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Virtual community resilience testbeds enable community-level inferences, convergence research, and serve as
decision-making aids. Testbeds are critical for the verification and validation of emerging computational models
and quantitative assessment frameworks of community-level disaster impacts, disruption, and recovery processes.
This paper illuminates the significance of establishing a standardized approach for developing virtual community
resilience testbeds and proposes a systematic schema for this purpose. The workflow facilitates testbed develop-
ment by defining a series of steps, starting with specifying the testbed simulation scope. Arguing hazard and
community modules are the principal components of a testbed, we present a generic structure for testbeds and
introduce minimum requirements for initiating each module. The workflow dissects the testbed’s architecture and
different attributes of the components beneath these modules. The proposed steps outline existing relevant tools
and resources for creating the building, infrastructure, population, organization, and governance inventories. The
paper discusses challenges testbed developers may encounter in procuring, cleaning, and merging required data
and offers the initiatives and potential remedies, developed either by the authors or other researchers, to address
these issues. The workflow concludes by describing how the testbed will be verified, visualized, published, and
reused. The paper demonstrates the application of the proposed workflow by developing a testbed based on On-
slow County, North Carolina using publicly available data. To foster sharing and reusing of developed testbeds
by other researchers, all supporting documents, metadata, template algorithms, computer codes, and inventories
of the Onslow Testbed are available at the DesignSafe-CI. The procedure proposed here can be used by other
researchers to guide and standardize testbed development processes, and open access to virtual testbeds to the
broader research community.

1. Introduction better support for risk-informed decision-making by communities to op-

timize public and private investments.

Interest in the development and application of virtual testbeds for
community resilience analysis has gained momentum along with rapid
advances in computational science, tools, and technologies over the
past few years. The application of virtual testbeds is being popularized
among researchers as a means of verification and validation (V&V) of
emerging community resilience models and frameworks [1-8]. Commu-
nity resilience is a community’s ability to prepare and plan for, absorb,
recover from, and more successfully adapt to adverse events such as nat-
ural hazards [9-11]. Thus, the underlying structure of a community re-
silience testbed should be capable of incorporating and integrating data
and models which support the full scope of resilience analyses. Testbeds
enable community-level inferences, often through model chaining, and
promote convergence through providing a means for community input
and aiding in community-based decisions. Testbeds are being used to
serve the needs of training and educational purposes as well as provide
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Despite their increasing popularity, testbeds are almost always in-
directly presented in the literature. Enderami, et al. [12] performed a
systematic literature review and identified 22 testbeds used for com-
munity resilience analysis. The review used specific inclusion/exclusion
criteria and presented a comprehensive list of identified testbeds, and
their metadata, including geographical location, spatial resolution, size,
demographics, incorporated hazards, building and infrastructure inven-
tory, socioeconomic systems, development timeline, associated publi-
cations inventory, and V&V [12]. Findings from reviewing 103 publi-
cations associated with 22 testbeds coupled with an expert survey re-
vealed several gaps in testbed development knowledge, starting with
confusion on what a testbed actually is [12]. Other gaps identified in-
clude, for example, that there is no standardized workflow for testbed
development, and testbed publication is quite limited, leading to major
challenges in access and reuse. The development of virtual testbeds is
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time-consuming and labor-intensive. When testbeds are not published,
their use becomes out of reach for smaller research teams and projects.
Standardizing the workflow of testbed development, including testbed
publication, can open access more equitably across the research commu-
nity. The goal of this paper is to fill these gaps by introducing a work-
flow for testbed development and demonstrating its application, includ-
ing the testbed publication process. The paper contributes new knowl-
edge through proposing a novel workflow for testbed development, and
supports researchers’ endeavors to create more reliable, comprehensive,
and realistic models and frameworks for assessing the resilience of com-
munities.

1.1. Defining a testbed

“A testbed is a virtual environment with enough supporting architec-
ture and metadata to be representative of one or more systems such that
the testbed can be used to (a) design experiments, (b) examine model or
system integration, and (c) test theories” [12]. In the context of commu-
nity resilience, testbeds enable researchers to test, verify, and validate
their community resilience algorithms at different scales and spatial res-
olutions.

For decades, researchers have studied disasters through field stud-
ies and case studies. While both field studies and case studies can aid
in the development of a testbed, they are distinctly different from a
testbed. Field studies are performed in real communities, often after dis-
asters, and are used to collect data on specific topics, often about impacts
and experiences after disasters. Field studies play an important role in
testbed development; field study data can feed into modeling assump-
tions, and aid in model validation [13]. Case studies, on the other hand,
require a detailed consideration of the development of a particular situ-
ation. Case studies also play an important role in testbed development;
case studies often have very context-specific data and/or understandings
which can aid in model assumptions and model validation. A popular
trend in the literature is to develop a virtual testbed based on a real
community where field studies and case studies have been performed in
the past (see [13-16] as examples).

Similarly, for decades, disaster researchers have used classic risk as-
sessment tools (e.g., Hazus [17]) and more recently used modern high-
tech simulation instruments such as a Digital Twin, and agent-based
models of infrastructure systems at the community level. While each of
these is a valuable asset to researchers studying community resilience,
risk assessment tools, Digital Twins, and agent-based models are distinct
from virtual testbeds. All four have virtual and visualization compo-
nents, but none of them provide the required architecture or metadata
that accompany testbeds. For example, Hazus users, even when utiliz-
ing the Advanced Data and Models option, cannot examine models that
include social and economic aspects of the community, nor can users
characterize and propagate uncertainties in their models. Digital Twins
are virtual environments that represent the physical characteristics of a
community, without simulating its other dimensions. Agent-based mod-
els are models that can be applied within a testbed but do not repre-
sent the testbed itself. It is possible that future advancements in virtual
testbeds, risk assessment tools, and Digital Twins will feed into the de-
velopment of something new that utilizes the best of all three.

1.2. Motivation

The availability of existing testbeds for use by the research com-
munity has profound implications for advancing community resilience
knowledge since each next researcher will not have to develop a new
testbed from scratch. Developing a community resilience testbed is time-
consuming and likely too labor-intensive for most research teams, par-
ticularly those without previous testbed development experience and
project timelines shorter than three years. The lack of standard guidance
to provide consistent instructions for testbed creation, validation, and
publication, results in an uneven distribution of testbeds with different
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hazard and system types. The vast majority of existing testbeds focus on
seismic-related hazards and physical infrastructure systems [6,7,18,19]
exclusively and overlook modeling other hazard types and a commu-
nity’s social and economic systems. To reuse a testbed, only providing
access to the testbed’s datasets and chained algorithms is not enough.
The testbed users should also be aware of data procurement and process-
ing procedures, modeling assumptions in testbed creation, approaches
applied for testbed verification and validation, and V&V results.

This paper proposes a systematic workflow for initiating community
resilience testbeds. The next section begins by introducing a standard
structure for community resilience testbeds based on the authors’ analy-
sis of existing testbeds and introduces the minimum components needed
to initiate a testbed using findings from a systematic literature review
and an expert survey [12,20]. The paper, then, presents the workflow,
which begins with defining a testbed’s initial simulation scope alongside
designing its architecture and ends with testbed publication for reuse.
Existing approaches and data sources for implementing the workflow
and modeling testbed components are explained alongside possible chal-
lenges developers may encounter. The application of this workflow is
demonstrated by establishing a testbed based on Onslow County, North
Carolina, using publicly available data in the United States. The paper
concludes with a discussion of potential remedies for addressing chal-
lenges in establishing a virtual community resilience testbed and areas
for future testbed research.

2. Generic structure of community resilience testbeds

In line with the testbed definition stated in Section 1, we propose
a generic high-level structure for community resilience testbeds, illus-
trated in Fig. 1. Ideally, a fully developed testbed consists of all compo-
nents illustrated in Fig. 1. However, in practice, testbeds evolve gradu-
ally as they are being used. Thus, logic gates are borrowed from event-
tree modeling to demonstrate the minimum components and hierarchy
required for initiating a testbed. The minimum requirements for the
testbed were determined based on our synthesis of the testbed litera-
ture and the result of a survey administered to testbed experts [20]. The
survey data are available at DesignSafe-CI [21]. In Fig. 1, the “AND”
gate is used to show that the output component exists only if all in-
put components are available; conversely, the output of an “OR” gate
develops even if only one input component exists. The proposed struc-
ture is constructed using primarily "OR" gates to minimize constraints
for beginning the testbed development process. As evident in Fig. 1,
community resilience testbeds must have both a hazard module and a
community module. Ideally, the community module includes physical,
social, and economic systems; however, only one of the three is sufficient
to initiate a testbed. This means, despite the common perception, testbed
development can begin with creating social or economic systems rather
than physical ones; challenging the conventional engineering-centric ap-
proach to testbed development. The proposed structure in Fig. 1 is such
that the availability of either of the community’s infrastructure assets
or building inventory is adequate to establish the physical system of
the community module. The community’s social and economic systems
can be simulated using social and economic models or closely resem-
bled by indices representing their capacity. A hazard module consists of
one or more probabilistic or deterministic hazard numerical models. The
details of the systems and subsystems beneath community and hazard
modules depend on the testbed’s purpose and the availability of needed
data; such details as well as the required architecture for establishing a
testbed are discussed in the next sections.

The proposed generic structure was applied to the 22 community re-
silience testbeds identified in [12] for validation. Table 1 presents a sum-
mary of the main features of the reviewed testbeds’ systems and subsys-
tems. The structure proposed in Fig. 1 is compatible with the structure
of the identified testbeds. Table 1 also depicts where there are strengths
and where there are gaps in the testbed development literature, further
discussed herein.
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Table 1

Summary of main components of the existing testbeds.
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Fig. 1. Generic structure of a community resilience testbed where logic gates present requirements for initiating a new testbed.

3. Testbed development methodology

This section presents the methodology and workflow we established
for developing a community resilience testbed. A community resilience
testbed can represent either an imaginary or a real community [12]. The
methodology elaborated herein can be applied to both imaginary and
real testbeds; however, there are certain details on data collection and
processing that perhaps are only applicable to testbeds that represent
real-world communities.

3.1. Testbed preliminary simulation scope and architecture

Testbeds can have significant capability and modeling scope; achiev-
ing all components listed in Fig. 1, most likely, will occur over a signif-
icant time. Thus, creating a testbed requires a continuous development
approach which starts with developers defining a preliminary simula-
tion scope and establishing the hazard and community modules accord-
ingly. Defining the testbed preliminary simulation scope includes de-
termining the type, modeling approach, and spatial resolution of the
hazard and community modules in alignment with its first users’ needs.
The availability of data needed for modeling hazard and community
modules, as well as the skill of the researchers involved in initiating
the testbed, are the other determining factors that may govern the pre-
liminary simulation scope. Scope definition should be done in parallel
with the development of the testbed’s back-end architecture so that the
testbed can continuously evolve using the output of the front-end users’
models; this concept is illustrated in Fig. 2.

In Fig. 2, the cloud icon represents the testbed’s virtual environment,
which is divided into front- and back-ends and sits on a deck that con-
tains external datasets. The puzzle pieces in Fig. 2 represent the compo-
nents of the community module which are accessible from the front-end
and can be utilized by the users as input to their models. The community
module is continuously updated based on the output of users’ models
and community partners’ input, as appropriate. This new contribution
to testbed development is conceptually illustrated with a purple piece
that is being added to the existing puzzle pieces in Fig. 2. Using the puz-
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Fig. 2. Conceptual illustration of a community resilience testbed architecture.

zle piece symbol to display the community module, we underline the
significance of the back-end architecture in testbed development. While
existing components of the community, including building inventory,
infrastructure inventory, population inventory, organization inventory,
and governance inventory, are linked together as pieces of a puzzle, the
new component must also be properly chained. To chain, testbed de-
velopers need to determine how data libraries are transformed, stored,
and consumed within the backend, and design appropriate pre- and
post-processors to facilitate data transfer and linkage between them.
Sections 3.2 and 3.3 discuss the details of the hazard module and the
community module, shown in Fig. 2.

3.2. Hazard module

The hazard module of a testbed can include characteristics of ei-
ther natural or man-made (e.g., contamination, cyber-physical attacks,
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urban fires, and disease pandemics) hazards or both. Natural hazards
are typically classified under two primary categories, 1) geologic haz-
ards (which cover strong ground motions, liquefaction , tsunamis, land-
slides, and volcanic eruptions); and 2) climatic hazards (which include
floods, hurricanes, storm surges, tornados, drought, and wildfire). The
hazard module quantifies the hazard and provides an estimate of its
characteristics (such as power, magnitude, intensity, velocity, etc.) at
any location of interest over the entire area of the testbed. As shown in
Fig. 2, these estimates are stored in a set of datasets and are accessible
from the front-end. Several methods and multiple software programs
and tools can be found in the literature for hazard simulation [22-32].
Of note, the regional quantification of a hazard raises additional chal-
lenges, such as the necessity to consider spatial variability and correla-
tion in hazard simulation [33-36]. While considering the spatial correla-
tion of hazards may significantly increase the computational complexity
and cost, ignoring it may result in an overestimation of risk in the case of
frequent hazards and an underestimation of risk in the case of rare haz-
ards [37]. The "State of the Art in Computational Simulation for Natural
Hazards Engineering" report [38] comprehensively reviewed simulation
methods, data sources, and software tools that are typically used in engi-
neering disciplines to characterize earthquake, hurricane, and tsunami
hazards. As hazard modeling is much further along in testbed develop-
ment than the community module, it is outside the scope of this paper
to discuss various hazard modeling techniques and tools. Instead, this
section discusses the significant principles of hazard modeling methods
and refers readers to other studies that have provided detailed reviews
of the modeling processes.

A hazard simulation model can be deterministic or probabilistic,
while both are plausible for testbed development. Probabilistic mod-
els tend to consider all possible scenarios along with their likelihood of
occurrence, whereas deterministic models simulate a specific example
of a scenario, often the most adverse one, and do not have a stochas-
tic basis. The probabilistic approach typically applies ensemble mod-
eling to account for uncertainties in events’ intensity, location, and
time of occurrence. The output of a probabilistic approach is the ex-
ceedance probability of the hazard intensity that may be observed at
the desired location in a given period. Natural hazards (particularly
climatic hazards) are often complex adaptive phenomena, and their
characteristics change significantly with any variations in the current
condition. This means with unavoidable errors in data measuring, it
is impossible to precisely forecast a future event using deterministic
approaches [39]. Therefore, probabilistic methods can better estimate
the characteristics of future natural events (especially climatic hazards)
as climate change is happening. A major challenge with using prob-
abilistic approaches is the presence of significant uncertainties in all
components of the hazard model [28]. Uncertainty is commonly di-
vided into epistemic and aleatory uncertainty [39]. Epistemic uncer-
tainty originates from incomplete knowledge of a phenomenon or pro-
cess that influences the event. Aleatory uncertainty derives from the
inherent variations in a random event and the chaotic nature of natural
hazards. Aleatory uncertainty cannot be reduced with new knowledge
[40]. The aleatory uncertainty can be captured through multiple runs of
the synthetic models with slight changes in initial and boundary condi-
tions [41]. Epistemic uncertainties are often quantified by employing
statistical models (e.g., Monte Carlo simulation) and ensemble mod-
eling, even still ensemble models may not capture all possible future
scenarios [42].

To better serve the purpose of V&V, testbed developers often tend to
use deterministic models to hindcast past events when establishing the
hazard module at the initial phases of testbed development. The appli-
cation of scenario-based analyses is relatively straightforward and their
results, compared to probabilistic-based assessments, are easier to in-
terpret for decision-makers [43-45]. The National Institute of Standards
and Technology (NIST) Community Resilience Planning Guide [46] also
recommends establishing scenario analyses for more general resilience
plans or when the hazard levels are not defined by code.
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3.3. Community module

The community module of a fully developed testbed is ideally a com-
plex geospatial model of multiple interconnected social, economic, and
physical systems. Aside from the complexity of modeling these systems
individually, simulating a community requires collaborative, inter-, and
transdisciplinary modeling efforts and community input, which can both
be challenging. To address the first challenge, it is imperative to deter-
mine how the output of models from different disciplines will be linked
together, as they may be at different spatial resolutions, temporal scales,
or measurement units. Rosenheim, et al. [47] proposed a workflow that
links high-resolution spatial data on household characteristics to resi-
dential buildings that are linked to infrastructure. The workflow utilizes
a stochastic model to transform Census demographic data aggregated at
areal unit into disaggregated housing unit data that includes household-
level characteristics. Accordingly, we propose using a similar approach
to link the outputs of models from various disciplines. For this purpose,
as illustrated in Fig. 2, the output of each model should be incorporated
into a set of chained inventories, namely, building, infrastructure, pop-
ulation, organization, and governance. Each inventory is a collection
of datasets that are linked through keys. For example, school datasets
(organization inventory) can be linked to residential property datasets
(building inventory) through the students and staff living in the housing
units (keys); i.e., connecting the social system to the physical system.

As can be seen in Fig. 2, a mixed-method simulation approach should
be employed to create community inventories. This means develop-
ers may use physics-based, data-driven, or process-based (e.g., Leontief
input-output model) models depending on their needs. For the second
challenge, the development of a community-level testbed requires input
from community partners, both in the ideation of the initial scope of
work and in the development of the community inventories [48]. This
participation, labeled as Community Input in Fig. 2, can take different
forms, such as surveys, interviews, focus groups, workshops, discussion
panels, roundtables, etc., spanning the engagement continuum [49].

In this section, in addition to introducing the available data sources
and modeling techniques for creating community inventories, we dis-
cuss several common challenges in establishing them and present con-
ducive recommendations to address such challenges.

3.3.1. Building inventory

The building inventory typically consists of multiple datasets that
include information about the main attributes of existing buildings,
along with corresponding damage functions and/or functionality mod-
els. Table 2 presents a set of the most common building characteristics
that were used for building inventory development in the community
resilience literature [1,2,5,7,50-58]. The identified features are cate-
gorized into five overarching attributes, namely general, geotechnical,
structural, architectural, and property-level, as shown in Table 2.

Table 2
Most applicable characteristics of buildings in community resilience models.
Attribute Characteristics
1 General « Location * Building boundary
+ Height * Square footage
* Year built « Land-use class
2 Geotechnical + Soil type + Foundation type

3 Structural

+ Structural Integrity
Vertical and lateral
irregularity

Vertical load system
Lateral load system

.
.

+ Exterior walls

« External components
(chimney, parapets,
roof overhang, etc.)

Roof system
Floor system

4 Architectural

5 Property-level

.
.

Value (building/content)
Ownership structure
(private/public)

Occupancy
» Tenure
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It is becoming increasingly common for local and county govern-
ments to store a great deal of information about the buildings within
their jurisdiction in digital repositories that are accessible to the public
or that can be obtained upon reasonable request. This information typ-
ically includes the building’s location, area, boundary, land-use class,
year built, structural system material, building and contents value, oc-
cupancy, ownership, and tenure status. However, this data does not
suffice for common community resilience models, and more building
or property-level information is needed to estimate damage and loss
at the community level. Private data may somewhat address such data
needs, at least sometimes. National Structure Inventory (NSI) [59], Ref-
erenceUSA [60], ATTOM [61], and Microsoft Building Footprint [62],
to name only a few, are databases that provide detailed building and
property-level data in the United States.

Private data can be too expensive for academic researchers and of-
ten cannot be published to be reused by the research community due to
copyrights. More importantly, private data do not necessarily provide
all essential information. For example, existing datasets often do not in-
clude information about a building’s first-floor elevation and roof shape,
whereas, both of which are important for estimating flood- and wind-
induced damage, respectively. An alternative solution to fill this type of
data gap is employing Artificial Intelligence (AI) techniques and com-
puter vision algorithms to extract such visible attributes by processing
the images. Wang, et al. [63] have developed an Al-enabled tool, termed
BRAILS,' for creating community-level building inventory. BRAILS is an
open-source framework comprised of individual applications that are
stitched together and use machine learning, particularly deep learning
algorithms, to gather and process data from online resources such as
Open Street Maps (OSM), Google Maps, Google satellite images, and
street views. Although BRAILS was designed primarily for creating new
building inventories in urban areas and has been used for this purpose
since its inception [57,64,65], its modules can also be used individu-
ally to fill in gaps in an existing building inventory, as the authors did
in Section 4.3.1 of the present paper. Although using private data and
Al tools may fill some of the gaps in public data, there are still more
details (e.g., lateral load system, foundation type, etc.) that should be
included for community-level damage and loss analysis. In such cases,
it is possible to simplify the building inventory based on some rational
assumptions and use a suite of archetypes to represent all buildings in a
community [58].

Merging multiple datasets with different spatial and temporal reso-
lutions is a common challenge in the testbed development process. Dif-
ferent datasets use dissimilar identifiers and diverse geographical refer-
ence units (e.g., individual building, map block number, parcel number,
etc.) and deal with any missing data differently. For example, McKenna,
et al. [57] reported that Microsoft Footprint Database sometimes lumps
the footprints of closely spaced buildings together. Thus, it is required
to verify the accuracy of data being used for the development of the
testbed’s components, particularly secondary data assembled by some-
one outside of the research team. A practical way to perform data veri-
fication is cross-referencing and comparing the mutual attributes across
datasets from different resources. Due to using various sources for data
procurement, various datasets may contain uneven or even contrary in-
formation. To address such probable conflicts, the testbed developer
should apply a set of solid and transparent principles based on their
judgment.

3.3.2. Infrastructure inventory

Infrastructure inventories typically include information about water,
electric power, transportation, gas and oil transmission, communication,
wastewater, and drainage networks. As evident from Table 1, the first
three types of aforementioned infrastructure have been of greater inter-
est to testbed developers, whereas communication infrastructure has re-

! Building Recognition using Artificial Intelligence at Large Scale
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ceived the least attention from developers, despite being very common
in reality. As the autonomous vehicle market is growing significantly
and Internet of Things products [66] are becoming common, the data
transfer and communications infrastructure should be appended to the
testbeds’ infrastructure inventories in the future.

Security concerns often prevent detailed information about a com-
munity’s infrastructure assets from being made public. Restricted access
to infrastructure data is often a common worldwide challenge among
testbed developers that have been reported by several researchers
from other fields as well [50,67-71]. This issue has been slightly re-
solved in the United States after establishing Homeland Infrastructure
Foundation-Level Data (HIFLD) platform [DHS, 72]. The HIFLD data
inventory comprised three categories of geospatial datasets, namely HI-
FLD Open, HIFLD Secure, and HIFLD Licensed Data. The HIFLD Open
Data category contains national foundation-level geospatial critical in-
frastructure data within the public domain that are provided to support
community preparedness, response, recovery, and resilience research.
The HIFLD Secure data category, formerly known as Homeland Secu-
rity Infrastructure Program (HSIP) Gold, is a for-official-use-only com-
pilation of over 125 data layers characterizing domestic infrastructure
and base map features. The HIFLD Licensed data is commodity data that
is available upon a request in compliance with a set of predefined re-
quirements [DHS, 72]. Even still, publishing that piece of the testbed for
reuse by others may not be permitted. In these cases, testbed developers
resort to publishing a coarse replica of the community’s infrastructure
network(s) containing only a few key aspects of the real system, e.g.,
pseudo-Norman testbed by Masoomi and van de Lindt [73]. We, herein,
present our findings on a few existing resources that provide conducive
data for simulating road, power, and water networks in testbed devel-
opment.

Road networks are the backbone of a community’s transportation
network. Some road network attributes, such as route footprint, speed
limit, and traffic direction, are often publicly accessible and can be pro-
cured from OpenSteetMaps [OSM, 74] or the local government’s De-
partment of Transportation (DOT). Other attributes of road networks,
such as real-time traffic data, might be obtainable from private com-
panies that provide location-based data in the testbed’s geographic
scope, such as Google Maps, INIRIX,> Waze,> Uber,* etc. Additionally,
Boeing [75] developed a code for modeling road networks for every
urban area in the world using OSMnx, an open-source Python tool.
The code is available for public reuse at (https://github.com/gboeing/
street-network-models).

An electric power network, in general, consists of three major compo-
nents: (1) power stations to generate electricity, (2) a transmission sys-
tem to carry the generated electricity to substations, and (3) a distribu-
tion system to provide end-users with power. The UW Power System Test
Case Archive (https://labs.ece.uw.edu/pstca/) is a website that pro-
vides required datasets for modeling common 1960s power distribution
systems in the Midwestern US. Also, the researchers at Texas A&M Uni-
versity have launched a repository named Texas A&M University Elec-
tric Grid Datasets (https://electricgrids.engr.tamu.edu/) that contains a
collection of electric grid datasets. The S&P Global Commodity Insights,
also known as Platts, is a private company that provides data on the
global energy and commodities markets and offers spatial data on elec-
tric power, natural gas, and oil transmission network features in North
America and Europe (https://www.spglobal.com/commodity-insights/
en).

Water distribution systems typically consist of a water main, dis-
tribution pipelines, elevated water tanks, reservoirs, valves, pumps, and
pumping stations. In the U.S., Kentucky Water Resources Research Insti-
tute developed a database (http://www.uky.edu/WDST/database.html)

2 https://inrix.com/
3 https://www.waze.com
4 https://www.uber.com/
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that provides a collection of datasets for 40 different water distribution
networks. The datasets consist of information on the networks’ physical
layout, geometry data, GIS maps, hydraulic models, and water demands
[76].

3.3.3. Population, organization, and governance inventory

Social and economic systems are more often discussed within case
studies and theoretical works, and incorporating such systems and phe-
nomena into community resilience testbeds is uncommon, as can be ob-
served in Table 1. Ideally, social and economic systems in a testbed’s
community module include multiple interconnected predictive models
along with high-resolution population, organization, and governance in-
ventories. However, in practice, only a few predictive social science and
economic models have been created for this purpose. Population evacu-
ation [77], population dislocation [52,78], housing unit allocation [79],
and household housing recovery [80] are the few predictive social mod-
els that have been used in testbeds; albeit they only focus on the popula-
tion, ignoring other aspects of the social system, including c For assess-
ing the regional impact of natural hazards on a community’s economy,
Computable General Equilibrium (CGE), business interruption loss, and
recovery models are the few predictive models available in the literature
[2,52,81-86]. Instead, testbed developers, particularly those who have
an engineering background, have mostly used static indices to charac-
terize a community’s social and economic capacity, Gotham City and
CLARC in Table 1, for example. Indeed, these indices are easy to apply
and interpret for non-experts. They also do not need a high-resolution
population inventory, which predictive models often require.

Population inventory provides demographic information (e.g., pop-
ulation estimates, age, sex, race, ethnicity, disability, etc.) about the
people living in the testbed area. The U.S. Census Bureau is the lead-
ing source of statistical information about the U.S. population, which
collects and provides detailed demographic data at multiple spatial res-
olutions ranging from the National Level down to Census Blocks. Data
come from decennial censuses, which count the entire U.S. population
every ten years, as well as multiple other annual surveys such as Amer-
ican Community Survey (ACS), which is the largest household survey
[87]. In addition to unavoidable statistical errors, biases, and uncertain-
ties associated with working with data, doing samplings, and surveys,
census counts face a few other obstacles. Census has historically un-
derestimated populations that are more challenging to contact through
surveys, phone calls, and door-to-door outreach, such as rural communi-
ties, poor urban communities, and undocumented immigrants [88]. Al-
though U.S. Census Bureau Post-Enumeration Surveys may show no sta-
tistically significant error at the state and national levels, it still matters
for testbeds as they represent communities smaller than an entire state.
This highlights the importance of engaging local communities in testbed
development since such errors are rarely discovered without community
input.

Census data cannot be applied directly for creating a high-resolution
population inventory since Census Block is the finest spatial resolution
of census data, which still does not cover all variables. For example, ACS
five-year surveys do not provide reliable data at spatial scales smaller
than the census tract level for several demographic variables [89]. Thus,
an alternative way for creating high-resolution household-level popu-
lation inventories is applying stochastic processes on the census data
and generating high-fidelity population inventory; see Rosenheim, et al.
[47] as an example. Although there are private companies (e.g., Direct-
Mail® and REGRID®) that provide rich data at the parcel or household
level, publishing these data will bring up both ethical and copy-right
issues.

Organization inventory includes data about businesses and social in-
stitutions that are designated to provide goods and services for commu-

5 https://www.directmail.com/
6 https://regrid.com/
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nity members. Social institutions are any entity within the community
that meet people’s social needs, such as education, family, healthcare,
and religion, whereas businesses offer other necessary products and ser-
vices, such as grocery stores, crucial for a community to function and re-
cover after a disaster. There are multiple resources (e.g., ReferenceUSA,
Directmail.com, Placer.ai, etc.) that offer the information needed for
building the organizational inventory.

Governance inventory includes information on all governmental
agencies that contribute to a community’s resilience through making
policies, taking action, or providing goods and services. These data typ-
ically come from community input.

Here, population, organization, and governance inventories are dis-
cussed together, but not to symbolize any less importance relative to
building and infrastructure inventories. As interdisciplinary collabora-
tions increase and more community resilience testbeds are being devel-
oped and reused, social and economic models are becoming more im-
portant, and high-resolution population, organization, and governance
inventories will become more critical.

3.4. Testbed verification and validation

Testbeds are primarily used for verification and validation (V&V)
of community resilience algorithms. Testbeds themselves must also go
through V&V processes to be able to apply results from a testbed analy-
sis to the real world. Verification, in general, is the process of determin-
ing that model’s implementation represents the developer’s conceptual
description and specifications of the model. Validation is the process
of determining the degree to which a model is an accurate representa-
tion of the real world from the perspective of the intended uses of the
model (CFDC 1998). Testbed verification involves evaluating the accu-
racy of employed datasets and modeling approaches individually. See
Section 3.3.1 for more information about how to perform the verifica-
tion. Testbed validation ensures the reliability of the whole environ-
ment as it assesses if chained models, integrated modules, and systems
still accurately represent the target community when stitched together.
To validate a complex computational environment of connected models
and data, such as a community resilience testbed, post-disaster data col-
lection and longitudinal studies are needed. As a result, it has become
common to develop testbeds of communities that are rich in case stud-
ies and post-disaster data. Joplin and Lumberton are two examples of
testbeds from Table 1 that have been validated using post-disaster data.
To validate the Joplin testbed, estimates obtained from the processing
of collected data and reviewing existing government documentation,
archived literature, and case studies on Joplin after the EF-5 tornado on
May 22, 2011, were used [2]. Lumberton Testbed was validated using
post-event data from an ongoing longitudinal research study after the
2016 catastrophic flooding in the city of Lumberton, North Carolina,
due to Hurricane Matthew [15].

A few years after a disaster, the population, demographic texture,
built environment, and economy of the harmed community are likely to
change significantly. Hence, for the V&V of a testbed, the datasets need
to be modified to resemble the community at the time of the event. This
modification would be very challenging if the event occurred before the
digital age. If so, connecting results to existing theories, ground truthing,
using expert panels, and comparing the results with other published re-
search in the testbed scope are the alternative techniques for the second
phase of testbed V&V [90,91]. While no approach will provide a perfect
validation check, the ones described here fairly verify the reliability of
systems and modules, either separately or together.

3.5. Testbed visualization, publication, and reuse

In addition to facilitating testbed reuse, testbed visualization can be
remarkably effective when discussing analysis results with the decision-
and policy-makers. Any geographic information system (GIS) software
can be used for this purpose. The GIS environment not only provides the
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Visualize Testbed

opportunity to integrate both the attribute and spatial data for all of the
components in a testbed’s community module to be stored in a single
database but also can be applied to map the community resilience anal-
ysis results. ESRI ArcGIS and Q-GIS are conducive software for testbed
visualization, however, they require additional software to chain algo-
rithms and simulate disasters. Open-source libraries, such as Leaflet and
Folium, are also available to visualize testbed interactively in the Python
environment.

Testbed publishing is another imperative step in the testbed devel-
opment process that cannot be skipped. The creation and validation of
testbeds require a great deal of time and effort. Thus, it is not trivial to
share a verified and validated testbed to be reused by researchers other
than those who created them. Publishing a testbed involves more than
sharing the datasets and algorithms that form the testbed components.
Documentation of data sources, data cleaning and merging procedures,
modeling assumptions, verification and validation process, and contact
information for the developer (team) are also required to be published
along with testbed components. Platforms such as DesignSafe-CI and
IN-CORE are appropriate environments for publishing testbeds.

Fig. 3 presents the step-by-step workflow of the methodology de-
scribed in Section 3.

4. Step-by-step example to initiate a testbed

To demonstrate the implementation of the workflow shown in Fig. 3,
the authors developed a testbed based on Onslow County, North Car-
olina, using publicly available data in the United States. All testbed
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documents, datasets, and algorithms (Python scripts and Jupyter note-
books) used for the creation of the testbed’s modules are open source
and are available on DesignSafe-CI [92] to support an interdisciplinary
collaboration for establishing a fully-developed testbed using the pro-
posed workflow.

Onslow County is a coastal community in the State of North Carolina
in the United States with a history of experiencing major hurricanes. The
county comprises the City of Jacksonville, which is the County seat, and
multiple towns. As of the American Community Survey (ACS) 2015-
2020, 198,377 people, including 66,131 households with a median in-
come of $69,717 resided in the county. In terms of age, over two-thirds
of the total population are between 18 and 65 years old. The racial
composition of the county is 74.72% White, 13.99% African American,
0.55% Native American, 2.16% Asian, 0.15% Pacific Islander, 1.46%
from other races, and 6.98% from two or more races. About 12.58% of
the population is Hispanic or Latino of any race [U.S. Census, 93]. As a
hurricane-prone area with a demographic similar to the national aver-
age, Onslow County is of interest to community resilience researchers.
Onslow County has been used multiple times as a case study in the
community resilience literature [8,41,94-100], which makes it a proper
community for developing a virtual testbed. The following subsections
describe the testbed simulation scope and apply the proposed workflow
step by step to develop its components.

4.1. Onslow testbed preliminary simulation scope and architecture

The primary objective of this example is to showcase the applica-
tion of the proposed workflow. As such, there are no established user
needs and demands. Thus, in this particular example, we focus on hazard
modeling and evaluating initial impacts. In this context, for the hazard
module, the data on (i) wind speed induced by a scenario hurricane
and (ii) inundation depth due to a 500-year flood event is estimated
across the testbed area and will be available to the testbeds’ front-end
users. For the community module, the front-end users will have access
to the (i) building inventory (including residential properties and gro-
cery stores), (ii) infrastructure inventory (including road network only),
and (iii) population inventory (including household-level demographic
data and social vulnerability estimates), all linked together geospatially.

The focus of this example is placed on demonstrating how the pro-
posed workflow can be implemented and utilized effectively. The spec-
ified simulation scope represents an example starting point. By publish-
ing the testbed and making it publicly available, other researchers and
experts are able to collaborate and further develop each module based
on their needs and expertise.

4.2. Onslow testbed hazard module

According to the National Oceanic and Atmospheric Administration
[NOAA, 101] historical hurricane tracks database, Onslow County has
never been hit by a Category 5 hurricane, but three Category 4 hurri-
canes, including Helene (1958), Diana (1984), and Hazel (1954), were
recorded within 100 km of the county between 1857 and 2020. To sim-
ulate hurricane-induced winds, Hurricane Helene (1958), the most pow-
erful one of those three Category 4 hurricanes, was chosen as the sce-
nario event [8]. The data needed for simulating the intended scenario
event, including information on its track, maximum wind speed, and the
central pressure of the hurricane eye, were retrieved from the Atlantic
hurricane database [AOML 102]. The wind field model, proposed by
Holland [103], was employed to estimate the maximum gradient wind
speed at the location of interest. Despite its simple form, the model is
highly efficient computationally and has been widely used in the litera-
ture for this purpose [e.g., 104,105-108].
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where R, is the radius of the maximum wind, r indicates the distance
from the hurricane eye to the desired location, B is the pressure profile
parameter, f is the Coriolis parameter, A, is the difference between the
central pressure of the hurricane eye and atmospheric pressure, and p
is the air density. The values of R, B, and f were determined using
Egs. (2), (3), and (4), respectively.
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where ¢ is the local latitude and Q represents the average angular ve-
locity of the earth. In the end, Gradient wind speed (V) is converted
into 3-s gust wind speed using conversion factors to yield the surface
wind value at the location of interest [105,108-111]. A Python script,
executable on Jupyter Notebook and other computing platforms, is de-
veloped for simulating the wind field model and is publicly available
on DesignSafe-CI [92]. It should be mentioned that the testbed’s haz-
ard module currently does not account for the spatial correlation of the
hurricane wind fields, however, it can be updated as the testbed is fur-
ther developed over time. An illustrative example of a methodology for
quantifying the spatial correlation of wind speed uncertainties can be
found in the work of Fang, et al. [112].

The National Flood Insurance Program (NFIP) is a federal-level pro-
gram managed by Federal Emergency Management Agency (FEMA) that
enables homeowners, business owners, and renters in participating com-
munities in the United States to purchase federally-backed flood insur-
ance. NFIP publicly offers a wide range of digital resources for free
download. The National Flood Hazard Layer (NFHL) database is one
of those digital resources that provides geospatial data for floods with
a 0.2% annual risk [FEMA, 113]. For Onslow Testbed, NFHL data for
Onslow County in a GIS file format and incorporated into the hazard
module [FEMA, 114]. Fig. 4 shows a screenshot of the hazard maps in-
cluded in the hazard module of Onslow Testbed.

4.3. Onslow testbed community module

4.3.1. Building inventory
The building inventory in this example consists of geospatial data on
physical characteristics, market values, and associated fragility-based
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Fig. 4. Onslow Testbed hazard module: a) Hurricane Helene (1958)-induced 3-s gust wind speeds (km/h); b)500-year flood map.

vulnerability functions of intended buildings within the testbed area.
This information was mostly obtained from the open-to-public datasets
provided by Onslow County’s government.” The tax records were used
to identify each building’s occupancy and dwelling type, the number
of stories, exterior wall material, year built, square footage, and mar-
ket value. The information retrieved from tax records is then spatially
joined with the building footprint dataset to establish the testbed’s base
map. Microsoft Building Footprint data was used for cleaning and V&V
of the building footprint dataset. The accuracy of the tax records data
was verified through cross-referencing and comparing the mutual at-
tributes with ReferenceUSA datasets. In addition to providing informa-
tion on businesses in the United States, ReferenceUSA has a “U.S. New
Movers/ Homeowners” dataset that includes proper data about single
and multi-family dwellings. To determine the buildings’ roof shapes, we
used “RoofTypeClassifier” module of BRAILS [115] and Google satellite
images. Approximately one percent of the buildings in the testbed in-
ventory were randomly selected, and the predicted shape for their roofs
was visually validated using OSM and Google street views and images.
Table 3 summarizes the features included in the building inventory of
Onslow Testbed besides their data sources and verification procedures.

To lower computation costs, we would rather use reduced-order vul-
nerability functions for developing the testbed’s building inventory. An
appropriate Hazus hurricane fragility model [FEMA, 109] was assigned
to each building in the inventory using the concept of the building port-
folio. A building portfolio is a collection of building archetypes with
different attributes that represent a community’s building stock [58].
The building inventory was simplified to 22 archetypes, including one
commercial archetype and 21 residential.

An F.16 Hazus damage model was assigned to all grocery stores
within the testbed area. Residential buildings were mapped using the
algorithm shown in Table 4. The mapping algorithm, first, categorizes
residential buildings based on their dwelling type into four groups as
defined in Table 4. Next, the algorithm determines the corresponding
archetype for each building based on the (1) type of external wall, the
number of stories, and roof shape for buildings in groups I and II; or (2)
construction year for buildings in group III; or (3) the number of stories
for buildings in group IV. Then, the algorithm maps associated Hazus

7 https://onslowcountync.gov/
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Table 3
Onslow Testbed building inventory features.

Building Attribute Data Source

The building’s location and footprint information
was obtained from the building footprint dataset
of the local government and were verified using
the Microsoft Building Footprint data. This
geospatial data was used to create the testbed’s
base map.

The building occupancy and dwelling type was
obtained from the local government’s tax records
and validated using the U.S. Homeowners and U.S.
Business datasets, publicly available on
ReferenceUSA.

The number of stories for each building was
achieved from the local government’s tax record
database and was visually validated for a group of
randomly selected buildings.

The information on the exterior walls of the
buildings was obtained from the local
government’s tax record database.

The building roof shapes were determined using
the BRAILS RoofTypeClassifier module and Google
satellite images and were visually validated for a
group of randomly selected buildings.

The market value of the buildings was fetched
from the local government’s tax records and was
verified using the U.S. Homeowners and U.S.
Business datasets, publicly available on
ReferenceUSA.

Location and footprint info

Occupancy and Dwelling type

Number of stories

Exterior wall type

Roof shape

Market value

fragility functions to the buildings. As can be seen in Table 4, more
than one fragility function can be assigned to most of the residential
archetypes. This is due to the fact that to assign the exact correspond-
ing Hazus fragility function more data is needed, including information
on the buildings’ roof cover, sheathing, roof-wall connection type, win-
dow shutters, glazing coverage, missile environment, and terrain sur-
face roughness. Procuring such types of data is almost impossible, even
for a mid-size community such as Onslow County. In this example, a
“0.35 m” terrain surface roughness and “A” missile environment are as-
sumed according to Onslow County’s topography. For roof cover, win-
dow shutters, and glazing coverage, the mapping algorithm randomly

Table 4
Mapping testbed’s residential building inventory to Hazus damage functions.
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Toe-Nail

Fig. 5. Algorithm for assigning roof-wall connection and sheathing type in On-
slow Testbed.

assigns possible options with equal likelihood to each building. For ex-
ample, it is presumably as likely for an Archetype-1 building to have
window shutters or not. To allocate roof-wall connection and sheath-
ing type, the mapping algorithm applies the binomial probability rule,
illustrated in Fig. 5. The criteria in Fig. 5 were selected due to the signif-
icant evolution in building codes in those periods such that more recent
building codes comply with more strict requirements. For instance, the
probability of using a strap for connecting the building’s roof and wall
increases from 20% to 50%, and 80% as the year built changes from
periods before, between, and after 1950 and 2000. The Python script
developed for executing the applied mapping algorithm is available on
DesignSafe-CI [92].

Archetype Group Dwelling Type Archetype * Mapped Hazus Damage Functions *
1 Beach House, Single-Family 1 URM wall, 1-STY, Gable roof A.2; A.10; A.50; A.58; A.66; A.74; A.82; A.90; A.98; A.106
2 URM wall, 1-STY, Hip roof A.6; A.14; A.54; A.62; A.70; A.78; A.86; A.94; A.102; A.110
3 URM wall, 2-STY, Gable roof A.34; A.42
4 URM wall, 2-STY, Hip roof A.38; A.46
5 WEFR wall, 2-STY, Gable roof A.18; A.26
6 WEFR wall, 2-STY, Hip roof A.22; A.30
I Beach Townhome, Beach 7 URM wall, 1-STY, Gable roof C.22; A.2; A.10; A.50; A.58; A.66; A.74; A.82; A.90; A.98; A.106
Duplex, Beach Condo, Town 8 URM wall, 1-STY, Hip roof A.6; A.14; A.54; A.62; A.70; A.78; A.86; A.94; A.102; A.110
Home, Duplex, Condominium, 9 URM wall, 2-STY, Gable roof A.34; A.42
Multi-Family, Apartment 10 URM wall, 2-STY, Hip roof A.38; A.46
11 WEFR wall, 1-STY, Gable roof C.14; C.20; C.21
12 WEFR wall, 1-STY, Hip roof C.15
13 WEFR wall, 2-STY, Gable roof C.24; A.18; A.26
14 WER wall, 2-STY, Hip roof A.22; A.30
15 WEFR wall, 3-STY, Gable roof C.25
16 WFR wall, 4-STY, Gable roof C.26
111 Multi-Section MH, Singlewide 17 YB < 1976 B.3 (pre-HUD, Tied Down); B.3 (pre-HUD, NOT Tied Down)
M/H 18 1976 < YB < 1994 B.3 (HUD, Tied Down); B.3 (HUD, NOT Tied Down)
19 YB > 1994 B.3 (1994 HUD - Wind Zone II, Tied Down)
v Mixed-Use Res/Com 20 < 2-STY F.9; F.10; F.11; F.12
21 2 ~ 5-STY F.27, F.28; F.29; F.30
22 > 5-STY F.45; F.46; F.47; F.48

T URM = unreinforced masonry; WFR = wood frame; STY = story; YB = year built.
* The notations used to introduce the damage functions match the notations in Hazus Technical Manual [FEMA, 109].
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Fig. 7. Mapped (a) SVS zones at the census block group level, (b) households-level social vulnerability in Onslow Testbed.

4.3.2. Infrastructure inventory

Onslow road network model includes geospatial data about the speed
limit, traffic direction, and routes footprint within the testbed area.
These data were taken from OSM and the North Carolina Department of
Transportation (NCDOT) open data. We used Graph theory for the math-
ematical simulation of the road network [116]. Graphs are collections
of nodes connected by edges. The nodes represent the locations where
route footprints intersect, while the edges depict the routes that con-
nect these intersections. Other attributes of the road network including
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streets’ name, type, speed, and traffic data were assigned to the edges.
The free-flow speed was estimated for streets located in urban areas by
using Google Maps data and added to the road network dataset. Free-
flow speed is the term used to describe the average speed that a motorist
would travel if there were no congestion or other adverse conditions
(such as bad weather). Finally, the developed datasets based on the road
network were spatially merged and incorporated into the testbed’s base
map. Fig. 6 illustrates the main physical components incorporated into
the community module of Onslow Testbed.
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In summary, to replicate a similar physical system for another
testbed, the testbed developer should go through the following proce-
dure step-by-step:

Step 1 Fetch the most updated geospatial data of building footprints
from the local government and Microsoft Building Footprint databases;
clean and cross-check the retrieved data.

Step 2 Download the tax record information from the local govern-
ment’s website; clean the data; keep the required attributes, including
occupancy, dwelling type, number of stories, exterior wall material, year
built, and square footage, and delete the extra information; verify the
information using the U.S. Homeowners and U.S. Business datasets, pub-
licly available on ReferenceUSA.

Step 3 Merge the datasets resulting from Steps 1 and 2; keep an
eye out for differences between the spatial units of the building foot-
print and the tax record dataset. For example, a condominium that of-
ten contains multiple individually owned apartments is represented by
one single footprint record that is associated with multiple tax parcels.
In such cases, aggregate the information of tax parcels into a single
record.

Step 4 Determine the building roof shape using the “RoofTypeClas-
sifier” module of BRAILS and Google satellite images and add it to the
building attribute dataset. BRAILS is an open-source Python package
that has multiple modules with different capabilities and was devel-
oped by SimCenter to populate the building inventory of a community
[115]. In this example, we modified BRAILS to fetch the footprint data
locally from the clean and verified dataset created in Step 1. By default,
BRAILS reads the footprint data from OSM and Microsoft Building Foot-
print databases.

Step 5 Use expert knowledge and engineering judgment to develop
a proper mapping algorithm for assigning Hazus fragility functions to
their corresponding buildings in the inventory.

Step 6 Obtain data on the speed limit, traffic direction, and routes
footprint from OSM and the State DOT; estimate the free-flow speed of
urban streets using Google Maps data; create a graph model of the road
network; assign the attributes of each street to the corresponding edge.

Step 7 Spatially join the road network model with the base map from
Step 3.

4.3.3. Population inventory

The population inventory in Onslow Testbed includes household-
level demographic data and social vulnerability estimates. In this exam-
ple, we estimated households’ characteristics using the stochastic algo-
rithm developed by developed by Rosenheim [117]. On the other hand,
the Social Vulnerability Score (SVS) developed by Enderami and Sut-
ley [118] to serve the purpose of testbed development. The SVS is a
scalable composite index that overcomes two important limitations of
existing place-based social vulnerability indices: it is constructed using
an approach that does not decrease in validity with changing spatial
resolution, and it only needs to be calculated for the geographic area
of interest, instead of for the entire country thereby significantly re-
ducing computational effort for testbed developers and users. The SVS
synthesizes a set of demographics from the U.S. Census database at the
desired location and yields a number, called a score, that represents the
relative social vulnerability with respect to its national average. The re-
sulting scores are mapped into five zones, ranging from very low vulner-
ability (zone 1) to very high (zone 5). Details on SVS development and
verification can be found at [118]. The open-source code published by
Enderami and Sutley [119] was used to map the social vulnerability of
census block groups in the testbed area using ACS 2015-2020 data [U.S.
Census, 93]; results are shown in Fig. 7(a). Every household within On-
slow County is randomly assigned a social vulnerability value, displayed
in Fig. 7(b), according to the SVS zone assigned to their corresponding
block group and pre-defined ranges. The details of this stochastic algo-
rithm are available in [118].
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Fig. 8. Onslow Testbed development workflow.

4.4. Onslow testbed verification and validation

The wind model in the hazard module was validated by comparing
the estimated peak gust wind speed with data recorded during Hurri-
cane Helene. For example, the peak gust wind speed recorded during
Hurricane Helen was identical to the value estimated by the incorpo-
rated wind model, almost 240 km/h. No further V&V for using the FEMA
flood hazard map is needed since we only use the simulation results of
a validated flood model in the hazard module. The validity of data used
for developing the testbed’s physical system was verified, as explained
in Section 4.3.1. Similar to the FEMA flood hazard maps, using the SVS
to represent the testbed’s social capacity does not need any additional
V&V. A detailed description of evaluating the external validity and in-
ternal robustness of the SVS can be found in Enderami and Sutley [118].

To verify and validate the testbed as an integrated system, we re-
quire damage survey results after Hurricane Helene, which we were not
able to find. Importantly, the building inventory and population data
used in testbed development are modern, while Hurricane Helene is 70
years old. Thus, even if this historical data were available, it could not
validate damage analysis outcomes since the population and building
inventory have significantly evolved over time. Thus, in this example,
the reliability of each testbed’s components was independently verified
by comparing the outcomes to published similar research results and
relying on the authors’ engineering judgment.

4.5. Onslow testbed visualization and publication

In the end, all testbed components, including the Python scripts,
Jupyter Notebooks, GIS files, hazard models, inventory datasets, and
geographical data files were integrated into a package to constitute the
Onslow Testbed. The package and the testbed’s supporting documents
(e.g., data cleaning process) are available on DesignSafe-CI for re-use
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and further development. Such re-use and further development are open
to other researchers, where their contributions can also be publish on
the DesignSafe platform under their own name.

Fig. 8 illustrates an overview of how the proposed testbed develop-
ment workflow was implemented to establish the Onslow Testbed.

5. Conclusion

The guideline proposed in this paper systematizes the development
of virtual testbeds and facilitates the reuse of a testbed by researchers
other than those who primarily established it. Expanded accessibility of
testbeds will result in advances in the state of knowledge on community
resilience. Community resilience cuts across different stressors (natural,
man-made), scales (national, state, local), and community dimensions
(physical, natural, cultural, human, social, financial, political), and a
community resilience testbed should be aligned with all these consider-
ations. As shown in Table 1, more research is needed to incorporate cli-
matic, particularly slow-onset, and man-made hazards and more social
and economic models into testbed analyses. Our proposed testbed devel-
opment process focuses on civil infrastructure networks and population-
focused social and economic systems, pointing to a need for more de-
velopment and inclusion of critical systems such as education, public
safety, governance, and healthcare. However, the introduced approach
boosts multi-, inter-, and transdisciplinary collaborations on commu-
nity resilience research and provides ample opportunity to incorporate
more fitting social and economic phenomena and theories into testbeds.
This contribution leads to developing testbeds with more evenly evolved
community modules which are needed to accommodate next-generation
numerical models of community resilience, particularly ones that ac-
count for equity.

Aside from introducing the current data resources to testbed devel-
opers, a secondary outcome of this study is to aid researchers in under-
standing the existing shortages of high-resolution data on social, eco-
nomic, and infrastructure systems, and identifying research needs and
future directions in this field. As is showcased in the paper, machine
learning-based predictive models can be applied to address data gaps
in testbed development. On the other hand, the rapid growth of Arti-
ficial Intelligence (AI) opens up new research areas in automating the
development of testbed components and high-fidelity simulation using
Al tools. In addition, more longitudinal studies are needed to establish
diverse testbeds representing a variety of communities under different
circumstances and hazards. This also leads to the opportunity of de-
veloping a uniform community-level taxonomy for data collection for
post-disaster reconnaissance and advance current practices. Future re-
search also may need to focus on developing ethical guidelines to ensure
the responsible use of data and protect the privacy of individuals and
communities involved in the testbeds. Perhaps the biggest direction for
testbed developers and users is to adopt community engagement prac-
tices to inform testbed development and use, and implementation of the
simulation findings.
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Relevance to resilience

This paper provides a step-by-step development procedure for virtual
testbeds that enable community-level resilience assessment. Testbeds
are an important tool for cross-disciplinary and convergent research on
community resilience. The proposed development procedure advances
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the state of knowledge on the basic components of a testbed, the de-
velopment process, available data inventories, and other key consider-
ations. The work will be of interest to researchers who study resilience-
based design of structures and infrastructures and seek their intersection
with social and economic systems within a community. Eq. (1)
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