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Virtual community resilience testbeds enable community-level inferences, convergence research, and serve as

decision-making aids. Testbeds are critical for the verification and validation of emerging computational models

and quantitative assessment frameworks of community-level disaster impacts, disruption, and recovery processes.

This paper illuminates the significance of establishing a standardized approach for developing virtual community

resilience testbeds and proposes a systematic schema for this purpose. The workflow facilitates testbed develop- 

ment by defining a series of steps, starting with specifying the testbed simulation scope. Arguing hazard and

community modules are the principal components of a testbed, we present a generic structure for testbeds and

introduce minimum requirements for initiating each module. The workflow dissects the testbed’s architecture and

different attributes of the components beneath these modules. The proposed steps outline existing relevant tools

and resources for creating the building, infrastructure, population, organization, and governance inventories. The

paper discusses challenges testbed developers may encounter in procuring, cleaning, and merging required data

and offers the initiatives and potential remedies, developed either by the authors or other researchers, to address

these issues. The workflow concludes by describing how the testbed will be verified, visualized, published, and

reused. The paper demonstrates the application of the proposed workflow by developing a testbed based on On- 

slow County, North Carolina using publicly available data. To foster sharing and reusing of developed testbeds

by other researchers, all supporting documents, metadata, template algorithms, computer codes, and inventories

of the Onslow Testbed are available at the DesignSafe-CI. The procedure proposed here can be used by other

researchers to guide and standardize testbed development processes, and open access to virtual testbeds to the

broader research community.
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. Introduction

Interest in the development and application of virtual testbeds for

ommunity resilience analysis has gained momentum along with rapid

dvances in computational science, tools, and technologies over the

ast few years. The application of virtual testbeds is being popularized

mong researchers as a means of verification and validation (V&V) of

merging community resilience models and frameworks [1–8] . Commu-

ity resilience is a community’s ability to prepare and plan for, absorb,

ecover from, and more successfully adapt to adverse events such as nat-

ral hazards [9–11] . Thus, the underlying structure of a community re-

ilience testbed should be capable of incorporating and integrating data

nd models which support the full scope of resilience analyses. Testbeds

nable community-level inferences, often through model chaining, and

romote convergence through providing a means for community input

nd aiding in community-based decisions. Testbeds are being used to

erve the needs of training and educational purposes as well as provide
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etter support for risk-informed decision-making by communities to op-

imize public and private investments. 

Despite their increasing popularity, testbeds are almost always in-

irectly presented in the literature. Enderami, et al. [12] performed a

ystematic literature review and identified 22 testbeds used for com-

unity resilience analysis. The review used specific inclusion/exclusion

riteria and presented a comprehensive list of identified testbeds, and

heir metadata, including geographical location, spatial resolution, size,

emographics, incorporated hazards, building and infrastructure inven-

ory, socioeconomic systems, development timeline, associated publi-

ations inventory, and V&V [12] . Findings from reviewing 103 publi-

ations associated with 22 testbeds coupled with an expert survey re-

ealed several gaps in testbed development knowledge, starting with

onfusion on what a testbed actually is [12] . Other gaps identified in-

lude, for example, that there is no standardized workflow for testbed

evelopment, and testbed publication is quite limited, leading to major

hallenges in access and reuse. The development of virtual testbeds is
 Civil Engineering, Tongji University. This is an open access article under the
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ime-consuming and labor-intensive. When testbeds are not published,

heir use becomes out of reach for smaller research teams and projects.

tandardizing the workflow of testbed development, including testbed

ublication, can open access more equitably across the research commu-

ity. The goal of this paper is to fill these gaps by introducing a work-

ow for testbed development and demonstrating its application, includ-

ng the testbed publication process. The paper contributes new knowl-

dge through proposing a novel workflow for testbed development, and

upports researchers’ endeavors to create more reliable, comprehensive,

nd realistic models and frameworks for assessing the resilience of com-

unities. 

.1. Defining a testbed 

“A testbed is a virtual environment with enough supporting architec-

ure and metadata to be representative of one or more systems such that

he testbed can be used to (a) design experiments, (b) examine model or

ystem integration, and (c) test theories ” [12] . In the context of commu-

ity resilience, testbeds enable researchers to test, verify, and validate

heir community resilience algorithms at different scales and spatial res-

lutions. 

For decades, researchers have studied disasters through field stud-

es and case studies. While both field studies and case studies can aid

n the development of a testbed, they are distinctly different from a

estbed. Field studies are performed in real communities, often after dis-

sters, and are used to collect data on specific topics, often about impacts

nd experiences after disasters. Field studies play an important role in

estbed development; field study data can feed into modeling assump-

ions, and aid in model validation [13] . Case studies, on the other hand,

equire a detailed consideration of the development of a particular situ-

tion. Case studies also play an important role in testbed development;

ase studies often have very context-specific data and/or understandings

hich can aid in model assumptions and model validation. A popular

rend in the literature is to develop a virtual testbed based on a real

ommunity where field studies and case studies have been performed in

he past (see [13–16] as examples). 

Similarly, for decades, disaster researchers have used classic risk as-

essment tools (e.g., Hazus [17] ) and more recently used modern high-

ech simulation instruments such as a Digital Twin, and agent-based

odels of infrastructure systems at the community level. While each of

hese is a valuable asset to researchers studying community resilience,

isk assessment tools, Digital Twins, and agent-based models are distinct

rom virtual testbeds. All four have virtual and visualization compo-

ents, but none of them provide the required architecture or metadata

hat accompany testbeds. For example, Hazus users, even when utiliz-

ng the Advanced Data and Models option, cannot examine models that

nclude social and economic aspects of the community, nor can users

haracterize and propagate uncertainties in their models. Digital Twins

re virtual environments that represent the physical characteristics of a

ommunity, without simulating its other dimensions. Agent-based mod-

ls are models that can be applied within a testbed but do not repre-

ent the testbed itself. It is possible that future advancements in virtual

estbeds, risk assessment tools, and Digital Twins will feed into the de-

elopment of something new that utilizes the best of all three. 

.2. Motivation 

The availability of existing testbeds for use by the research com-

unity has profound implications for advancing community resilience

nowledge since each next researcher will not have to develop a new

estbed from scratch. Developing a community resilience testbed is time-

onsuming and likely too labor-intensive for most research teams, par-

icularly those without previous testbed development experience and

roject timelines shorter than three years. The lack of standard guidance

o provide consistent instructions for testbed creation, validation, and

ublication, results in an uneven distribution of testbeds with different
43 
azard and system types. The vast majority of existing testbeds focus on

eismic-related hazards and physical infrastructure systems [ 6 , 7 , 18 , 19 ]

xclusively and overlook modeling other hazard types and a commu-

ity’s social and economic systems. To reuse a testbed, only providing

ccess to the testbed’s datasets and chained algorithms is not enough.

he testbed users should also be aware of data procurement and process-

ng procedures, modeling assumptions in testbed creation, approaches

pplied for testbed verification and validation, and V&V results. 

This paper proposes a systematic workflow for initiating community

esilience testbeds. The next section begins by introducing a standard

tructure for community resilience testbeds based on the authors’ analy-

is of existing testbeds and introduces the minimum components needed

o initiate a testbed using findings from a systematic literature review

nd an expert survey [ 12 , 20 ]. The paper, then, presents the workflow,

hich begins with defining a testbed’s initial simulation scope alongside

esigning its architecture and ends with testbed publication for reuse.

xisting approaches and data sources for implementing the workflow

nd modeling testbed components are explained alongside possible chal-

enges developers may encounter. The application of this workflow is

emonstrated by establishing a testbed based on Onslow County, North

arolina, using publicly available data in the United States. The paper

oncludes with a discussion of potential remedies for addressing chal-

enges in establishing a virtual community resilience testbed and areas

or future testbed research. 

. Generic structure of community resilience testbeds 

In line with the testbed definition stated in Section 1 , we propose

 generic high-level structure for community resilience testbeds, illus-

rated in Fig. 1 . Ideally, a fully developed testbed consists of all compo-

ents illustrated in Fig. 1 . However, in practice, testbeds evolve gradu-

lly as they are being used. Thus, logic gates are borrowed from event-

ree modeling to demonstrate the minimum components and hierarchy

equired for initiating a testbed. The minimum requirements for the

estbed were determined based on our synthesis of the testbed litera-

ure and the result of a survey administered to testbed experts [20] . The

urvey data are available at DesignSafe-CI [21] . In Fig. 1 , the “AND ”

ate is used to show that the output component exists only if all in-

ut components are available; conversely, the output of an “OR ” gate

evelops even if only one input component exists. The proposed struc-

ure is constructed using primarily "OR" gates to minimize constraints

or beginning the testbed development process. As evident in Fig. 1 ,

ommunity resilience testbeds must have both a hazard module and a

ommunity module. Ideally, the community module includes physical,

ocial, and economic systems; however, only one of the three is sufficient

o initiate a testbed. This means, despite the common perception, testbed

evelopment can begin with creating social or economic systems rather

han physical ones; challenging the conventional engineering-centric ap-

roach to testbed development. The proposed structure in Fig. 1 is such

hat the availability of either of the community’s infrastructure assets

r building inventory is adequate to establish the physical system of

he community module. The community’s social and economic systems

an be simulated using social and economic models or closely resem-

led by indices representing their capacity. A hazard module consists of

ne or more probabilistic or deterministic hazard numerical models. The

etails of the systems and subsystems beneath community and hazard

odules depend on the testbed’s purpose and the availability of needed

ata; such details as well as the required architecture for establishing a

estbed are discussed in the next sections. 

The proposed generic structure was applied to the 22 community re-

ilience testbeds identified in [12] for validation. Table 1 presents a sum-

ary of the main features of the reviewed testbeds’ systems and subsys-

ems. The structure proposed in Fig. 1 is compatible with the structure

f the identified testbeds. Table 1 also depicts where there are strengths

nd where there are gaps in the testbed development literature, further

iscussed herein. 
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Table 1 

Summary of main components of the existing testbeds. 

Testbed Imaginary Community Module Hazard Module 

Physical System Social 

System 

Economic 

System 

Natural Hazard Man-made Hazard 

Building 

Inventory 

Infrastructure Asset Inventory 

Water Power Gas Transportation Communication Wastewater 

and 

Drainage 

Earthquake Wind Flood Tornado Tsunami Urban 

Fire 

Cyber- 

physical 

Pandemic Contamination 

CLARC ● ● ● ● ● ● ● ● ● ● ●
Centerville ● ● ● ● ● ● ● ● ● ●
Benchmark City 

(China) 

● ● ● ● ● ● ● ●

Shelby County ● ● ● ● ● ● ● ●
Seaside ● ● ● ● ● ● ●
Galveston ● ● ● ● ● ●
Gotham City ● ● ● ● ● ● ● ●
Harris County ● ● ● ● ●
Gilroy ● ● ● ● ●
psuedo-Norman ● ● ● ● ●
Joplin ● ● ● ● ●
ASCE First Generation 

Testbed 

● ● ● ●

Lumberton ● ● ●
Atlantic County ● ● ●
San Francisco Bay 

Area 

● ● ●

Micropolis ● ● ● ● ●
Turin Virtual 

City 

● ●

Anytown ● ● ●
The unnamed Water 

Network 

● ● ●

UW Power Systems 

Test Case Archive 

● ●

C-Town ● ● ●
Mesopolis ● ● ●

4
4
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Fig. 1. Generic structure of a community resilience testbed where logic gates present requirements for initiating a new testbed. 
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Fig. 2. Conceptual illustration of a community resilience testbed architecture. 
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. Testbed development methodology 

This section presents the methodology and workflow we established

or developing a community resilience testbed. A community resilience

estbed can represent either an imaginary or a real community [12] . The

ethodology elaborated herein can be applied to both imaginary and

eal testbeds; however, there are certain details on data collection and

rocessing that perhaps are only applicable to testbeds that represent

eal-world communities. 

.1. Testbed preliminary simulation scope and architecture 

Testbeds can have significant capability and modeling scope; achiev-

ng all components listed in Fig. 1 , most likely, will occur over a signif-

cant time. Thus, creating a testbed requires a continuous development

pproach which starts with developers defining a preliminary simula-

ion scope and establishing the hazard and community modules accord-

ngly. Defining the testbed preliminary simulation scope includes de-

ermining the type, modeling approach, and spatial resolution of the

azard and community modules in alignment with its first users’ needs.

he availability of data needed for modeling hazard and community

odules, as well as the skill of the researchers involved in initiating

he testbed, are the other determining factors that may govern the pre-

iminary simulation scope. Scope definition should be done in parallel

ith the development of the testbed’s back-end architecture so that the

estbed can continuously evolve using the output of the front-end users’

odels; this concept is illustrated in Fig. 2 . 

In Fig. 2 , the cloud icon represents the testbed’s virtual environment,

hich is divided into front- and back-ends and sits on a deck that con-

ains external datasets. The puzzle pieces in Fig. 2 represent the compo-

ents of the community module which are accessible from the front-end

nd can be utilized by the users as input to their models. The community

odule is continuously updated based on the output of users’ models

nd community partners’ input, as appropriate. This new contribution

o testbed development is conceptually illustrated with a purple piece

hat is being added to the existing puzzle pieces in Fig. 2 . Using the puz-
45 
le piece symbol to display the community module, we underline the

ignificance of the back-end architecture in testbed development. While

xisting components of the community, including building inventory,

nfrastructure inventory, population inventory, organization inventory,

nd governance inventory, are linked together as pieces of a puzzle, the

ew component must also be properly chained. To chain, testbed de-

elopers need to determine how data libraries are transformed, stored,

nd consumed within the backend, and design appropriate pre- and

ost-processors to facilitate data transfer and linkage between them.

ections 3.2 and 3.3 discuss the details of the hazard module and the

ommunity module, shown in Fig. 2 . 

.2. Hazard module 

The hazard module of a testbed can include characteristics of ei-

her natural or man-made (e.g., contamination, cyber-physical attacks,
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Table 2 

Most applicable characteristics of buildings in community resilience models. 

Attribute Characteristics 

1 General • Location 
• Height 
• Year built 

• Building boundary 
• Square footage 
• Land-use class 

2 Geotechnical • Soil type • Foundation type 

3 Structural • Vertical load system 

• Lateral load system 

• Structural Integrity 
• Vertical and lateral 
irregularity 

4 Architectural • Roof system 

• Floor system 

• Exterior walls 
• External components 
( chimney, parapets, 

roof overhang, etc. ) 

5 Property-level • Value (building/content) 
• Ownership structure 
(private/public) 

• Occupancy 
• Tenure 
rban fires, and disease pandemics) hazards or both. Natural hazards

re typically classified under two primary categories, 1) geologic haz-

rds (which cover strong ground motions, liquefaction , tsunamis, land-

lides, and volcanic eruptions); and 2) climatic hazards (which include

oods, hurricanes, storm surges, tornados, drought, and wildfire). The

azard module quantifies the hazard and provides an estimate of its

haracteristics (such as power, magnitude, intensity, velocity, etc.) at

ny location of interest over the entire area of the testbed. As shown in

ig. 2 , these estimates are stored in a set of datasets and are accessible

rom the front-end. Several methods and multiple software programs

nd tools can be found in the literature for hazard simulation [22–32] .

f note, the regional quantification of a hazard raises additional chal-

enges, such as the necessity to consider spatial variability and correla-

ion in hazard simulation [33–36] . While considering the spatial correla-

ion of hazards may significantly increase the computational complexity

nd cost, ignoring it may result in an overestimation of risk in the case of

requent hazards and an underestimation of risk in the case of rare haz-

rds [37] . The "State of the Art in Computational Simulation for Natural

azards Engineering" report [38] comprehensively reviewed simulation

ethods, data sources, and software tools that are typically used in engi-

eering disciplines to characterize earthquake, hurricane, and tsunami

azards. As hazard modeling is much further along in testbed develop-

ent than the community module, it is outside the scope of this paper

o discuss various hazard modeling techniques and tools. Instead, this

ection discusses the significant principles of hazard modeling methods

nd refers readers to other studies that have provided detailed reviews

f the modeling processes. 

A hazard simulation model can be deterministic or probabilistic,

hile both are plausible for testbed development. Probabilistic mod-

ls tend to consider all possible scenarios along with their likelihood of

ccurrence, whereas deterministic models simulate a specific example

f a scenario, often the most adverse one, and do not have a stochas-

ic basis. The probabilistic approach typically applies ensemble mod-

ling to account for uncertainties in events’ intensity, location, and

ime of occurrence. The output of a probabilistic approach is the ex-

eedance probability of the hazard intensity that may be observed at

he desired location in a given period. Natural hazards (particularly

limatic hazards) are often complex adaptive phenomena, and their

haracteristics change significantly with any variations in the current

ondition. This means with unavoidable errors in data measuring, it

s impossible to precisely forecast a future event using deterministic

pproaches [39] . Therefore, probabilistic methods can better estimate

he characteristics of future natural events (especially climatic hazards)

s climate change is happening. A major challenge with using prob-

bilistic approaches is the presence of significant uncertainties in all

omponents of the hazard model [28] . Uncertainty is commonly di-

ided into epistemic and aleatory uncertainty [39] . Epistemic uncer-

ainty originates from incomplete knowledge of a phenomenon or pro-

ess that influences the event. Aleatory uncertainty derives from the

nherent variations in a random event and the chaotic nature of natural

azards. Aleatory uncertainty cannot be reduced with new knowledge

40] . The aleatory uncertainty can be captured through multiple runs of

he synthetic models with slight changes in initial and boundary condi-

ions [41] . Epistemic uncertainties are often quantified by employing

tatistical models (e.g., Monte Carlo simulation) and ensemble mod-

ling, even still ensemble models may not capture all possible future

cenarios [42] . 

To better serve the purpose of V&V, testbed developers often tend to

se deterministic models to hindcast past events when establishing the

azard module at the initial phases of testbed development. The appli-

ation of scenario-based analyses is relatively straightforward and their

esults, compared to probabilistic-based assessments, are easier to in-

erpret for decision-makers [43–45] . The National Institute of Standards

nd Technology (NIST) Community Resilience Planning Guide [46] also

ecommends establishing scenario analyses for more general resilience

lans or when the hazard levels are not defined by code. 
46 
.3. Community module 

The community module of a fully developed testbed is ideally a com-

lex geospatial model of multiple interconnected social, economic, and

hysical systems. Aside from the complexity of modeling these systems

ndividually, simulating a community requires collaborative, inter-, and

ransdisciplinary modeling efforts and community input, which can both

e challenging. To address the first challenge, it is imperative to deter-

ine how the output of models from different disciplines will be linked

ogether, as they may be at different spatial resolutions, temporal scales,

r measurement units. Rosenheim, et al. [47] proposed a workflow that

inks high-resolution spatial data on household characteristics to resi-

ential buildings that are linked to infrastructure. The workflow utilizes

 stochastic model to transform Census demographic data aggregated at

real unit into disaggregated housing unit data that includes household-

evel characteristics. Accordingly, we propose using a similar approach

o link the outputs of models from various disciplines. For this purpose,

s illustrated in Fig. 2 , the output of each model should be incorporated

nto a set of chained inventories, namely, building, infrastructure, pop-

lation, organization, and governance. Each inventory is a collection

f datasets that are linked through keys. For example, school datasets

organization inventory) can be linked to residential property datasets

building inventory) through the students and staff living in the housing

nits (keys); i.e., connecting the social system to the physical system. 

As can be seen in Fig. 2 , a mixed-method simulation approach should

e employed to create community inventories. This means develop-

rs may use physics-based, data-driven, or process-based (e.g., Leontief

nput-output model) models depending on their needs. For the second

hallenge, the development of a community-level testbed requires input

rom community partners, both in the ideation of the initial scope of

ork and in the development of the community inventories [48] . This

articipation, labeled as Community Input in Fig. 2 , can take different

orms, such as surveys, interviews, focus groups, workshops, discussion

anels, roundtables, etc., spanning the engagement continuum [49] . 

In this section, in addition to introducing the available data sources

nd modeling techniques for creating community inventories, we dis-

uss several common challenges in establishing them and present con-

ucive recommendations to address such challenges. 

.3.1. Building inventory 

The building inventory typically consists of multiple datasets that

nclude information about the main attributes of existing buildings,

long with corresponding damage functions and/or functionality mod-

ls. Table 2 presents a set of the most common building characteristics

hat were used for building inventory development in the community

esilience literature [ 1 , 2 , 5 , 7 , 50-58 ]. The identified features are cate-

orized into five overarching attributes, namely general, geotechnical,

tructural, architectural, and property-level, as shown in Table 2 . 
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It is becoming increasingly common for local and county govern-

ents to store a great deal of information about the buildings within

heir jurisdiction in digital repositories that are accessible to the public

r that can be obtained upon reasonable request. This information typ-

cally includes the building’s location, area, boundary, land-use class,

ear built, structural system material, building and contents value, oc-

upancy, ownership, and tenure status. However, this data does not

uffice for common community resilience models, and more building

r property-level information is needed to estimate damage and loss

t the community level. Private data may somewhat address such data

eeds, at least sometimes. National Structure Inventory (NSI) [59] , Ref-

renceUSA [60] , ATTOM [61] , and Microsoft Building Footprint [62] ,

o name only a few, are databases that provide detailed building and

roperty-level data in the United States. 

Private data can be too expensive for academic researchers and of-

en cannot be published to be reused by the research community due to

opyrights. More importantly, private data do not necessarily provide

ll essential information. For example, existing datasets often do not in-

lude information about a building’s first-floor elevation and roof shape,

hereas, both of which are important for estimating flood- and wind-

nduced damage, respectively. An alternative solution to fill this type of

ata gap is employing Artificial Intelligence (AI) techniques and com-

uter vision algorithms to extract such visible attributes by processing

he images. Wang, et al. [63] have developed an AI-enabled tool, termed

RAILS, 1 for creating community-level building inventory. BRAILS is an

pen-source framework comprised of individual applications that are

titched together and use machine learning, particularly deep learning

lgorithms, to gather and process data from online resources such as

pen Street Maps (OSM), Google Maps, Google satellite images, and

treet views. Although BRAILS was designed primarily for creating new

uilding inventories in urban areas and has been used for this purpose

ince its inception [ 57 , 64 , 65 ], its modules can also be used individu-

lly to fill in gaps in an existing building inventory, as the authors did

n Section 4.3.1 of the present paper. Although using private data and

I tools may fill some of the gaps in public data, there are still more

etails (e.g., lateral load system, foundation type, etc.) that should be

ncluded for community-level damage and loss analysis. In such cases,

t is possible to simplify the building inventory based on some rational

ssumptions and use a suite of archetypes to represent all buildings in a

ommunity [58] . 

Merging multiple datasets with different spatial and temporal reso-

utions is a common challenge in the testbed development process. Dif-

erent datasets use dissimilar identifiers and diverse geographical refer-

nce units (e.g., individual building, map block number, parcel number,

tc.) and deal with any missing data differently. For example, McKenna,

t al. [57] reported that Microsoft Footprint Database sometimes lumps

he footprints of closely spaced buildings together. Thus, it is required

o verify the accuracy of data being used for the development of the

estbed’s components, particularly secondary data assembled by some-

ne outside of the research team. A practical way to perform data veri-

cation is cross-referencing and comparing the mutual attributes across

atasets from different resources. Due to using various sources for data

rocurement, various datasets may contain uneven or even contrary in-

ormation. To address such probable conflicts, the testbed developer

hould apply a set of solid and transparent principles based on their

udgment. 

.3.2. Infrastructure inventory 

Infrastructure inventories typically include information about water,

lectric power, transportation, gas and oil transmission, communication,

astewater, and drainage networks. As evident from Table 1 , the first

hree types of aforementioned infrastructure have been of greater inter-

st to testbed developers, whereas communication infrastructure has re-
1 Building Recognition using Artificial Intelligence at Large Scale 

47 
eived the least attention from developers, despite being very common

n reality. As the autonomous vehicle market is growing significantly

nd Internet of Things products [66] are becoming common, the data

ransfer and communications infrastructure should be appended to the

estbeds’ infrastructure inventories in the future. 

Security concerns often prevent detailed information about a com-

unity’s infrastructure assets from being made public. Restricted access

o infrastructure data is often a common worldwide challenge among

estbed developers that have been reported by several researchers

rom other fields as well [ 50 , 67-71 ]. This issue has been slightly re-

olved in the United States after establishing Homeland Infrastructure

oundation-Level Data (HIFLD) platform [DHS, 72 ]. The HIFLD data

nventory comprised three categories of geospatial datasets, namely HI-

LD Open, HIFLD Secure, and HIFLD Licensed Data. The HIFLD Open

ata category contains national foundation-level geospatial critical in-

rastructure data within the public domain that are provided to support

ommunity preparedness, response, recovery, and resilience research.

he HIFLD Secure data category, formerly known as Homeland Secu-

ity Infrastructure Program (HSIP) Gold, is a for-official-use-only com-

ilation of over 125 data layers characterizing domestic infrastructure

nd base map features. The HIFLD Licensed data is commodity data that

s available upon a request in compliance with a set of predefined re-

uirements [DHS, 72 ]. Even still, publishing that piece of the testbed for

euse by others may not be permitted. In these cases, testbed developers

esort to publishing a coarse replica of the community’s infrastructure

etwork(s) containing only a few key aspects of the real system, e.g.,

seudo-Norman testbed by Masoomi and van de Lindt [73] . We, herein,

resent our findings on a few existing resources that provide conducive

ata for simulating road, power, and water networks in testbed devel-

pment. 

Road networks are the backbone of a community’s transportation

etwork. Some road network attributes, such as route footprint, speed

imit, and traffic direction, are often publicly accessible and can be pro-

ured from OpenSteetMaps [OSM, 74 ] or the local government’s De-

artment of Transportation (DOT). Other attributes of road networks,

uch as real-time traffic data, might be obtainable from private com-

anies that provide location-based data in the testbed’s geographic

cope, such as Google Maps, INIRIX, 2 Waze, 3 Uber, 4 etc. Additionally,

oeing [75] developed a code for modeling road networks for every

rban area in the world using OSMnx, an open-source Python tool.

he code is available for public reuse at ( https://github.com/gboeing/

treet- network- models ). 

An electric power network, in general, consists of three major compo-

ents: (1) power stations to generate electricity, (2) a transmission sys-

em to carry the generated electricity to substations, and (3) a distribu-

ion system to provide end-users with power. The UW Power System Test

ase Archive ( https://labs.ece.uw.edu/pstca/ ) is a website that pro-

ides required datasets for modeling common 1960s power distribution

ystems in the Midwestern US. Also, the researchers at Texas A&M Uni-

ersity have launched a repository named Texas A&M University Elec-

ric Grid Datasets ( https://electricgrids.engr.tamu.edu/ ) that contains a

ollection of electric grid datasets. The S&P Global Commodity Insights,

lso known as Platts, is a private company that provides data on the

lobal energy and commodities markets and offers spatial data on elec-

ric power, natural gas, and oil transmission network features in North

merica and Europe ( https://www.spglobal.com/commodity-insights/

n ). 

Water distribution systems typically consist of a water main, dis-

ribution pipelines, elevated water tanks, reservoirs, valves, pumps, and

umping stations. In the U.S., Kentucky Water Resources Research Insti-

ute developed a database ( http://www.uky.edu/WDST/database.html )
2 https://inrix.com/ 
3 https://www.waze.com 

4 https://www.uber.com/ 

https://github.com/gboeing/street-network-models
https://labs.ece.uw.edu/pstca/
https://electricgrids.engr.tamu.edu/
https://www.spglobal.com/commodity-insights/en
http://www.uky.edu/WDST/database.html
https://inrix.com/
https://www.waze.com
https://www.uber.com/
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3

hat provides a collection of datasets for 40 different water distribution

etworks. The datasets consist of information on the networks’ physical

ayout, geometry data, GIS maps, hydraulic models, and water demands

76] . 

.3.3. Population, organization, and governance inventory 

Social and economic systems are more often discussed within case

tudies and theoretical works, and incorporating such systems and phe-

omena into community resilience testbeds is uncommon, as can be ob-

erved in Table 1 . Ideally, social and economic systems in a testbed’s

ommunity module include multiple interconnected predictive models

long with high-resolution population, organization, and governance in-

entories. However, in practice, only a few predictive social science and

conomic models have been created for this purpose. Population evacu-

tion [77] , population dislocation [ 52 , 78 ], housing unit allocation [79] ,

nd household housing recovery [80] are the few predictive social mod-

ls that have been used in testbeds; albeit they only focus on the popula-

ion, ignoring other aspects of the social system, including c For assess-

ng the regional impact of natural hazards on a community’s economy,

omputable General Equilibrium (CGE), business interruption loss, and

ecovery models are the few predictive models available in the literature

 2 , 52 , 81-86 ]. Instead, testbed developers, particularly those who have

n engineering background, have mostly used static indices to charac-

erize a community’s social and economic capacity, Gotham City and

LARC in Table 1 , for example. Indeed, these indices are easy to apply

nd interpret for non-experts. They also do not need a high-resolution

opulation inventory, which predictive models often require. 

Population inventory provides demographic information (e.g., pop-

lation estimates, age, sex, race, ethnicity, disability, etc.) about the

eople living in the testbed area. The U.S. Census Bureau is the lead-

ng source of statistical information about the U.S. population, which

ollects and provides detailed demographic data at multiple spatial res-

lutions ranging from the National Level down to Census Blocks. Data

ome from decennial censuses, which count the entire U.S. population

very ten years, as well as multiple other annual surveys such as Amer-

can Community Survey (ACS), which is the largest household survey

87] . In addition to unavoidable statistical errors, biases, and uncertain-

ies associated with working with data, doing samplings, and surveys,

ensus counts face a few other obstacles. Census has historically un-

erestimated populations that are more challenging to contact through

urveys, phone calls, and door-to-door outreach, such as rural communi-

ies, poor urban communities, and undocumented immigrants [88] . Al-

hough U.S. Census Bureau Post-Enumeration Surveys may show no sta-

istically significant error at the state and national levels, it still matters

or testbeds as they represent communities smaller than an entire state.

his highlights the importance of engaging local communities in testbed

evelopment since such errors are rarely discovered without community

nput. 

Census data cannot be applied directly for creating a high-resolution

opulation inventory since Census Block is the finest spatial resolution

f census data, which still does not cover all variables. For example, ACS

ve-year surveys do not provide reliable data at spatial scales smaller

han the census tract level for several demographic variables [89] . Thus,

n alternative way for creating high-resolution household-level popu-

ation inventories is applying stochastic processes on the census data

nd generating high-fidelity population inventory; see Rosenheim, et al.

47] as an example. Although there are private companies (e.g., Direct-

ail 5 and REGRID 6 ) that provide rich data at the parcel or household

evel, publishing these data will bring up both ethical and copy-right

ssues. 

Organization inventory includes data about businesses and social in-

titutions that are designated to provide goods and services for commu-
5 https://www.directmail.com/ 
6 https://regrid.com/ 
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ity members. Social institutions are any entity within the community

hat meet people’s social needs, such as education, family, healthcare,

nd religion, whereas businesses offer other necessary products and ser-

ices, such as grocery stores, crucial for a community to function and re-

over after a disaster. There are multiple resources (e.g., ReferenceUSA,

irectmail.com, Placer.ai, etc.) that offer the information needed for

uilding the organizational inventory. 

Governance inventory includes information on all governmental

gencies that contribute to a community’s resilience through making

olicies, taking action, or providing goods and services. These data typ-

cally come from community input. 

Here, population, organization, and governance inventories are dis-

ussed together, but not to symbolize any less importance relative to

uilding and infrastructure inventories. As interdisciplinary collabora-

ions increase and more community resilience testbeds are being devel-

ped and reused, social and economic models are becoming more im-

ortant, and high-resolution population, organization, and governance

nventories will become more critical. 

.4. Testbed verification and validation 

Testbeds are primarily used for verification and validation (V&V)

f community resilience algorithms. Testbeds themselves must also go

hrough V&V processes to be able to apply results from a testbed analy-

is to the real world. Verification, in general, is the process of determin-

ng that model’s implementation represents the developer’s conceptual

escription and specifications of the model. Validation is the process

f determining the degree to which a model is an accurate representa-

ion of the real world from the perspective of the intended uses of the

odel (CFDC 1998). Testbed verification involves evaluating the accu-

acy of employed datasets and modeling approaches individually. See

ection 3.3.1 for more information about how to perform the verifica-

ion. Testbed validation ensures the reliability of the whole environ-

ent as it assesses if chained models, integrated modules, and systems

till accurately represent the target community when stitched together.

o validate a complex computational environment of connected models

nd data, such as a community resilience testbed, post-disaster data col-

ection and longitudinal studies are needed. As a result, it has become

ommon to develop testbeds of communities that are rich in case stud-

es and post-disaster data. Joplin and Lumberton are two examples of

estbeds from Table 1 that have been validated using post-disaster data.

o validate the Joplin testbed, estimates obtained from the processing

f collected data and reviewing existing government documentation,

rchived literature, and case studies on Joplin after the EF-5 tornado on

ay 22, 2011, were used [2] . Lumberton Testbed was validated using

ost-event data from an ongoing longitudinal research study after the

016 catastrophic flooding in the city of Lumberton, North Carolina,

ue to Hurricane Matthew [15] . 

A few years after a disaster, the population, demographic texture,

uilt environment, and economy of the harmed community are likely to

hange significantly. Hence, for the V&V of a testbed, the datasets need

o be modified to resemble the community at the time of the event. This

odification would be very challenging if the event occurred before the

igital age. If so, connecting results to existing theories, ground truthing,

sing expert panels, and comparing the results with other published re-

earch in the testbed scope are the alternative techniques for the second

hase of testbed V&V [ 90 , 91 ]. While no approach will provide a perfect

alidation check, the ones described here fairly verify the reliability of

ystems and modules, either separately or together. 

.5. Testbed visualization, publication, and reuse 

In addition to facilitating testbed reuse, testbed visualization can be

emarkably effective when discussing analysis results with the decision-

nd policy-makers. Any geographic information system (GIS) software

an be used for this purpose. The GIS environment not only provides the

https://www.directmail.com/
https://regrid.com/
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Fig. 3. Testbed development workflow. 
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pportunity to integrate both the attribute and spatial data for all of the

omponents in a testbed’s community module to be stored in a single

atabase but also can be applied to map the community resilience anal-

sis results. ESRI ArcGIS and Q-GIS are conducive software for testbed

isualization, however, they require additional software to chain algo-

ithms and simulate disasters. Open-source libraries, such as Leaflet and

olium, are also available to visualize testbed interactively in the Python

nvironment. 

Testbed publishing is another imperative step in the testbed devel-

pment process that cannot be skipped. The creation and validation of

estbeds require a great deal of time and effort. Thus, it is not trivial to

hare a verified and validated testbed to be reused by researchers other

han those who created them. Publishing a testbed involves more than

haring the datasets and algorithms that form the testbed components.

ocumentation of data sources, data cleaning and merging procedures,

odeling assumptions, verification and validation process, and contact

nformation for the developer (team) are also required to be published

long with testbed components. Platforms such as DesignSafe-CI and

N –CORE are appropriate environments for publishing testbeds. 

Fig. 3 presents the step-by-step workflow of the methodology de-

cribed in Section 3 . 

. Step-by-step example to initiate a testbed 

To demonstrate the implementation of the workflow shown in Fig. 3 ,

he authors developed a testbed based on Onslow County, North Car-

lina, using publicly available data in the United States. All testbed
49 
ocuments, datasets, and algorithms (Python scripts and Jupyter note-

ooks) used for the creation of the testbed’s modules are open source

nd are available on DesignSafe-CI [92] to support an interdisciplinary

ollaboration for establishing a fully-developed testbed using the pro-

osed workflow. 

Onslow County is a coastal community in the State of North Carolina

n the United States with a history of experiencing major hurricanes. The

ounty comprises the City of Jacksonville, which is the County seat, and

ultiple towns. As of the American Community Survey (ACS) 2015–

020, 198,377 people, including 66,131 households with a median in-

ome of $69,717 resided in the county. In terms of age, over two-thirds

f the total population are between 18 and 65 years old. The racial

omposition of the county is 74.72% White, 13.99% African American,

.55% Native American, 2.16% Asian, 0.15% Pacific Islander, 1.46%

rom other races, and 6.98% from two or more races. About 12.58% of

he population is Hispanic or Latino of any race [U.S. Census, 93 ]. As a

urricane-prone area with a demographic similar to the national aver-

ge, Onslow County is of interest to community resilience researchers.

nslow County has been used multiple times as a case study in the

ommunity resilience literature [ 8 , 41 , 94-100 ], which makes it a proper

ommunity for developing a virtual testbed. The following subsections

escribe the testbed simulation scope and apply the proposed workflow

tep by step to develop its components. 

.1. Onslow testbed preliminary simulation scope and architecture 

The primary objective of this example is to showcase the applica-

ion of the proposed workflow. As such, there are no established user

eeds and demands. Thus, in this particular example, we focus on hazard

odeling and evaluating initial impacts. In this context, for the hazard

odule, the data on (i) wind speed induced by a scenario hurricane

nd (ii) inundation depth due to a 500-year flood event is estimated

cross the testbed area and will be available to the testbeds’ front-end

sers. For the community module, the front-end users will have access

o the (i) building inventory (including residential properties and gro-

ery stores), (ii) infrastructure inventory (including road network only),

nd (iii) population inventory (including household-level demographic

ata and social vulnerability estimates), all linked together geospatially.

The focus of this example is placed on demonstrating how the pro-

osed workflow can be implemented and utilized effectively. The spec-

fied simulation scope represents an example starting point. By publish-

ng the testbed and making it publicly available, other researchers and

xperts are able to collaborate and further develop each module based

n their needs and expertise. 

.2. Onslow testbed hazard module 

According to the National Oceanic and Atmospheric Administration

NOAA, 101 ] historical hurricane tracks database, Onslow County has

ever been hit by a Category 5 hurricane, but three Category 4 hurri-

anes, including Helene (1958), Diana (1984), and Hazel (1954), were

ecorded within 100 km of the county between 1857 and 2020. To sim-

late hurricane-induced winds, Hurricane Helene (1958), the most pow-

rful one of those three Category 4 hurricanes, was chosen as the sce-

ario event [8] . The data needed for simulating the intended scenario

vent, including information on its track, maximum wind speed, and the

entral pressure of the hurricane eye, were retrieved from the Atlantic

urricane database [AOML 102 ]. The wind field model, proposed by

olland [103] , was employed to estimate the maximum gradient wind

peed at the location of interest. Despite its simple form, the model is

ighly efficient computationally and has been widely used in the litera-

ure for this purpose [e.g., 104 , 105-108 ]. 

 G = 
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Fig. 4. Onslow Testbed hazard module: a) Hurricane Helene (1958)-induced 3-s gust wind speeds (km/h); b)500-year flood map. 
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7 https://onslowcountync.gov/ 
here R max is the radius of the maximum wind, r indicates the distance

rom the hurricane eye to the desired location, B is the pressure profile

arameter, f is the Coriolis parameter, ∆p is the difference between the
entral pressure of the hurricane eye and atmospheric pressure, and 𝜌

s the air density. The values of R max , B , and f were determined using

qs. (2) , (3) , and (4) , respectively. 

 max = 2 . 556 − 0 . 000050255 Δp 2 + 0 . 042243032 𝜓 (2)

 = 1 . 881 − 0 . 00557R max − 0 . 01097 𝜓 (3)

 = 2Ω ⋅ 𝑠𝑖𝑛𝜑 (4)

here 𝜑 is the local latitude and Ω represents the average angular ve-

ocity of the earth. In the end, Gradient wind speed (V G ) is converted

nto 3-s gust wind speed using conversion factors to yield the surface

ind value at the location of interest [ 105 , 108–111 ]. A Python script,

xecutable on Jupyter Notebook and other computing platforms, is de-

eloped for simulating the wind field model and is publicly available

n DesignSafe-CI [92] . It should be mentioned that the testbed’s haz-

rd module currently does not account for the spatial correlation of the

urricane wind fields, however, it can be updated as the testbed is fur-

her developed over time. An illustrative example of a methodology for

uantifying the spatial correlation of wind speed uncertainties can be

ound in the work of Fang, et al. [112] . 

The National Flood Insurance Program (NFIP) is a federal-level pro-

ram managed by Federal Emergency Management Agency (FEMA) that

nables homeowners, business owners, and renters in participating com-

unities in the United States to purchase federally-backed flood insur-

nce. NFIP publicly offers a wide range of digital resources for free

ownload. The National Flood Hazard Layer (NFHL) database is one

f those digital resources that provides geospatial data for floods with

 0.2% annual risk [FEMA, 113 ]. For Onslow Testbed, NFHL data for

nslow County in a GIS file format and incorporated into the hazard

odule [FEMA, 114 ]. Fig. 4 shows a screenshot of the hazard maps in-

luded in the hazard module of Onslow Testbed. 

.3. Onslow testbed community module 

.3.1. Building inventory 

The building inventory in this example consists of geospatial data on

hysical characteristics, market values, and associated fragility-based
50 
ulnerability functions of intended buildings within the testbed area.

his information was mostly obtained from the open-to-public datasets

rovided by Onslow County’s government. 7 The tax records were used

o identify each building’s occupancy and dwelling type, the number

f stories, exterior wall material, year built, square footage, and mar-

et value. The information retrieved from tax records is then spatially

oined with the building footprint dataset to establish the testbed’s base

ap. Microsoft Building Footprint data was used for cleaning and V&V

f the building footprint dataset. The accuracy of the tax records data

as verified through cross-referencing and comparing the mutual at-

ributes with ReferenceUSA datasets. In addition to providing informa-

ion on businesses in the United States, ReferenceUSA has a “U.S. New

overs/ Homeowners ” dataset that includes proper data about single

nd multi-family dwellings. To determine the buildings’ roof shapes, we

sed “RoofTypeClassifier ” module of BRAILS [115] and Google satellite

mages. Approximately one percent of the buildings in the testbed in-

entory were randomly selected, and the predicted shape for their roofs

as visually validated using OSM and Google street views and images.

able 3 summarizes the features included in the building inventory of

nslow Testbed besides their data sources and verification procedures. 

To lower computation costs, we would rather use reduced-order vul-

erability functions for developing the testbed’s building inventory. An

ppropriate Hazus hurricane fragility model [FEMA, 109 ] was assigned

o each building in the inventory using the concept of the building port-

olio. A building portfolio is a collection of building archetypes with

ifferent attributes that represent a community’s building stock [58] .

he building inventory was simplified to 22 archetypes, including one

ommercial archetype and 21 residential. 

An F.16 Hazus damage model was assigned to all grocery stores

ithin the testbed area. Residential buildings were mapped using the

lgorithm shown in Table 4 . The mapping algorithm, first, categorizes

esidential buildings based on their dwelling type into four groups as

efined in Table 4 . Next, the algorithm determines the corresponding

rchetype for each building based on the (1) type of external wall, the

umber of stories, and roof shape for buildings in groups I and II; or (2)

onstruction year for buildings in group III; or (3) the number of stories

or buildings in group IV. Then, the algorithm maps associated Hazus

https://onslowcountync.gov/
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Table 3 

Onslow Testbed building inventory features. 

Building Attribute Data Source 

Location and footprint info The building’s location and footprint information 

was obtained from the building footprint dataset 

of the local government and were verified using 

the Microsoft Building Footprint data. This 

geospatial data was used to create the testbed’s 

base map. 

Occupancy and Dwelling type The building occupancy and dwelling type was 

obtained from the local government’s tax records 

and validated using the U.S. Homeowners and U.S. 

Business datasets, publicly available on 

ReferenceUSA. 

Number of stories The number of stories for each building was 

achieved from the local government’s tax record 

database and was visually validated for a group of 

randomly selected buildings. 

Exterior wall type The information on the exterior walls of the 

buildings was obtained from the local 

government’s tax record database. 

Roof shape The building roof shapes were determined using 

the BRAILS RoofTypeClassifier module and Google 

satellite images and were visually validated for a 

group of randomly selected buildings. 

Market value The market value of the buildings was fetched 

from the local government’s tax records and was 

verified using the U.S. Homeowners and U.S. 

Business datasets, publicly available on 

ReferenceUSA. 
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Fig. 5. Algorithm for assigning roof-wall connection and sheathing type in On- 

slow Testbed. 
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ragility functions to the buildings. As can be seen in Table 4 , more

han one fragility function can be assigned to most of the residential

rchetypes. This is due to the fact that to assign the exact correspond-

ng Hazus fragility function more data is needed, including information

n the buildings’ roof cover, sheathing, roof-wall connection type, win-

ow shutters, glazing coverage, missile environment, and terrain sur-

ace roughness. Procuring such types of data is almost impossible, even

or a mid-size community such as Onslow County. In this example, a

0.35 m ” terrain surface roughness and “A ” missile environment are as-

umed according to Onslow County’s topography. For roof cover, win-

ow shutters, and glazing coverage, the mapping algorithm randomly
able 4 

apping testbed’s residential building inventory to Hazus damage functions. 

Archetype Group Dwelling Type Archetype † 

I Beach House, Single-Family 1 URM wall, 1-STY

2 URM wall, 1-STY

3 URM wall, 2-STY

4 URM wall, 2-STY

5 WFR wall, 2-STY

6 WFR wall, 2-STY

II Beach Townhome, Beach 

Duplex, Beach Condo, Town 

Home, Duplex, Condominium, 

Multi-Family, Apartment 

7 URM wall, 1-STY

8 URM wall, 1-STY

9 URM wall, 2-STY

10 URM wall, 2-STY

11 WFR wall, 1-STY

12 WFR wall, 1-STY

13 WFR wall, 2-STY

14 WFR wall, 2-STY

15 WFR wall, 3-STY

16 WFR wall, 4-STY

III Multi-Section MH, Singlewide 

M/H 

17 YB < 1976 

18 1976 < YB < 199

19 YB > 1994 

IV Mixed-Use Res/Com 20 ≤ 2-STY 

21 2 ∼ 5-STY 
22 ≥ 5-STY 

† URM = unreinforced masonry; WFR = wood frame; STY = story; YB = year built.
∗ The notations used to introduce the damage functions match the notations in Haz

51 
ssigns possible options with equal likelihood to each building. For ex-

mple, it is presumably as likely for an Archetype-1 building to have

indow shutters or not. To allocate roof-wall connection and sheath-

ng type, the mapping algorithm applies the binomial probability rule,

llustrated in Fig. 5 . The criteria in Fig. 5 were selected due to the signif-

cant evolution in building codes in those periods such that more recent

uilding codes comply with more strict requirements. For instance, the

robability of using a strap for connecting the building’s roof and wall

ncreases from 20% to 50%, and 80% as the year built changes from

eriods before, between, and after 1950 and 2000. The Python script

eveloped for executing the applied mapping algorithm is available on

esignSafe-CI [92] . 
Mapped Hazus Damage Functions ∗ 

, Gable roof A.2; A.10; A.50; A.58; A.66; A.74; A.82; A.90; A.98; A.106 

, Hip roof A.6; A.14; A.54; A.62; A.70; A.78; A.86; A.94; A.102; A.110 

, Gable roof A.34; A.42 

, Hip roof A.38; A.46 

, Gable roof A.18; A.26 

, Hip roof A.22; A.30 

, Gable roof C.22; A.2; A.10; A.50; A.58; A.66; A.74; A.82; A.90; A.98; A.106 

, Hip roof A.6; A.14; A.54; A.62; A.70; A.78; A.86; A.94; A.102; A.110 

, Gable roof A.34; A.42 

, Hip roof A.38; A.46 

, Gable roof C.14; C.20; C.21 

, Hip roof C.15 

, Gable roof C.24; A.18; A.26 

, Hip roof A.22; A.30 

, Gable roof C.25 

, Gable roof C.26 

B.3 (pre-HUD, Tied Down); B.3 (pre-HUD, NOT Tied Down) 

4 B.3 (HUD, Tied Down); B.3 (HUD, NOT Tied Down) 

B.3 (1994 HUD - Wind Zone II, Tied Down) 

F.9; F.10; F.11; F.12 

F.27, F.28; F.29; F.30 

F.45; F.46; F.47; F.48 

 

us Technical Manual [FEMA, 109]. 
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Fig. 6. Physical components of Onslow Testbed: a) road network; b) residential buildings and grocery stores spatial distribution. 

Fig. 7. Mapped (a) SVS zones at the census block group level, (b) households-level social vulnerability in Onslow Testbed. 
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.3.2. Infrastructure inventory 

Onslow road network model includes geospatial data about the speed

imit, traffic direction, and routes footprint within the testbed area.

hese data were taken from OSM and the North Carolina Department of

ransportation (NCDOT) open data. We used Graph theory for the math-

matical simulation of the road network [116] . Graphs are collections

f nodes connected by edges. The nodes represent the locations where

oute footprints intersect, while the edges depict the routes that con-

ect these intersections. Other attributes of the road network including
52 
treets’ name, type, speed, and traffic data were assigned to the edges.

he free-flow speed was estimated for streets located in urban areas by

sing Google Maps data and added to the road network dataset. Free-

ow speed is the term used to describe the average speed that a motorist

ould travel if there were no congestion or other adverse conditions

such as bad weather). Finally, the developed datasets based on the road

etwork were spatially merged and incorporated into the testbed’s base

ap. Fig. 6 illustrates the main physical components incorporated into

he community module of Onslow Testbed. 
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Fig. 8. Onslow Testbed development workflow. 
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In summary, to replicate a similar physical system for another

estbed, the testbed developer should go through the following proce-

ure step-by-step: 

Step 1 Fetch the most updated geospatial data of building footprints

rom the local government and Microsoft Building Footprint databases;

lean and cross-check the retrieved data. 

Step 2 Download the tax record information from the local govern-

ent’s website; clean the data; keep the required attributes, including

ccupancy, dwelling type, number of stories, exterior wall material, year

uilt, and square footage, and delete the extra information; verify the

nformation using the U.S. Homeowners and U.S. Business datasets, pub-

icly available on ReferenceUSA. 

Step 3 Merge the datasets resulting from Steps 1 and 2; keep an

ye out for differences between the spatial units of the building foot-

rint and the tax record dataset. For example, a condominium that of-

en contains multiple individually owned apartments is represented by

ne single footprint record that is associated with multiple tax parcels.

n such cases, aggregate the information of tax parcels into a single

ecord. 

Step 4 Determine the building roof shape using the “RoofTypeClas-

ifier ” module of BRAILS and Google satellite images and add it to the

uilding attribute dataset. BRAILS is an open-source Python package

hat has multiple modules with different capabilities and was devel-

ped by SimCenter to populate the building inventory of a community

115] . In this example, we modified BRAILS to fetch the footprint data

ocally from the clean and verified dataset created in Step 1. By default,

RAILS reads the footprint data from OSM and Microsoft Building Foot-

rint databases. 

Step 5 Use expert knowledge and engineering judgment to develop

 proper mapping algorithm for assigning Hazus fragility functions to

heir corresponding buildings in the inventory. 

Step 6 Obtain data on the speed limit, traffic direction, and routes

ootprint from OSM and the State DOT; estimate the free-flow speed of

rban streets using Google Maps data; create a graph model of the road

etwork; assign the attributes of each street to the corresponding edge.

Step 7 Spatially join the road network model with the base map from

tep 3. 

.3.3. Population inventory 

The population inventory in Onslow Testbed includes household-

evel demographic data and social vulnerability estimates. In this exam-

le, we estimated households’ characteristics using the stochastic algo-

ithm developed by developed by Rosenheim [117] . On the other hand,

he Social Vulnerability Score (SVS) developed by Enderami and Sut-

ey [118] to serve the purpose of testbed development. The SVS is a

calable composite index that overcomes two important limitations of

xisting place-based social vulnerability indices: it is constructed using

n approach that does not decrease in validity with changing spatial

esolution, and it only needs to be calculated for the geographic area

f interest, instead of for the entire country thereby significantly re-

ucing computational effort for testbed developers and users. The SVS

ynthesizes a set of demographics from the U.S. Census database at the

esired location and yields a number, called a score, that represents the

elative social vulnerability with respect to its national average. The re-

ulting scores are mapped into five zones, ranging from very low vulner-

bility (zone 1) to very high (zone 5). Details on SVS development and

erification can be found at [118] . The open-source code published by

nderami and Sutley [119] was used to map the social vulnerability of

ensus block groups in the testbed area using ACS 2015–2020 data [U.S.

ensus, 93 ]; results are shown in Fig. 7(a). Every household within On-

low County is randomly assigned a social vulnerability value, displayed

n Fig. 7 (b), according to the SVS zone assigned to their corresponding

lock group and pre-defined ranges. The details of this stochastic algo-

ithm are available in [118] . 
53 
.4. Onslow testbed verification and validation 

The wind model in the hazard module was validated by comparing

he estimated peak gust wind speed with data recorded during Hurri-

ane Helene. For example, the peak gust wind speed recorded during

urricane Helen was identical to the value estimated by the incorpo-

ated wind model, almost 240 km/h. No further V&V for using the FEMA

ood hazard map is needed since we only use the simulation results of

 validated flood model in the hazard module. The validity of data used

or developing the testbed’s physical system was verified, as explained

n Section 4.3.1 . Similar to the FEMA flood hazard maps, using the SVS

o represent the testbed’s social capacity does not need any additional

&V. A detailed description of evaluating the external validity and in-

ernal robustness of the SVS can be found in Enderami and Sutley [118] .

To verify and validate the testbed as an integrated system, we re-

uire damage survey results after Hurricane Helene, which we were not

ble to find. Importantly, the building inventory and population data

sed in testbed development are modern, while Hurricane Helene is 70

ears old. Thus, even if this historical data were available, it could not

alidate damage analysis outcomes since the population and building

nventory have significantly evolved over time. Thus, in this example,

he reliability of each testbed’s components was independently verified

y comparing the outcomes to published similar research results and

elying on the authors’ engineering judgment. 

.5. Onslow testbed visualization and publication 

In the end, all testbed components, including the Python scripts,

upyter Notebooks, GIS files, hazard models, inventory datasets, and

eographical data files were integrated into a package to constitute the

nslow Testbed. The package and the testbed’s supporting documents

e.g., data cleaning process) are available on DesignSafe-CI for re-use
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nd further development. Such re-use and further development are open

o other researchers, where their contributions can also be publish on

he DesignSafe platform under their own name. 

Fig. 8 illustrates an overview of how the proposed testbed develop-

ent workflow was implemented to establish the Onslow Testbed. 

. Conclusion 

The guideline proposed in this paper systematizes the development

f virtual testbeds and facilitates the reuse of a testbed by researchers

ther than those who primarily established it. Expanded accessibility of

estbeds will result in advances in the state of knowledge on community

esilience. Community resilience cuts across different stressors (natural,

an-made), scales (national, state, local), and community dimensions

physical, natural, cultural, human, social, financial, political), and a

ommunity resilience testbed should be aligned with all these consider-

tions. As shown in Table 1 , more research is needed to incorporate cli-

atic, particularly slow-onset, and man-made hazards and more social

nd economic models into testbed analyses. Our proposed testbed devel-

pment process focuses on civil infrastructure networks and population-

ocused social and economic systems, pointing to a need for more de-

elopment and inclusion of critical systems such as education, public

afety, governance, and healthcare. However, the introduced approach

oosts multi-, inter-, and transdisciplinary collaborations on commu-

ity resilience research and provides ample opportunity to incorporate

ore fitting social and economic phenomena and theories into testbeds.

his contribution leads to developing testbeds with more evenly evolved

ommunity modules which are needed to accommodate next-generation

umerical models of community resilience, particularly ones that ac-

ount for equity. 

Aside from introducing the current data resources to testbed devel-

pers, a secondary outcome of this study is to aid researchers in under-

tanding the existing shortages of high-resolution data on social, eco-

omic, and infrastructure systems, and identifying research needs and

uture directions in this field. As is showcased in the paper, machine

earning-based predictive models can be applied to address data gaps

n testbed development. On the other hand, the rapid growth of Arti-

cial Intelligence (AI) opens up new research areas in automating the

evelopment of testbed components and high-fidelity simulation using

I tools. In addition, more longitudinal studies are needed to establish

iverse testbeds representing a variety of communities under different

ircumstances and hazards. This also leads to the opportunity of de-

eloping a uniform community-level taxonomy for data collection for

ost-disaster reconnaissance and advance current practices. Future re-

earch also may need to focus on developing ethical guidelines to ensure

he responsible use of data and protect the privacy of individuals and

ommunities involved in the testbeds. Perhaps the biggest direction for

estbed developers and users is to adopt community engagement prac-

ices to inform testbed development and use, and implementation of the

imulation findings. 
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elevance to resilience 

This paper provides a step-by-step development procedure for virtual

estbeds that enable community-level resilience assessment. Testbeds

re an important tool for cross-disciplinary and convergent research on

ommunity resilience. The proposed development procedure advances
54 
he state of knowledge on the basic components of a testbed, the de-

elopment process, available data inventories, and other key consider-

tions. The work will be of interest to researchers who study resilience-

ased design of structures and infrastructures and seek their intersection

ith social and economic systems within a community. Eq. (1) 
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