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Salt marshes play a crucial role in coastal biogeochemical cycles and provide
unique ecosystem services. Salt marsh biomass, which can strongly influence
such services, varies over time in response to hydrologic conditions and other
environmental drivers. We used gap-filled monthly observations of Spartina
alterniflora aboveground biomass derived from Landsat 5 and Landsat 8
satellite imagery from 1984-2018 to analyze temporal patterns in biomass in
comparison to air temperature, precipitation, river discharge, nutrient input, sea
level, and drought index for a southeastern US salt marsh. Wavelet analysis and
ensemble empirical mode decomposition identified month to multi-year
periodicities in both plant biomass and environmental drivers. Wavelet
coherence detected cross-correlations between annual biomass cycles and
precipitation, temperature, river discharge, nutrient concentrations (NO, and
PO,”) and sea level. At longer periods we detected coherence between biomass
and all variables except precipitation. Through empirical dynamic modeling we
showed that temperature, river discharge, drought, sea level, and river nutrient
concentrations were causally connected to salt marsh biomass and exceeded
the confounding effect of seasonality. This study demonstrated the insights into
biomass dynamics and causal connections that can be gained through the
analysis of long-term data.
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1 Introduction

Salt marshes are the dominant intertidal habitat in the SE US and have important roles
in carbon sequestration, the modulation of organic and inorganic nutrient supplies to the
coastal ocean, and many additional ecosystem services (Mcleod et al., 2011; Mitsch and

Gosselink, 2015). These systems are highly productive, but their primary productivity —
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and the strength of the associated ecosystem services - can vary
substantially among years, as reflected in 2-3-fold interannual
variations in observed Spartina aboveground biomass (Wieski
and Pennings, 2014). As prior long term ecological studies
reported, coastal marshes are sensitive to climate change (Reed
et al., 2022). Therefore, with a changing climate and increases in
temperature, drought frequency and severity, and sea level, the
connections between these drivers and plant production are even
more critical to understand, particularly since plant biomass and
productivity are tightly linked to CO; exchange with the
atmosphere (Abdul-Aziz et al., 2018).

Patterns of primary production in salt marshes can be
correlated with climate and hydrologic variables (Odum, 1988).
Using an extensive set of field observations, Wieski & Pennings
(2014) showed that over a 10-year period annual net primary
production of Spartina alterniflora, the dominant plant species in
salt marshes in the SE US, varied with nearby river discharge,
precipitation, sea level, and air temperature. Changes in vegetation
can also be captured using the spatially extensive observations from
repeated satellite flyovers. O’Donnell and Schalles (2016) used
Landsat 5 imagery and connected these to in Situ measurements
to successfully estimate salt marsh aboveground biomass. They
found that peak fall biomass in Spartina marshes at and near Sapelo
Island, Georgia estimated with Landsat 5 imagery captured between
1984 and 2011 was correlated with river discharge, drought index,
precipitation, and mean sea level. However, these studies do not
address longer-term periodicities or causation.

Identifying causal connections between abiotic conditions and
ccosystem responses (Morris et al, 2002; Hanson et al, 2016;
Crosby et al, 2017) can be challenging because of complex
interactions and nonlinear or

time-delayed  relationships  of

climate variables and various ecosystem properties such as
aboveground biomass (F'cher et al., 2017). However, techniques
such as convergent cross mapping can extract embedded causal
connections from time series measurements that then may prompt
further investigation in replicated experimental efforts. Along with
that, wavelets and empirical mode decomposition can be used to
identify  periodicities in these complex systems. Moreover,
subtracting shorter-term periodicities can reveal underlying long-
term patterns. Although wavelets have been applied to investigate
connections between tidal salt marshes and CO; and CHy fluxes (L
et al, 2018; Wei et al, 2020; Chu et al, 2021), this suite of
techniques has not been used previously to evaluate decadal-scale
patterns in salt marsh biomass and detect causal connections.

In this study, we examined the temporal patterns in marsh plant
biomass in a southeastern US salt marsh and its potential
(1984-2018). We

produced a continuous time series of aboveground biomass

environmental drivers over 35 years first
estimates, which involved comparing several methods of gap-
filling. Second, we characterized the intrinsic temporal patterns of
both biomass and potential environmental drivers with wavelets
and empirical mode decomposition. As part of this, we were able to
remove shorter periodicities and identify underlying long-term
patterns. Third, we explored similarities in the variations of
biomass and environmental parameters, as well as lags between
them, wusing wavelet coherence.

Lastly, going beyond the
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identification of correlations and coherence of patterns, we
identified potential causal connections between salt marsh
biomass and environmental variables through empirical dynamic
modeling, illustrating that the analysis of ecological timeseries can
discover known (and potentially new) ecological interactions in

complex natural systems such as coastal marshes.

2 Methods
2.1 Site description

The Altamaha River is one of the largest freshwater sources to
the Atlantic Ocean within the United States. It has a significant
impact on the Georgia coast and forms a complex system of
distributary channels, creeks, and intertidal areas (Di lorio and
Castelao, 2013). The Altamaha estuary experiences semidiurnal
tides with an average amplitude of ~2 m; intrusion of saltwater is
limited to approximately the lower 20 km of the river (Alber and
Sheldon, 1999). The polyhaline portion of the estuary has extensive
salt marshes dominated by Spartina alterniflora (Wieski and
Pennings, 2014).

Our study encompassed S. alterniflora marshes located within
the lower Altamaha tidal watershed (Figure 1; light blue), as
delineated by the US Geological Survey HUC boundary (USGS
HUC 03070106; see https://water.usgs.gov/GIS/huc.html) and an
ovetlay of S. alterniflora communities (green shading) along the
central Georgia coast. Recent digital mapping of Georgia’s coastal
saltmarsh and brackish marsh at 2 m resolution (Alexander and
Hladik, 2015) was resized using ENVI 5.3 (Harris 1.3Geospatial) to
30 m resolution, in order to match the 30 m pixel resolution of the
Landsat 5 imagery used in this study (Figure 1). Within the
Altamaha tidal watershed, 43,847 pixels of S.
alterniflora, 30 m in size, covering ~ 39.46 million m? (3,946 ha).

there are

FIGURE 1
Study site and environmental data sources. A - River Discharge
(USGS Doctortown, Gauge 02226000); B - River Nutrients (USGS
near Gardi), C - Air Temp & Precipitation (NOAA Sapelo Island), D -
Sea Level & Tidal Data (NOAA Fort Pulaski, Gauge 8670870), E -
PDSI (NOAA NCDC). Light blue is the contour of the HUC in which
the biomass was quantified, the light green pixels are those
identified as Spartina alterniflora.
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2.2 Spartina alterniflora biomass data

Spartina alterniflora aboveground biomass estimates were
obtained from satellite images as described in O’Donnell and
Schalles  (2016). Btiefly, the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) protocol for atmospheric
correction of Landsat 5 and Landsat 8 images was used to estimate
Spartina biomass in salt marshes within the study site. The nominal
return rate for Landsat imagery is 16 days; however, two
ovetlapping Landsat Path/Rows (16/38 and 17/38) cover the
2016),

prospective scenes every 16 days. Many satellite images were

study area (O’Donnell and Schalles, providing two
discarded because of cloud coverage and tidal inundation, which
obscured the canopy reflectance signals of coastal marshes. As
described in O’Donnell and Schalles (2016), no images coinciding
with a tidal inundation recording above 0.65 m relative to NAVD88
at the Fort Pulaski gauge INOAA station 8670870, the closest to the

study site) (offset by +25 minutes) were used.

2.3 Gap-filling

The analyses used in this study require equally spaced timeseries.
Therefore, from the available satellite imagery, monthly means of
Spartina alterniflora aboveground biomass (g/m?) were calculated
from the beginning of 1984 to the end of 2018. However, due to cloud
coverage, inundation, and lack of Landsat data from late 2011 to early
2013, the availability of suitable images varied widely. Over the 35-
year observational period, there were a total of 227 missing monthly
biomass estimates out of 420 months (193 existing data points), with
data gaps ranging from 1 to 17 months.

To establish a continuous time series of biomass at monthly
resolution, we tested several gap-filling approaches including
autoregressive integrated moving average (ARIMA) models,
kriging, and inpainting. ARIMA models utilize autoregressive and
moving average components of time series data to predict (Box
et al., 2015) or gap-fill (e.g., Afrifa-Yamoah et al., 2020; Dorich et al.,
2020) time series. We used the R package imputeT$S (v3.2), which
seasonally decomposes time series, fits an ARIMA model to the time
series, uses Kalman smoothing to fill the gaps, and then adds the
seasonal component again (Moritz and Bartz-Beielstein, 2017).
Kriging is a geostatistical approach commonly used for spatial
interpolation (I.i and Heap, 2008). As suggested by IK<notters and
Heuvelink (2010) and Lepot et al. (2017), this approach can be
adapted to temporal interpolation such as predicting missing values
in air temperature time series (Shtiliyanova et al.,, 2017). In this
study, ordinary kriging was performed. Due to the strong
seasonality in marsh aboveground biomass, the data were recast
in two dimensions, with the time of year (i.e., month) as one axis
and the calendar year of an obsetvation as the second axis, similar to
the approach of Walter et al. (2013). This 2D kriging method was
implemented using the R package gstat (v2.0-9) (Pebesma, 2004).
From the available variogram models the exponential model was
selected as it produced the best fit for our biomass data. Since
satellite data coverage was more complete during winter than

summer months due to reduced cloud cover, the seasonal axis
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was set to start in January, ensuring that the regions of data gaps
were well embedded into measured data. For the inpainting
approach, we again separated the seasonal pattern from
interannual long-term trends. Missing biomass values in the 2D
month vs. year coordinates were in-filled by solving a boundary
value problem for an elliptic partial differential equation. This was
implemented using the MATLAB script inpaint_nans (their spring-
metaphor method) by D'Errico (2022).

The performance of gap-filling methods was assessed both
quantitatively and qualitatively. The former was measured by the
accuracy of predicting existing data points with bootstrapping using
100 Monte Carlo realizations and computing prediction
uncertainties by comparing modeled and observed data. The
qualitative assessment focused on periods with long data gaps
(such as the 17-month period between the last data from Landsat
5 in November 2011 and the first data from Landsat 8 in March
2013) where the lack of data constraints can lead to poor gap-fill
performance. Reproducing seasonal patterns was also critical since
late Summer/Fall secason peaks in biomass are important metrics of

salt marsh productivity (Visser et al., 2000; Kirwan et al., 2009).

2.4 Environmental data

Monthly records of air temperature, precipitation, sea level and
Palmer Drought Severity Index (PDSI: high = wet; low = dry) for
1984-2018 were obtained from the NOAA National Climatic Data
Center (NCDC). Monthly mean air temperature and total
precipitation data were acquired from the NOAA Sapelo station
(Figure 1, Lawrimore et al.,, 2016). PDSI data were retrieved as a
monthly time series for the Southeast Climatic Division (NOAA,
2022). In contrast to the biomass data, these datasets have minimal
gaps (~10%), which were gap-filled with kriging, as this was the
method selected for gap-filling the biomass data (see Results). River
discharge data for the Altamaha River were obtained from the
USGS Doctortown station because it is the most downstream river
gage that covers the time period of our study and provides an
accurate measure of all of the water that enters the estuary (Figure 1,
U.S. Geological Survey, 2016). Nutrient concentrations (NOy and
PO,?) were obtained from the USGS Altamaha River Near Gardi
station which is approximately 30 miles upstream from the
Altamaha Estuary (Figure 1, U.S. Geological Survey, 2016b). We
used nutrient concentrations as a proxy for the composition of the
water flooding the marsh to which the plants are exposed. The small
number of missing values (<10%) in the nutrient dataset were also
gap-filled by kriging. Monthly mean sea level data and tidal
projections were obtained from the NOAA Fort Pulaski station
(Figure 1; NOAA 2022a; NOAA 2022b).

2.5 Wavelet analysis and
wavelet coherence

The continuous wavelet transform (CWT) was used to analyze
the time series in time/frequency space. We selected Morlet

wavelets for their balance of time and frequency localization and
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facilitation of detection of time-dependent amplitude and phase
(Lau and Weng, 1995; Grinsted et al., 2004). To investigate local
correlations between CWTs of environmental variables and
biomass, coherence patterns in time/frequency space were
computed and phase shifts were quantified. Statistical significance
of the results was estimated using Monte Catlo randomizations.
Both wavelet and wavelet coherence analyses were implemented
using the biwavelet (v0.20.21) R package (Grinsted et al., 2004).

2.6 Empirical mode decomposition

Ensemble empirical mode decomposition (EEMD) was used to
decompose the time series into intrinsic mode functions (IMF) (Wu
& Huang, 2009). This data-driven method analyzes nonlinear and
nonstationary processes by breaking down complex time seties into
components that are based on the observed minima and maxima in
the signal. By sequentially subtracting these modes from the original
signal, the time series is effectively decomposed into signals of
increasingly lower frequencies (modes). To address the issue of the
occurrence of similar frequency signals in multiple modes (mode
mixing), IMFs are computed as the ensemble average of multiple
stochastic realizations of empirical mode decomposition (Huang
et al,, 1998), after addition of white noise to the original data. Noise
was set to 20% of the standard deviation as suggested by Wu and
Huang (2009), and the MATLAB implementation of Yang ct al.

(2018) was used with Z-score normalization.

2.7 Convergent cross mapping

To explore univariate causal connections between
environmental variables and salt marsh biomass, we used
convergent cross mapping (CCM; Sugihara ct al., 2012). This
empirical dynamic modeling approach builds on Takens’ theorem
(Takens, 1981), creating state-space reconstructions from lagged
time series. The dimensionality of the state space and prediction
time lags between biomass and other variables were determined as
the ones that maximize prediction skill (Ye et al., 2015). A causal
connection was then inferred from the information embedded in
the response variable (i.c., biomass) that leads to higher prediction
skills with an increasing length of the time series (library size used in
the reconstruction of the manifold). Prediction skills produced by
causal variables were expected to be higher than regular cross
correlation between the two variables (Bonotto et al., 2022). This
method was implemented using the R package tEDM (v1.9.3).

To avoid potential false causal implication resulting from
seasonality in two variables, we compared our analysis of the
observed data with outcomes using randomized seasonal time
series (Deyle et al, 2016). One thousand surrogate time series
were generated with a seasonal pattern based on the multi-year
monthly averages and adding randomly shuffled residuals to each
point. These surrogates were tested against biomass in CCM, and
the resulting prediction skills were obtained. By comparing those
with the prediction skill computed for the real data, the

confounding effect of seasonality was quantified.
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3 Results

3.1 Satellite imagery-derived biomass
estimates and gap filling

A strong seasonal pattern was apparent in our biomass data
(Figure S1, top panel). Notably, imagery (and derived biomass
estimates) was most limited during summer months because of
frequent cloud coverage during months with high humidity,
precipitation, and temperature (bottom panel in Figure S1; see
also O’Donnell and Schalles, 2016), which led to larger uncertainties
in the biomass estimates during peak season. Additionally,
interannual differences in biomass led to larger variability during
periods of substantial growth or decay (spring green-up and fall
senescence), contributing to larger uncertainties during those parts
of the year.

The different gap-filling methods for the monthly biomass data
showed similar performance. ARIMA/Kalman petformed best
when data gaps were small, but yielded the lowest accuracy when
the number of missing data points was high (i.e. > 50%) (Iigure S2).
The two non-traditional temporal interpolation methods,
inpainting and kriging, with years and time of year as major axes,
performed comparably to or better than the ARIMA/Kalman
approach, depending on the amount of missing data. Both yielded
similar results and produced realistic seasonal peaks. Given the
similar gap-filling performance, datasets filled by kriging were used
in this study because of its statistical basis and more extensive
literature support than inpainting (Shtiliyanova et al.,, 2017).

Monthly averaged biomass ranged from 254 g/m?2 to 2650 g/m2,
and gap-filling could trecover missing peaks in biomass data
(Figure 2). The largest gap between the end of 2011 and Spring
2013 was caused by the interval between the end of Landsat 5 and

the start of L.andsat 8 operations.

3.2 Observed temporal patterns

We used both wavelet analysis and EEMD to identify
periodicities in the data. As described below, these yielded
similar results.

Wavelet analysis of biomass identified significant periodicity at
the episodic (0-4 mo), multi-month (4-8 mo), annual (8-16 mo),
and multi-year (64-128 mo) scales (Iigure 3A). At the sub-annual
scale (0-8 mo), intermittent signals of short duration were observed
between the late 1980s and late 1990s. There was a strong annual
band between 1984 and 2009, after which the annual periodicity
became weaker for the remainder of the time series (Figure 3A).
Multi-year signals were apparent for the period of 1995-2006 (the
only years not influenced by edge effects at these long petiods).
Similar patterns were observed using EEMD, with sub-annual
cycles captured in IMF 1, the dominant annual cycle captured in
IMFs 2 and 3, and the multi-year signal in IMF 5, with the rest of the
IMFs contributing less to the signal (Figure 4, left). The EEMD
residuals (original signal with all the modes subtracted) showed an
overall increase of biomass over time, in particular prior to 2000

(Figure 4, top right).
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FIGURE 2

Monthly biomass estimates (black dots) and gap-filled data set using
kriging (blue line). The red shaded area shows the gap between the
operation of Landsat 5 and 8.

Monthly precipitation on Sapelo Island showed annual
patterns, but the signal was discontinuous throughout the time
series (Iigure 3B). It also showed multiple intermittent episodic
(i.e., <4 months) signals. EEMD of precipitation also showed these
high frequency signals, with the largest signal contributions by
intrinsic modes 1 and 2 (Figure 4, left). In line with the absence of
low frequency signals in the wavelet analysis, intrinsic modes

representing variations over longer timescales made a small

contribution to the observed precipitation signal (Iigures 4, S5 left).
Air temperature showed the expected strong and consistent
annual pattern (Figure 3C). Additionally, signals with longer
periodicities (i.e., >1 year) were weaker than the average signal
intensities observed in other variables. This pure seasonality was
also evident in the EEMD with a dominant IMF2 that exhibited a
minimal difference between maximum and average range, and the
remaining IMFs contributing considerably less to the observed
temperature signal (Figures 4, S4 right). The EEMD residual
showed an increasing trend of approximately 2°C over 35 years
(Figure 4, right).

River discharge showed time-frequency patterns similar to
precipitation, but with a stronger annual signal and some
discontinuous sub-annual signals (Iigure 3D); this pattern was
also apparent in the larger amplitudes in IMFs 1, 2 and 3
(Figure 4, left). Discharge also showed higher power at lower
frequencies (Figure 3DD) compared to precipitation.

Annual and sub-annual periodicities in sea level wete identified
by both CWT and EEMD (Figures 3L, 4); however, these
periodicities were intermittent, and most pronounced in 2000 -
2013. The residual in the EEMD analysis revealed the rising trend in
sea level during the study period of approximately 0.15 m over the
last 3 decades (I'igure 4, right). Additionally, CWT for NOAA tidal
projections showed high seasonality (Iigure S3).

The drought index showed periodicities on the order of 8-20
months in the wavelet analysis from the 1980s until around 2000
(Figure 35). In the second half of the time series a shift to a longer
period (~5 yr) was observed. EEMD also demonstrated the slower
variations of the drought index. It revealed a shift to longer period
signals in the second half of the data set with decreased amplitude in
IMF2 and increased contributions of IMFs 4 and 5 (Figure 3, S6
right). Additionally, the long-term trend showed intensifying
drought conditions until the mid-2000s, which aligned with the
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decrease in precipitation and continuous increase in temperature as
underlying variables (I'igure 4, right). This alighment between
environmental variables might have a synergistic effect on
biomass; however, since our methods do not consider combined
impact of variables on biomass, we could not quantify such effects.
Both riverine NO, and PO

intermittent seasonality and sub-annual signals (I'igures 3G, H),

concentrations showed

which resulted in larger differences between maximum and average

ranges of modes 1 and 2 (IMigures 4, S7).

3.3 Coherence of biomass with
environmental variables

To compare the patterns in hydrological, climatic and nutrient
variables with those in the biomass, we analyzed the coherence of
their respective wavelets.

The strongest coherence between biomass and precipitation
occurred in the annual band, reflecting the seasonality of both
biomass and precipitation. Coherence was not persistent over time,
and the two variables were mostly in phase (I'igure 5A).

Temperature and biomass showed coherence in the annual
band, which was significant for the period 1984-2014 and weaker
afterwards (Iigure 5B). Phase differences were around 0-3 months,
with temperature leading biomass. This in-phase relationship
reflected the strong seasonality in both signals, as increases and
decreases were aligned. Additionally, longer term signals showed
coherence around the 8-year period with a 6.5-year lag between
temperature and biomass which was partially affected by the cone
of influence.

The wavelet coherence of river discharge with biomass was high
in the annual band, with most of the significant values between
1984-2016 (Figure 5C). The approximately 6-month lag between
discharge and biomass is consistent with the observation that river
discharge peaks in early spring and biomass peaks in early fall. After
2008, multi-year patterns (i.e., 3-6 years) of river discharge
correlated with biomass, with discharge leading biomass by
several months. Note though that the multi-year coherence is
affected by the cone of influence and hence has limited support.

Coherence of sea level with biomass showed roughly in-phase
annual patterns (Figure 5D). From 1984-2001, sea level showed
coherence with biomass in longer period signals (~3 years). In these
regions, sea level led biomass by approximately 2 years.

Drought index and biomass did not show an annual band in
wavelet coherence (Figure 5E). The only significant patterns
occurred during a 5-year period around 2009 in which PDSI led
biomass by less than a year, suggesting that a wet (dry) fall period
was followed by high (low) biomass the next year. The drought
index was also strongly coherent and in-phase with river discharge
over longer periodicities (not shown).

Nutrients generally showed intermittent coherence with
biomass. NOy only had two intetpretable short significant zones
(annual and 5-year periods), only one of which was outside the cone
of influence. This was around the mid-1990s in the annual band,
where NOy led biomass by ~1.5 months. PQ) 3™ had three similar
zones in the annual band, with a slight out-of-phase relationship

frontiersin.org


https://doi.org/10.3389/fmars.2023.1130958
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/

Bic.e et al. 10.3389/fmars.2023.1130958
A Biomass B Precipitation
1984 1992 2000 2009 2017 1984 1992 2000 2009 2017
c Temperature D Discharge
L L EETARTNLY L IR B TR
I TS TERLMRRS e A SR |
7 A LR VAT L TIY [ 8
e ——
BT - - - -
_C o
=1 S ———
g e —
C& — 8 -
o~ T T T T = T T T T
E 198 1992 2000 2009 2017 1984 1992 2000 2009 2017
N
o E Sea Level F PDSI
o LNy w%k'm' : ‘ WA e
.q:.) ] ‘& " .'I'.W!‘l e ~N b . "" '
o _] b F T TR Eat e o Fa . ©
D. [q T ‘ » v - . - . ‘ P ™
- ' —_—
o - (3]
™ < 4 ™
_ ~ m— -
oo} — «
AN — Al
= T T T T i
o] — o]
Ao — A -
= T I I T = I T I I
1984 1992 2000 2009 2017 1984 1992 2000 2009 2017
Time (years)
FIGURE 3

CWT of biomass (A), precipitation (B), temperature (C), river discharge (D), sea level (E), drought index (F), NO, (G) and PO,> (H). Coloring indicates
the power of the spectra, with warmer colors indicating greater power of the signal at that time and frequency. Thick black lines indicate time-
frequency regions that show significance (95% confidence level). White lines indicate the cone of influence; values in the shaded areas outside the

line are prone to edge effects (Grinsted et al., 2004).

with biomass. After the mid-2000s, PO/~ showed out-of-phase

coherence with biomass around 3- and 5-year periods.

3.4 Causal connections

To assess if the observed coherences between environmental factors
and biomass are indicative of a causal connection, the time series
observations were analyzed using convergent cross mapping (CCM).

Results showed that for air temperature, river discharge, sea level,
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drought index and river nutrient concentrations, the prediction skill
both increased with increasing library size and exceeded their linear cross
correlation (Iigure 6). Thus, these variables were considered causal to
biomass. CCM for precipitation did not yield better prediction skill than
maximum lagged cross correlation (with up to 12 months of lag) and the
use of longer time series did not steadily improve the predictive power.
This indicated the lack of a causal connection.

Tests with surrogate signals were performed to investigate if the
apparent causal connections were a result of the inherent seasonal

cycles in most of the wvariables. The results indicated that
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temperature, river discharge, and sea level data performed
significantly better than their seasonal surrogates (p-value <0.05).
Similarly, and unsurprising given their weak annual bands
(Figures 5FE~-G), the causal connections identified from the
drought index and nutrients (NOy and PO4?") to biomass were
not due to seasonality. CCM for precipitation did not exhibit
prediction skills significantly better than its surrogate, which
further supported the lack of causal connection between
precipitation and biomass.
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4 Discussion

Aboveground biomass data exhibited strong seasonality and a
general increase over time (Figure 2). The decomposition of the
timeseries using EEMD pointed to a long-term trend characterized
by a substantial increase prior to 2007, with a plateau or slight
decrease thereafter (Iigure 4). Wavelet analysis also indicated
intermittent sub-annual as well as multi-year periodicities in the

above-ground biomass (I'igure 3A).
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Wavelet coherence for biomass with other variables: precipitation (A), temperature (B), discharge (C), sea level (D), PDSI (E), NO, (F) and PO,* (G).
Colors indicate the normalized wavelet coherence between two signals ranging from 1 (red, high correlation) to 0 (blue, low correlation) (Grinsted

etal.,

2004). Phase differences are indicated by arrows and increase from arrows pointing right (in phase, no phase difference) to arrows pointing left

(anti-phase, completely out of phase). Arrows pointing down (up) mean that the environmental variable is leading biomass with one fourth (three
fourth) of the period (i.e., 3 months or 9 months in the annual band). Black lines outline time-frequency couples that show significance (95%
confidence level) and white lines indicate the cone of influence where values outside the line are prone to edge effects.

4.1 Patterns in environmental variables and
their coherence with biomass

To put these observations into context, the patterns in
environmental factors potentially affecting plant growth are
identified and discussed, and then analyzed regarding their
correlation in time-frequency space with that of aboveground
biomass using wavelet coherence.

Short-term precipitation signals observed in CWT and captured

in the first intrinsic mode reflect the episodic nature of precipitation
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and fronts generated by storm events (Srock and Bosart, 2009). The
wavelet analysis did not reveal significant patterns at longer
timescales. However, previous studies have shown that southeastern
US precipitation depends on large-scale climate patterns such as the
North Atantic Oscillation, Bermuda High Index, El Nifio/Southern
Oscillation, and the Pacific Decadal Oscillation (Sheldon and Burd,
2014). Among these, the Bermuda High Index is most influential,
especially during drought events when it is negative, pointing to
westward migrating high pressure areas that block storm impact on

the east coast (Sheldon and Alber, 2013). However, important large-
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scale oscillations often vary intermittently over longer periods and
variable periodicities (e.g., the North Atlantic Oscillation; Markovic
and Koch, 2005) and hence may not appear as a consistent pattern in
the wavelet scalograms (Figure 3B).

Our analyses indicate an alignment of annual peaks in
precipitation and biomass (Figure 5A). This might reflect that
precipitation can be beneficial for biomass as it freshens the
marsh environment. Additionally, analysis of precipitation and
CO; fluxes in a salt marsh (Chu et al., 2021) showed high wavelet
coherence in the annual band and revealed the importance of early

growing season precipitation. However, precipitation can also act as
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a stressor. For example, Hanson et al. (2016) have demonstrated the
effect of precipitation patterns by showing that S. alterniflora
biomass under ambient daily precipitation exceeded that
subjected to biweekly storms (with similar amount of total rain)
This

precipitation events is more important than total amount of

or drought conditions. indicates that the nature of
precipitation and therefore extreme events might weaken the
seasonal precipitation/biomass coherence.

The temperature signal was strongly and consistently seasonal
(Figure 3C) and EEMD showed an increase of approximately 2°C

over 35 years (Figure 4, right). This is consistent with long-term
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warming in the state of Georgia of approximately 3°F since the late
1970s and an overall trend of the Georgia coast warming faster than
the state as a whole (Frankson et al., 2022; U.S. EPA, 2022).

Biomass peaks aligned with the temperature peaks, reflecting
both of their seasonal cycles. Both biomass and temperature also
exhibited an increase over the study period, which suggests a
positive relationship between temperature and plant growth.
However, the long-term trend in the biomass data indicated a
maximum around 2008 while temperatures continue to rise
(Figure 4). This points to a potential decoupling between these
two variables, which can also be seen in the lower power of the
wavelet coherence in the annual band after 2015 (Figure 5B). A
positive relationship between temperature and plant aboveground
biomass may not persist if temperatures increase to levels that
decrease plant productivity (35°C, Giurgevich and Dunn, 1979).
Such negative impacts are more likely to occur in more productive
southern salt marshes studied here, which are closer to their
optimum temperatures than northern Atlantic coast marshes
(Kirwan et al., 2009).

Discharge showed both annual and longer-term patterns. The
annual patterns reflected the historical spring maximum (Alber and
Sheldon, 1999). Over longer time scales, there was a drop in
discharge between 2000 and 2012 (Figure 4, right). This may
reflect the potential combined impact of climatic and
anthropogenic changes (Takagi ct al., 2017). We observed higher
power in lower frequency signals for river discharge compared to
precipitation (Figures 3B=D). This is likely due to the fact that river
discharge captures and integrates local effects across the entire
watershed, whereas our precipitation data was from a single
station on the coast of Georgia. Furthermore, seasonality in
evapotranspiration rates may decouple precipitation and
discharge on sub-annual timescales.

Coherence of biomass and river discharge shows that with some
lag, an increase in discharge leads to an increase in biomass. This
can be explained by the effect of discharge on estuarine mixing and
the salinity and chemical composition of water that floods the
intertidal marshes. The salinity of this water is mainly controlled by
the Altamaha River which causes freshening of this estuarine system
when discharge is increased (Di lorio and Castelao, 2013).
Consequently, it also affects the porewater salinity, which is an
important driver of S. alterniflora production (Odum, 1988; Wieski
and Pennings, 2014; Miklesh and Meile, 2018). This aligns well with
the observed stronger coherence of biomass with discharge than
with precipitation.

Sea level showed annual and sub-annual signals as well as longer-
term trends. Much of the annual and sub-annual signals in sea level
can be attributed to tides (e.g., perigean spring tides), which can be
seen by comparing the analyses of sea level with/without removal of
the projected tides (Iigures S3, 31Y). However, discontinuities in
significance levels in these bands indicate cases where discrete
weather events overwhelmed tidal effects. For example, Andres
et al. (2013) have shown that local forcings such as along-shelf
wind stress caused interannual variability in sea level along the US
cast coast. These types of local forcings are highly variable; therefore,
they manifest themselves as intermittent pulses and disturbances in

the time series, but do not generate persistent signals in the
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scalograms. The long-term increase in sea level indicated by the
EEMD residual was 0.15 m over the last 3 decades (Figure 4; i.e., 5
mm/yeat) which was comparable to the increase of 3.3 mm/year from
1983 to 2001 reported by Sweet et al. (2022) and showed acceleration
in the last 2 decades.

Sea level had considerable seasonal, close to in-phase coherence
with biomass, indicating that biomass increases with increased sea
level. This positive impact of sea level was reported in previous
studies (Wieski and Pennings, 2014; O’Donnell and Schalles, 2016);
however, this effect was shown to be sensitive to depth and duration
of the flooding and can reverse in the long run with certain
thresholds exceeded (Morris et al., 2013). This implication was
also similar to the findings of Wei et al. (2020), who have shown
lagged seasonal and multi-day coherence of tide height and CO;
fluxes in a salt marsh, and Souza et al. (2022) who documented both
in and out of phase coherence between water level and CO; fluxes
on semi-diurnal (in phase) and multi-day (out of phase) timescales.
Our analysis also revealed long period coherences of biomass with
temperature (~ 8 years) and sea level (~3-4 years), with lags on the
order of >0 years for temperature and approximately 2 years for sea
level (Figure 5). These lags are long compared to the Spartina
growth cycle and therefore may not reflect biological interactions
with biomass.

Periodicities in the drought index shifted from shorter (8-20
months) to longer (5 yr) around 2000. This may reflect recurring
extended drought periods, which decreased the impact of seasonality
in the PDSI signal (Figure 3; Figure 4, IMFs 4,5). Long-term patterns
in drought and river discharge were similar, highlighting their
regional and integrative nature (Iigure 3). The correlation between
biomass and PDSI as reflected in their wavelet coherence points to the
potential impact of droughts. Droughts are known to be associated
with large-scale dieback (Alber et al., 2008), and there have been
several such events on the GA coast since 2000. Such effects may not
be immediate but propagate through feedbacks between above- and
below-ground biomass which are tightly connected (Schubauer and
Hopkinson, 1984; O’Connell et al., 2021). Note that size-class
partitioning of central Georgia Spartina alterniflora (O’Donnell and
Schalles, 20106; Zinnert et al., 2021) showed that high-marsh, short
form Spartina (canopy < 50 cm) and mid-marsh medium form
(canopy 50 = 100 cm) had less resistance to drought-induced biomass
declines than low-marsh tall form (canopy > 100 cm) during the 5-yr
severe drought event centered around 2000. The shorter forms of
Spartina live in naturally stressed, higher pore water salinity areas of
the elevation-graded marsh platforms and have lower average above-
and below-ground biomass.

Nutrient concentrations in the Altamaha River are affected by
increasing  anthropogenic inputs resulting from agriculture,
livestock, and changes in population density modulated by in-
stream processes (i.e., biological/benthic uptake/release, ad-/de-
sorption, precipitation/dissolution, dilution) (Schacfer and Alber,
2007; Takagi et al., 2017). Nutrient concentrations were not highly
sensitive to discharge (NO; : non-significant, DIP: slightly negative
significant  relationship between discharge and concentration)
(Takagi et al., 2017). This could explain the weaker annual band
in nutrients compared to discharge (Iigure 3). Under drought

conditions, shott-term nutrient pulses can occur when storms/
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heavy rains cause flushing of retained nutrients from the terrestrial
environment before it is diluted by a high flow event afterwards
(Figure 4, left, IMFs 1 and 2; Whitchead et al., 2009).

Nutrients showed intermittent coherence patterns with biomass
mostly similar to coherence patterns of PDSI and discharge.
However, differences in phase lags point to differences in

underlying processes (Iigure 5).

4.2 Causality

The causal relationships identified in this study generally align
well with observed coherences between environmental variables
and saltmarsh biomass described above. Analyses showed that
temperature, sea level, discharge, drought, and nutrients were
causal to biomass while local precipitation was not.

Regression analyses from previous studies are consistent
with our findings. Wieski and Pennings (2014), working with
annual data between 2000 and 2011, showed that river discharge
and sea level best predict salt marsh productivity in salt marshes
around the Altamaha River estuary. This is likely due to their
impacts on porewater salinity and plant stress, which can be the
potential mechanism for the causal connection that we observed
in CCM for river discharge and sea level. In this analysis
precipitation had only limited
O’Donnell Schalles  (2016)
based on an analysis of Landsat 5 data between 1984 and 2011.

correlation  with  production.

and came to similar conclusions
They found that river discharge, total precipitation, minimum
temperature, and mean sea level were important predictors of
aboveground Spartina alterniflora on the Central Georgia Coast.
This generally agrees with our finding except for precipitation.
Although we observed a temporary seasonal coherence with
biomass, a causal relationship was not supported by our
analysis. Additionally, PDSI was reported as a predictor in
combination with other variables only during limited time
periods; our results suggest that drought index is indeed causal
to biomass. It has been suggested that the effect of drought on
biomass can be through biogeochemical factors (salinity, pH,
Alber et al., 2008) and can also intensify ecological controls (e.g.,
al., 2005). We note

coherence between the biomass and drought is only strong

grazing pressure, Silliman et that the

during the second half of the observational period when
drought conditions lasted longer, potentially suggesting that
there is a minimum duration required to impact the

marsh vegetation.

Spartina alterniflora has been shown to be sensitive to N supply
(Morris et al.,, 2013). Although N is the main limiting nutrient in
salt marsh ecosystems, P can also be limiting, as low PO
availability can restrict nutrient replenishment by microbial
organisms, in turn impacting carbon fixation in marsh plants
(Sundareshwar et al., 2003; Rolando et al., 2022). Supporting
these findings, our analysis showed that both nutrients are causal
to salt marsh biomass. However, nutrient concentrations on the
marsh will differ from those measured at the monitoring station in
the freshwater reaches of the Altamaha due to mixing with oceanic

water, in-stream processing of nutrients, and local sources and sinks

Frontiers in Marine Science

10.3389/fmars.2023.1130958

such as those due to nitrogen fixation, nitrogen uptake and
denitrification. Considering dilution of riverine nutrients resulted
in different causal strength values but still shows the causal
connections of nutrients to the marsh biomass (Figure S10).
Additionally, the causality of the nutrients was sensitive to the
gap-filling procedure for the biomass data (Figure S11). These
findings emphasize the need for more detailed experimental
studies of the causal relationship between nutrients and biomass

beyond the analysis of time series.

5 Conclusion

Our work aimed to characterize complex time series from an
estuarine environment where seasonal patterns and non linearity
are key characteristics. It differed from autoregressive models and
neural networks (e.g., lim and Zohren, 2021) in that it focused on
pattern identification and causal inferences; and from linear
correlation and regression methods (e.g., Wu et al., 2015) in that
our approach accounted for the nonlinear and state-dependent
nature of causal relationships (Papagiannopoulou et al., 2017). We
successfully used kriging to fill gaps in time series with scasonality.
Using time series analysis methods only, we showed dominant
seasonal forcings and short- and long- frequency patterns
embedded in salt marsh aboveground biomass and relevant
abiotic variables; identified temporal lags between these patterns;
and identified variables that are causal to salt marsh biomass.
Longer-term trends revealed that increases in temperature and
sea level were accompanied by an increase in aboveground
biomass from 1984 through 2008.

Our results indicated that salt marsh biomass is coherent with
seasonal patterns in temperature and sea level with small- or no-
time lags but with longer lagged river discharge, reflecting the
natural annual rhythm of plant dynamics and hydrology. Some
environmental characteristics such as temperature and sea level also
showed coherence with biomass at long periods with multi-year
lags. Although such patterns could be spurious, they may well
reflect complex interactions, such as those between marsh
inundation, productivity, and biomass, with feedback between sea
level rise, marsh production, accretion, and mineral and organic
matter accumulation (e.g., Morris et al, 2013; Wieski and
Pennings, 2014).

The causal relationships identified in this study support previous
findings and align with observed coherences between aboveground
biomass and environmental variables (temperature, sea level, river
discharge, drought, and nutrients). We showed that causal
connections were not due to seasonality. Our work exemplifies the
use of long time series to discover known and new ecological

interactions in complex and highly seasonal natural systems.
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