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Temporal patterns and causal
drivers of aboveground plant
biomass in a coastal
wetland: Insights from
time-series analyses
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Merryl Alber 1 and Christof Meile 1*

1Department of Marine Sciences, University of Georgia, Athens, GA, United States, 2Department of 
Biology, Creighton University, Omaha, NE, United States

Salt marshes play a crucial role in coastal biogeochemical cycles and provide 
unique ecosystem services. Salt marsh biomass, which can strongly influence 
such services, varies over time in response to hydrologic conditions and other 
environmental drivers. We used gap-filled monthly observations of Spartina 
alterniflora aboveground biomass derived from Landsat 5 and Landsat 8 
satellite imagery from 1984-2018 to analyze temporal patterns in biomass in 
comparison to air temperature, precipitation, river discharge, nutrient input, sea 
level, and drought index for a southeastern US salt marsh. Wavelet analysis and 
ensemble empirical mode decomposition identified month to multi-year 
periodicities in both plant biomass and environmental drivers. Wavelet 
coherence detected cross-correlations between annual biomass cycles and 
precipitation, temperature, river discharge, nutrient concentrations (NOx and 
PO4

3–) and sea level. At longer periods we detected coherence between biomass 
and all variables except precipitation. Through empirical dynamic modeling we 
showed that temperature, river discharge, drought, sea level, and river nutrient 
concentrations were causally connected to salt marsh biomass and exceeded 
the confounding effect of seasonality. This study demonstrated the insights into 
biomass dynamics and causal connections that can be gained through the 
analysis of long-term data.

KEYWORDS
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1 Introduction

Salt marshes are the dominant intertidal habitat in the SE US and have important roles 
in carbon sequestration, the modulation of organic and inorganic nutrient supplies to the 
coastal ocean, and many additional ecosystem services (Mcleod et al., 2011; Mitsch and
Gosselink, 2015). These systems are highly productive, but their primary productivity –
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FIGURE 1 

Study site and environmental data sources. A - River Discharge 
(USGS Doctortown, Gauge 02226000); B River Nutrients (USGS 
near Gardi), C - Air Temp & Precipitation (NOAA Sapelo Island), D - 
Sea Level & Tidal Data (NOAA Fort Pulaski, Gauge 8670870), E 
PDSI (NOAA NCDC). Light blue is the contour of the HUC in which 
the biomass was quantified, the light green pixels are those 
identified as Spartina alterniflora. 

 

 

and the strength of the associated ecosystem services - can vary 
substantially among years, as reflected in 2-3-fold interannual 
variations in observed Spartina aboveground biomass (Więski 
and Pennings, 2014). As prior long term ecological studies 
reported, coastal marshes are sensitive to climate change (Reed 
et al., 2022). Therefore, with a changing climate and increases in 
temperature, drought frequency and severity, and sea level, the 
connections between these drivers and plant production are even 
more critical to understand, particularly since plant biomass and 
productivity are tightly linked to CO2 exchange with the 
atmosphere (Abdul-Aziz et al., 2018). 

Patterns of primary production in salt marshes can be 
correlated with climate and hydrologic variables (Odum, 1988). 
Using an extensive set of field observations, Więski & Pennings 
(2014) showed that over a 10-year period annual net primary 
production of Spartina alterniflora, the dominant plant species in 
salt marshes in the SE US, varied with nearby river discharge, 
precipitation, sea level, and air temperature. Changes in vegetation 
can also be captured using the spatially extensive observations from 
repeated satellite flyovers. O’Donnell and Schalles (2016) used 
Landsat 5 imagery and connected these to in situ measurements 
to successfully estimate salt marsh aboveground biomass. They 
found that peak fall biomass in Spartina marshes at and near Sapelo 
Island, Georgia estimated with Landsat 5 imagery captured between 
1984 and 2011 was correlated with river discharge, drought index, 
precipitation, and mean sea level. However, these studies do not 
address longer-term periodicities or causation. 

Identifying causal connections between abiotic conditions and 
ecosystem responses (Morris et al., 2002; Hanson et al., 2016; 
Crosby et al., 2017) can be challenging because of complex 
interactions and nonlinear or time-delayed relationships of 
climate variables and various ecosystem properties such as 
aboveground biomass (Feher et al., 2017). However, techniques 
such as convergent cross mapping can extract embedded causal 
connections from time series measurements that then may prompt 
further investigation in replicated experimental efforts. Along with 
that, wavelets and empirical mode decomposition can be used to 
identify periodicities in these complex systems. Moreover, 
subtracting shorter-term periodicities can reveal underlying long- 
term patterns. Although wavelets have been applied to investigate 
connections between tidal salt marshes and CO2 and CH4 fluxes (Li 
et al., 2018; Wei et al., 2020; Chu et al., 2021), this suite of 
techniques has not been used previously to evaluate decadal-scale 
patterns in salt marsh biomass and detect causal connections. 

In this study, we examined the temporal patterns in marsh plant 
biomass in a southeastern US salt marsh and its potential 
environmental drivers over 35 years (1984-2018). We first 
produced a continuous time series of aboveground biomass 
estimates, which involved comparing several methods of gap- 
filling. Second, we characterized the intrinsic temporal patterns of 
both biomass and potential environmental drivers with wavelets 
and empirical mode decomposition. As part of this, we were able to 
remove shorter periodicities and identify underlying long-term 
patterns. Third, we explored similarities in the variations of 
biomass and environmental parameters, as well as lags between 
them,  using  wavelet  coherence.  Lastly,  going  beyond  the 

identification of correlations and coherence of patterns, we 
identified potential causal connections between salt marsh 
biomass and environmental variables through empirical dynamic 
modeling, illustrating that the analysis of ecological timeseries can 
discover known (and potentially new) ecological interactions in 
complex natural systems such as coastal marshes. 

 

2 Methods 

2.1 Site description 
 

The Altamaha River is one of the largest freshwater sources to 
the Atlantic Ocean within the United States. It has a significant 
impact on the Georgia coast and forms a complex system of 
distributary channels, creeks, and intertidal areas (Di Iorio and 
Castelao, 2013). The Altamaha estuary experiences semidiurnal 
tides with an average amplitude of ~2 m; intrusion of saltwater is 
limited to approximately the lower 20 km of the river (Alber and 
Sheldon, 1999). The polyhaline portion of the estuary has extensive 
salt marshes dominated by Spartina alterniflora (Więski and 
Pennings, 2014). 

Our study encompassed S. alterniflora marshes located within 
the lower Altamaha tidal watershed (Figure 1; light blue), as 
delineated by the US Geological Survey HUC boundary (USGS 
HUC 03070106; see https://water.usgs.gov/GIS/huc.html) and an 
overlay of S. alterniflora communities (green shading) along the 
central Georgia coast. Recent digital mapping of Georgia’s coastal 
saltmarsh and brackish marsh at 2 m resolution (Alexander and 
Hladik, 2015) was resized using ENVI 5.3 (Harris L3Geospatial) to 
30 m resolution, in order to match the 30 m pixel resolution of the 
Landsat 5 imagery used in this study (Figure 1). Within the 
Altamaha tidal watershed, there are 43,847 pixels of S. 
alterniflora, 30 m in size, covering ~ 39.46 million m2 (3,946 ha). 
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2.2 Spartina alterniflora biomass data 

Spartina alterniflora aboveground biomass estimates were 
obtained from satellite images as described in O’Donnell and 
Schalles (2016). Briefly, the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) protocol for atmospheric 
correction of Landsat 5 and Landsat 8 images was used to estimate 
Spartina biomass in salt marshes within the study site. The nominal 
return rate for Landsat imagery is 16 days; however, two 
overlapping Landsat Path/Rows (16/38 and 17/38) cover the 
study area (O’Donnell and Schalles, 2016), providing two 
prospective scenes every 16 days. Many satellite images were 
discarded because of cloud coverage and tidal inundation, which 
obscured the canopy reflectance signals of coastal marshes. As 
described in O’Donnell and Schalles (2016), no images coinciding 
with a tidal inundation recording above 0.65 m relative to NAVD88 
at the Fort Pulaski gauge (NOAA station 8670870, the closest to the 
study site) (offset by +25 minutes) were used. 

 
 
2.3 Gap-filling 

 
The analyses used in this study require equally spaced timeseries. 

Therefore, from the available satellite imagery, monthly means of 
Spartina alterniflora aboveground biomass (g/m2) were calculated 
from the beginning of 1984 to the end of 2018. However, due to cloud 
coverage, inundation, and lack of Landsat data from late 2011 to early 
2013, the availability of suitable images varied widely. Over the 35- 
year observational period, there were a total of 227 missing monthly 
biomass estimates out of 420 months (193 existing data points), with 
data gaps ranging from 1 to 17 months. 

To establish a continuous time series of biomass at monthly 
resolution, we tested several gap-filling approaches including 
autoregressive integrated moving average (ARIMA) models, 
kriging, and inpainting. ARIMA models utilize autoregressive and 
moving average components of time series data to predict (Box 
et al., 2015) or gap-fill (e.g., Afrifa-Yamoah et al., 2020; Dorich et al., 
2020) time series. We used the R package imputeTS (v3.2), which 
seasonally decomposes time series, fits an ARIMA model to the time 
series, uses Kalman smoothing to fill the gaps, and then adds the 
seasonal component again (Moritz and Bartz-Beielstein, 2017). 
Kriging is a geostatistical approach commonly used for spatial 
interpolation (Li and Heap, 2008). As suggested by Knotters and 
Heuvelink (2010) and Lepot et al. (2017), this approach can be 
adapted to temporal interpolation such as predicting missing values 
in air temperature time series (Shtiliyanova et al., 2017). In this 
study, ordinary kriging was performed. Due to the strong 
seasonality in marsh aboveground biomass, the data were recast 
in two dimensions, with the time of year (i.e., month) as one axis 
and the calendar year of an observation as the second axis, similar to 
the approach of Walter et al. (2013). This 2D kriging method was 
implemented using the R package gstat (v2.0-9) (Pebesma, 2004). 
From the available variogram models the exponential model was 
selected as it produced the best fit for our biomass data. Since 
satellite data coverage was more complete during winter than 
summer months due to reduced cloud cover, the seasonal axis 

was set to start in January, ensuring that the regions of data gaps 
were well embedded into measured data. For the inpainting 
approach, we again separated the seasonal pattern from 
interannual long-term trends. Missing biomass values in the 2D 
month vs. year coordinates were in-filled by solving a boundary 
value problem for an elliptic partial differential equation. This was 
implemented using the MATLAB script inpaint_nans (their spring- 
metaphor method) by D'Errico (2022). 

The performance of gap-filling methods was assessed both 
quantitatively and qualitatively. The former was measured by the 
accuracy of predicting existing data points with bootstrapping using 
100 Monte Carlo realizations and computing prediction 
uncertainties by comparing modeled and observed data. The 
qualitative assessment focused on periods with long data gaps 
(such as the 17-month period between the last data from Landsat 
5 in November 2011 and the first data from Landsat 8 in March 
2013) where the lack of data constraints can lead to poor gap-fill 
performance. Reproducing seasonal patterns was also critical since 
late Summer/Fall season peaks in biomass are important metrics of 
salt marsh productivity (Visser et al., 2006; Kirwan et al., 2009). 

 
 
2.4 Environmental data 

 
Monthly records of air temperature, precipitation, sea level and 

Palmer Drought Severity Index (PDSI: high = wet; low = dry) for 
1984-2018 were obtained from the NOAA National Climatic Data 
Center (NCDC). Monthly mean air temperature and total 
precipitation data were acquired from the NOAA Sapelo station 
(Figure 1, Lawrimore et al., 2016). PDSI data were retrieved as a 
monthly time series for the Southeast Climatic Division (NOAA, 
2022). In contrast to the biomass data, these datasets have minimal 
gaps (~10%), which were gap-filled with kriging, as this was the 
method selected for gap-filling the biomass data (see Results). River 
discharge data for the Altamaha River were obtained from the 
USGS Doctortown station because it is the most downstream river 
gage that covers the time period of our study and provides an 
accurate measure of all of the water that enters the estuary (Figure 1, 
U.S. Geological Survey, 2016). Nutrient concentrations (NOx and 
PO 3–) were obtained from the USGS Altamaha River Near Gardi 
station which is approximately 30 miles upstream from the 
Altamaha Estuary (Figure 1, U.S. Geological Survey, 2016b). We 
used nutrient concentrations as a proxy for the composition of the 
water flooding the marsh to which the plants are exposed. The small 
number of missing values (<10%) in the nutrient dataset were also 
gap-filled by kriging. Monthly mean sea level data and tidal 
projections were obtained from the NOAA Fort Pulaski station 
(Figure 1; NOAA 2022a; NOAA 2022b). 

 
 
2.5 Wavelet analysis and 
wavelet coherence 

 
The continuous wavelet transform (CWT) was used to analyze 

the time series in time/frequency space. We selected Morlet 
wavelets for their balance of time and frequency localization and 
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facilitation of detection of time-dependent amplitude and phase 
(Lau and Weng, 1995; Grinsted et al., 2004). To investigate local 
correlations between CWTs of environmental variables and 
biomass, coherence patterns in time/frequency space were 
computed and phase shifts were quantified. Statistical significance 
of the results was estimated using Monte Carlo randomizations. 
Both wavelet and wavelet coherence analyses were implemented 
using the biwavelet (v0.20.21) R package (Grinsted et al., 2004). 

 
 
2.6 Empirical mode decomposition 

 
Ensemble empirical mode decomposition (EEMD) was used to 

decompose the time series into intrinsic mode functions (IMF) (Wu 
& Huang, 2009). This data-driven method analyzes nonlinear and 
nonstationary processes by breaking down complex time series into 
components that are based on the observed minima and maxima in 
the signal. By sequentially subtracting these modes from the original 
signal, the time series is effectively decomposed into signals of 
increasingly lower frequencies (modes). To address the issue of the 
occurrence of similar frequency signals in multiple modes (mode 
mixing), IMFs are computed as the ensemble average of multiple 
stochastic realizations of empirical mode decomposition (Huang 
et al., 1998), after addition of white noise to the original data. Noise 
was set to 20% of the standard deviation as suggested by Wu and 
Huang (2009), and the MATLAB implementation of Yang et al. 
(2018) was used with Z-score normalization. 

 
 
2.7 Convergent cross mapping 

 
To explore univariate causal connections between 

environmental variables and salt marsh biomass, we used 
convergent cross mapping (CCM; Sugihara et al., 2012). This 
empirical dynamic modeling approach builds on Takens’ theorem 
(Takens, 1981), creating state-space reconstructions from lagged 
time series. The dimensionality of the state space and prediction 
time lags between biomass and other variables were determined as 
the ones that maximize prediction skill (Ye et al., 2015). A causal 
connection was then inferred from the information embedded in 
the response variable (i.e., biomass) that leads to higher prediction 
skills with an increasing length of the time series (library size used in 
the reconstruction of the manifold). Prediction skills produced by 
causal variables were expected to be higher than regular cross 
correlation between the two variables (Bonotto et al., 2022). This 
method was implemented using the R package rEDM (v1.9.3). 

To avoid potential false causal implication resulting from 
seasonality in two variables, we compared our analysis of the 
observed data with outcomes using randomized seasonal time 
series (Deyle et al., 2016). One thousand surrogate time series 
were generated with a seasonal pattern based on the multi-year 
monthly averages and adding randomly shuffled residuals to each 
point. These surrogates were tested against biomass in CCM, and 
the resulting prediction skills were obtained. By comparing those 
with the prediction skill computed for the real data, the 
confounding effect of seasonality was quantified. 

3 Results 

3.1 Satellite imagery-derived biomass 
estimates and gap filling 

 
A strong seasonal pattern was apparent in our biomass data 

(Figure S1, top panel). Notably, imagery (and derived biomass 
estimates) was most limited during summer months because of 
frequent cloud coverage during months with high humidity, 
precipitation, and temperature (bottom panel in Figure S1; see 
also O’Donnell and Schalles, 2016), which led to larger uncertainties 
in the biomass estimates during peak season. Additionally, 
interannual differences in biomass led to larger variability during 
periods of substantial growth or decay (spring green-up and fall 
senescence), contributing to larger uncertainties during those parts 
of the year. 

The different gap-filling methods for the monthly biomass data 
showed similar performance. ARIMA/Kalman performed best 
when data gaps were small, but yielded the lowest accuracy when 
the number of missing data points was high (i.e. > 50%) (Figure S2). 
The two non-traditional temporal interpolation methods, 
inpainting and kriging, with years and time of year as major axes, 
performed comparably to or better than the ARIMA/Kalman 
approach, depending on the amount of missing data. Both yielded 
similar results and produced realistic seasonal peaks. Given the 
similar gap-filling performance, datasets filled by kriging were used 
in this study because of its statistical basis and more extensive 
literature support than inpainting (Shtiliyanova et al., 2017). 

Monthly averaged biomass ranged from 254 g/m2 to 2650 g/m2, 
and gap-filling could recover missing peaks in biomass data 
(Figure 2). The largest gap between the end of 2011 and Spring 
2013 was caused by the interval between the end of Landsat 5 and 
the start of Landsat 8 operations. 

 
3.2 Observed temporal patterns 

 
We used both wavelet analysis and EEMD to identify 

periodicities in the data. As described below, these yielded 
similar results. 

Wavelet analysis of biomass identified significant periodicity at 
the episodic (0-4 mo), multi-month (4-8 mo), annual (8-16 mo), 
and multi-year (64-128 mo) scales (Figure 3A). At the sub-annual 
scale (0-8 mo), intermittent signals of short duration were observed 
between the late 1980s and late 1990s. There was a strong annual 
band between 1984 and 2009, after which the annual periodicity 
became weaker for the remainder of the time series (Figure 3A). 
Multi-year signals were apparent for the period of 1995-2006 (the 
only years not influenced by edge effects at these long periods). 
Similar patterns were observed using EEMD, with sub-annual 
cycles captured in IMF 1, the dominant annual cycle captured in 
IMFs 2 and 3, and the multi-year signal in IMF 5, with the rest of the 
IMFs contributing less to the signal (Figure 4, left). The EEMD 
residuals (original signal with all the modes subtracted) showed an 
overall increase of biomass over time, in particular prior to 2000 
(Figure 4, top right). 
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decrease in precipitation and continuous increase in temperature as 
underlying variables (Figure 4, right). This alignment between 

environmental variables might have a synergistic effect on 
biomass; however, since our methods do not consider combined 

impact of variables on biomass, we could not quantify such effects. 
Both riverine NOx and PO43– concentrations showed 

intermittent seasonality and sub-annual signals (Figures 3G, H), 
which resulted in larger differences between maximum and average 

ranges of modes 1 and 2 (Figures 4, S7). 
 

 
3.3 Coherence of biomass with 
environmental variables 

 

 
Monthly precipitation on Sapelo Island showed annual 

patterns, but the signal was discontinuous throughout the time 
series (Figure 3B). It also showed multiple intermittent episodic 
(i.e., <4 months) signals. EEMD of precipitation also showed these 
high frequency signals, with the largest signal contributions by 
intrinsic modes 1 and 2 (Figure 4, left). In line with the absence of 
low frequency signals in the wavelet analysis, intrinsic modes 

representing variations over longer timescales made a small 
contribution to the observed precipitation signal (Figures 4, S5 left). 
Air temperature showed the expected strong and consistent 
annual pattern (Figure 3C). Additionally, signals with longer 

periodicities (i.e., >1 year) were weaker than the average signal 
intensities observed in other variables. This pure seasonality was 

also evident in the EEMD with a dominant IMF2 that exhibited a 
minimal difference between maximum and average range, and the 
remaining IMFs contributing considerably less to the observed 
temperature signal (Figures 4, S4 right). The EEMD residual 

showed an increasing trend of approximately 2°C over 35 years 
(Figure 4, right). 

River discharge showed time-frequency patterns similar to 
precipitation, but with a stronger annual signal and some 
discontinuous sub-annual signals (Figure 3D); this pattern was 
also apparent in the larger amplitudes in IMFs 1, 2 and 3 
(Figure 4, left). Discharge also showed higher power at lower 
frequencies (Figure 3D) compared to precipitation. 

Annual and sub-annual periodicities in sea level were identified 
by both CWT and EEMD (Figures 3E, 4); however, these 
periodicities were intermittent, and most pronounced in 2000 - 
2013. The residual in the EEMD analysis revealed the rising trend in 
sea level during the study period of approximately 0.15 m over the 
last 3 decades (Figure 4, right). Additionally, CWT for NOAA tidal 
projections showed high seasonality (Figure S3). 

The drought index showed periodicities on the order of 8-20 
months in the wavelet analysis from the 1980s until around 2000 
(Figure 3F). In the second half of the time series a shift to a longer 
period (~5 yr) was observed. EEMD also demonstrated the slower 
variations of the drought index. It revealed a shift to longer period 
signals in the second half of the data set with decreased amplitude in 
IMF2 and increased contributions of IMFs 4 and 5 (Figure 3, S6 
right). Additionally, the long-term trend showed intensifying 
drought conditions until the mid-2000s, which aligned with the 

To compare the patterns in hydrological, climatic and nutrient 
variables with those in the biomass, we analyzed the coherence of 
their respective wavelets. 

The strongest coherence between biomass and precipitation 
occurred in the annual band, reflecting the seasonality of both 
biomass and precipitation. Coherence was not persistent over time, 
and the two variables were mostly in phase (Figure 5A). 

Temperature and biomass showed coherence in the annual 
band, which was significant for the period 1984-2014 and weaker 
afterwards (Figure 5B). Phase differences were around 0-3 months, 
with temperature leading biomass. This in-phase relationship 
reflected the strong seasonality in both signals, as increases and 
decreases were aligned. Additionally, longer term signals showed 
coherence around the 8-year period with a 6.5-year lag between 
temperature and biomass which was partially affected by the cone 
of influence. 

The wavelet coherence of river discharge with biomass was high 
in the annual band, with most of the significant values between 
1984-2016 (Figure 5C). The approximately 6-month lag between 
discharge and biomass is consistent with the observation that river 
discharge peaks in early spring and biomass peaks in early fall. After 
2008, multi-year patterns (i.e., 3-6 years) of river discharge 
correlated with biomass, with discharge leading biomass by 
several months. Note though that the multi-year coherence is 
affected by the cone of influence and hence has limited support. 

Coherence of sea level with biomass showed roughly in-phase 
annual patterns (Figure 5D). From 1984-2001, sea level showed 
coherence with biomass in longer period signals (~3 years). In these 
regions, sea level led biomass by approximately 2 years. 

Drought index and biomass did not show an annual band in 
wavelet coherence (Figure 5E). The only significant patterns 
occurred during a 5-year period around 2009 in which PDSI led 
biomass by less than a year, suggesting that a wet (dry) fall period 
was followed by high (low) biomass the next year. The drought 
index was also strongly coherent and in-phase with river discharge 
over longer periodicities (not shown). 

Nutrients generally showed intermittent coherence with 
biomass. NOx only had two interpretable short significant zones 
(annual and 5-year periods), only one of which was outside the cone 
of influence. This was around the mid-1990s in the annual band, 
where NOx led biomass by ~1.5 months. PO 3– had three similar 
zones in the annual band, with a slight out-of-phase relationship 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 

Monthly biomass estimates (black dots) and gap-filled data set using 
kriging (blue line). The red shaded area shows the gap between the 
operation of Landsat 5 and 8. 
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with biomass. After the mid-2000s, PO 3– showed out-of-phase 
coherence with biomass around 3- and 5-year periods. 

 
 
3.4 Causal connections 

 
To assess if the observed coherences between environmental factors 

and biomass are indicative of a causal connection, the time series 
observations were analyzed using convergent cross mapping (CCM). 
Results showed that for air temperature, river discharge, sea level, 

drought index and river nutrient concentrations, the prediction skill 
both increased with increasing library size and exceeded their linear cross 
correlation (Figure 6). Thus, these variables were considered causal to 
biomass. CCM for precipitation did not yield better prediction skill than 
maximum lagged cross correlation (with up to 12 months of lag) and the 
use of longer time series did not steadily improve the predictive power. 
This indicated the lack of a causal connection. 

Tests with surrogate signals were performed to investigate if the 
apparent causal connections were a result of the inherent seasonal 
cycles in most of the variables. The results indicated that 

A B 

C D 

E F 

G H 

FIGURE 3 

CWT of biomass (A), precipitation (B), temperature (C), river discharge (D), sea level (E), drought index (F), NOx (G) and PO4
3– (H). Coloring indicates 

the power of the spectra, with warmer colors indicating greater power of the signal at that time and frequency. Thick black lines indicate time- 
frequency regions that show significance (95% confidence level). White lines indicate the cone of influence; values in the shaded areas outside the 
line are prone to edge effects (Grinsted et al., 2004). 
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FIGURE 4 

Relative amplitude and characteristic timescales of empirical modes derived from time series data for biomass, total monthly precipitation, 
temperature, river discharge, sea level, drought index and nutrients. Left column: frequency and amplitude of empirical modes. The radius of the 
circles reflects the average (red) and maximum (green) amplitude in each of the modes. Thus, large differences in the size of red and green circles 
indicate larger temporal variability of the signal strength in each mode, while for modes that exhibit a persistent signal over time, red and green 
circles are of similar size. The approximate signal frequency that defines the horizontal position of each mode is estimated by counting the number 
of maxima per observed period, which do not necessarily need to be equally spaced. Trends (right column) represent the residuals remaining after 
the subtraction of all IMFs from the original signal. 

 

temperature, river discharge, and sea level data performed 
significantly better than their seasonal surrogates (p-value <0.05). 
Similarly, and unsurprising given their weak annual bands 
(Figures 5E–G), the causal connections identified from the 
drought index and nutrients (NOx and PO 3–) to biomass were 
not due to seasonality. CCM for precipitation did not exhibit 
prediction skills significantly better than its surrogate, which 
further supported the lack of causal connection between 
precipitation and biomass. 

4 Discussion 

Aboveground biomass data exhibited strong seasonality and a 
general increase over time (Figure 2). The decomposition of the 
timeseries using EEMD pointed to a long-term trend characterized 
by a substantial increase prior to 2007, with a plateau or slight 
decrease thereafter (Figure 4). Wavelet analysis also indicated 
intermittent sub-annual as well as multi-year periodicities in the 
above-ground biomass (Figure 3A). 
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4.1 Patterns in environmental variables and 
their coherence with biomass 

To put these observations into context, the patterns in 
environmental factors potentially affecting plant growth are 
identified and discussed, and then analyzed regarding their 
correlation in time-frequency space with that of aboveground 
biomass using wavelet coherence. 

Short-term precipitation signals observed in CWT and captured 
in the first intrinsic mode reflect the episodic nature of precipitation 

and fronts generated by storm events (Srock and Bosart, 2009). The 
wavelet analysis did not reveal significant patterns at longer 
timescales. However, previous studies have shown that southeastern 
US precipitation depends on large-scale climate patterns such as the 
North Atlantic Oscillation, Bermuda High Index, El Niño/Southern 
Oscillation, and the Pacific Decadal Oscillation (Sheldon and Burd, 
2014). Among these, the Bermuda High Index is most influential, 
especially during drought events when it is negative, pointing to 
westward migrating high pressure areas that block storm impact on 
the east coast (Sheldon and Alber, 2013). However, important large- 

A B 

C D 

E F 

G 

FIGURE 5 

Wavelet coherence for biomass with other variables: precipitation (A), temperature (B), discharge (C), sea level (D), PDSI (E), NOx (F) and PO4
3– (G). 

Colors indicate the normalized wavelet coherence between two signals ranging from 1 (red, high correlation) to 0 (blue, low correlation) (Grinsted 
et al., 2004). Phase differences are indicated by arrows and increase from arrows pointing right (in phase, no phase difference) to arrows pointing left 
(anti-phase, completely out of phase). Arrows pointing down (up) mean that the environmental variable is leading biomass with one fourth (three 
fourth) of the period (i.e., 3 months or 9 months in the annual band). Black lines outline time-frequency couples that show significance (95% 
confidence level) and white lines indicate the cone of influence where values outside the line are prone to edge effects. 
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scale oscillations often vary intermittently over longer periods and 
variable periodicities (e.g., the North Atlantic Oscillation; Markovic 
and Koch, 2005) and hence may not appear as a consistent pattern in 
the wavelet scalograms (Figure 3B). 

Our analyses indicate an alignment of annual peaks in 
precipitation and biomass (Figure 5A). This might reflect that 
precipitation can be beneficial for biomass as it freshens the 
marsh environment. Additionally, analysis of precipitation and 
CO2 fluxes in a salt marsh (Chu et al., 2021) showed high wavelet 
coherence in the annual band and revealed the importance of early 
growing season precipitation. However, precipitation can also act as 

a stressor. For example, Hanson et al. (2016) have demonstrated the 
effect of precipitation patterns by showing that S. alterniflora 
biomass under ambient daily precipitation exceeded that 
subjected to biweekly storms (with similar amount of total rain) 
or drought conditions. This indicates that the nature of 
precipitation events is more important than total amount of 
precipitation and therefore extreme events might weaken the 
seasonal precipitation/biomass coherence. 

The temperature signal was strongly and consistently seasonal 
(Figure 3C) and EEMD showed an increase of approximately 2°C 
over 35 years (Figure 4, right). This is consistent with long-term 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6 

Convergent cross mapping results: real (red) and one instance of surrogate (blue) for each environmental variable (precipitation (A), temperature (B), 
discharge (C), sea level (D), PDSI (E), NOx (F) and PO4

3– (G)) vs biomass. Horizontal dashed black lines show the maximum cross correlation between 
the (time-shifted) environmental variable and biomass. Library size represents the length of the time series used in CCM. The prediction skill 
measures the strength of the connection between environmental variables and biomass. Zero or negative prediction skill indicates the lack of 
information about the dynamics of the environmental variable embedded in biomass (Sun et al., 2021). Boxes and whiskers show the range of 
prediction skill for surrogate data, interquartile range, median and outliers (significance tests comparing surrogate and observed data were run with 
full library size). 
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warming in the state of Georgia of approximately 3°F since the late 
1970s and an overall trend of the Georgia coast warming faster than 
the state as a whole (Frankson et al., 2022; U.S. EPA, 2022). 

Biomass peaks aligned with the temperature peaks, reflecting 
both of their seasonal cycles. Both biomass and temperature also 
exhibited an increase over the study period, which suggests a 
positive relationship between temperature and plant growth. 
However, the long-term trend in the biomass data indicated a 
maximum around 2008 while temperatures continue to rise 
(Figure 4). This points to a potential decoupling between these 
two variables, which can also be seen in the lower power of the 
wavelet coherence in the annual band after 2015 (Figure 5B). A 
positive relationship between temperature and plant aboveground 
biomass may not persist if temperatures increase to levels that 
decrease plant productivity (35°C, Giurgevich and Dunn, 1979). 
Such negative impacts are more likely to occur in more productive 
southern salt marshes studied here, which are closer to their 
optimum temperatures than northern Atlantic coast marshes 
(Kirwan et al., 2009). 

Discharge showed both annual and longer-term patterns. The 
annual patterns reflected the historical spring maximum (Alber and 
Sheldon, 1999). Over longer time scales, there was a drop in 
discharge between 2000 and 2012 (Figure 4, right). This may 
reflect the potential combined impact of climatic and 
anthropogenic changes (Takagi et al., 2017). We observed higher 
power in lower frequency signals for river discharge compared to 
precipitation (Figures 3B–D). This is likely due to the fact that river 
discharge captures and integrates local effects across the entire 
watershed, whereas our precipitation data was from a single 
station on the coast of Georgia. Furthermore, seasonality in 
evapotranspiration rates may decouple precipitation and 
discharge on sub-annual timescales. 

Coherence of biomass and river discharge shows that with some 
lag, an increase in discharge leads to an increase in biomass. This 
can be explained by the effect of discharge on estuarine mixing and 
the salinity and chemical composition of water that floods the 
intertidal marshes. The salinity of this water is mainly controlled by 
the Altamaha River which causes freshening of this estuarine system 
when discharge is increased (Di Iorio and Castelao, 2013). 
Consequently, it also affects the porewater salinity, which is an 
important driver of S. alterniflora production (Odum, 1988; Więski 
and Pennings, 2014; Miklesh and Meile, 2018). This aligns well with 
the observed stronger coherence of biomass with discharge than 
with precipitation. 

Sea level showed annual and sub-annual signals as well as longer- 
term trends. Much of the annual and sub-annual signals in sea level 
can be attributed to tides (e.g., perigean spring tides), which can be 
seen by comparing the analyses of sea level with/without removal of 
the projected tides (Figures S3, 3E). However, discontinuities in 
significance levels in these bands indicate cases where discrete 
weather events overwhelmed tidal effects. For example, Andres 
et al. (2013) have shown that local forcings such as along-shelf 
wind stress caused interannual variability in sea level along the US 
east coast. These types of local forcings are highly variable; therefore, 
they manifest themselves as intermittent pulses and disturbances in 
the time series, but do not generate persistent signals in the 

scalograms. The long-term increase in sea level indicated by the 
EEMD residual was 0.15 m over the last 3 decades (Figure 4; i.e., 5 
mm/year) which was comparable to the increase of 3.3 mm/year from 
1983 to 2001 reported by Sweet et al. (2022) and showed acceleration 
in the last 2 decades. 

Sea level had considerable seasonal, close to in-phase coherence 
with biomass, indicating that biomass increases with increased sea 
level. This positive impact of sea level was reported in previous 
studies (Więski and Pennings, 2014; O’Donnell and Schalles, 2016); 
however, this effect was shown to be sensitive to depth and duration 
of the flooding and can reverse in the long run with certain 
thresholds exceeded (Morris et al., 2013). This implication was 
also similar to the findings of Wei et al. (2020), who have shown 
lagged seasonal and multi-day coherence of tide height and CO2 
fluxes in a salt marsh, and Souza et al. (2022) who documented both 
in and out of phase coherence between water level and CO2 fluxes 
on semi-diurnal (in phase) and multi-day (out of phase) timescales. 
Our analysis also revealed long period coherences of biomass with 
temperature (~ 8 years) and sea level (~3-4 years), with lags on the 
order of >6 years for temperature and approximately 2 years for sea 
level (Figure 5). These lags are long compared to the Spartina 
growth cycle and therefore may not reflect biological interactions 
with biomass. 

Periodicities in the drought index shifted from shorter (8-20 
months) to longer (5 yr) around 2000. This may reflect recurring 
extended drought periods, which decreased the impact of seasonality 
in the PDSI signal (Figure 3; Figure 4, IMFs 4,5). Long-term patterns 
in drought and river discharge were similar, highlighting their 
regional and integrative nature (Figure 3). The correlation between 
biomass and PDSI as reflected in their wavelet coherence points to the 
potential impact of droughts. Droughts are known to be associated 
with large-scale dieback (Alber et al., 2008), and there have been 
several such events on the GA coast since 2000. Such effects may not 
be immediate but propagate through feedbacks between above- and 
below-ground biomass which are tightly connected (Schubauer and 
Hopkinson, 1984; O’Connell et al., 2021). Note that size-class 
partitioning of central Georgia Spartina alterniflora (O’Donnell and 
Schalles, 2016; Zinnert et al., 2021) showed that high-marsh, short 
form Spartina (canopy < 50 cm) and mid-marsh medium form 
(canopy 50 – 100 cm) had less resistance to drought-induced biomass 
declines than low-marsh tall form (canopy > 100 cm) during the 5-yr 
severe drought event centered around 2000. The shorter forms of 
Spartina live in naturally stressed, higher pore water salinity areas of 
the elevation-graded marsh platforms and have lower average above- 
and below-ground biomass. 

Nutrient concentrations in the Altamaha River are affected by 
increasing anthropogenic inputs resulting from agriculture, 
livestock, and changes in population density modulated by in- 
stream processes (i.e., biological/benthic uptake/release, ad-/de- 
sorption, precipitation/dissolution, dilution) (Schaefer and Alber, 
2007; Takagi et al., 2017). Nutrient concentrations were not highly 
sensitive to discharge (NO –: non-significant, DIP: slightly negative 
significant relationship between discharge and concentration) 
(Takagi et al., 2017). This could explain the weaker annual band 
in nutrients compared to discharge (Figure 3). Under drought 
conditions, short-term nutrient pulses can occur when storms/ 
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heavy rains cause flushing of retained nutrients from the terrestrial 
environment before it is diluted by a high flow event afterwards 
(Figure 4, left, IMFs 1 and 2; Whitehead et al., 2009). 

Nutrients showed intermittent coherence patterns with biomass 
mostly similar to coherence patterns of PDSI and discharge. 
However, differences in phase lags point to differences in 
underlying processes (Figure 5). 

 
 
4.2 Causality 

The causal relationships identified in this study generally align 
well with observed coherences between environmental variables 
and saltmarsh biomass described above. Analyses showed that 
temperature, sea level, discharge, drought, and nutrients were 
causal to biomass while local precipitation was not. 

Regression analyses from previous studies are consistent 
with our findings. Więski and Pennings (2014), working with 
annual data between 2000 and 2011, showed that river discharge 
and sea level best predict salt marsh productivity in salt marshes 
around the Altamaha River estuary. This is likely due to their 
impacts on porewater salinity and plant stress, which can be the 
potential mechanism for the causal connection that we observed 
in CCM for river discharge and sea level. In this analysis 
precipitation had only limited correlation with production. 
O’Donnell and Schalles (2016) came to similar conclusions 
based on an analysis of Landsat 5 data between 1984 and 2011. 
They found that river discharge, total precipitation, minimum 
temperature, and mean sea level were important predictors of 
aboveground Spartina alterniflora on the Central Georgia Coast. 
This generally agrees with our finding except for precipitation. 
Although we observed a temporary seasonal coherence with 
biomass, a causal relationship was not supported by our 
analysis. Additionally, PDSI was reported as a predictor in 
combination with other variables only during limited time 
periods; our results suggest that drought index is indeed causal 
to biomass. It has been suggested that the effect of drought on 
biomass can be through biogeochemical factors (salinity, pH, 
Alber et al., 2008) and can also intensify ecological controls (e.g., 
grazing pressure, Silliman et al., 2005). We note that the 
coherence between the biomass and drought is only strong 
during the second half of the observational period when 
drought conditions lasted longer, potentially suggesting that 
there is a minimum duration required to impact the 
marsh vegetation. 

Spartina alterniflora has been shown to be sensitive to N supply 
(Morris et al., 2013). Although N is the main limiting nutrient in 
salt marsh ecosystems, P can also be limiting, as low PO43– 
availability can restrict nutrient replenishment by microbial 
organisms, in turn impacting carbon fixation in marsh plants 
(Sundareshwar et al., 2003; Rolando et al., 2022). Supporting 
these findings, our analysis showed that both nutrients are causal 
to salt marsh biomass. However, nutrient concentrations on the 
marsh will differ from those measured at the monitoring station in 
the freshwater reaches of the Altamaha due to mixing with oceanic 
water, in-stream processing of nutrients, and local sources and sinks 

such as those due to nitrogen fixation, nitrogen uptake and 
denitrification. Considering dilution of riverine nutrients resulted 
in different causal strength values but still shows the causal 
connections of nutrients to the marsh biomass (Figure S10). 
Additionally, the causality of the nutrients was sensitive to the 
gap-filling procedure for the biomass data (Figure S11). These 
findings emphasize the need for more detailed experimental 
studies of the causal relationship between nutrients and biomass 
beyond the analysis of time series. 

 
 

5 Conclusion 

Our work aimed to characterize complex time series from an 
estuarine environment where seasonal patterns and non linearity 

are key characteristics. It differed from autoregressive models and 
neural networks (e.g., Lim and Zohren, 2021) in that it focused on 

pattern identification and causal inferences; and from linear 
correlation and regression methods (e.g., Wu et al., 2015) in that 

our approach accounted for the nonlinear and state-dependent 
nature of causal relationships (Papagiannopoulou et al., 2017). We 
successfully used kriging to fill gaps in time series with seasonality. 

Using time series analysis methods only, we showed dominant 
seasonal forcings and short- and long- frequency patterns 

embedded in salt marsh aboveground biomass and relevant 
abiotic variables; identified temporal lags between these patterns; 

and identified variables that are causal to salt marsh biomass. 
Longer-term trends revealed that increases in temperature and 
sea level were accompanied by an increase in aboveground 

biomass from 1984 through 2008. 
Our results indicated that salt marsh biomass is coherent with 

seasonal patterns in temperature and sea level with small- or no- 
time lags but with longer lagged river discharge, reflecting the 
natural annual rhythm of plant dynamics and hydrology. Some 
environmental characteristics such as temperature and sea level also 
showed coherence with biomass at long periods with multi-year 
lags. Although such patterns could be spurious, they may well 
reflect complex interactions, such as those between marsh 
inundation, productivity, and biomass, with feedback between sea 
level rise, marsh production, accretion, and mineral and organic 
matter accumulation (e.g., Morris et al., 2013; Więski and 
Pennings, 2014). 

The causal relationships identified in this study support previous 
findings and align with observed coherences between aboveground 
biomass and environmental variables (temperature, sea level, river 
discharge, drought, and nutrients). We showed that causal 
connections were not due to seasonality. Our work exemplifies the 
use of long time series to discover known and new ecological 
interactions in complex and highly seasonal natural systems. 
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