pricing policy at an IXP
impacts the efficiency of the peering relationships that form
between the ISPs as a result of that policy. We recognize that
ISPs have a choice in terms of how they exchange traffic
between each other: either through public peering at the
IXP (using a shared switch); or outside of the IXP, through
their transit providers or private peering. We define the
traffic exchange problem between ISPs (at an IXP) as a non-
cooperative game between ISPs (selfish agents), where each
pair of ISPs have a certain pre-determined amount of traffic
to exchange, and the strategic decision involves determining
whether to send this traffic through the IXP or through the
external routing option. We not only consider the traffic flow
efficiency (captured by the social cost) at equilibrium, but
also the profit earned by the IXP at equilibrium, and how the
social cost and profit can be balanced carefully. We consider
a proportional pricing policy, where the price charged by the
IXP per unit traffic is proportional to the aggregate level of
congestion at the IXP (shared switch). The benefit of propor-
tional pricing — as discussed later in more detail — is that it
can be implemented with only aggregate load information
at the shared switch used for public peering. In other words,
choosing a good pricing does not require the IXP to know
the transit options or other details about the participating
ISPs. Further, as we establish in this work, proportional
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pricing can also attain equilibrium solutions that are close
to optimal both in terms of traffic flow efficiency (social
or system objective) and IXP profit (market-maker’s objec-
tive), for a range of choices of the proportionality constant.
We also analyze the performance benefits of proportional
pricing over zero pricing where the IXP does not charge
any price at all.! Furthermore, we also analyze a constant
pricing policy where the IXP chooses to charge a constant
price per unit traffic, and comment on the implementation
and performance advantages of proportional pricing over a
constant pricing policy.

More specifically, this work makes the following con-
tributions. First, we characterize the pricing policy that is
economically efficient, i.e., attains the socially optimal traffic
exchange solution. We then characterize the traffic flow
efficiency (i.e., social cost optimality) of the equilibrium
solutions — measured by the Price of Anarchy (PoA) of the
system — under proportional pricing, where IXPs charge traffic
a per-unit price that is proportional to the average level
of congestion experienced by traffic in the public switch
operated by the IXP. The quality of service experienced by
the ISPs also suffers due to this congestion, and is taken into
account as well. The PoA for zero pricing, where the traffic
through the IXP only experiences a congestion cost, but no
additional price is charged by the IXP, also follows from this
result as a special case. In both of these pricing schemes, an
IXP, in order to choose good prices, does not need to have
detailed information about the costs of the ISPs” external
routing options. This is in contrast to a constant pricing
policy — which we also analyze theoretically — where each
ISP pays a constant per-unit traffic price, correct calibration
of which requires knowing the ISPs” external routing costs.
We quantify the PoA under these pricing systems using
two broad classes of delay functions (polynomial delay and
queuing delay functions), and also discuss how the PoA
results generalize when the external routing costs between
ISPs are asymmetric. We then analyze the profit earned by
the IXP (as compared to the optimal profit) under the pricing
policies, for both polynomial and queuing delay functions.
Finally, we simulate real-world scenarios of public peering
in IXPs, and compare the actual performance values ob-
tained against their respective theoretical bounds for a wide
range of model parameters.

Our theoretical results show that the PoA (i.e., the
measure of social optimality) under proportional pricing
evaluates to a small constant for a wide range of model
parameters. Numerical simulations using data from 28 large
IXP locations in the US demonstrate that, under a wide
range of operating conditions, the equilibrium solutions
have an efficiency that is usually within a factor of 2 of
the optimum. Further, the results show that for proportional
pricing there is a price range that is desirable from both
social cost and IXP profit perspectives, i.e., the social cost is
close to the optimum, and at the same time the profit earned
by the IXP is also quite close to the maximum possible.
This is particularly significant since the proportional pricing
policy that attains near-optimal social cost and IXP profit

1. Even with zero pricing, ISPs still face congestion costs at the
shared switch and must determine its routing/peering choice taking
into account how that cost compares with its alternate routing option.
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only requires knowledge of the average congestion level at
the public switch (which in turn depends on the volume of
traffic exchanged through the IXP), and is therefore known
to the IXP. In contrast, we argue that when a constant
pricing policy is used, the choice of this constant per-unit
traffic price that attains good PoA requires knowledge of
the external routing costs of the ISPs which may not be
practical. Further, unlike proportional pricing, both social
cost and IXP profit are particularly sensitive to the choice
of the constant price, and in general it is difficult to find
a constant price that attains a good tradeoff between social
cost and IXP profit across a wide range of model parameters.

1.3 Comparison with Prior Work

This work is part of an enormous line of work on network
routing and formation by self-interested agents. Perhaps the
most well-known line of work in this area is that of the
foundations of selfish routing and congestion games, see
Chapters 17-19 in [27], as well as [28] and many subsequent
results. In this well-studied setting, agents choose routes on
which to send their traffic, and much of the existing work
studies Nash equilibrium (or its related notion of Wardrop
equilibrium) in this setting. When modeling the behavior of
ISPs and IXP pricing, however, such notions of equilibrium
are no longer appropriate. This is due to the fact that when
deciding to send traffic through an IXP, both participating
ISPs must agree to this traffic through a peering contract:
it is no longer a unilateral decision by a single agent.
Nash equilibrium trivially exists: a solution where no one
sends any traffic, for example, is a trvial (terrible) Nash
equilibrium. Because of this, standard techniques such as
congestion games or the potential function method [29] can
no longer be directly applied to our setting, and a different
notion of equilibrium is needed.

Because of the above observations, our game-theoretic
model and analysis are inspired by a prior line of work
on network formation games (introduced in [30]), where
the stability of networks was modeled and analyzed when
two nodes can only build links mutually but can sever links
individually. These types of network formation games and
their extensions have been studied extensively for different
settings (e.g., [31], [32], [33], [34], [35], [36], [37], [38], [39]).
Unlike these prior studies, in our model the cost of forming
these (peering) connections is not fixed, but depends on both
the congestion (measured by the total number of connec-
tions already formed), and the prices charged by the planner
(IXP). In this sense, our work is a generalization of the
previous work on network formation games, as it includes a
central planner (the IXP), who can greatly affect the quality
of outcomes by choosing different pricing schemes. There
are many prior works on pricing network services and
traffic ( [40], [41], [42], [43], [44], [45], to list a few), but these
models do not consider an IXP setting and hence are not
directly related to ours.

Our work is most related to the model in [46], but differs
from this existing work in several important aspects. First,
while [46] considers the question of how the operational cost
of the IXP should be shared among the ISPs (which is more
representative of non-profit IXP operations), in our model
the IXP directly charges the ISPs for their traffic. Secondly,
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we also analyze the profit earned by IXPs at equilibrium,
and the trade-offs between social cost and IXP profit. Finally,
our work also models congestion cost at the IXP, considers
asymmetric external routing costs and paid peering, and
evaluates social optimality and IXP profit for the pricing
policies through extensive simulations.

1.4 Paper Organization

This paper is structured as follows. Section 2 describes
the system model and derives some equilibrium properties
that is useful in further analysis. Section 3 analyzes the
efficiency of the equilibrium solution under proportional
and constant pricing under two different congestion cost
models. Section 4 analyzes IXP profit under the same pricing
and congestion cost models. We present simulation results
in Section 5, and conclude in Section 6.

2 SYSTEM MODEL AND PROPERTIES
2.1 Game-Theoretic Model

We consider an IXP, and a set N of ISPs (agents in our
game-theoretic model) that are involved in traffic exchange
through a public switch offered by the IXP. An ISP pair
(i,j) has a total traffic demand of B;; between themselves;
part of this traffic, y;;, is routed through the public switch,
while the rest is sent externally. The traffic sent externally
(i.e., outside of the public switch) is typically done in one of
two ways: (a) through private peering between ISPs ¢ and
j;# (b) through the use of the ISPs’ transit service providers.
Generally, when an ISP joins an IXP, it gains access to other
ISPs, but this does not necessarily mean it will exchange
traffic (or have a peering relationship) with every other ISP
present at that IXP. The traffic that is exchanged through the
public switch incurs a congestion cost of d(y) per unit traffic,
which depends on the total traffic y sent through the switch.
This congestion cost will typically be reflected in terms of
average delay experienced by the traffic (and therefore we
will sometimes use the terms ‘congestion cost” and ‘delay’
interchangeably); however, d(y) could also represent other
Quality-of-Service (QoS) parameters (or a combination of
them) that are affected by the overall load at the public
switch. Additionally, each ISP has to pay a price of p(y)
to the IXP per unit traffic, for the use of the public switch.
We assume that d(y) and p(y) are given functions (i.e., not
part of the strategy); however, we will explore the efficiency
of the equilibrium for different forms of the functions p(y)
and d(y). For the traffic sent externally, ISP i encounters a
per-unit cost of A;; for traffic exchange with ISP j. This cost
may be in terms of additional traffic delays due to longer
routes, transit price paid to the ISP’s provider, or the cost
ISP i incurs for private peering with ISP j. The strategy of
each agent (ISP) involves deciding how much of its traffic
it should send through the public switch, as opposed to
sending externally. In making this decision, we assume that
each ISP acts selfishly, focusing on minimizing its own cost.
The decisions of ISPs i and j are coupled, and they must
agree upon the amount of traffic y;; of the B;; units that is
sent through the IXP. Table 1 summarizes some of the most
commonly used terms and notations in our model.

2. The private peering can happen at an IXP (if the IXP offers private
peering services), or separately.
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TABLE 1
Summary of Commonly Used Notation.

Term | Description

Yij Traffic of ISP pair (4, j) sent publicly through the IXP.

Yi 2_; Yij, total traffic of ISP i going through the IXP.

Y I ; Yij, total traffic flowing through the IXP.

o Total traffic allocation vector (vector of values y; ;).
Aij Per-unit cost incurred by (¢, 7) for routing traffic externally.
d(y) | Congestion cost per unit traffic incurred at the IX.P

p(y) | Price per unit traffic set by the IXP.

Remarks on the model

Note that by ‘traffic sent through the IXP’, we refer to the
traffic sent through the public switch at the IXP. Thus any
traffic that is sent through private peering (even if the pri-
vate peering happens at the same IXP under consideration)
is considered a part of the externally routed traffic, i.e.,
included in B;; — y;; for ISP pair (i, j). Finally, we do not
distinguish between the traffic sent from ¢ to j and traffic
sent from j to 7. In general, an ISP (or the customers of the
ISP) benefits from the traffic in both directions, and the two
ISPs involved in an exchange must jointly decide whether
to exchange this traffic via the IXP or outside of it’.

In light of the above discussion, we express the price
paid by both ISPs i and j, for their traffic exchange at the
IXP, as p(y)yi;. For easy exposition, in the following, both
terms y;; and y;; are utilized, but with the understanding
that they represent the same quantity. If the remaining
traffic, B;; — v;;, is routed through private peering, it is
reasonable to assume that the cost of purchasing or leas-
ing any links, ports, etc., to enable this exchange will be
proportional to B;; — y;; for both ISPs ¢ and j. Similarly,
if this remaining traffic is routed through the ISPs’ transit
providers, the cost each ISP needs to pay its transit provider,
Aij and Aj;, can be assumed to be proportional to B;; — ;.
We first assume that \;; = Aj;; however, in Section 3.2, we
consider a more general model which allows for asymmetric
per-unit external routing costs; thus \;; can be different from
Aji. This allows for possible differences between the two
ISPs’ transit costs, or their individual costs to privately peer
with each other. More generally, asymmetries in the benefits
derived from the connection by the two peering ISPs can be
resolved with paid peering (as discussed in Section 3.2).*

Before detailing our model, we first discuss its relevance
to current peering practices. Typically in practice, an ISP
pair (¢, j) will either send all of their traffic through peering
at an IXP, or use the external routing option for all of
their mutual traffic. However, our model is more general
in that it allows the ISP pair to split their traffic between
the two options. This relaxation eases our mathematical
discourse and enables us to explore regimes beyond the
current practice in traffic exchange between ISPs. Interest-
ingly, from our model it turns out that in the equilibrium
solution almost all ISP pairs use only one of the two options

3. Although not necessary for the analysis, for the sake of concrete-
ness, y;; can be considered to be either the max or the sum (possibly
weighted) of the traffic in the two directions.

4. While we usually assume a fixed per-unit cost \;;, all our findings
also extend to \;; being a distribution, with different traffic units be-
tween ¢ and j having different costs. We omit this model generalization
for ease of exposition.
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(the IXP or external routing), verifying the current practice.
In our model, only the IXP pairs whose per-unit external
routing cost exactly matches the per-unit effective cost at
the switch, end up having to split their traffic between the
two options. For large IXPs with lots of ISPs — such that
the traffic between any pair of ISPs is very small compared
to the overall traffic through the IXP (i.e. y;; < y) — our
modeling assumption holds quite closely. Secondly, while
we refer to y;; as the part of the traffic for ISP pair (4, j)
that is sent through the IXP, it can also be interpreted as the
equivalent amount of port capacity that needs to be reserved
by both ISPs to carry this traffic through public peering
at the IXP. In practice, an ISP ¢ decides (through pairwise
agreements) which other ISPs it will peer within an IXP.
Accordingly, each ISP individually reserves its port capacity
at the IXP so that the port is large enough to carry the
traffic to and from all other ISPs it is peering with. There
is therefore a direct relationship between the total traffic
that an ISP sends through an IXP and the port capacity it
reserves (the former being a fraction, say 70% or 80%, of the
latter), which allows us to interpret y; as either of these two
terms. The port capacity constitutes the main factor based on
which the ISP payments are determined [4], [24]; therefore,
either of these interpretations work fine as far as the pricing
policy is concerned. Furthermore, even if y;; is interpreted
as the traffic between ISP pair (i, j), it should be measured
over ‘long’ time scales. In current practice, the decision on
whether or not to publicly peer with another ISP at an IXP is
made infrequently — in the timescale of months to years. This
implies that when mapping our model to current practice,
the traffic rates y;; should be aggregated (averaged) over
such time-scales. Furthermore, the congestion (delay) cost
d(y) should also be computed (averaged) over such long
time-scales, which also represent the timescales at which
the pricing strategies (determined by the IXP) and the
peering strategies (determined by each pair of ISPs) would
be made. Finally, note that peering agreements can depend
on additional restrictions, such as traffic volume, traffic
ratio, prior customer-provider relationship [47] etc. Such
restrictions can be incorporated in our model by removing
the specific ¢, j pairs from consideration that do not satisfy
the requirement(s), i.e., setting the corresponding B;; = 0.

Some Definitions

Given the above model setup, we next define the Social Cost
(SC) and Profit of the IXP (PX) in order to gain insight
into pricing efficiency of the IXP. Overall, SC' can be split
into the costs incurred by the ISPs at the IXP, and the total
payments received by the IXP. The cost for an ISP %, denoted
by C;(¥,p(y),d(y)), is calculated as

PW) Y i +dW) > yi; + Y (Bij — vij)Aij, )
J J J
where the first and second terms are the costs of sending
peering traffic through the public switch — the first is the
amount paid to the IXP, and the second is the (implicit) loss
of the ISP’s revenue caused by the congestion at the switch.
The third term is the cost of sending the remaining traffic
externally. In Equation 1 we have assumed that the price
paid and the congestion cost experienced by each ISP are
linear proportional to the corresponding ISP’s traffic rate.
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Denoting c(y) = p(y) +d(y) and L;(y) = >_; Aij (Bij — ¥ij),
the cost of ISP 7 is

Ci(7,c(y)) = <)y + Li(Y). 2)

Note that ¢(y) can be viewed as the aggregate cost seen by
the ISPs per unit traffic, and therefore equals the sum of the
per-unit price charged by the IXP (p(y)) and the congestion
(delay) cost (d(y)). The total cost for all the ISPs is just the
summation of C; for all i. If we denote Y, L;(¥) = 2L(%),
then the total cost of ISPs becomes

C(y,cly) = 2(c(y)y+ L(©)), ®3)

where the multiplier of 2 comes from the fact that y; and y;
both include y;;, i.e., y;; is counted twice.

The IXP receives ISP payments p(y) per unit traffic, and
assuming there is no other cost for the IXP, the profit of the
IXP equals the revenue earned from the ISP payments, and
is expressed as’

PX(g,p() = p(y) 33 vii = 20y @)

%

Note that raising the price p(y) does not necessarily
increase IXP profit, as higher prices may also result in lower
y, as some of the traffic may take the cheaper external
routing option.

To define the Social Cost (SC) for our model, we first
need to define the cost incurred by the IXP. Since the IXP
receives payments from ISPs and has no other cost or
revenue, we define the IXP cost as the negative of the IXP
profit defined in Equation 4. The social cost of a system is
then defined as the sum of the costs incurred by all entities
in the system. Thus, we define the social cost (S5C) for the
given network model as the total cost of the ISPs and IXP
cumulatively, which is,

SC(y,d(y)) = C(y,cly)) — PX(¥,p(y)),
= 2d(y)y +2L(y) = 2E(y) + 2L(y), )

where E(y) = d(y)y. The first term of this SC is the cost
of the congestion at the shared switch in the IXP, and the
second is the cost of sending the traffic via external means.
Intuitively, both of these components are detrimental to the
efficiency of the IXP, and should be minimized. For the rest
of the paper, unless otherwise stated, we will assume E(y)
to be a continuous, piece-wise differentiable function with
E(0) = 0 and E’'(y) to be a non-decreasing function with
E'(0) = 0. Note that SC does not consist of p(y) which is
the price of per-unit traffic charged by the IXP to the ISPs.
However, any change of p(y) will in general affect the traffic
flows through the IXP, thereby changing SC(¥, d(y)).

In general, the price p(y) that minimizes SC' may not
maximize PX (and can in fact result in very low value
of PX compared to the optimum profit), and vice versa.
It is important to note that Social Welfare (SW), which is

5. Our PoA results on social cost hold even if there is some internal
operational cost (y) which the IXP has, and passes it on to its ISPs by
charging each ISP 7 a value r(y)y;/y. To obtain the same results, we
redefine d(y) to be the total of the congestion (delay) cost to the ISPs
and the price they are paying to the IXP, and p(y) to be the additional
profit that the IXP demands from the ISPs in addition to recovering its
operational cost. In other words, we redefine d(y) to be d(y) + r(v)/y,
and then all the same results hold.
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the weighted sum of utilities across all the entities, has an
inverse relationship with social cost. That is to say, if the
social cost of a system increases, the social welfare of the
system decreases such that the sum of these two (SC + SW)
remains constant.

2.2 Equilibrium Properties

In this paper we assume price-taking ISPs, i.e., they see the
current cost per unit traffic (c(y)), and will only send traffic
which is worth paying that cost. From our study of large
IXPs, we observed that hundreds of ISPs peer on those
(large) IXPs and none of the ISPs are particularly dominant
in terms of port capacity [48]. Therefore it is reasonable to
assume that each ISP individually does not have enough
market power to impact the pricing policy at the IXP. Thus,
ISP 7 will send all the traffic through the IXP as long as
Aij > c(y), and will route the rest of its traffic externally.
Of course, sending more traffic changes the “price” that the
ISPs see per unit of traffic, ¢(y), since it changes y. This
leads to the notion of of equilibrium traffic flow, defined as
follows:

Definition 2.1. A traffic flow ¢, with y. = |y| is said to be an
equilibrium flow if and only if all the traffic with \;; > c(ye) is
sent through the IXP and the traffic with A\;; < c(ye) is not.

Based on this definition, we simplify our terminology and
use the term ‘equilibrium traffic flow’ to refer to the total
flow through the IXP at equilibrium (a scalar), and denote it
by ve.

Next, we state two important properties of equilibrium
traffic flows that will be useful in our PoA analysis. We first
define the notion of the inverse demand curve, denoted as
A(y). Nlustrated by Figure 1, this curve is constructed as
follows. First, the \;; values are arranged in a decreasing
order (ties broken arbitrarily); let A\* be the k' highest
value, and B* be the corresponding traffic demand. Then,
the A(y) curve is a non-increasing step-function, with the
kth step having height of A\* and a width of B*. Let A(y™)
denote the limit of A(x) as « approaches y from below, and
similarly A(y ") if it approaches y from above. Then A(y) can
be interpreted as the cost of sending traffic through the IXP
(as seen by an ISP) when the total IXP traffic is y. Therefore,
as A(y) increases, y decreases. Since a traffic is sent through
the IXP only if its external routing cost is greater than the
cost of sending through the IXP, i corresponds to the sum
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of all ISP traffic whose external routing cost is greater than
A(y). We have the following property:

Theorem 2.1. y. is an equilibrium traffic flow if and only if
Ayz ) > c(ye) > Myt). Moreover, such a flow always exists.

Proof Outline of Theorem 2.1: This follows directly from
definition of equilibrium and the A(y) curve: equilibrium
traffic sends demand with highest A;; first, until it equals
the cost ¢(y). Due to the properties of A(y), and ¢(y) > 0 for
y > 0, at least one such intersection point exists. O

Notice also that multiple equilibria may exist. First, there
could be several flow amounts y. with A(y. ) > c(ye) >
A(yF) if the function c(y) is not strictly increasing. Second,
even for a fixed total flow g, there could be several different
traffic pairs with equal A;; = c(y.) values, and sending any
subset of them (as long as the total flow amount equals y.)
will yield an equilibrium flow.

Finally, we derive an important property of the optimal
traffic vector (OPT), one that minimizes the total social
cost, with which the equilibrium solution will be compared.
Again, with slight abuse of terminology, by ‘optimal traffic
flow” we refer to the total traffic flow at the social optimum,
denoted by y,; and in such a traffic vector the traffic with
largest A;; will be sent in order to minimize social cost.

Theorem 2.2. At social optimality, all the traffic with X\;; >
E'(yp) flows through the IXP and all traffic with A;j < E'(yp)
does not. Also, Ay, ) > E'(y,) > My;l)).

Proof Outline of Theorem 2.2: To see why this is true,
consider a traffic vector y; with y; = |yz| so that the traffic
with largest );; is sent. Then, from the definition of social
cost, we have that:

yr

Yt
SO dw) =2 [ Fwdy+2 [ Ay
Yt
The above applies for both 3; = y. and y; = y,,. To minimize
social cost, it is clear that 7, should be the intersection of the

Aand E’ curves (see Figure 1). O

3 SoclAL CosT ANALYSIS

In this section, we analyze the Price of Anarchy (PoA) for
the traffic exchange game defined in Section 2, calculated as
the ratio of social cost (SC) at the worst equilibrium to the SC
at the optimal solution (OPT) that minimizes social cost. We
first show that under an “optimal” pricing scheme, the PoA
equals unity, i.e., all equilibria of the traffic exchange game
attain social optimality (Theorem 3.1). We then analyze the
PoA attained by two other natural pricing policies, under
two broad classes of delay functions.

Theorem 3.1. The pricing policy p(y) = d'(y)y attains a PoA
of 1 (i.e., minimizes Social Cost).

Proof: The proof of Theorem 3.1 is very straightforward.
For p(y) = d'(y)y, we have c(y) = E’(y); therefore the
equilibrium ¥, and OPT y, are the same, implying PoA=1.

O

However, using the social-cost optimal pricing policy
(as given by Theorem 3.1) can result in very poor profit.
To see this, consider a simple (linear) external routing cost
curve A(y) = 1 —y, where yr = 1. Now let d(y) be

6

small enough (which also makes E’(y) very small) such
that y,, is 0.99 (refer to Figure 1), and hence A(y,) = 0.01.
Then the social-cost optimal policy (y. = ¥p) results in
an IXP profit of at most 0.0099, since the price the IXP
charges is p(y,) < ¢(yp) = 0.01 and 0.99 units of traffic
pay this price. However, the maximum achievable profit
is about 0.25, which is attained when the per-unit price is
chosen to be about 0.5 resulting in equilibrium traffic of
Y. = 0.5. So, the ratio between the maximum achievable
profit to the achieved profit for this pricing scheme (which
will be defined as PoA of profit in later sections) is 25.25.
Now, say we set the price instead so that it results in a
slightly lower equilibrium traffic y. = 0.95 than in the
socially optimum solution; this corresponds to a price that
is slightly lower than 0.05. Then we get the PoA of profit
that is approximately 5.26, which is obviously a lot better
than before, without sacrificing much social welfare. This
motivates us to look for alternative pricing policies that may
be slightly sub-optimal in terms of social cost, but result
in good profit. Our consideration of proportional pricing,
which is analyzed next, is guided by this.

3.1

Definition 3.1. Proportional pricing with a proportionality
factor B > 1 has a per-unit price p(y) defined as p(y) =
(8 — 1)d(y). In other words, the effective cost seen by the ISPs
sharing the IXP per unit traffic is c(y) = p(y) + d(y) = Bd(y).

Definition 3.2. Zero pricing has a pricing function p(y) = 0,
thus making the effective per-unit cost for ISPs consist only of
congestion cost: ¢(y) = d(y).

Clearly, zero pricing can be viewed as a special case of
proportional pricing with 8 = 1.

In the PoA analysis for social cost that follows next,
we consider two broad classes of congestion cost (delay)
functions: 1) polynomial delay functions, 2) queuing delay
functions. Proofs of the main results in this section are
provided in Appendix B, unless otherwise mentioned.

PoA Analysis for Social Cost - Proportional Pricing

3.1.1 PoA for Social Cost under Polynomial Delay Func-
tions

The PoA for social cost in our model crucially depends on
the properties and convexity of the congestion cost function
d(y). We make no assumptions about the );; distribution,
but only about the congestion cost functions. We begin by
considering congestion cost (delay) functions which exhibit
polynomial growth rates.

Theorem 3.2. For proportional pricing (ie., c(y) =
congestion cost (delay) function d(y) = ay™ with a > 0,
and

i) B < n+1, then PoA is bounded by [ — n(
n+1.,

ﬂ 7
ii) § > n+1, then PoA is bounded by

f

Bd(y)),
n=>1

)(n+1)/n] <

n

B B
n+1[ (B— 1)?n+1)] < nt1-

Corollary 3.2.1. For zero pricing (i.e., c(y) = d(y)), if conges-
tion cost (delay) function d(y) = ay™ for some constant a > 0,
then the PoA is bounded by (1 — n(1 +n)~(+1)/m)=1

Corollary 3.2.2. If the delay cost, d(y), satisfies %(by") <
d'(y) < diy(ay") for some positive constants a, b; then the PoA
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bounds of Theorem 3.2 and Corollary 3.2.1 hold with an additional
multiplicative factor of v = .

Corollary 3.2.1 follows directly from part i) of Theo-
rem 3.2, and taking 8 = 1. Corollary 3.2.2 shows how our
results generalize when the congestion cost (delay) function
can be sandwiched between two polynomial functions with
the same exponent n.

We can derive additional bounds on the PoA for social
cost under certain stronger assumptions on the congestion
cost (delay) function, as stated below.

Lemma 3.1. For proportional pricing (i.e., c(y) = Bd(y)),
congestion cost (delay) is any convex functzon with d(y) < ay ,
then with 3 > n + 1, the PoA is bounded by 5 .

When 8 < n+ 1, a better bound than Corollary 3.2.2 can
be found (proof in Appendix D, included in the Supplemen-
tary Material).

Theorem 3.3. For proportional pricing (ie., c(y) = Bd(y)),
If the congestion cost (delay) function d(y) satisfies - 4y (y") <

d'(y) < d%(ay")for any a > b > 0, then with < n + 1, the
PoA is bounded by (% + B(1 = pm)) "L, where p, =
26 1/n _a

T POy o s ER ) Mandy =
Characteristics of the PoA bounds: The PoA bounds for
different values of n with d(y) = ay™ are shown for zero and
proportional pricing in Figure 2. We can see that, although
the equations of the bounds were quite complicated, both
the bounds are quite well-behaved. With zero pricing (which
is a special case of proportional pricing with 3 = 1), if the
delay cost is a linear function (n = 1), then the PoA is 1.33,
which means irrespective of the shape of the A(y) curve
(i.e., the values of the external routing costs of ISPs and the
IXP), the worst equilibrium will only cost 33% more than
the optimum cost. The results also show that the social cost
benefits of proportional pricing (for a well chosen 5 value)
over zero pricing can be quite significant.

For proportional pricing, the case is a bit more compli-
cated with two variables n and S, still the bounds exhibit
a simple linear-like behavior. If the value of n is increased
from 1, then with 8 > n + 1, the PoA starts to decrease
and goes to 1 when 8 = n + 1; after that with § < n+1
the PoA starts to increase. The value of PoA becoming 1 at
B = n + 1 coincides with the cost function ¢(y) becoming
equal to E’(y). Overall, the PoA for social cost remains very
small for reasonable values of n and (3, showing that it is
possible for IXPs to make a nice profit while still attaining
a traffic exchange solution between ISPs that is close to
optimal in terms of social cost. We explore this further in
Section 4 when we analyze IXP profit.

3.1.2 PoA for Social Cost under Queuing Delay Functions

Next we consider the queuing delay function® (modeling
the public switch at the IXP as a single server) expressed as:

1
d(y) = ——
(v) prt (6)

6. Note that the queuing delay function we consider represents
that of the basic M/M/1 queue. The PoA results easily generalize to
functions up to a multiplicative constant, i.e., delay functions of the
form a/(p — y); extension of the results to other more general forms of
delay functions remains open for future investigation.
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Fig. 3. PoA bounds for SC (queuing delay function).

where (1 is the processing rate of traffic at the public switch.
Note that d(y) can become unbounded as the aggregate
traffic load on the switch approaches capacity p. These type
of congestion cost (delay) functions are not analyzable in the
same framework as polynomial delay functions considered
earlier; they need to be treated separately, as we do here.
Normally, switches are operated under 60-70% of the full
capacity, as otherwise congestion delays would become too
high to exchange traffic smoothly. This fact will be utilized
in deriving the PoA for social cost.

Definition 3.3. Utilization factor, Uy, satisfying 0 < Uy < 1,
is the ratio of traffic load on a network to the total capacity of the
network. If the total traffic at equilibrium is y., then we define it
tobe Uy = ye /.

The following results provide the PoA bounds for social
cost under proportional pricing and zero pricing with queu-
ing delay functions. The result for zero pricing again follows
as a special case (8 = 1) of the proportional pricing result.

Theorem 3.4. For proportional pricing (i.e., c(y) = Bd(y)) and
congestion cost (delay) function d(y) = ]
by
l—Uf
; Us 1.
i) —U) 2—1T; 1+/f)],whenUf21—§,
ii) %, when Uy < 1 — %
Corollary 3.4.1. For zero pricing (i. e c(y) = d(y)) and
congestion cost (delay) function d(y) = /L 7y the PoA is bounded

Us\/1-Us

21-Up)(1—/1=Uy)"

Characteristics of the PoA bounds: Figure 3 shows the PoA

by



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX XXXX

upper bound with the increase of utilization factor, Uy of
the switch. We see that the upper bound on PoA becomes
1 when Uy =1 — 1/5. Also, PoA upper bound increases at
an exponential rate on both sides of Uy = 1 — 1/4, but the
rate of increment is higher on the side where Uy > 1 —1/p.
Typically, routers and switches maintain a utilization factor
in the range of 40% to 70%, and for that operational range
we see that PoA is below 1.2 for 5 = 2 and 3. This means
that the worst equilibrium has social cost only 20% higher
than the optimum under normal operating loads at the IXP.

3.2 PoA under Asymmetric External Routing Costs

All the results given until now had the assumption of
Aij = Aj;. However, as mentioned earlier, it is possible
that the two ISPs ¢ and j may encounter different per-
unit costs for routing traffic externally between themselves,
due to differences in transit pricing, or cabling/leasing
cost associated with private peering. In this subsection, we
will discuss the effect of \;; # Aj; on the PoA bounds
calculated. The consideration of asymmetry between the
external routing costs makes the proofs substantially longer
and more difficult, and are provided in Appendix E of the
Supplementary Material.

The consideration of asymmetric external routing costs
requires us to revisit the definition of equilibrium. From
the discussion of Section 2.1, we know that when an ISP
i has some traffic to exchange with ISP j, it compares the
value \;; of that traffic with the cost ¢(y) of exchanging that
traffic via the IXP. As for the current case \;; # A;;, suppose
that A\;; > c(y) > Aj;. Hence, ISP ¢ will want to exchange
traffic (since, then, its cost will decrease by A;; and increase
by c(y)), whereas ISP j will not want to (since, then, its
cost will decrease by Aj; and increase by ¢(y)). Since both
participants are needed to form a peering connection at an
IXP, the traffic exchange will not happen in this case. Thus,
in an equilibrium state, exchange of traffic between two ISPs
is only possible when min(A;;, Aji) > ¢(y).

Definition 3.4. A traffic flow ¥, with y, = |§,| is said to
be an equilibrium flow for the case of A;j # \ji, when all the
traffic with min(X;;, Aj;) > c(yn) is sent and the traffic with
min(A;j, Aji, ) < c(yn) is not sent.

We will now jump directly to the PoA results for the
three cases: socially optimal pricing (Theorem 3.5), and
proportional pricing (Theorem 3.6 and Theorem 3.7, which
discusses the cases of polynomial and queuing delay func-
tions, respectively). Recall that c(y) = p(y) + d(y), and note
that PoA results for zero pricing follows from Theorems 3.6
and 3.7 by setting 8 = 1.

Theorem 3.5. If c(y) = E'(y), i.e., p(y) = d'(y)y, when \;; #

Aji with @ = max{ i:j }, PoA is bounded by 5.

Theorem 3.6. If c(y) = Bd(y) (i.e., proportional pricing) and
d(y) = ay™, when \;; # Aj; with o = max{ i,i }, PoA is
bounded by

D (H?O‘)(n’f_l) x (PoA bounds for \j; = Aj;); when 8 > n+1;
1) (3£2) x (PoA bounds for \ij = Aj;); when 8 < n + 1.

Theorem 3.7. If c(y) = Bd(y) (i.e., proportional fricing) and
d(y) = when A # Aji with o = max{5"

)\; }, PoA is

_1
n—y’

8
bounded by
D 2 x B(1 — Uy) x (the PoA bound when \;j; = Xj;) ; when
Ur<(1-3)

1) +5% X (the PoA bound when \ij = Aj;); when Uy > (1—5).

Roughly speaking, Theorems 3.5-3.7 state that when
the notion of equilibrium is defined as in Definition 3.4,
the PoA bounds for the asymmetric external routing cost
scenario differs from the symmetric case by about 2,
where o represents the degree of asymmetry between
the costs. Note that in the above theorems, the degree of
asymmetry « is calculated only over ISP pairs ¢,j at the
IXP that are interested in sending traffic to one another, i.e.,

Bi]‘ > 0.

Paid Peering. Note that the PoA bounds in Theorems 3.5-
3.7 are large when the degree of asymmetry in the external
routing costs is high. However, our simulation results in
Section 5 show that, in practice, the efficiency at equilib-
rium compared with the optimum is typically much bet-
ter than these worst case bounds. Further, when one ISP
encounters a much higher cost than the other in enabling
traffic exchange between the two, paid peering would make
sense. Indeed, paid peering has been suggested by some
as a solution to growing asymmetry in costs experienced
(or benefits realized) between two peering ISPs [15]. The
following result states that in the case of asymmetric costs,
if every pair of ISPs share the external routing costs via
Nash Bargaining [49], it results in the same PoA as in the
symmetric case. This is because if i pays )\;; and j pays
Aji (Where A\j; > );j, say) in external routing costs, it is
not difficult to see that the Nash Bargaining solution would
result in a payment (“settlement”) of (Aj; — A;;)/2 from ¢
to j. Thus, when using a Nash Bargaining protocol, one ISP
would pay the other exactly enough so that the effective
external costs for not using the IXP would become equal,
thus resulting in the same bounds as if \;; were always
equal to Aj;.

Theorem 3.8. If ISPs are allowed to pay each other (paid
peering), and use Nash Bargaining to determine payments, then
the PoA bounds are the same as in the symmetric case (i.e., as in
Section 3.1).

The above discussion suggests a specific paid peering
policy (based on Nash Bargaining) that results in efficient
traffic equilibria. However, broader arguments on paid peer-
ing to recover traffic sensitive costs such as those described
in [14] are outside the scope of this work.

3.3 PoA Analysis for Social Cost - Constant Pricing

We conclude this section on social cost analysis by analyzing
the PoA under constant per-unit pricing, which will be
contrasted with proportional pricing that we have analyzed
so far. Proofs are provided in Appendix F of the Supplemen-
tary Material.

Definition 3.5. Constant pricing is the pricing policy where the
per unit price is a constant value (). Thus, we have p(y) = v
and c(y) = v+ d(y).

In most of our analysis with constant pricing, we will
assume that v = 7 x A\!, where 0 < r < 1, and A! is the
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largest external routing cost among the ISP pairs. For con-
stant pricing, the PoA of social cost (PoA(SC)), depends
on the traffic flowing through the IXP. Defining y, to be
the traffic for which ¢(y,) = E’(y,), and recalling that y,
represents the socially optimal traffic flow (see Theorem 2.2),
we obtain the following bounds:

Theorem 3.9. For constant Pricing (ie., c(y) = v+ d(y)), if
congestion cost (delay) function d(y) = ay™ witha > 0,n > 1,
and

i) Ye < yp < yg, then PoA(SC) is bounded by [p" ™t + (1 —
P) (e + p")], where p = ye [y, < 1;

i) Yy > yp > Yq, then PoA(SC) is bounded by [p" ' + (1 —
p) (e +pM)] Y where p = yp [y < 1.

From Theorem 3.9, it can be observed that the PoA(SC)
depends on the traffic values (i.e., ¥, yp) and thus depends
on the A(y) curve. So, a proper bound on PoA(SC) for con-
stant pricing with polynomial delays cannot be determined
without having further knowledge about external routing
costs (A values) of the participating ISPs. The information
on these \ values are private to the ISPs, and therefore not
generally known to the IXP. Even if the IXP is interested in
choosing the price v to (approximately) minimize the social
cost, this poses a practical difficulty in implementing this
constant price that achieves a small PoA(SC).

Theorem 3.10. For constant Pricing (i.e., c(y) = v + d(y)), if
congestion cost (delay) function d(y) = %y, and

) oye < yp < yg the PoA is  bounded by

(1=p)+vu(p=Us)(1=p)(1-Uy) = e
pUpytnler UG=D U0 gopere p = \/%

i) Y >  Yp > Yq the PoA is bounded by
YUs(1=p) where = 1 —
P =) =T 1=U 7] P =
1-Uy
I+yp(1-Uy)"

Theorem 3.10 represents a better bound than Theorem
3.9 in terms of dependency. Unlike Theorem 3.9, Theorem
3.10 depends on utilization factor U; and the constant
per-unit price . Since the range of v (< A!) and Us
may be known or estimated, then we can derive a range
of PoA(SC) values from Theorem 3.10. Even then, with
constant pricing, a small PoA(SC) over a wide range of
A(y) curves (generally unknown to the IXP) seems difficult
to attain, as we will see in Section 5.

4 IXP PROFIT ANALYSIS

Towards analyzing IXP profit at equilibrium, we define the
Price of Anarchy for profit in the same way as we defined
the PoA of social cost. Proofs of the results for the propor-
tional pricing case (Section 4.1) are provided in Appendix
C, while those for the constant pricing case (Section 4.2) are
in Appendix G of the Supplementary Material.

Definition 4.1. The Price of Anarchy for profit (PoA(PX)) is
the ratio of maximum achievable profit to the profit achieved at
equilibrium for some pricing scheme.

Similar to PoA(SC'), note that PoA(PX) can only have
values greater than or equal to 1.

4.1

To obtain bounds on PoA for profit, we define a parameter
K such that A\! < KA(y.) = K .. This implies that all the
traffic having external routing cost values greater than ’}(—1
are exchanged through the IXP. For example, with K=4, all
traffic having an external routing cost more than 25% of !
(the maximum external routing cost) are exchanged through

the IXP.

PoA Analysis for Profit - Proportional Pricing

Theorem 4.1. For proportional pricing (ie., c(y) = Bd(y)), if
congestion cost (delay) function d(y) = ay™ withn > 1, and

i) B < n+ 1, then PoA is bounded by X22=0""" where p =
min((£5)H" 1),
ii) 8 > n + 1, then PoA is bounded by A

K—D+378 (550)'"
B—1

Characteristics of the PoA bounds: Figure 4 shows
the PoA bounds for IXP profit under polynomial delay
functions, as given by Theorem 4.1. Since IXP profit is
directly related to the value of S multiplied by d(y), we
plot the PoA results with respect to different values of 3.
The first noticeable property of PoA(PX) is that it depends
on (increases with) the value of K (where A\! < K)\,),
as expected from Theorem 4.1. We also observe that the
PoA(PX) values tend to decrease with increase in n. Lastly,
with increase of 8 we see a decreasing trend in PoA(PX)
for smaller values of 3, which is expected since profit at
equilibrium is proportional to 3. However, as /5 is increased
further beyond a point, the equilibrium traffic (y.) decreases
sharply to compensate for this effect, resulting in an overall
reduction in 5 X d(y), and thereby a decrease in PX (in-
crease in PoA(PX)). From the plots, we see that a range of
£ = 3 to 5 attains near-optimal PoA(PX) values.

Theorem 4.2. For proportional pricing (ie., c¢(y) = Bd(y)), if
congestion cost (delay) function d(y) = -1, and

n=y’
U < 1 - %, then PoA is bounded by
BUf(K—1)+(\/1-Us—v/B)? |
Us(B—1) / )
i) Usp>1-— %, then PoA is bounded by (Kg;T ”_lz)Uf)

(In both cases it was assumed that \! < K)\..)

Characteristics of the PoA bounds: Figure 5 shows the
PoA bounds for IXP profit under queuing delay functions,
as given by Theorem 4.2. Just like Figure 4, all the PoA(PX)
values are plotted against the values of 3. The first no-
ticeable property for the PoA bound is the same as for
polynomial delay, that is, PoA depends heavily on the value
of K (where A\! < K).). Then we see an almost inverse
relationship trend of PoA(PX) with utilization factor (Uy);
the more the value of the utilization factor is, the lower the
PoA(PX). As a final observation we notice that the effect of
B on the PoA(PX) is quite similar to the case of polynomial
delay, however with the queuing delay functions, the range
of beta which gives near-optimal PoA(PX) is much wider
(from 8 = 3 to 10 and even beyond).

4.2 PoA Analysis for Profit - Constant Pricing

Theorem 4.3. For constant pricing (i.e., c(y) = v + d(y)), if
congestion cost (delay) function d(y) = ay™ witha > 0,n > 1,
and
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i) Ye < yp < yq, then PoA is bounded by (Kye +y, —

ay;z+l

ye)(y% +

ay:fl) .
B!

i) Ye > Yp Y yq, then PoA is bounded by £[K~y+ ayy (K —1)],

where p = yp/ye < 1.

Similar to Theorem 3.9, we observe that PoA(PX) un-
der constant pricing with polynomial delay function also
depends heavily on the traffic values (i.e., ye,,), which
in turn depends on the A(y) curve. So unlike proportional
pricing, providing a good bound on PoA(PX) for constant
pricing with polynomial delay function requires further
knowledge about external routing costs (A values) of the
participating ISPs.

Theorem 4.4. For constant pricing (ie., c(y) = v + d(y)), if
congestion cost (delay) function d(y) =

—y
) oy < < Y4 then PoA is bounded by
(DU £ U p1 U
yuUys (1= Uf)(l1 pg}
w”ler@p—lf m,
i) Yy > y > yq, then PoA is bounded by
Kp(1—p)lva(1-Us)+1]-p(1-U;)
YuUs(1=Us)(1—p) ’

—1_ 1-Uy
where p =1 = \/ Rlityui -0

Observations similar to those in the PoA(SC) case (see
Theorem 3.10) can be made here as well, i.e., if we know the
range of v and Uy, then we can derive a range of PoA(PX)

values from Theorem 4.4.

5 SIMULATION RESULTS
5.1 Data Collection

To achieve realistic traffic demand values B;; and exter-
nal routing costs \;;, data from PeeringDB and CAIDA
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databases were collected and analyzed. We used PeeringDB
to get information about the locations of the IXPs, the ISPs
peering in that location (also called Point-of-Presence (PoP))
and the port capacity each ISP has purchased. A short
summary of the current statistics of ISPs and IXPs in the
USA is given in Table 2; note that an IXP can constitute of
multiple facilities, which are typically located close to one
another. Moreover, a map of the USA showing the location
of the IXPs and the number of ISPs in those IXPs are shown
in Figure 7. Additionally, it is noteworthy that PeeringDB
provides comprehensive details on a given ISP, including
its name, organizational structure, type, and peering policy,
among several other fields of information. According to
PeeringDB there are currently 745 access ISPs, 473 content
ISPs, and 686 transit ISPs active in the US mainland. All the
data available in PeeringDB is stored in the JSON format
and undergoes regular updates.

On the other hand, we utilized CAIDA to get the number
of active routers and their approximate location (at a city
level) for each ISP, to approximate the amount of traffic
that may be generated for that ISP at that location. We
downloaded these data from the Internet Topology Data Kit
(ITDK) database of CAIDA. The nodes.as text file contained
the ASN to router ID mapping, while the nodes.geo text
file contained the location information of the router IDs.
Furthermore, we leveraged the CAIDA rank database to
classify ISPs into tiers.

5.2 Simulation Setup
5.2.1 Generating External Routing Cost (\) values

To generate the A(y) curves we need two sets of values: i)
the traffic demand between ISPs (B;;), and ii) the per-unit
external routing costs (\;;) for that traffic. While the exact
values of these are very difficult to estimate closely, we make
several reasonable approximations based on the PoP loca-
tions (obtained from PeeringDB), router densities (obtained
from CAIDA), and previously published models on traffic
demand and pricing. The traffic demand between two ISPs
serving at two different PoP locations is determined using
the gravity model [50]. If ISP ¢ has R4 number of routers
serving at location A and ISP j has Rp number of routers
serving at location B, then the traffic demand between these
two ISPs for these two locations is thus approximated as
Yap = % Then summing up these traffics for all
possible pair 'of locations gives us the total traffic demand
between two ISPs, hence B;; = Y., 5 Yap. To calculate
the external routing cost for B;; we follow [44], which
models transit costs as being linearly or logarithmically
proportional to the distance that traffic has to travel. Since
traffic between different locations of the same ISP pair (say
Yap) is going to travel different distances (d4ap), we use
the weighted average of these distances: for some ISP pair
A B YaBdap

B T Y AgYar
external routing cost as, )\ ij = Axdjor A\j = Axlog(d;),
for an appropriately chosen constant A.

Note that if ISP pair (4,j) decides to peer, then the
B;; traffic may be split across the different PoP locations
that the two ISPs have in common. To find how much of
B;; traffic of the ISP pair (4, j) will flow through each of
these common points, we used three different approaches.

(1,7), wesetd;; = . Thus, we have the per-unit
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Aly) Curves of the Largest 28 IXPs
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IXPs are denoted with blue small circles (filled)
Bubble size (yellow) Number of ISPs

TABLE 2 (Normalized in both axis)
Summary on IXPs and ISPs in the USA ! T T [ T 1 ®
[ Total IXPs (PoP locations) | 140 | O 0® @ &
T ilit W e T 2l moo &
otal Facilities 1078 =08l §“°N ® © o | O @W
Facilities supporting 293 205f E (%3 O % ®
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Total 1SPs 2821 8 HE I s e e e e © o
ISPs (public peering only) 723 oM e tae 120°W 10w 100°W 90w 80°W 70°W
ISPs (private peering only) 728 Longitude
ISPs (both types of peering) | 1370

Fig. 6. Generated \(y) curves.

The first approach sends all the traffic through the IXP
that minimizes the total end-to-end geographical distance;
the second approach divides the traffic equally among all
common IXP locations; and third approach splits the traffic
as inversely proportional to total end-to-end geographical
distance of each path. Although all these methods yielded
different traffic values at the IXPs, the nature of the external
routing cost curves (A(y) curves) were quite limited in all
these three cases. Since our performance results mainly
depend on the shape of these A(y) curves and they ended up
being similar; therefore, in the following we only present the
results for the third approach. Figure 6 shows A(y) curves
generated with the third approach for the largest (in terms
of number of participating ISPs) 28 IXPs in USA.

5.2.2 PoA Simulation

To obtain the PoA values for social cost and profit, simu-
lations were done for the largest 28 IXPs among the 140
IXPs present in USA. Most of the remaining (smaller) IXPs
have a very small number of participating ISPs, resulting
in a few discrete A(y) values and making the study of the
equilibrium uninteresting. Also, from the PeeringDB port
capacity data, it was found that more than 95% of the total
port capacities (which can be seen as an indicator of the
traffic flowing through these IXPs) are accounted for by
considering the largest 28 IXPs. To find the PoA values for
proportional and constant pricing with polynomial delay
functions, we used different values of a, where d(y) = ay™,
and then the PoA value was calculated considering the
delay function (or, equivalently, the value of a) that resulted
in the worst PoA. Since the PoA value also critically depends
on the A(y) curves which will differ from IXP to IXP, both
worst and average case PoA values were calculated by
taking the the worst value and average values over all the
A(y) curves, respectively. For the case of queuing delay
functions, the A(y) curves were normalized with respect to
the value of u (recall that d(y) = %) and then results for
different utilization factors (Uy) were generated.

5.3 Results and Discussion
5.3.1 Comparing with Theoretical bounds

The maximum value of PoA (which we denote as
Maz(PoA)) for proportional pricing obtained from sim-
ulation are plotted against their corresponding theoretical
bounds in Figures 8, 9, 11, and 12. In all these Figures, the
curves marked T'heo represents the corresponding theoret-
ical bounds; whereas the curves marked Sim are the PoA

Fig. 7. USA map with IXP locations.

values found through simulation. Also, most of the profit
bounds and simulation results presented in this section are
for K = 2. Based on our analysis of the inverse demand
curves from Figure 6, we observed that K = 2()\1 < KM\,
from definition of K in Section 4.1 ) results in around 30-
40% of the total traffic data flowing through the IXP in
equilibrium. This finding aligns with previous studies, such
as [13], which reported that 20% of global internet traffic
traversed through IXPs in 2016, and extrapolating their data
leads us to a value of approximately 30% for 2022.

We note that the Max(PoA) values obtained through
simulation follow the same trend as the corresponding the-
oretical bounds. From Figures 8 and 11 we can observe that
the Max(PoA(SC)) and Maxz(PoA(PX)) for proportional
pricing with polynomial delay are quite small for a wide
range of 8 (from 1 to 10) and n (from 1 to 4). The same can
be said about Maxz(PoA(SC)) and Max(PoA(PX)) for
proportional pricing with queuing delay functions as well,
where instead of n, the value of Uy is varied (Figures 9
and 12). Looking closely at Max(PoA(SC)) for both type
of delay functions we see that if 3 is chosen to be within a
value of 2 to 4, then even the worst case PoA is less than
2. On the other hand, the Maz(PoA(PX)) for both type of
delay functions is quite small (less than 3) for 5 = 3 to 5.
Since IXPs may want to make good profit while also keeping
a low social cost, we observe from our results that 5 = 3 or
4 can be a good choice for any IXP to get a good balance
between profit and social cost.

5.3.2 Avg PoA with Polynomial Delay Function

Simulation results of average PoA (which we denote as
Avg(PoA)) for proportional and constant pricing with poly-
nomial delay are shown in Figures 10, 13, 14, and 15. To find
Avg(PoA), the value of a (recall, d(y) = ay™) that resulted
in the worst PoA value for each A(y) curve was considered;

the corresponding PoA values were then averalged over all
28 A(y) curves. In other words, Avg(PoA) = w,
where PoA; is the PoA values found using the ' \(y)
curve and N is the total number of A(y) curves, once for
each of the N = 28 IXPs under consideration.

If we compare Figures 10 and 13 with Figures 8 and
11 respectively, we observe that the Avg(PoA) values are
much smaller compared to the their Max(PoA) counterpart
for proportional pricing. For 8 = 3, the Avg(PoA(SC))
has values below 1.1 and Avg(PoA(PX)) has values below
1.2, which is quite extraordinary, since it means that with
B = 3, on an average the worst PoA values are well within
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Fig. 8. Max PoA of SC (Sim) with Theoretical
bounds (proportional pricing with polynomial
delay function). lay function).
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Fig. 9. Max PoA of SC (Sim) with Theoretical
bounds (proportional pricing with queuing de-
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Fig. 10. Avg PoA of SC - Simulated (propor-
tional pricing with polynomial delay).
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Fig. 12. Max PoA of PX (Sim) with Theoret-
ical bounds (proportional pricing with queuing
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Fig. 13. Avg PoA of PX - Simulated (propor-
tional pricing with polynomial delay).
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Fig. 14. Avg PoA of SC (Sim) - constant pricing  Fig. 15. Avg PoA of PX (Sim) - constant pricing

with polynomial delay. with polynomial delay).
20% of the best SC and profit achievable. We see that apart
from a linear delay function (n = 1), the Avg(PoA) for SC
and profit maintain quite a steady small value, and remain
small even for higher 3 values (up to S = 10). On the other
hand, if we look at the results of constant Pricing (Figures
14 and 15), it can be noted that a v = 0.1\! gives quite
a good performance in terms of social cost (having values
below 1.25), however the performance degrades heavily
with increase in . Similar pattern can be noticed for profit
as well, where the 7 values of 0.15\! to 0.4\! gives pretty
reasonable Avg(PoA(PX)) values, but it rises on both sides
almost exponentially beyond that range. Hence, constant
pricing seems less robust and if the constant price -y value is
not chosen carefully, then the PoA values for both social cost
and profit can be quite bad. Lastly, we see that the value of n
does not have much effect on Avg(PoA) values for constant
pricing.

The social cost vs profit tradeoff being worse under
constant pricing (as compared to proportional pricing) may
seem surprising at first thought. This is because given any
specific A(y) curve, we can get a constant price that attains
the same social cost and IXP profit as proportional pricing.
Note however that the results shown here are averaged over
different A(y) curves, one for each of the 28 IXPs. This again

Value of r (y =A™ ¢ = 4

2
n=1 - $
Hn=2 E
e n=3 PR PR
18} |-o Ui=son KB -2
-0 Ui=50% el -
-G Uf=70% ¥ Pted
. w .
S16 (_/’Q _2
o 2
5 -t
< s ’
B ol a
e e
P
erY
12 gy s
g m
f . .
025 03 035 04 045 1 2 3 4 5 7 8 9 10
+ay") Value of K

Fig. 16. Avg PoA of PX (Sim) for different
values of K (proportional pricing).

underlines the fact that when the external routing costs of
the participating ISPs are not known to the IXP, proportional
pricing are likely to result in better social cost and IXP profit.

5.3.3 Avg PoA with Queuing Delay Function

The Avg(PoA) results with queuing delay functions
showed quite similar trend to that of the polynomial delay
functions, and due to the space constraint, the results for
this case is omitted from plotting. However, we are going to
summarize the findings that we observed from simulation.
The first thing to notice was that for proportional pricing
if we utilize the IXP more (higher Uy), we can gain better
PoA results for SC; for profit, the trend seems opposite, at
least for lower (3 values. Also, if we choose 8 = 3 or 4, then
Avg(PoA) values for both SC and profit turned out to be
pretty good, which is consistent to the analysis done in the
previous sections.

On the other hand, constant pricing does not seem
to have a good trade off between SC and profit with
queuing delay function. Increasing the value of v seemed
to make the Avg(PoA(SC)) rise sharply, whereas better
Avg(PoA(PX)) can only be achieved for higher values
of 7. Although the effect of Uy is not that prominent
on Avg(PoA(PX)), but lower U; results in very bad
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Avg(PoA(SC)). A reasonable trade-off between SC and
profit was obtained when v = 0.1\!, however the results
were not very robust to changes in the 7 value. Thus,
from all the simulation results of constant pricing we can
conclude that constant pricing is not very robust, and it
is imperative to choose the constant price (y) precisely to
have good performance on both SC and profit. In contrast,
proportional pricing yields robust performance over a broad
range of 3 values for both polynomial and queuing delay
functions.

5.3.4 Effect of K on PoA(PX)

From the theoretical analysis in section 4, we saw that
PoA(PX) depends on the value of K, although this de-
pendence is almost linear. We now verify this trend through
simulations. Figure 16 show the Avg(PoA(PX)) values for
proportional pricing (with 8 = 3) under polynomial and
queuing delay, as a function of K. We observe that the PoA
values do increase (almost) linearly with the increment of K,
as expected from our theoretical results (Theorems 4.1 and
4.2). However, the PoA values are quite small compared to
their corresponding bounds. For both type of delays, even
with K = 10, the Avg(PoA(PX)) have values around 2.
While the value of K does depend on the A(y) curve, recall-
ing the definition of K from Section 4.1, K can be expected
to be small unless the IXP can carry the traffic demand
between all participating IXP’s at very low congestion cost.
Also, just like our other results, the simulated PoA values
are not that sensitive to the value of n and Uy (Fig. 16).

5.3.5 Impact of ISP types and tiers

Note that our analytical and simulation models do not dis-
tinguish ISPs based on their tiers or types. ISPs at different
tiers or having different types have different geographical
footprints, however. For example, an ISP with lower tier
number will generally have a larger geographical footprint;
the footprint of an access ISP may span a local region or a
set of such regions, while a content ISP’s footprint may be
limited to a few spots where its servers are located. Such
footprint and size differences would impact the traffic that
they send, and also the potential benefits they may derive
from peering at an IXP. In this section, we quantify the traffic
sent and/or the costs encountered — both at the IXP and
external to the IXP — by ISPs classified according to their
tiers (tiers 1, 2, 3) and types (transit, content, and access). The
classification of ISP types was directly used from PeeringDB
(as discussed in Section 5.1). Since no specific tier-wise
classification of ISPs is provided in PeeringDB, we classified
the top 7% of the ISPs in the AS rank list as Tier 1, the
following 23% as Tier 2 and rest as Tier 3.

Figures 17-22 portrays the amount of traffic, and per unit
cost for proportional and zero pricing for different tiers and
types of ISPs. Figures 17-19 show results for 8 = 3, where
the delay function is chosen such that on an average 50% of
the traffic is flowing through the IXP and the rest externally.
Then for the same delay function, Figures 20-22 show the
results when zero pricing is adopted. We observe that costs
(per unit traffic) improved across all ISP tiers and types:
while zero pricing prompts more ISP pairs to send their
traffic through the IXP, it increases the overall cost of traffic
due to congestion at the IXP. Proportional pricing motivates
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some of these ISP pairs to use the external routing option,
resulting in lower cost to the ISP - computed as the sum of
the external routing cost, the price paid to the IXP, and the
congestion (delay) cost at the IXP. These results show that
by using proportional pricing, ISPs across different tiers and
types all benefit from this cost reduction.

6 CONCLUSION

We considered the question of pricing of ISP traffic at an
IXP, with the goal of attaining an equilibrium solution that is
both efficient in terms of social cost and IXP profit. Through
both theoretical analysis and simulations, we observed that
a pricing policy where the IXP charges the ISPs a per-unit
price proportional to the average level of congestion in the
public switch, attains a good tradeoff in terms of both of
these objectives. A practical benefit of proportional pricing
is that a good choice of the price (proportionality constant)
does not require the IXP to know the external routing costs
of the participating ISPs. This corresponds to the price
proportionality factor (3 — 1) being about 2 to 3 times the
congestion cost, for which the PoA for both social cost and
profit end up being quite small (i.e, less than 2 in general,
and often quite close to 1), for both polynomial and queuing
congestion cost (delay) functions. Our results also show
the performance benefits of proportional pricing (with the
proportionality constant chosen appropriately) over a zero
pricing scheme where the ISPs experience congestion but no
additional price is charged by the IXP. We also analyzed a
constant per-unit pricing policy, and argued through theo-
retical analysis and simulations that the tradeoffs between
social cost and IXP profit obtained by constant pricing
is not as good as proportional pricing. Furthermore, we
observe that choosing a constant price which attains near-
optimal social cost and IXP profit requires knowledge of the
external routing costs of the IXP. Moreover, the performance
under constant pricing is quite sensitive to variations in
that constant price, whereas the social cost and IXP profit
performance under proportional pricing is more robust to
the variations of the price proportionality factor.

In conclusion, we point out a few limitations of our
model, addressing which could constitute important di-
rections for future research. Note that our model assumes
that the per-unit external routing cost is independent of
the traffic amount sent externally. Examining the impact of
external route congestion on our proposed policy can be
an interesting question for future work. Further, while our
analysis includes consideration of asymmetric valuation of
traffic between two peering ISPs, it assumes a specific paid
peering policy based on Nash bargaining. Exploring the
equilibrium efficiency for a broader range of paid peering
policies remains open for future investigation.

APPENDIX A

Towards analyzing the PoA wunder different pricing
schemes, we first state an observation (that will be repeat-
edly used in our proofs), and prove two useful lemmas that
are used in subsequent analysis.

Observation A.1. For any three numbers, a,b,c, if a > b >

a—c a
c >0, then e > T
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Fig. 17. Traffic flow of ISPs (tier-wise) with pro-
portional pricing. proportional pricing.
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Fig. 20. Traffic flow of ISPs (tier-wise) with zero
pricing. zero pricing.
Lemma A.1. If y. < yp, then PoA is bounded by the maximum

value of E(y“”‘}’él(!;)')(yp—ye) _
P

Lemma A.2. If yo > yp, then PoA is bounded by maximum
E(ye)
value of E(yp)+e(ye) (Ye—yp)”
Proof of Lemmas A.1 and A.2: For the case of y. < y,
the PoA equation is:

2{Jo" E'(y)dy + [;7 My)dy + [, My)dy}
PoA = max 7 vy
2{Jy" E'(y dy+ Ly Ay)dy}
e E/ d 4 yp d
< max ) T )dy - f )dy (7)
0 E( )dy
E(ye) + c(ye) - (yp — ye)
< max . ®)
E(yp)

The first inequality comes from Observation A.1 and the
fact that social cost is minimized at y,,, and the second one
comes from the fact that A(y) is non-increasing and within
the range y = y. to y = yp, A(y) can have a maximum value
of Ayl) < e(ye)-

On the other hand, for the case y. > y,, we have:

Pod 2{J5° E'(v)dy + [ Ny)dy}
0A = max
2{]‘917 E/ dy—|— fyy: dy—I— fyT dy}
°E'(y)d
< max —- ,fo y;y 9)
o E'(y)dy + fyp (y)dy
< max E(ye) (10)

E(yp) +c(ye) - (e — vp)
Similar to the case of y. < yp, here the first inequality comes
from Observation A.1, and the second from A(y) being non-
increasing, and that in the range of y = y, to y = Y, A(y)
can have a minimum value of ¢(y.). O

Proportional Pricing, B=3
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Fig. 18. Per unit cost of traffic (tier-wise) with
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Fig. 21. Per unit cost of traffic (tier-wise) with
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Fig. 19. Per unit cost of traffic (type-wise) with
proportional pricing.
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Fig. 22. Per unit cost of traffic (type-wise) with
zero pricing.

APPENDIX B
B.1 Proofs of Theorem 3.2, Corollary 3.2.1, and 3.2.2

Proof of Theorem 3.2: Corollary 3.2.1 is a special case of
Theorem 3.2 case i with § = 1. Hence proving Theorem 3.2
case i proves Corollary 3.2.1 as well. If ¢(y) = 5-d(y) = B-a-
y™ where n > 1, then E'(y) = d(y) + yd'(y) = (n + 1)d(y);
and depending on the value of 8, E’'(y) or ¢(y) either can
be greater than the other. Comparing both E’(y) and c(y),
it is easy to see that if 5 > n + 1 then c¢(y) > E’(y) and if
B < n+1thenc(y) < E’'(y) for all y. Thus, when 8 < (n+1)
we use Equation 10 to get,

E(y.
PoA < max (ve)
E(yp) + c(ye) - (e — yp)
ayg ™
= Imax
ayp ™+ Bay - (ye — yp)
1 N /
=maxX —— >, where,p = e
P+ 3 - Bp Py
1
— 11
B —n(z27) 0/ )

The last line is obtamed by maximizing the expression
in the line above with respect to p. Also, if we put = 1in
Equation 11, then we get the PoA bound of Corollary 3.2.1.

To prove that {W} < ("T'H), we just have to
prove that {3— (

)(n-l—l/n)} > (
by simple algebralc mampulatlon

Now, for the case of 3 > n + 1, we can use Equation 8 to
get,

1), which can be done

E(ye) + C(ye> ) (y - ye)
PoA < max Elyy) P
e e Baye (yp — ve)
ay;hLl
= max {(1— B)p" ™" + Bp"}, where,p=y./y,
__B pn n
7n+1[(,8—1)(n+1)] ' (12)
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Proof of Corollary 3.2.2: The proof of Corollary 3.2.2 can
be done similarly to those of Corollary 3.2.1 and Theorem
3.2. The only change will be in the value of d(y) that has
been used in the derivation. For both the cases of 5 > n + 1
and 8 < n+1,d(y) < ay™ will be used in the numerator
and d(y) > by™ will be used in the denominator. The rest of
the proof remains the same. O

Proof of Lemma 3.1: To prove Lemma 3.1, we see that it
is for the case when 8 > n + 1. From the argument made
in the proof of Theorem 3.2, we know that when 5 > n + 1,
Ye < Yp, hence we use Equation 7 to find PoA bound.

“E'(y)dy + [*" Xy)d
PoA < max fO 7 )dy f )y
I E'(y dy
Y2 A (y)d _
< max 738 /( y)dy max —(yp ye)A/(ye)
J2 E'(y)dy ~ (Yp — ye)E' (ye)
= max )\(ye) = max C(ye)
E'(ye) E'(ye)
e P _B
d(ye) +d'(ye) - ye 2

In the second line above, Observation A.1 is used, then
in the third line A\(y.) = ¢(y.) comes from the fact that the
maximum possible value of )\(ye) is ¢(ye). Finally, in the
last line, the minimum value of M is used, which has

a minimum value of 1, due to d(y ) bemg convex. O

B.2 Proofs of Theorem 3.4 and Corollary 3.4.1

Theorem 3.4 will be proved for the two cases, when i) Uy >
(1— f) and ii) Uy < (1— 7) Corollary 3.4.1 is a special case
of Theorem 34, with Uy > (1 — E) and § = 1, and hence
will be proved along with Theorem 3.4.

For proportional pricing we have c(y) = fd(y), and
E'(y) = d%(—) = ud?(y). Let us check what happens to
the value of ¢(y) and E’(y) with increase in y. We see that
when no traffic is flowing (y = 0), ¢(0) = g > i = E'(0).
Thus, if 8 = 1, ¢(0) = E’(0) and if 8 > 1, ¢(0) > E'(0).
Then, if we solve for y such that ¢(y) = F’'(y) and denote
it as y,, we find y, = p(1 - 5). Lastly, If y = y, + ¢ where

e > 0, we find (y%) = C/,(yqti) == ﬂ > 1. Thus we see

that E’'(y) starts at a Vallj(lg ﬂess than c(y) (if § > 1), then
with the increase of traffic, E’(y) intersects c(y) at traffic y,,
and then stays greater than c(y).

From Theorem 2.1 we know that there is an equilibrium
traffic y. for which A(y7) > c(y.) > AyS). So under
different circumstances there might arise the following three
scenarios, I) y. < yq, II) ye = y4 , and III) y. > y,. For
scenario I, ¢(y.) > E'(ye), so c¢(y) crosses A(y) earlier than
E’(y) and hence y. < y,. Arguing similarly, scenario III will
have y. > yp. For scenario I, E'(y) = ¢(y) = A(y) (or, more
explicitly A(y) < E'(ye) = c(ye) < Ay, )) and so ye = yp
(Theorems 2.1 and 2.2). Now we see that, if y, = ye = yp
amount of traffic is flowing, then from y, = p(1— l) we get
Up=(1- B) However, for scenario I, when y. < y,, we
have Uy < (1 —
Ur>(1- %)

For the case Uy > 1 — 1/3, we see that the condition of
Lemma A.2 is satisfied, and hence from Equation 10,

é), and for scenario III of y, < y., we have
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E(y.
PoA < max (ve)
E(yp) +c(ye) - (Ye — Yp)
Ye
= max bye
Yp B . _
H=Yp RS (Ye = ¥p)
11—
= max Us( P) (13)

p(1 =Us)+ B —p)(Us —p)

In the above calculation, the third line comes from multi-
plying both numerator and denominator with w,
and denoting v, /1t = p. As we can see from Equation 13, the
maximum value of PoA depends on the value of p = y, /1
and Uy = y./p. Thus, for a given Uy if we can find the
value of p which gives the maximum PoA, and use that to

get the PoA upper bound from Equation 13. This yields,
p=1-— /YL Now putting this value of p in Equation 13
we get the PoA bound of Theorem 3.4 case i, which is:

Uf 1—5Uf
PoA < .
T (1-UpR - VI=Tr ()]

Now, if we put 8 = 1 in the above equation, we get the

PoA bound of Corollary 3.4.1 as well. On the other hand, for

the case of Uy < 1 — 1/, since the condition of Lemma A.1

is satisfied, Equation 8 can be used to find the maximum
value of PoA.

(14)

E(ye) + c(ye) - (yp — ye)

ta ﬁye (yp — ve)

_Yp
H—Yp

U =pB)+Bp
l—Uf
,/Uf F-D)

1-U;

In the above calculation, the third line comes from multi-
plying both numerator and denominator with (“=¥){=vs)
and denoting y,/it = p. The expression in the last line is
obtained by plugging in the value of p, which maximizes
the expression before it, for a given Uy. O

PoA < max

;L Ve

= Imax

1-—
= max p

(15)

APPENDIX C

C.1 Proof of Theorem 4.1

To get the PoA of profit we need to use the fact that
maximum achievable profit (maz(PX)) is at most equal to
the maximum social welfare (SW (opt)). To prove that, let
us define social welfare (SW) in terms of social cost.

Definition C.1. Social welfare is equal to total utility achievable
minus the social cost.

Thus, from the above definition, for our case SW =
J7 Ay)dy — SC, and the lower the value of SC the higher
will be the value of SW. Also, we know SC is minimum
at a traffic y, and hence SW (opt) is achieved at traffic y,
as well. Now, let us say y, be the traffic which gives the
maximum profit. Then profit will be (8 — 1)d(y,) - y, or
7 - yr, under proportional and constant pricing respectively.

So, for proportional pricing with polynomial delay (with
Yr = Ye < yp) we have: %
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(8- 1)d( r) yr
fUp )\ yp E/ f07
(8- 1)E(yr) < (6 1)E(yr)
~yr-clyr) — E(yr) T BE(yr) — Eyr)
In a similar way, we can prove that for y, = y. > ¥y,

the same inequality holds. Moreover, the proofs can be
extended to constant pricing as well. In all the following
bound calculations for PoA(PX), the fact that the max-
imum achievable profit (max(PX)) is at most equal to
maximum social welfare (SW (opt)) will be used.

Similar to the PoA calculation of social cost as in pre-
vious sections, PoA of profit need to be calculated for two
cases, i) Y. > yp or equivalently, 8 > n+1 and ii) y. < y, or
equivalently, 8 < n + 1. Hence, from the definition of price
of anarchy we get PoA for y. > y, as,

Mazimum Achievable Profit
Profit at Equilibrium
Optimum Social Wel fare

(5 - 1)d(yr) Y
= Jo" E'(y)dy

<1

PoA(PX) =

<
= hax Profit at Equilibrium
Yp _ (Y v
S max 0 )\(y) 0 E (y)
c(Ye) * Ye — d(ye) - Ye
1 —_— J—
< max AYe + (Up — ye)c (gi)l E(yy)
(6 - 1)aye
< max Ke(ye)ye + (yp — ye)e _&ge) — E(yp) < KA
(B —1aye
KBay! ™t + (yp — ye) Bayl — ayp™
< max i
(5 - ]-)aye
KB+ (p—1)8—p"*!
< B (PB _)16 P fasm p = gy /]
KB+ ()M = 1)8 = ()0
= o1 , (16)

where the expression in the last line is obtained by maxi-
mizing the expression before it with respect to p. Now, (in a
similar way) for the case when y. < y, we have,

Yp A (Y E’
PoA(PX) < max *2 W) = Jo W)
(Ye) - Ye — d(ye) - Ye
1, _
e Y= )
(B —1aye
< max Kc(ye)yp E(yp) [asm. )\1 — K)\e]

(B = Daye ™
K Bay;'y, — ay, ™!
(8 = Daye™!
Kpp—p"*!
Bg—1
Note that p = (K+ )1/" maximizes the term in the right

hand of the final inequality above. Smce max(p) = 1, the
value of p for maximum PoA is mln(( )1/ m1). O

C.2 Proof of Theorem 4.2

Similar to the PoA analysis for SC, we determine PoA
bounds of profit for the case of, i) Uy < 1 —1/8 and ii)
Ur>1-1/8.When Uy <1—1/8, we have:

< max

< max [assuming p = yp, /el
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Optimum Social Wel fare

PoA(PX) <
A(PX) < max =5 ot Bquilibrium
pr )\(y) _ foyp E’(y)

c(Ye) - Ye — d(ye) - Ye

E(yp)

< max

Alye + (yp - ye)c(ye) -

< max

Ke(ye)ye + (yp — ye)c(ye) — Eyp)

B—1

n—ye Je

— B _ _Yp
b~ Ye) B=Ye  K—¥p

p—y. Ye
KpU;(1—p)+ B(p—Us)(1 - p)
(B=1(1—=p)Us
+(W/T=T7 VAP
Uf(ﬁ 1)

where in the second line from the last both numerator and
denominator were multiplied with (u=ye) (=vp) " and the
last line is obtained by maximizing the expression above
it with respect to p. On the other hand, for the case of
Ur >1—1/8, we have: PoA(PX)

< max C AL =K\

=

—p(1—Uy)

< max

BUf

17)

Yp A _ [Yp E/ 1 _
< max 0 (y) 0 (y) < max A yz;ilE(yp)
c(Ye) - ye — d(Ye) - ve Pty
K - F
< max c(yegyi (v) [assuming \' = K \,]
H—Ye ye
BYp Yp
< max — P=Ye AU max KBy (1 — yp) — Yp(tt — ye)
B ve (B = 1)1 = yp)ye
< o KBP(L=p) —p(1=Uy) _ (VEB - y1-U;)?
- (B8—1)(1—p)Us us(B-1)

where in the second line from the last, we multiplied both
numerator and denominator with (4 — ye)(u — yp). In the
last line both numerator and denominator were divided by
©?, and the final expression is obtained by plugging in the
value of p that maximizes the expression just before it. [
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