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Speech production is a complex human function requiring continuous feedforward
commands together with reafferent feedback processing. These processes are carried
out by distinct frontal and temporal cortical networks, but the degree and timing
of their recruitment and dynamics remain poorly understood. We present a deep
learning architecture that translates neural signals recorded directly from the cortex
to an interpretable representational space that can reconstruct speech. We leverage
learned decoding networks to disentangle feedforward vs. feedback processing. Unlike
prevailing models, we find a mixed cortical architecture in which frontal and temporal
networks each process both feedforward and feedback information in tandem. We
elucidate the timing of feedforward and feedback—related processing by quantifying
the derived receptive fields. Our approach provides evidence for a surprisingly mixed
cortical architecture of speech circuitry together with decoding advances that have
important implications for neural prosthetics.

speech production | auditory feedback | brain computer interface | electrocorticography |
speech motor control

The central sulcus divides the human frontal from the posterior temporal, parietal,
and occipital neocortices (1). Traditionally, this divide separates high-order planning
and motor execution from sensation. Feedforward execution lies in the frontal cortices
in contrast to feedback sensory processing across association cortices for the various
modalities (e.g., auditory, visual, somatosensory, etc.) (2). Higher-order capacities such
as working memory, cognitive control, and decision-making are often viewed as initiated
by frontal cortices with direct influence on sensory cortices (3-5).

Human higher-order cognitive functions include planning and executing complex
speech sequences that carry semantic and linguistic meaning (6, 7). Speech production
is a complex human motor behavior requiring precise coordination of multiple oral,
laryngeal, and respiratory muscles (8). These finely tuned motor actions then produce
reafferent feedback in the auditory, tactile, and proprioceptive domains as we process our
own speech.

Prevailing models in human speech motor control propose a feedforward system that
predicts and generates actions and a feedback system responding to the vocal auditory
and somatosensory effects (9—14). Across these models, there is a consensus that the two
systems are anatomically separated, with the feedforward system mainly supported by
ventral frontal cortices, while feedback processing is carried out across various sensory
cortices (e.g., Heschl’s and superior temporal gyri for auditory feedback). During speech
production, both these systems are engaged in producing articulatory motor movements
as well as perceiving the auditory (and somatosensory) feedback produced by our actions.
A major challenge in human neuroimaging of speech circuitry is dissociating neural
signatures that are due to the feedforward motor plan in contrast to feedback from
auditory processing as well as elucidating the exact dynamics of feedforward and feedback
engagement across peri-Sylvian cortex.

A growing literature has leveraged unique human electrocorticographic (ECoG)
recordings from patients undergoing neurosurgical procedures to obtain a combined
spatial and temporal resolution critical for investigating speech production. Studies have
detailed the signatures of feedforward speech planning (15) and organization of execution
(16-18) in frontal cortices as well as the subsequent auditory feedback architecture
in temporal cortices (18-21). Recently, deep neural network approaches have been
developed to decode speech represented in auditory (22-25) and sensorimotor (26, 27)
cortices from ECoG recordings. Nevertheless, these approaches have not been able to
disentangle feedforward and feedback contributions during speech production as the
motor and sensory responses co-occur.
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Fig. 1.

Speech decoding framework. (A) The overall structure of the decoding pipeline. ECoG amplitude signals are extracted in the high gamma range (i.e.,

70-150 Hz). The ECoG Decoder translates neural signals from the electrode array to a set of speech parameters. This parameter representation is used to drive
a speech synthesizer which creates a spectrogram (and associated waveform). (B) lllustration of causal versus anticausal neural decoding, which is leveraged
to disentangle feedforward and feedback contributions. In order to reconstruct a speech timestamp, the causal model only uses feedforward neural signals in
the past (blue), whereas the anticausal model only uses the neural signals that occur after the timestamp (red). The noncausal model is allowed to use both

past and future neural signals to decode the current timestamp.

We directly disentangle feedback and feedforward processing
during speech production by applying a deep learning archi-
tecture on human neurosurgical recordings to decode speech
(Fig. 1A; Materials and Methods, Visualizing Spatial Contribution
Map). Our approach decodes interpretable speech parameters
from cortical signals, which drives a rule-based differentiable
speech synthesizer. By learning neural network architectures
which apply causal (predicting using only the past), anticausal
(predicting using the future feedback), or both (noncausal),
temporal convolutions (Fig. 1B), we are able to analyze the overall
feedforward and feedback contributions, respectively, as well as
to elucidate the temporal receptive fields of recruited cortical
regions. This approach allows us to operationalize feedforward
contributions related to the motor plan with our causal models.
The feedback contributions related to hearing auditory feedback
are operationalized with our anticausal models. In contrast to
current views that separate feedback and feedforward cortical
networks, our analyses reveal a surprisingly mixed architec-
ture of feedback and feedforward processing both in frontal
and temporal cortices while achieving superb speech decoding
performance.

Results

A major challenge in speech production research is dissociating
neural signatures that are feedforward, or motor in nature, rather
than auditory and somatosensory feedback produced by speech
articulation. Given that these neural signals co-occur, we chose to
disentangle their contributions by leveraging deep neural network
architectures (i.e., Speech Decoding, Fig. 14) that can decode
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speech acoustics from the neural responses in different temporal
directions (i.e., feedforward and feedback, Fig. 1B; Materials and
Methods, Speech Decoding Framework). We leverage neurosurgical
ECoG data obtained from five participants who took part in a
battery of tasks: Auditory Repetition (AR), Auditory Naming
(AN), Sentence Completion (SC), Word Reading (WR), and
Picture Naming (PN). These were designed to elicit the same set
of spoken words across tasks while varying the stimulus modality
(28) and provided 50 repeated unique words (400800 total trials
per participant), all of which were analyzed locked to the onset
of speech production.

Robust Speech Decoding from Neural Signals. We first demon-
strate that our neural network approach produces accurate speech
decoding with detailed acoustic features. The model’s decoded
spectrogram preserves the spectro-temporal structure of the
original speech. It reconstructs both vowels and consonants (Fig.
2A) as well as the overall spectral energy distribution (S/ Appendix,
Fig. S1). These acoustic details result in a reconstruction that
preserves the speakers’ timbre (Movies S1 and S2) and leads
to naturalistic voice decoding. Our model’s speech parameters
which include loudness, formant frequency, and the mixing
parameter (i.e., the relative weighting between voiced and
unvoiced components) are decoded accurately with the correct
temporal alignment of each word onset and offset (Fig. 2 B
and C). The overall accuracy of the fundamental frequency (i.e.,
pitch), the first two modeled formants (i.e., F1 and F2), and
the transition between voiced and unvoiced sounds are a major
driving force for accurate speech decoding as well as naturalistic
reconstruction that mimics the patient’s voice.

pnas.org
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Fig. 2. Comparison of original and decoded speech produced by the model. (4) Spectrograms of decoded (Left) and original (Right) speech exemplar words.
(B) Decoded loudness parameter with the voiced (mostly vowel) or unvoiced (mostly consonant) mixing parameter color-coded over the loudness curves. The
same color spread and amplitude trend between decoded (dashed) and reference (solid) curves reflect accurate decoding of voiced and unvoiced phonemes
with correct energy and temporal alignment. (C) Frequencies of the first two formants (F1, F2) and the pitch (F0). The matching between decoded (dashed)
curves and reference (solid) curves in both frequencies during each phoneme and the overall temporal dynamic leads to intelligible and naturalistic decoding
of voiced sounds. (D) Evaluation of the decoded speech quality in objective metrics. The correlation coefficient of spectrograms (CC, Left), short-time objective
intelligibility (STOI, Middle), and Mel cepstral distortion (MCD, Right) is used for the evaluation. Note that lower MCD values represent better performance.
Both the reconstructed speech from the speech autoencoder (yellow) and the speech decoded by the ECoG decoder (green) are reported. Additionally, the
performance of a model trained on shuffled data (trained by matching the decoded spectrogram from the neural signal in a given duration to a randomly
selected segment of spectrograms during the entire recording session) is also reported as a control. (F) Comparison of the CC metric among noncausal (green),
causal (blue), and anticausal (red) models. Compared to the shuffled model (the same shuffled model as in D), the comparable performance across noncausal,
causal, and anticausal models demonstrates sufficient information for decoding speech from both feedforward and feedback signals during speech production.
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In order to evaluate the performance and quality of speech,
we used several objective metrics, including the correlation
coefficient (CC) between the decoded spectrogram and actually
produced speech (23, 29, 30), an objective measure for speech
intelligibility known as the Short-Time Objective Intelligibility
(STOI) (23, 31), and a measure of spectral distortion, Mel-
cepstral distortion (MCD) (26, 32). Across all participants and
metrics, our neural decoding results performed well above chance
(Fig. 2D in gray; estimated using shuffled data; Marerials and
Methods, Visualizing Spatial Contribution Map) and approached
an upper bound of performance based on the unsupervised
autoencoder (i.e., speech-to-speech) which did not use neural
data. In order to verify that our model can generalize well
to unseen words, we also performed stricter cross-validation
providing a similar performance (S Appendix, Fig. S7). The
performance range across metrics and our participants were equal
to and often better than the current literature (23, 26, 29, 30).
Critically, all these models represent the noncausal case (Fig. 2D)
that uses data both from the past (feedforward) and the future
(feedback), as is currently a common practice (22, 23, 26, 29, 33)
except a few nominal models (30).

In order to directly assess the performance of the causal
(predicting using only the past) and anticausal (predicting
using the future feedback) models and compare them with the
noncausal (using past and future) model, which is standard in
the field, we trained three separate models varying the temporal
convolution direction. Our results (Fig. 2E) show a slight
decrease in performance with the causal model. However, it
performs close to the other models while providing a causal
interpretation, which only uses past signals to predict future
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speech. This is encouraging, as it suggests that, with additional
improvement in the decoder design and training, it is possible to
design practically applicable neuroprosthetic speech synthesizers.
Also, comparable performance between causal, anticausal, and
noncausal approaches indicates a similar amount of information
contained by feedforward and feedback signals.

Feedforward and Feedback Cortical Contributions to Speech
Production Are Mixed. To elucidate the feedforward and feed-
back contribution of different cortical regions to speech produc-
tion, we examined the relative contribution of each electrode
to decoding speech in our models. We derived the relative
contribution by quantifying how the input signal at a par-
ticular electrode affects the overall accuracy (measured by the
CC) of the reconstructed speech in the causal and anticausal
models, respectively (Materials and Methods, Visualizing Spatial—
Temporal Contribution Receptive Fields). This analysis isolates
feedforward (i.e., causal) and feedback (i.e., anticausal) neural
activity contributing to the decoding from the entangled ECoG
neural signal, shown in Fig. 34. In both the causal and
anticausal models, peri-Sylvian electrodes were important for
speech decoding; however, there was surprising recruitment of
frontal regions when decoding speech based on the feedback
(anticausal model, Fig. 3B) as well as recruitment of temporal sites
when decoding speech based on the feedforward signals (causal
model, Fig. 3C). We only show significant contributions that are
above a threshold derived from the shuffled model (depicted in
Fig. 3D). In order to quantify the prevalence of feedforward or
feedback processing, we directly contrasted the two and projected
the results onto the cortex (Fig. 3F and SI Appendix, Fig. S5). To
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(A) Averaged signal of input ECoG projected on the standardized MNI anatomical map. The colors reflect the percentage change of high gamma (-250

to 750 ms relative to speech onset) during production compared to the baseline level during the prestimulus baseline period. Note that (B) shows the anticausal
contribution of different cortical locations (red indicates higher contribution), while (C) illustrates the causal contribution. (D) The noise level of the contribution
analysis was evaluated by the contributions from the shuffled model. Contributions below noise level are not shown in (B) and (C). (E) The contrast is obtained
by taking the difference between the anticausal and causal contribution maps (red means higher anticausal contribution, while blue means higher causal
contribution). The boxplots (F) show the average difference in each cortical region (*P-value < 0.05, **P-value < 0.01,***P-value < 0.001,****P-value < 0.0001).
For purposes of visualization, we normalize each electrode by the local grid density, since our ECoG grid has hybrid density. This removes the effect of

nonuniform density on the projected results (A-E).
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ascertain regions that contribute significantly more to feedback
or feedforward processing, we conducted a region of interest
analysis based on within-subject anatomical labels of each
electrode (Materials and Methods, Electrode Localization), testing
for an increase in causal or anticausal contributions across trials
(nonparametric paired Wilcoxon test; Fig. 3, as well as ANOVA
controlling for the subject as a random effect; SI Appendix,
Fig. §9). We found a surprisingly mixed distribution of causal
and anticausal contributions within both temporal and frontal
cortices. A majority of the temporal cortex was predominantly
anticausal, including the caudal superior temporal gyrus (STG;
Wilcoxon sign rank, P = 1.607E — 15, Z = 9.6234) and
portions of the middle temporal gyrus (MTG; rostral MTG:
Wilcoxon sign rank test P = 2.5108E — 04, Z = 4.9359, and
middle MTG: Wilcoxon sign rank test P = 1.5257F — 13,
Z = 9.0185) as well as supramarginal cortex (Wilcoxon sign
rank test P = 1.1144F — 04, Z = 5.3919), implicating it in
processing the auditory feedback signals for speech production.
However, there was also a significant causal contribution in
rostral STG (Wilcoxon sign rank test P = 0.0332, Z =
—2.9628). Similarly, the majority of the sensorimotor cortex
was predominantly causal, implicating it in processing the motor
speech commands, including ventral precentral (Wilcoxon sign
rank, P = 4.9511E — 08, Z = —7.1409) and postcentral gyri
(Wilcoxon sign rank, P = 6.419EF — 04, Z = —4.9612). How-
ever, the dorsal division of the precentral gyrus was equally causal
and anticausal (Wilcoxon sign rank, P = 0.4349, Z = 0.6525),
implicating it in processing both feedforward and feedback
information equally. Within the inferior frontal cortex, we found
a striking division of function wherein the pars opercularis was
significantly causal (Wilcoxon sign rank test, » = 8.0693E — 15,
Z = —9.6185) while the pars triangularis was significantly
anticausal (Wilcoxon sign rank test, P = 2.6715E — 006,
Z = 6.3518). Our results showed similar recruitment of the
cortex when we considered the normalized causal to anticausal
contribution of each individual electrode (57 Appendix, Fig. S2)
as well as when the contribution analysis was weighted by the
neural high gamma signal (57 Appendix, Fig. S6). Overall, these

findings provide evidence for a mixed feedforward and feedback

o >
causal causal
(during-production) (pre-production)
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Oms 64ms 128ms 192ms

processing of speech commands and their reafference across
temporal and frontal cortices, in contrast to a dichotomous view.

Temporal Dynamics and Receptive Fields of Speech Production.
Speech production includes articulatory planning and executing
the motor commands, processes that recruit distinct regions of
the frontal cortex (15). However, their exact temporal receptive
fields remain poorly understood. Earlier, we examined the causal
and anticausal cortical contributions during speech articulation.
Next, we examine articulatory planning and articulation of speech
production stages and derive the related temporal receptive fields
across the cortex. We leverage the receptive fields to test how
cortical regions contribute differently to speech decoding with
time and how frontal cortex dynamics change when feedback
is introduced (after articulation starts). Both feedforward and
feedback information are processed in tandem.

We employed a similar occlusion approach to derive the
temporal receptive fields as in the previous section. However,
we quantified how the input signal at a particular electrode
affects the accuracy of the reconstructed speech across varying
delays (Materials and Methods, Visualizing Spatial—Temporal Con-
tribution Receptive Fields). In brief, we employ the same trained
models (Figs. 2 and 3) but occlude neural signals at different time
points and quantify the change in speech decoding. We always
quantify speech-decoding changes during speech; however, the
neural signal occluded could be preproduction (e.g., premotor) or
during-production (e.g., motor). Importantly, we quantify these
contributions across all relative delays between the neural signal
and speech decoding (i.e., negative in the causal direction and
positive in the anticausal direction). This approach allowed us to
quantify the contribution of a specific electrode in the model as a
function of delay relative to speech decoding, similar to classical
temporal receptive fields (i.e., TRF). We conducted this analysis
for both the trained causal and anticausal models applied to data
during two epochs—one prior to production (—512 ms ~ 0 ms;
Fig. 44) and the other during production, which included both
causal and anticausal components (0 ms ~ 512 ms; Fig. 4 B and
C). The projection of all the temporal receptive fields onto the
cortex, which were significantly above a threshold derived from

o
o

decrease in cc

256ms 320ms 448ms

Fig. 4. Spatial-temporal receptive fields based on decoding contribution. The contribution to speech decoding from cortical neural responses as a function
of temporal delays. (A) The causal model is applied to preproduction data (=512 ms ~ 0) while occluding neural data and quantifying future speech decoding
across multiple delays (between neural occlusion and speech decoding). These feedforward spatial-temporal receptive fields quantify the contribution of past
neural signals, prior to production, to speech decoding (negative delays). (B) Similarly, the causal model is applied to during-production data (0 ~ 512 ms)
representing feedforward spatial-temporal receptive fields that quantify the contribution of past neural signals (during speech production) to speech decoding
(negative delays). (C) Representation of the feedback spatial-temporal receptive fields derived from the anticausal model that quantifies the contribution of
future (positive delays) neural signals during feedback in the during-production data (0 ~ 512 ms). These feedback receptive fields quantify the contribution of
future neural signals to (past) speech decoding (positive delays). Green boxes denote the temporal window closest to zero-lag. Contributions below significance
(P < 0.05) representing the noise level are clipped and not shown in the plots.
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the shuffled model, is plotted in Fig. 4 as a function of delay.
We found an increased frontal and MTG contribution prior
to production (Fig. 44) compared with during production (Fig.
4B). These processes are likely related to articulatory planning and
lexical retrieval prior to speech production. During production,
there was a prominent sharpening of ventral precentral gyrus
receptive fields marked by a significant increase in contribution
compared with preproduction (Wilcoxon sign rank test, P =
8.3979E — 05, Z = 5.4203). While a majority of prefrontal
regions engaged prior to production, there was a significant
decrease in contribution across pars triangularis (Wilcoxon sign
rank test, P = 1.8493F — 32, Z = —13.6074) and middle
frontal gyri (MFG; Wilcoxon sign rank test, P = 3.9177E — 09,
Z = —7.6103 for caudal and P = 4.1581F—04, Z = —4.8311
for rostral) except for pars opercularis (Wilcoxon sign rank test,
P = 0.4819, Z = 0.2060). Similarly, to our previous results
(Fig. 3 E and F), during production, we found a significant
increase in anticausal contribution for caudal STG (Wilcoxon
sign rank test, P = 2.6789E—17,Z = 9.6711), pars triangularis
(Wilcoxon sign rank test, P = 0.0162, Z = 3.9003), and
caudal MFG (Wilcoxon sign rank test, P = 0.0045, Z =
3.9862) compared with causal contributions. This confirms the
anatomical-functional division of the inferior and middle frontal
gyrias well as caudal (Wilcoxon sign rank test, P = 2.6789E—17,
Z = 9.6711) and rostral separation of STG (Wilcoxon sign rank
test, P = 0.0343, Z = —2.9457).

Next, we conducted a region of interest analysis, based on
within-subject anatomical labels of each electrode, in order to
derive the temporal receptive curves per region (Fig. 5). This
approach provides critical insight as to the temporal tuning and
peak recruitment of various regions to feedforward processing
prior to (Fig. 54) and during production (Fig. 5B) as well as
feedback processing (Fig. 5C). We found a shift in receptive
field tuning for the two subdivisions of the precentral gyrus.
Prior to production, dorsal and ventral precentral gyri were
not significantly different from each other (Wilcoxon sign
rank test, P = 0.454, Z = —0.36103) and had close peak
times (—196ms, —192ms prior to speech for ventral and
dorsal precentral gyri, respectively). However, during production,
these dynamics shifted and we found a significant decrease in
dorsal precentral causal contribution (Wilcoxon sign rank test,
P =47575E — 05, Z = —5.6272) accompanied by temporal
separation of peaks (—208 ms, —184 ms for ventral and dorsal
precentral gyri, respectively; Fig. 5 4 and B). Within the inferior
frontal gyrus, we found that the pars opercularis was recruited
similarly both prior to production and during production for
feedforward processing (Wilcoxon sign rank test, 2 = 0.5922,
Z = 1.7462) at a peak delay of —248 ms and —280ms,
respectively. During production, the pars triangularis had a
selective increase in recruitment for anticausal compared with
causal contributions (Wilcoxon sign rank test, » = 0.0162, Z =
3.9003), implicating it in increased feedback processing (Fig.
4C and SI Appendix, Tables S2 and S3). The anticausal receptive
fields during production provide evidence for feedback processing
most strongly contributed by caudal STG, with the earliest peak
in contributions seen in the dorsal precentral gyrus (144 ms) and
caudal STG (168 ms) followed by parietal (supramarginal 184
ms, postcentral 192 ms) and ventral precentral (280 ms) gyri (S/
Appendix, Table S3). In order to ensure that these significant
peaks were not within a temporal window possibly influenced
by the autocorrelation structure of the speech or neural signal,
we conducted a correlation analysis (S Appendix, Fig. S11) and
found that our results (Figs. 4 and 5) were outside the upper
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Fig. 5. The temporal receptive field across anatomical regions. The contri-
bution to decoding the current speech from cortical neural responses with
certain temporal delays. (A) and (B) are the feedforward temporal receptive
fields derived from the causal model by evaluating the contribution of past
(negative delays) neural signals during a period before production onset (A)
and after onset (B). (C) Representation of the feedback temporal receptive
fields derived from the anticausal models that evaluate the contribution
of future (positive delays) neural signals during feedback after articulation.
The temporal propagation of the shuffled model estimates the noise level
dynamics (gray curves in plots). Only regions significantly above noise level
(Wilcoxon sign rank test on across-time averaged data, P < 0.05) are
reported.

bound of signal autocorrelations (i.e., all results were greater
than the near-zero correlation at 136 ms for speech spectra and
48 ms for the neural signal). Taken together, our contribution
analyses suggest preferential recruitment of prefrontal cortices
in feedforward processing prior to production followed by a
shift in dynamics during production when feedforward and
feedback signals are jointly processed with anatomical divisions of

labor.
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Discussion

Our study leverages a deep learning approach together with
neurosurgical recordings and dissociates direct feedforward and
feedback cortical contributions during speech production. Our
neural network architecture achieves exceptional decoding of
speech production by tapping an interpretable compact speech
representation and can be altered to focus on causal, anticausal,
and noncausal decoding. Our analyses of the cortical contribu-
tions driving the performance of these models reveal a mixed
distribution of feedforward and feedback processing during
speech production. This was prominent in inferior, middle
frontal, and superior temporal gyri which exhibited an anatomical
division between feedforward and feedback processing. Last, we
show a change in the temporal dynamics of prefrontal recruitment
during speech planning through production, characterized by a
shift of inferior frontal and precentral gyri recruitment, processing
both feedforward and feedback information at different time
points and spatial locations.

A growing number of studies have leveraged deep neural
networks for cortical speech decoding. Convolutional neural
networks (CNN) (22—25) and recurrent neural networks (RNN)
(26) have mapped ECoG signals into speech and text (33, 34).
However, our approach diverges from these studies. First, we de-
velop a differentiable speech synthesizer that can generate natural
speech from a compact set of interpretable speech parameters
based on several signal-processing equations. This rule-based
synthesizer allows for unsupervised pretraining of meaningful
encoded representations (reference speech parameters) as well as
reduces the capacity of the entire model and increases training
data efficiency. Our speech synthesizer provides a direct mapping
from the speech parameters to a participant’s voice, by using a set
of participant-specific hyperparameters for the speech synthesizer
that is obtained using unsupervised learning from the partic-
ipant’s speech. These hyperparameters include the parameters
for the prototypes of the voiced and unvoiced filters. This
eliminates the need for labeled articulatory data that maps speech
to articulatory dynamics as proposed by Anumanchipalli et al.
(26). Second, our compact speech representation leverages an
interpretable decomposition of speech into voiced and unvoiced
components. This decomposition is biologically necessary and
has been reported in neural representations across frontal and
temporal cortices (17, 35) and stands in contrast to other
traditional speech synthesizing approaches (36, 37). Last, the
speech neural decoding models to date mostly employ noncausal
operations. Since such decoders require both past and future
information for decoding, they are not applicable to real-time
speech prosthetic applications. However, a select few studies
have employed causal decoding (27). Importantly, mixed op-
erations hinder disentangling feedforward and feedback cortical
contributions. In addition to providing a causal model which
directly translates to practical speech prosthetics, our approach
can dissociate feedforward and feedback cortical contributions
during speech production.

During speech production, we process feedforward and feed-
back signals in tandem. Previously, the two have not been disen-
tangled. Attempts have focused on experimental manipulations
which change the feedback by shifting frequency (38) or time
(39). However, these manipulations change the cortical dynamics
and introduce other cognitive processes due to hearing one’s own
voice altered as well as induced motor compensation. We applied
convolution filters with different causality to directly train models
to disentangle feedforward (i.e., causal models) and feedback (i.e.,
anticausal models) contributions of cortical regions. Feedforward
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and feedback processes are critical for driving articulatory
vocal tract movement. The feedforward pathway generates an
initial articulatory command and predicts sensory (auditory
and somatosensory) targets; the feedback pathway compares
the targets with the perceived sensory feedback and updates
subsequent feedforward commands. The exact mapping between
anatomical regions and their contribution to specific functional
roles differ across speech motor control models (10, 11). Further,
these findings have been developed based mostly on noninvasive
studies which have low temporal (e.g., fIMRI) or spatial resolution
(e.g., M/EEG). Our high spatiotemporal resolution ECoG data
together with advanced deep neural networks provide a fine-
grained mapping of the cortical feedforward and feedback speech
networks.

Consistent with the predominant speech motor control mod-
els, our results showed a dominant feedforward process in the
ventral motor and pars opercularis of the inferior frontal gyrus,
while posterior superior temporal and supramarginal gyri in the
parietal lobe showed feedback (6, 11, 40). However, in contrast to
these models, we found that cortices in the frontal lobe, including
the pars triangularis and caudal middle frontal, are predominantly
feedback in nature, while rostral STG appears feedforward.
This feedback processing across frontal cortices became even
stronger when we limited our analyses to the speech production
epoch (Fig. 4C and SI Appendix, Table S3). Additionally, most
gyri (inferior frontal, caudal middle frontal, superior temporal,
precentral, and postcentral cortices; S/ Appendix, Table S2)
had both feedforward and feedback contributions above the
noise level derived from the shuffled model, suggesting that
feedforward and feedback processing can mix in these regions.

Our findings are likely driven by sensory-motor signaling
shared across the animal kingdom, referred to as a corollary
discharge (41, 42). Such a discharge from motor cortices acts
to inform sensory cortices of future self-generated reafferent
stimulation, often in the form of cortical suppression (19).
Our peak feedforward results in the ventral precentral gyrus
are consistent with such a framework (11) as well as a recent
report providing direct evidence for the source of a corollary
discharge in human speech (43). Interestingly, our data suggest
that feedforward processing might be more distributed than
previously assumed given our significant contributions across
the cortex (Fig. 3C) as well as large causal contributions
in the anterior temporal cortex (Fig. 3E). Further, the stark
asymmetry of feedforward and feedback contributions within
adjacent regions of frontal cortex (e.g., pars opercularis and
pars triangularis) suggests the possibility that cortical regions
are processing feedforward corollary discharge signals while also
updating representations based on feedback processing.

Our results highlight the anticausal feedback signature exhib-
ited by sensorimotor and frontal cortices. While this goes against
the canonical model of the frontal cortex in an action—perception
loop (44), our findings complement a growing body of evidence
showing specific responses in the frontal cortex to auditory stimuli
during perception. Cheung et al. (45) found distinct auditory
receptive fields as well as robust passive listening responses in the
ventral precentral gyrus. Similarly, the dorsal division of the pre-
central gyrus has recently been implicated in processing auditory
feedback of altered speech as well as responding robustly during
passive listening (39). However, this begs the question as to why
the speech motor cortex is processing auditory information. Our
feedback contribution analysis suggests that auditory processing
is specifically leveraged for anticausal processing of the reafferent
signals during production. Indeed, our results show that the
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dorsal precentral gyrus decreases feedforward processing while
engaged in actual speech production (Fig. 5B) and is recruited
for feedback at an early time point together with temporal cortices
(Fig. 5C). Under this view, the auditory frontal responses seen
during passive listening may constitute a representation dedicated
to feedback processing when speech is produced.

To summarize, we provided an approach to decode speech
production and interrogate the recalcitrant problem of mixed
feedforward and feedback processing during speech production.
We were able to leverage feedforward processing only in causal
models to drive neural speech prosthetics [as opposed to the
literature using noncausal processing (22, 23, 26, 29, 33)] as
well as provide insights into the underpinning cortical drivers.
Our results suggest a mixed cortical architecture in frontal and
temporal cortices that dynamically shifts and processes both
feedforward and feedback signals across the cortex. This is in
contrast to previous views associating feedforward processing
with primarily prefrontal and motor cortices while feedback
processing is associated with the superior temporal cortex.

Materials and Methods

Experimental Model and Subject Details.

Participants and experiments. The neural datawere obtained from five patients
(three male) who were native English speakers, undergoing treatment for re-
fractory Epilepsy at NYU Langone Hospital, with implanted electrocorticographic
(ECoG) subdural electrode grids. All experimental procedures were approved
by the NYU Grossman School of Medicine Institutional Review Board. Patients
provided written and oral consent at least one week prior to surgery by a research
team member after separate consultation with the clinical care provider. The
subjects were instructed to complete five tasks to pronounce the target words
in response to certain auditory or visual stimuli. The subjects were asked to
freely respond after the stimuli were presented without any cue or artificial delay
introduced. The five tasks were

e Auditory Repetition (AR, i.e., to repeat the auditory words),

¢ Auditory Naming (AN, i.e., name a word based on an auditory presented
definition sentence),

¢ Sentence Completion (SC, i.e., complete the last word of an auditorily
presented sentence),

e Visual Reading (VR, i.e., read aloud visually presented word in written form),
and

e Picture Naming (PN, i.e., naming a word based on a visually presented color
line drawing).

Each task contained the same 50 unique target words while varying stimulus
modalities (auditory, visual, etc.). Each word appeared once in the AN and SC
tasks and twice in the other tasks. For participants 1-3, the five tasks included
400 trials of the produced words and the corresponding ECoG recordings. The
produced speech in each trial has an average duration of 500 ms. We repeated
the same five tasks twice for participant 4 and collected data from 800 trials. For
participant 5, we collected 800 trials by repeating the tasks twice, and we also
ran an additional AR task (200 trials) which provided 1,000 trials in total.

Data collection and preprocessing. A microphone recorded the subject's
speech during the tasks and was synchronized to the clinical Neuroworks
Quantum Amplifier (Natus Biomedical, Appleton, WI), which records ECoG.
The recordings sampled the peri-Sylvian cortex, including STG, IFG, precentral,
and postcentral gyri. The implanted ECoG array contained total of 128 electrode
channels, including standard 64 clinical 8 x 8 macrocontacts (2 mm exposed,
10 mm spacing) as well as 64 additional interspersed smaller electrodes (1
mm exposed) between the macrocontacts (providing 10-mm center-to-center
spacing between macrocontacts and 5-mm center-to-center spacing between
micro/macro contacts, PMT corporation, Chanassen, MN). This FDA-approved
array was manufactured for the study, and a member of the research team
explained to patients that the additional contacts were for research purposes
during consent. The ECoG arrays were implanted on the left hemisphere in all
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participants’ brains, and placement location was solely dictated by clinical care.
More detailed illustration of the electrodes’ coverage is shown in S/ Appendix,
Fig. S3. We trained separate sets of decoding models for each participant.
We randomly selected 50 out of all trials from the five tasks for testing and
used the remaining data for training. The results reported are for testing
data.

Each electrode sampled ECoG signals at 2,048 Hz, which was decimated to

512 Hz prior to processing. After rejecting electrodes with artifacts (i.e., line
noise, poor contact with the cortex, and high amplitude shifts), we subtracted
a common average reference (across all valid electrodes and time) from each
individual electrode. Electrodes with interictal and epileptiform activity were
removed from the analysis (note that a large number of temporal electrodes
were removed from patients 4 and 5 for this reason). We then extracted the
envelope of the high gamma (70-150 Hz) component from the raw signal with
the Hilbert transform and further downsampled it to 125 Hz. The signal of each
electrode over the silent baseline of 250 ms before the stimulus was used as the
reference signal, and each electrode’s signal was normalized to the reference
mean and variance (i.e., z-score).
Electrode localization. Electrode localization in subject space, as well as
MNI space, was based on coregistering a preoperative (no electrodes) and
postoperative (with electrodes) structural MRI (in some cases, a postoperative
CT was employed depending on clinical requirements) using a rigid-body
transformation. Electrodes were then projected to the surface of the cortex
(preoperative segmented surface) to correct for edema-induced shifts following
previous procedures (46) (registration to MNI space was based on a nonlinear
DARTEL algorithm). Based on the subject's preoperative MRI, the automated
FreeSurfer segmentation (Destrieux) was used for labeling within-subject
anatomical locations of electrodes. The anatomical region segments can be
found in SI Appendix, Fig. S8.

Speech Decoder Details.

Speech decoding framework. The backbone of our decoding framework is
constructed by an ECoG decoder and a speech synthesizer (Fig. 14 or 6A). During
testing, the decoder generates a set of speech parameters from the high gamma
components of the neural signal, that drive a differentiable speech synthesizerto
generate speech spectrograms (and corresponding waveforms by the Griffin-Lim
algorithm). All models are trained on data —250 to 750 ms relative to speech
onset.

e ECoG decoder. The decoder maps the ECoG signals to a set of speech
parameters (describing both the voiced and unvoiced components) which are
then synthesized into speech spectrograms. The ECoG decoder architecture
(Fig. 6C) is based on recent advances in convolutional neural networks
leveraging the ResNet approach (47). We construct a modified ResNet
model with nine layers that treat the cortical input as a spatiotemporal three-
dimensional tensor (two dimensions for the electrode array and one for time).
The decoder is trained such that its output parameters match the reference
parameters derived from a speech encoder (which is learned separately in an
unsupervised manner). Furthermore, our approach ensures that the speech
spectrogram derived from these parameters and constructed by the speech
synthesizer matches the actual speech spectrogram. We use this approach to
be more data-efficient and allow us to train on a small set of samples for each
patient.

e Speech parameters. Our speech representation is motivated by the vocoders
used for low-bit-rate speech compression dating back to the 1980s. We
model speech signals as a mixture of voiced and unvoiced components,
with the voiced component described by a source-filter model (dynamically
filtered harmonic signals) (37) and the unvoiced component generated by
white noise broadband filtering. In addition to the mixing parameter, our
representation includes speech formant information (frequency, bandwidth,
etc.) and loudness (i.e., the energy of speech). Overall, speech parameters
are sampled at 125 Hz, and each time step involves 18 parameters to model
speech. Details are found in SI Appendix, Additional Decoding Framework
Details.

o Synthesizer. We use a set of signal processing equations (such as harmonic
oscillation, noise generation, filtering, etc.) to synthesize the spectrogram
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Fig. 6. Structure of the decoding framework. (A) The overall network architecture. The ECoG decoder is trained to match reference speech parameters
and reconstructed by a pretrained speech encoder shown in panel (B). (B) The autoencoder is used to pretrain the speech encoder. The speech encoder is
trained to generate proper speech parameters that can reconstruct input spectrograms through the speech synthesizer. (C) The ECoG decoder is a modified
spatiotemporal residual network. After an initial temporal convolutional layer and eight residual blocks (constructed by three-dimensional convolution layers),
multiple subnetworks (using one or two fully connected layers) generate speech parameters separately. (D) The speech encoder in (B) has three convolutional
layers followed by the same multihead output structure as in (C). () lllustration of the processes within the speech synthesizer. The harmonics (in voice pathway)
and white noise (unvoice pathway) are generated and filtered (multiplication in spectrogram domain) by voice and unvoiced filters, respectively. The filtered
results are then weighted and averaged according to the mixing parameter and then amplified by the loudness parameter. Abbreviations, FC: fully connected

layer, conv: convectional layer, res block: residual block.

from our proposed speech parameters (Fig. 6£). We can train the ECoG
decoder with a limited amount of training data by limiting the number of
speech parameters and using differentiable signal processing equations. It
is noteworthy that the equations we use are differentiable (Differentiable
Speech Synthesizer in SI Appendix, Additional Decoding Framework Details),
which allows for backpropagation from the spectrogram to the actual leaming
of the decoder.

Speech encoder. The speech encoder (Fig. 6B) is pretrained using an
independent unsupervised approach before the ECoG decoder training.
The encoder is trained to generate a set of speech parameters from a
given spectrogram, from which the aforementioned speech synthesizer can
reproduce the spectrogram. This pretrained encoder generates reference
speech parameters from actual speech signals used for the training of the
ECoG decoder. The unsupervised process can be easily used to train the
speech encoder from any set of speech signals, including patient-specific
speech. Importantly, this process constrains the speech parameter space to

PNAS 2023 Vol. 120 No. 42 e2300255120

optimize the training of our ECoG decoder, and the parameters can directly
drive a speech synthesizer based on differential equations.

We ruled out the possibility that our neural data suffer from a recently
reported acoustic contamination (S/ Appendix, Fig. S4) by following published
approaches (48).

Revealing delay-dependent decoding contributions on cortex. T0 quantify
electrode contributions, we use an occlusion-based approach where the entire
electrode isoccluded and we calculate the relative change of decoding correlation
coefficient i.e., Fig 3), or a small temporal segment of the electrode is occluded
relative to speech production and we calculate the relative change of decoding
correlation coefficient (i.e., Figs. 4 and 5). The temporal segment zeroed out
relative to speech is varied and represents the delay in Figs. 4 and 5. Importantly,
each delay represents all decoding changes during speech (at any point) and
the neural signal relative to that delay (i.e., the neural signal could be prior
to or during speech). This approach allows us to construct a neural receptive
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field of contribution as a function of relative delay compared to speech (i.e.,
similar to spectro-temporal receptive fields in the auditory domain and motor
receptive fields in the motor domain). Before formally defining the various
contribution scores, we introduce the following notations: A.[s]: the ground
truth spectrogram over a time duration S (i.e., window size) centered at time s,
i.e. froms —S/2to s+ S/2, derived by the speech-to-speech autoencoder.
Aintact[S]: the model output with “intact” input (i.e., all ECoG signals are used).
A{)cclude[slt]: the model output at time duration centered at s when the ith

ECoG electrode signal in the time duration centered at t from ¢ — % tot+ %
is occluded (i.e., set to zeros). S and T define the temporal refinement of
the analysis and are independent of the receptive field of the ECoG decoder
(i.e., delay from temporal convolutions). (-, -): correlation coefficient between
two signals. We define the contribution of ith electrode in time duration
centered at t to the output over duration centered at s by the reduction in
the correlation coefficient between the output signal with the reference signal
over the duration s when the ith electrode signal in duration t is occluded.
Specifically,

C[[S, t] = Mean{r(A[s], Aintact[s]) — r(Aret[s], Agcdude[S“D}z

where Mean{-} denotes averaging across all testing samples.

To generate the contribution map, we first determine the contribution of

each electrode (with a corresponding location in the MNI coordinate), which is
then diffused into the surrounding area in the same anatomical region using a
Gaussian kernel. Since our ECoG grid has hybrid density, to remove the effect
of nonuniform density on the diffused result, we normalize the result of each
region by the local grid density. The results shown in Figs. 3-5 are obtained by
averaging the contribution maps obtained for all test samples for all participants
(Figs. 4 and 5 do not include one patient due to coverage).
Visualizing spatial contribution map. The contribution of the entire signal at
the i-th electrode to the entire output signal, C', is obtained by using the method
in the section above (i.e., revealing delay-dependent decoding contributions on
cortex), with S and T covering the entire input and output of the signal duration.
The causal and anticausal contribution plots in Fig. 3 are generated by applying
this analysis to the learned anticausal model (Fig. 3B) and causal model (Fig.
3C), respectively. The contrast of the anticausal and causal contribution (Fig.
3E) is the difference between the causal and anticausal contribution maps. The
noise level for the contribution analysis (Fig. 3D) is generated from the shuffled
model using noncausal processing (the shuffled model is trained on an artificial
dataset with temporally misaligned input-output, and thus models of different
causality are equivalent). To generate the box plots per cortical region (Fig. 3F),
we calculate the contrast contribution averaged over electrodes of the same
within-subject anatomical region.

The contrast of the anticausal and causal contributions (as shown in Fig. 3£)
for each electrode i is defined as

i _ i i
Ccontrasf - Canticausa/ Ccausa/'

In order to examine the polarized electrode contributions (anticausal or
causal), we calculate the normalized version of anticausal and causal contribution
contrast: ' '

i e
Ci = Canticausa/ Ccausa/
polar i i .
Canticausa/ + Ccausa/
i
polar
empbhasizes the directionality of anticausal or causal, rather than their absolute
contrast. This is visualized in SI Appendix, Fig. S2 A and B [only electrodes

WIFh either anticausal contribution attribute (Canticausa/) or causal contribution
(

causa/) above the noise level determined by the shuffled model].

Visualizing spatial-temporal contribution receptive fields. When evaluating
the contribution over a finite duration (temporal occlusion), we use small
temporal scope S = T = 64 ms(i.e., this represents the size of the neural signal
occluded, T, as well as the size of speech decoding assessed, S). To evaluate the
contribution of an electrode signal to the output with various delays, denoted

By normalizing the contrast of anticausal and causal contribution, C
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by 7, we average C'[s, s + 7] for all s in a certain duration (from time s to 51)
leading to
i 1
() =
5150

51 )
> Clss+7l.

$=S50

Here, we assume that the effect of the delay is independent of the actual
time of speech s. Negative = values denote neural signals prior to a specific
speech segment (s) and thus represent the causal direction. In other words,

whenz < 0, Clcausa/(f) reveals the causal contribution of electrode i to the
speech output at the different delays (Fig. 4 A and B). Conversely, positive
= values denote neural signals after a specific speech segment (s) and thus

represent the anticausal direction (i.e, 7 > 0, Clanticausal(f) reveals the
anticausal contribution shown in Fig. 4C). Causal neural contributions to
speech can originate prior to speech onset (prearticulation) or during speech
production (during-articulation). To investigate the prearticulation contribution,
we restrict S + 7 to the prearticulation period so that neural signals are
only occluded before speech onset. Similarly, to investigate during-articulation
contribution, we restricts+ = to postspeech onset. Importantly, speech decoding
(s)is always assessed during speech, while the neural signals are occluded either
prearticulation or during-articulation time periods. This occlusion analysis can
be performed prearticulation for the causal model only (past neural signals
prior to speech onset contributing to future speech decoding) and during-
articulation for both the causal model (past neural signals during speech
production contributing to future speech decoding)and anticausal model (future
neural signals during speech production contributing to past speech decoding)
shown in Fig. 4.

Visualizing per region temporal contribution receptive field. Similarly to the
per-region plot in Fig. 3, we average the spatial-temporal receptive field data
(Fig. 4) over within-subject anatomical region labels to generate a temporal
contribution curve for each region (Fig. 5). The control curve is generated by
applying the same method for the shuffled model (gray curves in Fig. 4). We omit
curves that are not significantly above noise level by Wilcoxon sign rank testing
between averaged (over time) region contribution curves and the averaged
(over time) noise level curve (S/ Appendix, Table S2). In order to calculate peak
contributions, we smooth the curves using an 88-ms Hann window and take the
maximal value. The motivation of smoothing the temporal curves was to provide
unigue estimates for peak contribution (i.e., maximum). The smoothed curves
are plotted in Fig. 5, and the original unsmoothed, raw, data show the same
dynamics and are plotted in S/ Appendix, Fig. S10.

Additional Decoding Framework Details.

Differentiable speech synthesizer. Inatraditional vocoder, speechis generated
by switching between voiced and unvoiced content. Each content comes from
an autoregressive system driven by a certain excitation signal that is either a
harmonic signal or a white noise signal (49). Inspired by such a process, we
construct our speech synthesizer shown in Fig. 6. It consists of two pathways. The
voice pathway generates a voiced component by driving a harmonic excitation
with time-varying fundamental frequency (i.e., pitch) f(t) through a voiced filter

consisting of N formant filters, each described by a center frequency fl.t and an

amplitude af,/ = 1,2, ..., N. Each formant filter can be viewed as an IR filter
defined explicitly in the frequency domain and is applied to the excitation signal
(spectrogram) by a frequency-wise multiplication. Note that we parameterize
the bandwidth b; as a function of the center frequency f,.t. The unvoice pathway
generates an unvoiced component by driving awhite noise through an unvoiced
filter described as a center frequency 1, bandwidth b, and amplitude af, (in
addition to the N formant filters for the voice pathway). These two components
are adaptively combined with a time-varying mixing factor o, controlling the
relative contribution between voiced sounds (for sonorant phonemes including
vowels and nasals) and unvoiced sounds (for voiceless plosives and fricatives,
such as /p/ and /s/, respectively). The voiced plosives and fricatives (such
as /b/ and //, respectively) can be generated as a combination of voiced and
unvoiced components. Finally, the combined signal is amplified by a loudness
parameter L. In our study, we used N = 6 formants. The synthesizer is driven
by a total of 18 time-varying speech parameters, including the fundamental
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(or pitch) frequency f{, the mixing factor between the two pathways !, the
12 parameters for the voiced filter (ff, alf) and the three parameters for the

unvoiced filter %, bf,, af,, and the loudness L'. Given the parameter values at
each time sample, the synthesizer can generate a spectrogram sample. The
spectrogram s a differentiable function of the speech parameters so that we
can backpropagate the gradient of the training loss in terms of the predicted
spectrogram to the speech parameters, which can then be backpropagated to
either the speech encoder or the ECoG decoder parameters. Specifically, let
the V() represent the spectrogram of the voicing component, U!(f) that of
the unvoicing component, and ! € [0, 1] the mixing factor. The combined
spectrogram can be written as S(f) = a!V{(f) + (1 — a!)U!(f). Finally, the
synthesized speech spectrogram is St(f) = LIS(f), where L' is the loudness
that modulates the signal cross-time.

Formant filters in the voice pathway. Thefilterinthe voice pathway consists
of multiple formant filters, corresponding to the multiple formants associated
with vowels. The formant filter shape over frequency, which is related to the
resonance property of the vocal tract, is closely related to the timbre of speakers’
voice (50) . We have found that a predefined analytic form such as generalized
Gaussian cannot cover all feasible filter shapes. Instead, we learn a speaker-
dependent prototype filter for each formant based on the speaker's natural
speech. We represent the prototypefilter G;(f) forthe i-th formantas a piecewise
linear function, linearly interpolated from g/[m], m = 1...M, the amplitudes
of the filter at M uniformly sampled frequencies up to fmax. We restrict the
resulting filter G;(f) to be unimodal (with a single peak of value 1) by properly

constraining g[m]. Given g[m], m = 1...M, the peak frequency fipmto and the
half-power bandwidth bpro ° can be determined. The actual formant filter atany
time can be written as a shlfted and scaled version of G;(f). Specifically, at time
t, given an amplitude (af), a center frequency (f), and a bandwidth (bf), the i-th
formant filter is given by

proto

Fi(f) =al- 6 (=1 + 0. 1]

b

/

Then, the filter for the voice pathway with N formant filters can be written
asfi () = YV, F(f). We learn the parameters g[m], m = 1...M for G;(f)
dunng the unsuperwsed pretraining of the speech encoder, which does not
require neural data. Fitting such a prototype filter is not data-hungry even with a
relatively large M. We used M = 20 in our experiment. Although two formants
(N = 2) have been shown to suffice for intelligible reconstruction (7), we use
N = 6inourexperimentsformore accurate synthesis. We denote the parameter
set for the voiced filter at time t by S* = {(fl,a, b))li € {1,---, N}}.
The bandwidth blf parameters are not independent speech parameters, rather
functions of the center frequencies fit.

Unvoiced filter. Forthe unvoice pathway, weadd a broadbandfilterdescribed
by {(fL, at, bL)}. The shape of this filter % (f) follows Eq. 1 but with the filter

coefficients (af, f{, b}) replaced by (at, 1, bt). The bandwidth is constrained to
satisfy b% > 2,000 Hz, following the broadband nature of obstruent phonemes.

We also keep the multiple formant filters in the voiced filter described by St. This
is motivated by the fact that human beings differentiate consonants with similar
sounds such as /p/ and /d/, not only by the immediate burst of these sounds
but also the development of the following formant frequency until the next
vowel (51). To encode such formant transitions, we use the same formant filter
parameters for modeling the narrow bandpass in both the voiced component
and the unvoiced component The parameter set for the unvoiced component
is thus T = ST U {(fL, at, bL)}. The overall filter for the unvoice pathway is
FL(f) = FL() + S0 FL(E).

To further reduce the parameter space dimension, we model the bandwidth

bf of a formant filter as a piecewise linear function of the center frequency ff.
We assume

bt — a(fit —fg) + by, iffit > fy
! by, otherwise,
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where threshold frequency fy, slope a, and baseline bandwidth by are three
parameters that can be learned during unsupervised pretraining, shared among
all formantfilters.

Harmonic excitation. In the voice pathway, the voiced filter is applied on
the harmonic excitation. This pathway models the human production of vowels
and nasals, which results from the voice excited by the vocal cord shaped by the
vocal tract. The excitation is constructed by sinusoidal harmonic oscillations with
atime-varying fundamental frequency fé. Inspired by the formulation in ref. 52,

we define the harmonic excitation h' as h = S"§_, ht, where K is the total
number of harmonics (K = 80 in our experiment). Assuming the initial phase
is 0, each harmonic resonance hf( at time step t has an instant phase that is the
accumulation of resonance frequency in the past. Specifically, the k-th resonance
attime step tis h;{ =sin(2z 22:0 fk(r)), where fk(t) = kfét). Denoting the
spectrogram of ht as HL(f), the spectrogram of the voiced component is the
multiplication of H'(f) and the voiced filter, i.e., V(f) = H'(f)F{ (f).

Noise excitation. The unvoiced pathway models consonants like plosives

and fricatives, where the vocal tract and human mouth filter the airflow through
the mouth. It follows a similar process as in the harmonic counterpart. The
major difference is that the excitation being filtered becomes stationary white
Gaussian distributed noise A(t) ~ A/(0, 1), with a corresponding spectrogram
Nt (f). Thefiltered noise spectrogram (i.e., the unvoiced component)is U (f) =
NE(F)FL(F).
ECoG decoder and speech encoder. The ECoG decoderis constructed by a three-
dimensional ResNet that treats time-varying signals on an ECoG grid array as
spatiotemporal three-dimensional tensors (width x height x time duration).
As is depicted in Fig. 6C, after an initial temporal convolutional layer [with 128
output features, each corresponding to a convolution kernel of size 1 x 1 x 9
(72 ms)], the signal passes through eight residual blocks. Each block contains
two three-dimensional convolutional layers [with 128 output features, each
corresponding to a convolution kernel of size 3 x 3 x 5 (40 ms)]. The output
of the residual blocks creates a shared latent representation consisting of 128
features (each is a one-dimensional temporal signal by average pooling the two
spatial dimensions), which is then fed into different output heads (each applies
each consists of one or two fully connected layers acting on the 128 features
at the same time point) to generate speech parameters. The overall temporal
receptive field for generating one speech parameter sample is 73 temporal
samples of 584 ms.

The speech encoder network architecture we choose is as simple as possible
to demonstrate the effectiveness of the speech synthesizer design. We use three
layers of temporal convolution (we treat the frequency axis of the spectrogram
as the feature dimension) to generate a latent representation (Fig. 6D). Each
convolutional layer has 128 output features and a temporal kernel size of three
frames (24 ms). To output the speech parameter, we apply the same multihead
structure to the latent representation as in the last layer of the ECoG decoder.

In order to implement models with different temporal causality, each
convolutional layer of the speech encoder and ECoG decoder models were
implemented as either causal, anticausal, or noncausal corresponding to the
model causality.

Loss and training hyperparameters. The speech encoder is trained with a
weighted average of the mixed spectral and parameter loss. The mixed spectral
loss (52) is defined as

Lyss (8 (), S'(F)) = Lin(S'(), S'(F)) + L

in which,

S, 8'()),

= [x=y[; + [logx — logy],
= ”Xmel — Vmel H1 + |||09Xme| -

Lin(vy) =
Liner (%)

where ST(f) and St(f) denote the ground truth and reconstructed spectrograms,
respectively, subscript lin means that the frequency is in the linear scale, while
the subscript mel means the frequency is in the mel scale. In our experiments,
we use 256 frequency samples (ranging from 0 to 8,000 Hz) for both linear and
mel scale speech spectrograms.
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Let us denote the j-th reconstructed speech parameter as ,Bj and its reference
ij; the overall training loss for the ECoG decoder becomes

L = Lspectrogram + Lspeechparameters

= AOLMSS(gt(f), St(f)) + Z/lf (HPII o Pf”i) !
j

where 4; balance the contribution from different loss terms since they have
different physical meanings and scales.

Both the speech encoderand ECoG decoder are fitted by the Adam optimizer
with hyperparameters: Ir = 1073, 8, = 0.9, 8, = 0.999. We train an
individual ECoG decoder and speech encoder per patient. The pretraining of
the speech encoder and the training of the ECoG decoder share the same
training/testing set partition.

Quantification and Statistical Analysis. We perform most of our statistical
tests with Wilcoxon sign rank. The one-way ANOVA test is used to confirm
the causal and anticausal contributions per-region with the subject treated
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test). Statistical significance is indicated as *P-val < 0.05, **P-val < 10-2,
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