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Abstract

Consider a two-person zero-sum search game between a Hider and a Searcher. The Hider
chooses to hide in one of n discrete locations (or “boxes”) and the Searcher chooses a search
sequence specifying which order to look in these boxes until finding the Hider. A search at box
1 takes t; time units and finds the Hider—if hidden there—independently with probability ¢;,
for ¢ = 1,...,n. The Searcher wants to minimize the expected total time needed to find the
Hider, while the Hider wants to maximize it. It is shown in the literature that the Searcher
has an optimal search strategy that mixes up to n distinct search sequences with appropriate
probabilities. This paper investigates the existence of optimal pure strategies for the Searcher—
a single deterministic search sequence that achieves the optimal expected total search time
regardless of where the Hider hides. We identify several cases in which the Searcher has an
optimal pure strategy, and several cases in which such optimal pure strategy does not exist.
An optimal pure search strategy has significant practical value because the Searcher does not
need to randomize their actions and will avoid second guessing themselves if the chosen search

sequence from an optimal mixed strategy does not turn out well.
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1 Introduction

A major criticism of game theory is the notion of randomized (or mized) strategies: see, for example,
Binmore (2008) and Gintis (2014). In a Nash equilibrium, players randomize between strategies
in a precisely specified way, yet they are indifferent between each of the strategies between which
they randomize, given the behavior of the other players. Intuitively, it is difficult to explain such
precision in the players’ random actions. Harsanyi (1973) had an elegant solution to this criticism,
by defining a Bayesian game where the payoffs of a given game are slightly perturbed by a random
amount. Any equilibrium in the original game can “almost always” be obtained as a limit of a pure
strategy equilibria in the Bayesian game, as the perturbations go to zero.

This is all very well, but in practice, if a Nash equilibrium requires a player to randomize,
there are also issues about the practical implementation of such randomized strategies. This is
particularly salient in search games, which can be used to model military operations where lives
may be at stake and randomized actions can be hard to justify to decision makers. When using an
optimal mixed strategy, there is a chance that the chosen pure strategy turns out to fare poorly
against the Hider’s chosen location, which may give the false appearance to a third party that the
Searcher made a wrong decision. If there is a choice between a mixed strategy solution and a pure
strategy (non-randomized) solution, we argue that the latter would be preferable, since it is more
easily implementable and explainable. Decision makers do not need to rely on the roll of a die or
outcome of a roulette wheel to make their choices, and would save the trouble second guessing the
outcome of the randomization device if the chosen pure strategy performs poorly against the other
player’s choice.

In this paper we consider the problem of finding optimal pure strategies for a generalization of a
classical search game introduced by Bram (1963), where a Hider chooses one of a finite number n of
locations (or “boxes”) in which to hide and a Searcher inspects the boxes one-by-one until finding
the Hider. When a given box is searched, if the Hider is in that box, there is a specified probability
(the “detection probability”) that the Hider is found. The Searcher aims to minimize the expected
number of boxes to search before finding the Hider, whereas the Hider aims to maximize it. The
game is zero-sum, and Bram (1963) proved that an optimal (min-max) mixed search strategy exists
and suggested a numerical way to compute it. There has been sporadic interest in the game, but

not much is known in terms of closed form solutions. Indeed, it seems unlikely that such solutions



exist in general. Roberts and Gittins (1978) found an optimal Hider strategy in the case of two
boxes under certain, rather specific, conditions and Ruckle (1991) found an optimal search strategy
for the case that the detection probabilities are the same for all boxes.

There has been some recent interest in a more general version of the game described above,
where each box takes a certain amount of time to search. The payoff becomes the total expected
time to find the Hider. Clarkson et al. (2023) showed that optimal strategies exist and that there
exists an optimal Searcher strategy that mixes between at most n pure strategies. Clarkson and
Lin (2023) presented an algorithm to numerically calculate optimal strategies for the players.

The question of whether there exist optimal pure strategies in this game has received little
attention. Ruckle (1991) pointed out that for the case of equal search times and detection proba-
bilities all equal to 1/2, there is an optimal pure strategy, but prior to this paper, there were no
other known cases for which there is an optimal pure strategy. We rectify this by showing that
there are optimal pure strategies for several classes of the game, and we show how to calculate
them. We also give conditions under which there is no optimal pure strategy. Roughly speaking,
this is the case when the detection probabilities are high. In this case, there is a high probability of
discovery after the first box has been searched, which immediately skews the expected search time
(in the negative direction) towards this box.

The game can be motivated by problems of national security. For example, suppose the mil-
itary are trying to use a satellite to locate a “safe house” chosen by a terrorist group. Several
possible locations have been identified, and a search at a location corresponds to taking a fixed
number of photographs, which will reveal the safe house (if it is there) with some probability. The
objective is to minimize the expected time to find the safe house. Another example, which may be
considered as a game against Nature, is the search and rescue problem of finding a plane that has
lost communication before crashing into the sea or a desert. There are several possible crash sites
which take varying times to search. Another game against Nature that may fit into this framework
is that of a scatter hoarder, such as a squirrel attempting to find a cache of nuts that he or some
other squirrel has previously hidden in one of a number of possible locations.

This paper is laid out as follows. In Section 2, we recall the definition of the game and some
previous results. Although this paper is primarily on the topic of optimal pure strategies, we also
give a full solution to the game in mixed strategies for the case of equal detection probabilities in

Section 3. This case was previously unsolved. In Section 4, we use a series of lemmas to prove our



main result, Theorem 10, which gives conditions under which a pure strategy solution to the game
exists. We then apply Theorem 10 to several classes of the game. We end Section 4 by proving
conditions under which no pure strategy solution exists, and we explore the consequences of this
result. In Section 5, we restrict attention to the case of two boxes, taking advantage of the simpler
structure to strengthen our results about the existence of pure strategy solutions. We go on to
consider the question of what is a “best” pure strategy in the case that no optimal pure strategy

exists. In Section 6 we conclude.

2 Preliminaries

In this section, we recall the definition of the game G and state some previous results that we will

use later on in the paper.

2.1 Definition of the Search Game

The game G is played between a Hider (the maximizer) and a Searcher (the minimizer). The
Hider’s pure strategies are a set of n boxes, denoted [n] = {1,...,n}, in which he may hide. Hence,

the set of mixed strategies for the Hider is
n
A" ={(p1,...,pn) :pi>0fori=1,...,n and Zpi =1}
i=1

Here, p; is the probability the Hider chooses to hide in box 1.

A pure strategy for the Searcher is a search sequence—an infinite sequence of the boxes corre-
sponding to the order in which the Searcher searches them. Thus, the Searcher’s pure strategy set
is the set C = [n|>, an infinite set. As in Clarkson et al. (2023), we define a mixed strategy for
the Searcher as a probabilistic choice of a countable subset of pure strategies. More precisely, it is
a function 6 : C — [0, 1] such that {£ € C : 0(£) > 0} is countable and

o) =1.
gec
The condition that {{ € C : () > 0} is countable ensures that this sum is well-defined.

Each box ¢ has a search time t; > 0, which is the time required to complete one search of the
box. Box i also has a detection probability q; € (0, 1], which is the probability the Searcher will find
the Hider after one search of box i if the Hider is hidden there. Write r; = 1 — ¢; for the overlook



probability of box i. The outcome of each search is independent of all previous search outcomes.
For each pure strategy pair (i,£)—when the Hider hides in box 7 and the Searcher uses the search
sequence {— we write u(i, ) for the payoff of the game, which is the expected time needed for the
Searcher to find the Hider under the pure strategy pair (i,£). We refer to the payoff as the expected
search time. When the players use mixed strategies p and 6, we extend u to denote the expected

payoff as follows.

u(p, ) = ) pib(©)uli,f).

i=1 £eC
We similarly extend the definition of w for cases when one player uses a mixed strategy and the
other uses a pure strategy.

For a given Hider mixed strategy p, the problem of finding a best response—that is, a Searcher
strategy ¢ that minimizes the expected search time .. | p;u(i,&) against p—is well understood.
The solution, first discovered by Blackwell (reported in Matula, 1964), can be found recursively.
The Searcher should first search any box 4 that maximizes the probability of detection per unit time,
namely p;q;/t;. After each subsequent search, the next box to be searched is found by updating the
hiding probabilities p; according to Bayes’ law and repeating the calculation. It is straightforward
to show that after box 7 has been searched m; times for ¢ = 1,...,n, the next box to be searched
should be some i that maximizes the index
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In order to study optimal pure strategies, in this paper, we assume there are some positive coprime
integers k1,...,k, and some r > 0 such that rf" = r for all i € [n]. It is worth noting that this
assumption is not at all restrictive because if it were not the case, we could find k1,..., k%, and
r such that rfi is arbitrarily close to r for each 7. With rfi = r for all ¢ € [n], the index in (1)
becomes

mi/k

_ bigir

Vi .

(2)

Following the terminology of Clarkson et al. (2023), we refer to any sequence that can be
produced in this way (and is hence a best response to some Hider strategy p) as a Gittins search
sequence (against p). The name comes from a comment by Kelly in Gittins (1979) noting that
Blackwell’s solution is equivalent to a Gittins index policy obtained by modeling the search as a

tractable version of the multiarmed bandit problem (see Gittins et al., 2011).



There may be multiple Gittins search sequences against a given p in the case that there are
ties between the indices during the search process. Any permutation o of [n] can be used to define
a tie-breaking rule, where each tie is broken by choosing the box that appears first in 0. We call a
Gittins search sequence consistent if all ties are broken using the same tie-breaking rule given by
some permutation o of [n]. There are at most n! consistent Gittins search sequences against any
given p, and two different permutations may result in the same consistent Gittins search sequence.

A particular Hider strategy of interest is the equalizing strategy, defined as the strategy that
makes the Searcher indifferent between all the boxes at the beginning of the search. We define the

Hider’s equalizing strategy below.

Definition 1 The Hider’s equalizing strategy p* is given by

pr = = i € [n].
Yt/

The Hider’s equalizing strategy p* appears to be a strong strategy because it makes all boxes
equally attractive (or unattractive) to the Searcher at the beginning of the search. In particular,
there are n! distinct consistent Gittins search sequences against p*. Roberts and Gittins (1978)
showed that the Hider’s equalizing strategy is indeed optimal in certain cases. We recite the theorem

below, which will be used later.

Theorem 2 (Theorem 2 of Roberts and Gittins (1978)) Consider the game G with n = 2
and t; = to. If 7k = ré“ for some positive integer k, where r; = 1 —¢q; for i« = 1,2, then the Hider’s

equalizing strategy p* is optimal if and only if £ < 12.

If the Hider uses the equalizing strategy, then the indices p}g;/t; are all equal to some A, and
the index v; from (2) reduces to ¢; = Ar™i/kiIn this case, it is easy to see that any Gittins search
sequence against p* will be of the form si,s2,..., where each s;,7 = 1,2,... is a subsequence
containing box i exactly k; times for each i € [n]. Any consistent Gittins search sequence against
p* will be an infinite repetition of one such subsequence s;. We denote such a strategy (s;). The
length of time each subsequence s; spends searching is equal to Zie[n] k;t;, and we denote this

quantity by 7.



2.2 The Value of the Game and Optimal Strategies

As discussed in Clarkson et al. (2023), it follows from standard results on semi-infinite games that

the game G has a value. That is, there exists some V' such that

V= max grel(f:U(p, ¢) = inf ?é%ff“(i’ 0),

where the infinum on the right-hand side is taken over all Searcher mixed strategies 6.

It also follows from standard results that there exists an optimal Hider strategy in G (that is,
a mixed strategy for the Hider that guarantee a payoff of at least V') and an e-optimal Searcher
strategies (that is, mixed strategies for the Searcher that guarantee a payoff of at most V + ¢, for
any € > 0).

A major result from Clarkson et al. (2023), which we will use later in this paper, is a stronger

statement on the existence of optimal Searcher strategies.

Theorem 3 (Theorem 3 of Clarkson et al. (2023)) There exists an optimal mixed strategy
for the Searcher in G that mixes between at most n pure strategies that are all consistent Gittins

search sequences against any optimal Hider strategy.

3 The Case of Equal Detection Probabilities

In this section, we consider the game with ¢; = ¢ for all i € [n], for some ¢ € (0, 1), but arbitrary
search times ¢1,...,t,. In the special case where t; = --- = t,,, Ruckle (1991) found that the Hider’s
equalizing strategy p* = (1/n,1/n,...,1/n) is optimal. For the Searcher, it is optimal to choose
with equal probability each of the search sequences (i,i+1,...,n,1,2,...,i—1),fori=1,...,n.

In another special case with ¢ = 1, each box need only be searched once to ensure that the
Hider is found with probability 1. In this case, the Hider’s equalizing strategy p* chooses each
box i with probability proportional to ¢;, and any permutation of [n] is a Gittins search sequence
against p*. The parameter T, defined at the end of Subsection 2.1 reduces to T' = Zie[n] t;. This
special case was first considered in Condon et al. (2009), and independently in Alpern and Lidbetter
(2013) and Lidbetter (2013). The optimal strategies found for the Searcher were different in each
of these works, but the optimal Hider strategy is unique (see Alpern and Lidbetter, 2013). We
summarize the solution below, giving the optimal Searcher strategy from Condon et al. (2009),

which is arguably the most elegant of the three.



Theorem 4 In the game G with ¢; = 1 for all i € [n], it is optimal for the Hider to hide in
box i with probability proportional to ¢;. It is optimal for the Searcher to choose the first box 4
she looks in with probability proportional to ¢;, then to search the remaining boxes in the order
i+1,i+2,...,n,1,2,...,4 — 1. The value V of the game is given by
1
V=T-7 > it

1<i<j<n

Our contribution in this paper is to extend Theorem 4 to the case in which ¢ < 1 in the next

theorem.

Theorem 5 Denote by 6(o) the probability of choosing permutation o of [n] for some arbitrary
optimal Searcher strategy for the game G with ¢ = 1. For the game with equal detection prob-
abilities ¢ € (0,1), the Searcher strategy that chooses each search sequence (o)—which repeats
o indefinitely—with probability 6(c) is optimal for the Searcher. The Hider’s equalizing strategy
p*—choosing box i with probability pf = ¢;/T—is optimal. The value of the game is

T 1
V:g_f Z titj.

Proof. First suppose the Hider uses the strategy p*, and let £ be an arbitrary Searcher pure

*, 80 it

strategy which is a best response to p*. It must be a Gittins search sequence against p
must be of the form o1, 09, ..., where each o,k > 1 is a permutation of [n], and o (i) denotes the
position of box 4 in the permutation oy,.

Note that the expected search time of any permutation o against p* in the case that the
detection probabilities are all equal to 1 is given by Theorem 4. Also, by definition of this expected
search time, we obtain the following identity, for any permutation o.

n
oy tj:T—% > ity (3)
=1 o(j)<o(i) 1<i<j<n

Now, the expected search time of £ against p* is

u(Pp, ) =Y 1-*" g | E-DT+> p; DY
=1

o1 (j) <ok (3)

e I0]e

1

k-1

(1= g | bT = Z tit; | (by (3))
1 1<i<j<n

> ity

1<i<j<n

2T
Nl =



Thus, the value satisfies V' > T'/q — (1/T) 321 <; < j<p titj-

We now turn to the Searcher strategy given by 6. Again, Theorem 4 gives an expression for
the expected search time of the strategy 0 against any fixed Hider strategy 7 when all the detection
probabilities are equal to 1, and using the definition of this expected search time we obtain the
following.

ZQ(J) Z tj=T— % Z Litg, (4)
o o(j)<o(4) 1<i<j<n

where the sum on the left is over all permutations o. But the expected search time of # against ¢ is

[ee]
w(@i,0) =Y (1-¢)* g [ (k=1DT+> 000) >

k=1 o o(j)<o (i)
= 1

_ k—1 T

=> (1—gF g kT - 7 Z titj | (by (4))
k=1 1<i<j<n
T 1

_ E -7 Z tit;.

1<i<j<n
This provides an upper bound on V', and we have equality. (]

Theorem 5 generalizes a result of Ruckle (1991) that solves the special case of equal detection
probabilities and unit search times. In this case, as Ruckle (1991) found, it is optimal for the
Searcher to choose with equal probability each of the Searcher strategies (i,i+1,...,n,1,2,...,i—1),
for i = 1,...,n. Our next result shows that, for this special case, the Searcher has an optimal

strategy that mixes between only two pure strategies.

Proposition 6 In the game G with ¢; = ¢ for all i € [n] and t; = ¢ for all j € [n], it is optimal
for the Searcher to choose with equal probability each of the search sequences (1,2,...,n) and

(n,n—1,...,1).

Proof. By Theorem 5, it is sufficient to show that in the case ¢ = 1, it is optimal to choose with
equal probability each of the sequences 1,2,...,n and n,n — 1,...,1. Indeed for any box i, this

strategy 6 guarantees an expected search time of

u(i, ) = %(it) + %(n—i—k 1)t = <";r 1) t.

But by Theorem 4, the value of the game in this case is

1 /n\ n+1
=nt— — t° = t.
ver o) ()

9




Hence, 6 is optimal. O

4 Optimal Pure Strategy Solutions

Because the optimal Hider strategy must be a mixed strategy, the study of optimal pure Searcher
strategies— deterministic search sequences that produce the same optimal expected total search
time regardless of where the Hider hides—has been largely overlooked in the literature. In the
special case with ¢; = 1/2 and t; = 1 for i € [n], Ruckle (1991) shows that the search sequence
n,n—1,...,1,(1,2,...,n) is optimal. Ruckle (1991) also shows that if n = 2 and ¢; = ¢2 > 0.8,
then there does not exist an optimal search sequence. In this section, we prove much more general
conditions for the existence of optimal pure strategy in Subsection 4.1, and also conditions for the
non-existence of optimal pure strategy in Subsection 4.2. These new findings allow us to extend
the results in Ruckle (1991) substantially.

To begin, we say that two search strategies 07 and 0 are equivalent if their expected search

time against each box ¢ € [n] is the same. That is,
u(i, 01) = u(i, 02)

for each i € [n].

4.1 Existence of Optimal Pure Strategies

For a search strategy &, let Tf (&) denote the sum of the search times of the boxes opened under &,
up to and including the ¢** search of box i, for £ = 1,2, .... For example, if £ =1,2,2,1,..., then
TLH(E) = t1 and TE(€) = 2t; + 2t5. Recalling r; = 1 — ¢; is the overlook probability, the payoff
function (7, &) can be written as

o0

u(i, &) =Y ri T (). (5)

/=1
To establish the existence of optimal pure strategies, we will focus our attention on the cases
in which the Hider’s equalizing strategy p* is optimal. Because we assume there are some positive
coprime integers ki,...,k, and some r > 0 such that rf‘ = r for all i € [n], a Gittins search
sequence against p* can be broken up into cycles, where each cycle consists of k; searches in box

i, i € [n], and has length T = >"" | k;t;. Taking advantage of this observation, the next lemma

10



develops the right-hand side of (5) further if £ is a Gittins search sequence against the Hider’s

equalizing strategy p*.

Lemma 7 Let & = (s1),...,&m = (sym) denote M distinct consistent Gittins search sequences
against p*, where each subsequence s;, j = 1,..., M, consists of k; searches in box i, for i € [n]. Let
x1,T2,... be a sequence taking values in [M] and let ¢ be the Gittins search sequence sy, , Sz,, - - ..

The following results hold, where I(-) is the indicator function.

(i) The payoff function u(i,£) can be written as

Tr M =
u(i,€) = T + ;wxsﬂ ;I(wk =it

where w;(s;) = 211 ri g THE) and T = 30 kit

(ii) If € = (s) for some sequence s then

w8 =y i

Proof. For part (i), we observe that if £ = (k—1)k;+¢ for some k = 1,2,... and some 1 < ¢ < k;,
then TY(&;) = (k — )T + T (§;). Therefore, (5) reduces to

oo k; M
) . k—1)k;+(0—1
u(@, &) =33 [ k= DT+ 3 Iy, = HTLE) | rE RNy,
k=1 /=1 j=1
ki oo oo ki M
=T 7D k=D > 3D Tk =TTl (since r =)
=1 k=1 k=1 (=1 j=1
1 kz r oo M
= — k-1
=Tq; 1_; (1—T)2 +ZZ[(:I};€_])1UZ(5])T
k=1 j=1
Tr M >
k—1
) 3 o=
J= =

For part (ii), we simply set &; = (s) and xp = 1 for all k. Applying part (i), we then have that
Zrk T ot wi(5)7
1—r

which completes the proof. (|

A key step to establish the optimality of a pure search strategy—or a search sequence—is to

establish the equivalence between a pure search strategy and a mixed search strategy. Our next

11



lemma shows that, for any Gittins search sequence against p*, it is always possible to construct an

equivalent mixed strategy that consists of only consistent search sequences.

Lemma 8 Let & = (s1),...,{nm = (sp) denote M < n! distinct consistent Gittins search se-
quences against p* and let x1,x9,... denote a sequence taking values in [M]. The search sequence
§" = 53, 5z,, - - - 18 equivalent to the mixed Searcher strategy ¢ that chooses §; with probability

e.)
ZI zp = )1 —r)rF
k=1

for j € [M].

Proof. First note that 6§ is a well-defined Searcher strategy, since

[e.e]

Z 0(&) =) (1—rph =1
j=1 k=1
By Lemma 7, part (ii), the expected payoff of box i against ¢; is
, A w;(s5)
u(i, &) = 1—r+ 1—r"

Hence, the expected search time of box ¢ under @ is

M
0) =Y 0(&)uli,&) =
j=1

Applying Lemma 7, part (i), the expected search time of box i against £* is

o0

SJ I T = j)T‘k_l
k=1

u(i, &) =

=< |~

(5.) 250
(8]) 1— )
by definition of 8. Hence, u(i,0) = u(i,£*). O

Before presenting our main result, we present another lemma that will help us to show it is
possible—under certain conditions—to construct a search sequence that is equivalent to a mixed
search strategy that mixes between consistent Gittins search sequences against p*. Though this
lemma is crucial to our main result, it stands alone as a lemma in probability theory. We were not

able to find it in the literature, and it may be of independent interest.
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Lemma 9 Let M be a positive integer. If 1 — 1/M < r < 1, then for any \j,..., Ay > 0 with

AL+ -+ Ay = 1, there exists a sequence x1, z2, . .. taking values in [M] such that

I({zy = jH(A =)t = Ay, (6)

M8

B
Il

1

for each j € [M], where I is the indicator function. Moreover, if r¢ > 1 — min; A;, then there are

at least M? sequences that satisfy condition (6).

Proof. We define the sequence x1,x3,... recursively and will prove by induction on K that for

each K =0,1,..., we have

K
Zl{xk—j} )1 —r)rFt <\, (7)
k=1

for each j € [M]. This is trivially true for K = 0. Suppose (7) is true for some K > 0, and note
that
M K K
Z( Zl{xk—j} (1—r)rk )—1 Zl—r =K, (8)
j=1 k=1 =1
By the induction hypothesis, every term in the outer sum on the left-hand side of (8) is non-negative,

and it follows that for some j € [M], we have

K
A= Ik = 7 =)l > oK M > (1)K,

since r > 1—1/M. Then we can take zxy1 = j, and (7) is clearly satisfied for K + 1. Equation (6)
follows from taking limits in (8) as K — oo.

If 1 —r < minj \j, there are M choices for x1, and consequently there are at least M distinct
sequences. In general, if 1 — ¢ = ZZ:1(1 —r)r*=1 <'min; \; for some d > 1, there are M choices

for each z;, i = 1,...,d, so at least M¢ distinct sequences meet condition (6). ]

It is interesting to point out that Lemma 9 relies on the axiom of choice in the induction step.
Note that sequence x1,x9,... can be constructed using a greedy algorithm. Indeed, for any
K =0,1,..., let 6;(K) = S5, I({zx = j})(1 — r)r*=! for each j € [M]. Notice that d;(0) = 0
for all j. Then, z1,x9,... can be computed recursively by setting xx1 = ¢ for any K = 0,1, ...,

where i € [M] is chosen such that 6;(K) + (1 —r)r% <\,

13



Also, note that we cannot strengthen the bound » > 1 — 1/M in Lemma 9, since for any

r<1—1/M, if we take \y = -+ = A\jy = 1/M, then for any choice z; = i, we have

Iz =3HA —r)rf 1> (1 —r) > 1/M = ).

Nk

B
Il

1
We now use Lemmas 8 and 9 to prove our main results in the next theorem, which gives sufficient

conditions under which an optimal pure strategy for G can be found.

Theorem 10 Let &1,...,&y be M consistent Gittins search sequences against p* and suppose 6
is some Searcher mixed strategy with support {{1,...,&w}. If r = rfi >1—1/M for all i € [n],
then

(i) there exists some search sequence £* such that

for all i € [n],

(ii) moreover if r¢ > 1 — min; 0(¢;) for some d = 1,... then there are at least M¢ distinct search

sequences satisfying (9), and

(iii) in particular, if p* is optimal for the Hider and > 1 —1/n, then the Searcher has an optimal

pure strategy.

Proof. To prove part (i) of the theorem, let A\; = 6(§;) for j € [M], so that Z;‘il Aj =1. By

definition, we have that

M
u(i, 0) = Ajuli,&).
j=1
Let x1, 9, ... be a sequence taking values in [M] such that

> Iwp =41 —r)rF = (10)
k=1

for all j € [M]. By Lemma 9, such a sequence exists because r > 1 — 1/M.
Since each &; is a consistent Gittins search sequence against p*, it can be written as &; = (s;),
for some finite subsequence s;. Let £ be the pure Searcher strategy sg,,Sz,,... Then part (i) of

the theorem follows from Lemma &.

14



For part (ii), if 1 — ¢ < min; 0(¢;) for some d > 1, we know from the second statement of
Lemma 9 that at least M? distinct sequences 1, s, ... exist. So, by the construction of &*, it is
straightforward that there are at least M? distinct pure strategies £* which satisfy (9).

Part (iii) of the theorem follows from the fact that if p* is optimal, then by Theorem 3, there
is an optimal Searcher strategy 6 that mixes between n consistent Gittins search sequences against
p*. So by part (i) of this theorem, there must be a Searcher pure strategy whose expected search

time against each i € [n] is the same as that of 6, and which is therefore optimal. O

We can use Theorem 10 to show that the Searcher has optimal pure strategies in cases of the
game G for which we know p* is optimal. As indicated in Theorem 10, for there to exist an optimal
pure search strategy, r—the probability of not finding the Hider in the first cycle of k; searches
in box 4, ¢ = 1,...,n—needs to be sufficiently large. Intuitively, with a large r, the subsequence
chosen in the first cycle plays a less important role, which makes it possible to achieve (9) by

prioritizing the other boxes in the following cycles.

Corollary 11 If the detection probabilities ¢i,...,q, are all equal to some ¢ < 1/n, then the
Searcher has an optimal pure strategy. In addition, if 1 — (1 —¢)? < min; ¢;/T for some d > 1, then

there are at least n distinct optimal pure strategies.

Proof. By Theorem 5, the Hider’s equalizing strategy p* is optimal and the Searcher strategy 6
which chooses each sequence & = (i +1,i+2,...,n,1,2,...,i—1), i = 1,...,n, with probability
t;/T is optimal. Since r =r; = --- =1, =1 —¢ > 1 —1/n, the existence of an optimal pure
search strategy follows Theorem 10, part (iii). Moreover, by Theorem 10 part (ii), if 1 — (1 — ¢)¢ =

1 —r? < min; 6(&) = min, t; /T, there exist at least n? optimal pure strategies. O

Corollary 12 If the detection probabilities are all equal to some ¢ < 1/2 and the search times are
all equal, then the Searcher has an optimal pure strategy. Furthermore, if 1 — (1 — ¢)¢ < 1/2 for

some d > 1, then there are at least 2¢ distinct optimal pure strategies.

Proof. Again, by Theorem 5, the Hider’s equalizing strategy p* is optimal. By Proposition 6,
the Searcher has an optimal strategy that chooses two pure strategies each with probability 1/2.

Since r =1y =--- =1, = 1—¢q > 1/2, the existence of an optimal pure search strategy follows

15



Theorem 10, part (iii). Moreover, by Theorem 10 part (ii), if 1 —(1—¢)% = 1—r¢ < min; 6(&;) = 1/2,

there exist at least 2¢ optimal pure strategies. ]

Corollary 13 If there are n = 2 boxes with ¢t; = ¢ and r]f = 7‘]2”1 > 1/2 for some k =1,...,12,

then the Searcher has an optimal pure strategy.

Proof. By Theorem 2, the Hider’s equalizing strategy p* is optimal, so the corollary follows

immediately from Theorem 10, part (iii). O
We illustrate Corollary 11 with the following example.

Example 14

Consider n = 3 with ¢; = g2 = ¢3 = ¢ = 0.2 and t; = 2.00, to = 2.88, t3 = 5.12. Let 51 = 1,2, 3,

so=2,3,1and s3=3,1,2. Wehaver =1—¢=0.8 and T = t; +t5 + t3 = 10. By Corollary 11,

the Searcher has an optimal strategy. We can construct the optimal strategy as follows.

First, following Lemma 9, we construct a sequence o = x1,x9, ... taking values in {1, 2,3} such
that S°° I(zy = i)(1 — r)r¥=1 = t;/T for i = 1,2,3. Let 6;(K) = S0, I(zp = i)(1 — r)r*~1 for
K =0,1,... Note that §;(0) = 0 for all . For any K = 1,2, ..., we define z ) recursively such that
if 0;(K — 1)+ (1 —r)rf=1 < ¢;/10, then zx = .

e For K =1, we have §;(0) + (1 —7)r =1 =1 —r =0.2 < t;/T for all 4, so 21 can be 1, 2 or 3.
e For K =2, if we let x; = 1, it is easy to check that zs just can be 2 or 3.

e Continuing this way, we obtain the sequence o = 1,2,2, 3, (3).

Second, let & = s1, 89,592,583, (s3) = 1,2,3,2,3,1,2,3,1,3,1,2,(3,1,2). Then, £* is optimal by
Theorem 10. Note that if we change the choice of x1 or xo, we will get a different sequence o which

leads to another different optimal pure strategy.

4.2 Non-existence of Optimal Pure Strategies

We now consider what conditions ensure that there will be no optimal pure strategy for the Searcher.
As in the previous section we focus on the case that the Hider’s equalizing strategy p* is optimal.

For a particular instance of the game G, suppose 6 is an optimal Searcher strategy that is
a mixture of distinct consistent Gittins search sequences &,...,&y, for some M < nl. Write
Amax(0) = maxi<j<a 0(§;), and let A* denote the supremum of Apmax(f) over all such optimal

Searcher strategies.
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Lemma 15 If p* is optimal and r]fl = ... =7k — 5 < 1-)* then there does not exist an optimal

pure strategy for the Searcher.

Proof. Suppose there is an optimal pure Searcher strategy £*. Let & = (s1),...,&u = (su1) be
the consistent Gittins search sequences against p*. Since p* is optimal, £* must be a Gittins search
sequence against p*. Hence, { can be written as s;,, Sz, ..., where x € [nl], for k =1,2,.... Let

¢ be the search strategy that chooses §; with probability

0E) =X =D I(wp=j)(1—r)"
k=1

for j € [n].
By Lemma 8, strategies 6 and &* are equivalent, so 6 is optimal. But
o
N2> Apax () =max A\j > A\ =1—r+ Zl(xk =z)1—r)rF 1 >1—r >\
/ k=2
a contradiction. O
Lemma 15 does not give much clue as to how one might calculate A*, and it is not even clear
that A\* is strictly less than 1. We now consider the two classes of solutions for which we know
that p* is optimal and show that there is a non-empty interval of values of r for which there is no

optimal pure strategy.

Theorem 16 For equal detection probabilities ¢ = --- = ¢, = ¢, there is no optimal pure strategy
for ¢ > ¢*, where

. 1
= Ty 2 Lt .
{0} bl

and typin = min; t;.

Proof. Since the detection probabilities are equal, according to Theorem 5 the equalizing strat-
egy p* is optimal. The consistent Gittins search sequences against p* are {1 = (01),...,&u = (on),
where o1, ...,0, are the permutations of [n]. Let 6 be an optimal Searcher strategy that mixes
between &1, ..., &y and let \; = 60(5),7 € [n!].

Without loss of generality suppose the last term of oy is i. Using Lemma 7, part (ii) and the

fact that 1 — r = ¢, the expected search time of box 7 under 6 can be written as

o T(—q) &N Nwiloy)
u(i,f) = —— L L N~ 2709
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Since 6 is optimal, u(i, ) is equal to the value V' of the game, which is given in Theorem 5. Hence,

n!

0=V —u(i,0) = r_1 S bty | - T(1-q) +Z)\jwi(0a’)
qg T q — q
{a,b}C[n] J=1
n!
1 Ajwi(;)
=T-— > tatb—ZT (12)
{a,b}Cn] Jj=1

Since the last term of oy is 4, we must have w;(o1) = ¢T. Also, w;(c;) > qt; for all j # 1, so

n!
Ajw;(o;
S MU S\ T STt = (T — ) 6

=11 i1

Combining the preceding with (12), we obtain

1

<l ) < g

SR TGy falo = 4",
{6}l

by definition of ¢*. By a similar analysis, the inequality above holds when A; is replaced by any
Aj,2 < j < nl, so Amax(f) < ¢* and A* < ¢*, by definition of A*.
Hence, if ¢ > ¢*, then ¢ > A\*, sor =1 —¢ < 1 — X\*, and by Lemma 15, there is no optimal

pure strategy. ]

Note that ¢* is always at least 1/2, because

1 2 2 2 1
> taty = ol Z 2] < | 1% - Z titmin | = 5T(T = tmin)-
{a,b}Cn] i€[n] i€[n]

N |

It is straightforward to verify that in the case of equal search times as well as equal detection

probabilities, ¢* is equal to 1/2, so we obtain the following corollary of Theorem 16.

Corollary 17 For equal detection probabilities ¢ and equal search times, there is no optimal pure

strategy for ¢ > 1/2.

The bound ¢* is tight in this case, since there is an optimal pure strategy for all ¢ < 1/2, by
Corollary 12. Intuitively, if ¢ > 1/2 then the first few searches affect the expected total search time
so significantly that it is necessary for the Searcher to use a mixed strategy to achieve optimality. If
g < 1/2, then it is possible to achieve optimality with a single search sequence—a pure strategy—by
prioritizing the other boxes later on to neutralize the advantage of the first few boxes in the search

sequence.
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For general search times, the bound of ¢* may still be tight. For example, for the three-box

t2+tots+t2 . .
game, ¢1 = @2 = q3 = ¢, tmin = t1, and 3 = t1t3, we have ¢* = m It is straightforward

to show that the search sequence 3,2,1,(1,2,3) is optimal when ¢ = ¢*.

We now turn to the case that ¢t =¢3 =1 and r = r'f = r’j“ for Kk =1,...,12. The Hider’s
equalizing strategy p* is optimal, by Theorem 2. There are two consistent Gittins search sequences
&1 = (s1), & = (s2) against p* such that s; =1,2,..., so =2,1,... and the last 2k — 1 terms of s;
and so are the same. For example, k = 3, then s; =1,2,2,1,2,1,2 and s = 2,1,2,1,2,1,2. It is
straightforward to verify that wi(s1) = wi(s2) — ¢1 and wa(s1) = wa(s2) + ¢2

Let 6 be an optimal Searcher strategy that chooses &; with probability A; for j = 1,2. By

Lemma 7, the expected search time of box 1 under 8 can be written as

Tr 1
u(l, 9) = 1= + 71 — ()\11111(81) + )\2w1(82))
Tr 1
S I (A (wi(s2) — q1) + Aowi(s2))
Tr 1

=11 1—r(w1(52) —q1\)

Similarly, the expected search time of box 2 under 6 can be written as

T 1
u(2, 9) = 1 _TT + 71 — (Alwg(sl) + )\Q’LUQ(SQ))
Tr 1
= 7+ 7 (M(wa(s2) + g2) + Aawa(s))
Tr 1
1=, 1=, 70(7112(82) + g2)1)

Since 6 is optimal, we have u(1,0) = u(2,60) or wi(s2) — g1 A\1 = wa(s2) + g2 1. Therefore,

A\ = wi(s2) —wa(s2)  wi(s2) — wa(s2)

= . 13
@+ 2—r1—1 (13)

By Lemma 15, there is no optimal pure strategy if » < 1 — max(A1, A2) or equivalently,
r<l—>N and r<l—>X=>X\ (14)

Solving (13)-(14) computationally for k = 1,...,12, 7 = ¥ = 571 we get r* such that there is no

optimal pure strategy for r < r* as follows.
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1 0.216757 | 7  0.399087
0.233196 | 8 0.426468
0.267022 || 9 0.451679

0.302809 || 10 0.474914
0.337219 || 11  0.496363
0.369366 | 12 0.023657

S| O | =W N

Note that for any arbitrary ¢; = to = t, the bounds 7* do not change.

5 The Case of Two Boxes

In this section we restrict our attention to the case of n = 2 boxes. In Subsection 5.1, we examine
conditions under which there are (or are not) optimal pure strategies. In Subsection 5.2, we pose
the question: if there is no optimal pure strategy, what is the best possible pure strategy we can

find?

5.1 Optimal Pure Strategies for Two Boxes

We first investigate the existence of optimal pure Searcher strategies for the two-box game, n = 2,
making the standing assumption that t; < to. We start with a general result that follows from

Theorem 10.

Theorem 18 If n = 2 and r]fl = 7“’52 > 1/2 then the Searcher has an optimal pure strategy.

Proof. Let p denote the optimal Hider strategy and let p* denote the Hider’s equalizing strategy.
If p = p*, then the theorem follows from Theorem 10, so assume that p # p*.

By Theorem 3, there is an optimal Searcher strategy 6 whose support is two consistent Gittins
search sequences &1 and & against p. If & = &, then the there is nothing to prove, so assume
that & # &. Then & and & must be identical up until the jth term, for some j, at which point,
the Searcher is indifferent between searching the two boxes: that is, the new conditional hiding
distribution is p*. So each &,i = 1,2 can be written & = s,&} for some finite sequence s and

some consistent Gittins search sequences & and &} against p*. Let 6’ be the search strategy that
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chooses ¢ with probability (¢;) for i = 1,2. By Theorem 10, there is a pure strategy £* such that
u(i, &) = u(i,0') for i = 1,2. Then, if we set £ = s,&*, it is easy to see that u(i,&**) = u(s, ) for

i =1,2, so £ is optimal. O

We now consider separately the special case when ¢; = g2 = ¢. By Corollary 11 (or Theorem 18),
the Searcher has an optimal pure strategy for ¢ < 1/2 and by Theorem 16, the Searcher has no
optimal pure strategy for ¢ > ¢*, where ¢* reduces to t3/(t1 + t2). This bound is tight, since
a straightforward calculation shows that the strategy 2,1, (1,2) is optimal for the Searcher when
q =t2/(t1 + t2). Also, note that 2,1, (1,2) is a unique optimal pure strategy when q = to/(t1 + t2)
and ty > t;. Indeed, any optimal pure strategy must be a Gittins sequence & = s, Sz, . .. where
each xp € {1,2}, s = 1,2, and sy = 2,1. Suppose s;, = 1,2, then it is obvious u(2,&) > u(2,¢’)
where ¢ =1,2,(2,1). However,

w(2,8) > u(2,8) = (ty + t2) /g — 11/ (t1 + t2) > (t1 +t2)/q — (tita) /(1 + t2) = V.

So, sz, must be 2,1. Then, it is straightforward that s,, = 1,2 for all & = 2,..., otherwise
u(1,£) > V. Hence, the strategy 2,1, (1,2) is unique.

One might conjecture that there is an optimal pure strategy for all the values of ¢ between 1/2
and to/(t1 + t2). However, it turns out that this conjecture is not true in general. We show that,
at least for some choices of ¢; and t9, there is a non-empty interval of values of g between 1/2 and
to/(t1 + t2) for which there is no optimal pure strategy. For example, if to/(t1 + t2) = 0.8, then

there is no optimal pure strategy for 0.553 < ¢ < 0.723. In general, we have the following result.

Lemma 19 Consider the case with n = 2 and equal detection probabilities g1 = ¢2 = ¢ and search

times ¢ and t9 with t; < 9. If

1 f 1 it
< - and 1-— <qg< = 1-— +1]),
i+t 4 oty 1 2< t+

then there is no optimal pure strategy.

Proof. We first derive necessary conditions for a pure strategy to be optimal. By Theorem 5, the
Hider’s equalizing strategy p* is optimal and the value of the game is

i+t t1to

Vv — .
q t1 + to

(15)
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Let € be an optimal pure strategy. It must be a Gittins search sequence against p*, so £ must be
of the form & = s;,, Sgy, ..., where s = (1,2) and s2 = (2,1) and 3 € {1,2}. Let v, = I(z, = 1)
(in other words, 7 is equal to 1 if s, = (1,2), otherwise it is equal to 0). Note that w;(s1) = gt;
and wi (s2) = q(t1 + t2). Similarly for wa(s1) and wa(s2).

By Lemma 7, part (i),

o
w16 = =9 thlw’“ YD gt 4 ta) (1 — )t
k=1

T(l-q) .
= 7(] t1 + t2 Zrk 1 qto ZVkrk_l
k=1 =

T o0
= — —qio Z’ykrkfl. (16)
q k=1
Similarly,
u(2,§) = *—qtlzl—% - (17)

Since ¢ is optimal, we must have V' = u(1,&) = u(2,£), and setting (15), (16) and (17) to be equal
gives
q gy T =t/ (L),

gy (T =)t =ta/(t1 + ta).

(18)

Let y1 =1 — \/; and 1o = ( 1-— tflftg + 1). Observe that 1/2 < y1 < ya < to/(t1 + t2)
when t1/(t1 +t2) < 1/4. It is easy to see that v; must be 0 because if 41 = 1, then ¢ Y o, Aerkt >
q>1/2>1t1/(t1 + t2), contradicting (18).

We consider two cases for y. First, if 49 = 0 then ¢ > 27, (1 — fyk)rk_l >q(l+7r)=¢q2-q).

It is straightforward to check that ¢(2 — q) > to/(t1 + t2) for 1 — <g<i(\/1—78-41).

t1 +t2 t1+t2

Second, if 75 = 1, then ¢ o, WPt > gr = q(1 — q), and it is straightforward to check that

q(1 —q) > t1/(t1 + t2) for 1 — t12t2 < q < 3(/1- tflfw + 1). In either case, we have a
contradiction, so we conclude that there does not exist an optimal pure strategy. O

5.2 Best Pure Strategies

We have seen that for equal search times and equal detection probabilities, there is no optimal pure

strategy solution for ¢ > 1/2 when n = 2. A natural question to ask is what the best pure strategy
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is for this range of values of q. More precisely, we wish to find a search sequence ¢ that minimizes
max{u(1,§),u(2,€)}. Ruckle (1991) shows that for equal search times, there always exists & such
that u(1,£) = u(2,£) = --- = u(n,§). However, a search sequence that results in the same expected
total search time regardless of where the Hider hides is not necessarily the best search sequence.

Below is a counterexample.

Example 20

Consider n = 2 with ¢ = go = 0.5 and t; = t3 = 1. According to Corollary 13, the Searcher has
an optimal pure strategy. It is straightforward to verify that the value of the game is 7/2 and the
search sequence

1,2,(2,1)

is optimal. However, one can also verify that a different search sequence
1,2,1,2,2,2,2,1,1,2,1,2,1,1,1,2,(2,1)

results in an expected search time 923/256 whether the Hider hides in box 1 or box 2. In other
words, it is possible that there exists more than one search sequence that results in the same
expected search time regardless of where the Hider hides, so finding one such search sequence does

not mean it is the best search sequence that minimizes max{u(1,¢),u(2,£)}. O

While u(1,&) = --- = u(n, &) is not a sufficient condition for £ to be the best pure strategy, it
is clearly a necessary condition, for otherwise it is possible to make small tweaks to £ to reduce
maxj—i ., u(i,§). For the case with n =2, g1 =¢2 = ¢ =2/3sothat r =1— ¢ = 1/3, a simple
calculation shows that the search sequence £ = 1,2,(2,2,1,1) guarantees an expected search time
of

r2+3r% 31

We conjecture that this is the best pure strategy for ¢ = 2/3. Computational results indicate
that any pure strategy with expected search time at most 31/12 must begin with the sequence 1,2
followed by 15 cycles of 2,2,1, 1 (or the same sequence with 1 and 2 swapped). Below we generalize

the conjecture to the case with n =2 and ¢ = g2 = (m — 1)/m, for m = 3,4, .. ..

Conjecture 21 Suppose n = 2 and ¢ = ¢2 = (m — 1)/m, for some integer m > 3. Let r =

1 —¢q = 1/m. The best pure strategy is £ = 1,2,(2,2,...,2,1,1,...,1), in which the Searcher
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begins with 1,2, and then indefinitely repeats the same pattern that consists of (m — 1) searches

in box 2 followed by (m — 1) searches in box 1. The resulting expected search time is

SIS+ mr™ 1 mm2 +m — 2
1,€) =u(2,£) =2 = =2+ — :
u(1,£) = u(2,6) +r+ 1 _ pm—1 +m+(m—1)(mm_1—1)

We note that for m = 2, Conjecture 21 is true because in that case the search sequence 1,2, (2, 1)

is optimal as seen in Example 20.

6 Conclusion

This paper studies a discrete search game and investigates the existence of optimal pure strategies
for the Searcher—a single deterministic search sequence that achieves the optimal expected total
search time regardless of where the Hider hides. An optimal pure search strategy has significant
practical value because it is straightforward to execute without the need of randomization. It would
also avoid the potential criticism from lay persons that the chosen course of action does not turn out
well even though the chosen action is properly selected from a set of pure strategies that compose
the optimal mixed strategy.

For a two-person zero-sum game, typically if one player’s optimal mixed strategy includes several
pure strategies, the other player’s optimal mixed strategy also includes the same number of pure
strategies. In our search game, the Hider’s optimal mixed strategy always instructs the Hider to
hide in each of the n boxes with a strictly positive probability, so it may come as a surprise that
the Searcher has an optimal pure strategy in several nontrivial cases. In particular, because the
first few boxes in a search sequence have a profound effect on the conditional expected total search
time for each box, intuitively it is necessary for the Searcher to randomize the first few boxes in
order to achieve optimality. However, if the detection probabilities ¢;, i = 1, ..., n, are sufficiently
small, then the search tends to take a long time with high probability, so the effect of the first few
searches becomes less significant, which makes it possible for the Searcher to prioritize the other
boxes later on in a search sequence to still achieve optimality. The several cases in which an optimal
pure strategy exists for the Searcher we find in this paper all meet this general observation.

A natural question to ask in general is whether we can determine the best search sequence that
minimizes the expected total search time regardless of where the Hider hides. In addition, what is

the gap between an optimal mixed search strategy and the best search sequence when the latter
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is not optimal? In Section 5.2 we make a conjecture of the best search sequence for a very special

case but it appears rather difficult to determine the best search sequence in general.
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