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Abstract

We present solutions to a continuous patrolling game played on network. In this zero-sum game,
an Attacker chooses a time and place to attack a network for a fixed amount of time. A Patroller
patrols the network with the aim of intercepting the attack with maximum probability. Our
main result is the proof of a recent conjecture on the optimal patrolling strategy for trees. The
conjecture asserts that a particular patrolling strategy called the E-patrolling strategy is optimal
for all tree networks. The conjecture was previously known to be true in a limited class of special
cases. The E-patrolling strategy has the advantage of being straightforward to calculate and
implement. We prove the conjecture by presenting e-optimal strategies for the Attacker which
provide upper bounds for the value of the game that come arbitrarily close to the lower bound
provided by the E-patrolling strategy. We also solve the patrolling game in some cases for

complete networks.
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1 Introduction

In the continuous patrolling game, introduced by Alpern et al. (2016), an Attacker picks a point on
a network ) and a time interval of fixed duration during which to carry out an attack. A Patroller
moves on the network at unit speed and intercepts the attack (and wins the game) if she reaches
the attacked point during the attack interval. Alpern et al. (2022) proposed a mixed strategy for
the Patroller, called the E-patrolling strategy, which was shown to be optimal for certain classes of
tree networks. In Conjecture 1 of that paper, they suggested that the E-patrolling strategy was
optimal for all trees. We refer to this conjecture as the tree patrolling conjecture. In this paper we
settle the tree patrolling conjecture by proving that the E-patrolling strategy is optimal for all tree
networks. We also solve the game in certain cases for complete networks (those for which every
pair of nodes is connected by precisely one arc).

The key idea we use to prove the conjecture for trees is that as long as the Attacker randomizes
over a large enough time period, there are mixed strategies that are arbitrarily close to being
optimal that simply pick the time of the attack uniformly over that period. This means that we
need only specify a distribution over the network ). We define a mixed strategy for the Attacker
that is played over a large time interval [0,7] and show that for any given € > 0, this strategy is
e-optimal for large enough 7.

Most work in the area of patrolling games focuses on discrete models, such as Alpern et al.
(2018), Alpern et al. (2011), Lin et al. (2013), Pita et al. (2008), Yolmeh and Baykal-Giirsoy (2018)
and Zoroa et al. (2012). A disadvantage of discrete models is that in many real world examples of
patrolling, an attack or infiltration can occur anywhere continuously along a border, boundary or
network. Discrete models also assume that attacks occur at discrete times, but of course it is more
realistic to model time as continuous. This was the motivation behind the continuous patrolling
game introduced by Alpern et al. (2016). As well as the recent work of Alpern et al. (2022) on the
game, Garrec (2019) has also made some important contributions, including establishing that the
game has a value and optimal (or e-optimal) strategies. Lin (2019) studied a different continuous
patrolling game on a perimeter.

The layout of the paper is as follows. In Section 2, we recall the definition of the continuous
patrolling game and give some background on previous work on the game. We also describe the

tree patrolling conjecture precisely. In Section 3, we work towards defining a decomposition of any



tree () which we call its subtree decomposition. This decomposition consists of a set of subtrees of
length at most a/2 containing all the leaf nodes and another connected set we call the core. We
also define the concept of the density of a subset of a network, which, for a given Attacker strategy,
is defined as the ratio of the probability the attack takes place in that subset to the length of the
subset. This definition is analogous to the concept of search density, which is well known in the
field of search games. The concept originates from the work of Gal (1979), but has been used more
recently in, for example, Alpern and Lidbetter (2013), Fokkink et al. (2019) and Hermans et al.
(2022). The ideas of density and the subtree decomposition are crucial for us to define in Section 4
the Attacker strategy that we proceed to show is e-optimal. In Section 5 we solve the game on
complete networks for some values of a. In Section 6 we conclude.

The significance of our main result on trees lies in the fact that the E-patrolling strategy is
intuitive and easy to implement. Roughly speaking, the Patroller repeatedly tours the network,

but performs extra tours of subtrees of the network that are close to the leaf nodes.

2 Background and Definitions

In this section we make some definitions and give some more background to the continuous patrolling
game. We finish the section by stating the tree patrolling conjecture precisely.

We start by defining a network @ in a little more detail, though we refer the reader to Alpern et
al. (2022) for a precise definition. A network @ is given by a multigraph whose arcs can be viewed
as open intervals. The length of an arc a is denoted A(a), and A is extended to define a measure
on (). At each end of an arc is a node, and we refer to points of ) that are not nodes as regular.
We also define a metric d on @, where d(z,y) is the length of the shortest path between two points
T,y € Q.

In the continuous patrolling game on (), the Attacker picks a point = € ) and a time t > 0
at which to start the attack. The attack lasts for time «, where a > 0 is some parameter of the
problem known to both players, and is no greater than the minimum tour time of (). The Patroller
picks a patrol of the network, which is given by a unit speed path S : [0,00) — @. If the patrol
intercepts the attack, then the Patroller wins the game. More precisely, the payoff of the game is
equal to 1 if x € S([t,t + a]), otherwise the payoff is 0. The Patroller is the maximizer and the

Attacker is the minimizer.



As mentioned in the Introduction, the continuous patrolling game was introduced in Alpern
et al. (2016). Garrec (2019) later proved that this zero-sum game has a value; moreover that the
Patroller has optimal mixed strategies and the Attacker has e-optimal mixed strategies (that is
strategies that ensure the expected payoff is within ¢ of the value of the game, for any ¢ > 0).
Garrec also found optimal strategies in the game in some special cases, as did Alpern et al. (2016).

Alpern et al. (2022) solved the game in some further special cases. Firstly, they gave a solution
for arbitrary networks as long as « is shorter than the length of any arc of the network. Secondly,
they gave a solution for tree networks when « is such that a particular condition called the Leaf
Condition is satisfied. They defined a patrolling strategy called the E-patrolling strategy, and
showed that it is optimal for trees that satisfy the Leaf Condition. They conjectured that the
E-patrolling strategy is optimal for all tree networks (the tree patrolling conjecture). They verified
their conjecture for a class of star networks consisting of one long arc and an arbitrary number of
short arcs of equal length. They also verified it for one particular example of a tree network that
is not a star and does not satisfy the Leaf Condition.

Generally speaking, the Leaf Condition is satisfied when « is particular small and, in the case
of star networks, also when it is particularly large. This leaves a sizeable gap of values of « for
which the optimality of the E-patrolling strategy was unproven. In Section 4, we settle the tree
patrolling conjecture.

Of crucial importance to stating and proving the tree patrolling conjecture, we must first define
the extremity set E for a tree network Q).

Let @ be a tree network of length p. For any set of points Y, we denote Y for Q —Y and Y
for the topological closure of Y. If x is a regular point of @, then @ — {z} has two components
Q1(z) and Q2(x) such that A(Q1(x)) + A(Q2(z)) = i, and min;—; 2Q;(x) < p/2. If = is a node of

degree n (n > 3), then @ — {z} has n components.

Definition 1 Let @ be a tree. The extremity set £ = E(Q, «) is defined as the set of all regular

points z € @ such that min;,—; 2 A\(Q;(x)) < a/2.

Although it is convenient to define E as an open set, we will largely work with its topological
closure E. In Figure 1 we depict the set E in red for various values of o on a specific tree network
Q of length z = 10. Note that £ = Q for a > 8, and it is easy to see that in fact for any tree

network @, we have £ = @ for all o > p.
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Figure 1: The components of E are shown in red and the core E° is shown in blue for o = 2,4, 6, 8.

The local roots z*,z; (i > 1) are labeled as blue points.

We make a number of observations about E, which we state without proof.

Proposition 2 Let Q be a tree. Then

(i) E(Q,a1) C E(Q,as) for any aq < as;

(i) there exists an unique o* such that E(Q,a*) = Q and E(Q,a) # Q for any a < a*;

(iii) if E(Q,a) # Q, then the boundary of each maximal connected component X of E is a
single point x, which we call the local root of X. When zx is removed, the remaining disjoint
components of X are subtrees of measure at most «/2. We will also refer to x as the local root of

these subtrees.

We have labeled the local roots x1,x9,... in Figure 1. Both the location and number of local
roots may change as o changes. In the case o = 2, the set E has four maximal connected com-
ponents, and four corresponding local roots, x1, 2,3 and 4. When o = 4 or 6, the set E has
only three maximal connected components with local roots 1, 2 and 3. When o = 8, the set F

has only one maximal connected component. In this case, we have labeled the local root x*, to be



defined later in Subsection 3.1.

Alpern et al. (2022) showed that the E-patrolling strategy guarantees that the value of the
continuous patrolling game on trees is at most «/(u + A(E)). Roughly speaking, the E-patrolling
strategy repeatedly performs a tour of the tree, adding extra tours of each of the components of
E. For the details of the construction of the E-patrolling strategy, we refer the reader to Alpern
et al. (2022). We give here an example of the E-patrolling strategy for the network of Figure 1(b)
(o = 4). For i = 1,2,3, let C; be a minimum length tour of the maximal connected component
of E with the local root ;. For example, C; is a minimum length tour of subtree E' U E2. Let
SE be a tour which starts at xs, travels to x; and follows C; twice, then goes back to x3 and
performs C3 twice, then moves to xo and performs Co twice, and finally returns to x3. Then, the
E-patrolling strategy of the tree is a strategy which repeatedly performs S¥ with the starting point
chosen uniformly at random.

Conjecture 1 of Alpern et al. (2022) was as follows.

Conjecture 3 (Tree patrolling conjecture) If @) is a tree network, then for any « the E-

patrolling strategy is optimal and the value of the game is v* = a/(u + A(E)).

We will settle the tree patrolling conjecture in Section 4.

3 Subtree Decomposition and Density

In this section we introduce the notion of the local root of (Q and the subtree decomposition of a

tree network in Subsection 3.1 and the idea of density in Subsection 3.2.

3.1 Subtree Decomposition

In order to define the subtree decomposition of a tree network, we first introduce a new subset of ()
here called the core of @, defined as the closure of the complement of E and denoted E° = E%(Q, a).
The core is connected and closed. The reason for this rather awkward definition is that E is only
defined on regular points, but informally we can think of the core as the complement of the extremity
set. The core is depicted in blue in Figure 1 for each value of a. As « increases, the extremity set
grows while the core shrinks. Notice that when o > 8, the set F is equal to Q and E° = ().

Thus, for a < «*, any tree network @ can be expressed as the disjoint union of the core and

a set of subtrees each of length at most «/2 (see Proposition 2, part (iii)). This is the subtree



decomposition of ). It is easy to see that the core cannot contain any leaf nodes of ). In the
remainder of this subsection we will show that for e > a*, we can form a decomposition of ) with
similar properties.

If a > o*, the set E has only one connected component, which is equal to Q. In this case, we

define the local root of Q.

Definition 4 Let Q be a tree and let «aq,as,... be a sequence of increasing positive numbers

converging to a*. The local root of Q is the set N°_; E°(Q, ).

It is easy to show that the local root of @) is specified independently of the choice of sequence
()89 1, and is in fact equal to No<a<a* EY(Q, ). The fact that the local root is non-empty follows
from Cantor’s intersection theorem, since it is the intersection of a sequence of non-empty, non-
increasing, closed sets, by Proposition 2, part (i). In fact, we will show in Proposition 5 that the
local root of @) is a singleton, and without ambiguity, we will call its unique member the local root

of () and denote it by z*. The local root of the tree () is labeled in Figure 1.

Proposition 5 Let @ be a tree. Then,
(i) The local root of @ is a singleton, z*.

(ii) Each of the maximal connected components of ) — {z*} has measure at most a*/2.

Proof. For (i), let (a,)52; be an increasing sequence converging to a* and let f be the real

function defined by f(a) = A(E°(Q, «)). Then f is a continuous, and it follows that

MEY(Q, an)) = f(an) = fla*) = AM(E%(Q, ")) = 0.

Now suppose the local root of @) contains two points = and y with x # y, and let € = d(z,y). Let N
be such that f(ay) < e. Since E°(Q, ay) is connected and contains both x and y, it must contain
the path from = to y. Therefore, its measure must be at least €, contradicting f(ay) < €. So the
local root of @ is a singleton, z*.

To prove (ii), assume for a contradiction that QQ — {z*} has a component @Q; with \(Q1) > a*/2.
First suppose that z* is a regular point. In this case, @ — {z*} only has two components, and by
definition of a* (Proposition 2, part (ii)), the other component Q)2 must satisfy A(Q2) < o*/2. Let
o = ANQ2) + a*/2 < a*. Since \(Q2) < &//2, we must have z* € E(Q, ') by definition of the



extremity set. But by definition of 2* and because o/ < o*, we must have z* € E(Q, /), which is
a contradiction, since E(Q,a’) N E°(Q,a) = ()

Now suppose z* is a node and let ' be the subtree Q1 U {z*}. Then, \(Q') = A(Q1) > a*/2.
Let z be a regular point on the arc incident to * in @’ such that d(z*,2) < AM(Q1) — «*/2. Tt is
easy to see that one component Q1(z) of @ — {z} is a subset of @1 and the other component Q2(z)
contains z*. We have A\(Q1(z)) = AM(@Q1) — d(z*, 2) > a*/2. So, A(Q2(2)) < a*/2, by definition of
a*. Let o = \(Q2(2)) + a*/2 < a*. Since A\(Q2(2)) < a”/2, we must have z* € Q2(z) C E(Q, )
by definition of the extremity set. Because x* is not in the boundary of Q2(z), it is obvious that
r* ¢ E%(Q, ). But by definition of 2* and because o < a*, we must have z* € E°(Q, o), which
is again a contradiction. O

The local root z* of @ is labeled on part (d) of Figure 1. Note that it does not depend on a.

Proposition 5 implies that the tree () can be expressed as a disjoint union of its local root and
a set of subtrees of length at most /2. Combining this with the decomposition described earlier

in this subsection for a < a*, we have shown the following.

Proposition 6 (Subtree decomposition of @)) For any tree @) and any attack time «, we can
express  as a union of its core E? and a set of closed subtrees E', ..., EF whose union is E such

that A(E%) < a/2 for each i = 1,...,k and S.F_| \(E") = \(E).

3.2 Density

In this subsection we introduce the concept of density.

Suppose a measure P on @ is fixed. For any measurable A C ), we define the density pp(A) =
p(A) by p(A) = P(A)/A(A).

Suppose Q is a tree with a distinguished point O, called its root. We say a point y € Q is above
a point (or arc) z if the unique path from O to y contains z. We write @), for the subtree of @
containing = and all points above x. We call a node = a branch node if it is not a leaf node. For
a branch node x of @), we call the branches at x the collection of maximal disjoint components of
Qr — {z}.

We state the definition of the Equal Branch Density (EBD) distribution, as given in Alpern
and Lidbetter (2013), Alpern (2010) and Alpern and Lidbetter (2014).

Definition 7 For a tree Q with root O, the FEqual Branch Density (EBD) distribution is the



unique measure h on the leaf nodes of @ (not including O) such that at every branch node x all

the branches at x have the same density pp,.

In Figure 2, we illustrate the EBD distribution h on a tree ) of length 10 with root O and four
leaf nodes, A, B,C, D. The length of the three branches at O are A(OA) = 3, A(OBC) = 5, and
A(OD) = 2. So, the measure h on all leaf nodes of each branch are h(OA) = 3/10, h(OD) = 2/10,
and h(OBC) = 5/10. The branch OA has one leaf node A, so the measure h on leaf node A is
h(A) = 3/10. Similarly, h(D) = 2/10. For the branch OBC, the two branches at branch node z
have length A(zB) = 1, A(zC) = 2. To ensure the two branches B and xC' have the same density,
we set h(B) = $h(OBC) = 25 and h(C) = 2h(OBC) = 1.
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Figure 2: The EBD distribution on the tree @ with the root O.

We state here an important property of the EBD distribution, which is a consequence of

Lemma 6 of Alpern and Lidbetter (2013).

Lemma 8 The EBD distribution A on a rooted tree ) has the property that for any subtree Z
with root = contained in @, we have pp(Z) < pp(Qyz).

4 Proof of the Tree Patrolling Conjecture

We begin this section by constructing an Attacker strategy in Subsection 4.1, which we call the

tree attack strategy. In Subsection 4.2, we will show that this strategy is e-optimal.

4.1 The Tree Attack Strategy

The tree attack strategy is actually a collection of strategies, and is defined in terms of a parameter

T > 0, which we can think of as the length of some long time interval.



Definition 9 (tree attack strategy) Let Q be a tree network, and let E E!, .. .,E¥* be its
subtree decomposition. Let x; be the local root of EJ for j =1,..,k. Let b/ be the EBD measure
on EJ. For T > 0, the tree attack strategy (with parameter T') begins at a time chosen uniformly
at random from the interval [0,7]. The location of the attack is given by the measure e, defined
below.

(i) With probability e(E®) = A(E®)/(u+ M(E)), a point of E° chosen uniformly at random.

(i) With probability e(E7) = 2A\(E7) /(1 + A(E)), a point of E? chosen according to the EBD
distribution A/, for j =1,... k.

The tree attack strategy is well defined. Indeed, the total probability e(Q) of attack is given by

B z’“:e A(EY) Zk: _ B, 2ME) _ptAE)

_J T+ ME) ~ ;H—)\ T ME)  p+MNE) p+ME)
We illustrate the tree attack strategy by revisiting the network @ with length p = 10 from
Figure 1. We illustrate the attack probability at the leaf nodes and in E° in Figure 3 for different

values of «.
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Figure 3: The tree attack strategy on the tree network Q.
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Observe that the density p.(E’) = p(E’) for any j =1,...,k is

e(EY) 2M(E7) 1 2

pE?) = NED) ~ p+ ME)ANET) ~ p+MNE)

So, by Lemma 8, for any subtree Z of E’ such that x; € Z,

2

p(Z) < p(E) = L NE)

4.2 ¢-Optimality of the Tree Attack Strategy

Before proving the tree patrolling conjecture, we extend a lemma from Alpern et al. (2022) con-
cerning the uniform attack strategy. This is the strategy for the attacker that begins the attack
at an arbitrary time M (for example M = 0) at a point of the network chosen uniformly at ran-
dom. Alpern et al. (2022) showed that this strategy ensures the attack will be intercepted with
probability at most a/p (this was also shown in Alpern et al. (2016) and Garrec (2019)).

Lemma 10 Let Z be a connected subset of a network ). Consider an attack strategy that chooses
a point of Z uniformly at random to carry out the attack, and starts the attack at some time ¢,
which may be fixed or a random variable. Then for any Patroller strategy, the probability that

attack is intercepted is at most a/A\(Z).

Proof. The lemma is trivially true if & > A(Z), so assume that o < A(Z). First suppose t is
fixed. Then Lemma 1 of Alpern et al. (2022) applied to the network Z says that probability of
interception is at most a/A(Z).

Now suppose t is a random variable. Then from the previous paragraph, the probability the
attack is intercepted, conditional on the attack starting at fixed time ¢t = ty is at most a/A\(Z). It
follows that the unconditional probability of interception is also at most a/A(Z). O

We are now ready to prove the tree patrolling conjecture.

Theorem 11 Let @ be a tree of length p. Then for any € > 0, there exists a value of T" such that
the tree attack strategy (with parameter T') cannot be intercepted with probability greater than
a/(p+ ME)) + e =v* + . Hence, the value of the continuous patrolling game on @ is v* and the
E-patrolling strategy is optimal.

11



Proof. Lete > 0 be given, and suppose the Attacker uses the tree attack strategy (with parameter
T), for some T', where the precise value of T" will be specified later. Consider an arbitrary patrol
S,and let 0 =ty < t; < -+ < t,, =T + « be the coursest partition of [0,7 + «] such that S is
confined to a single set B/ (j =0, 1,..., k) during each time interval [t;,t;11]. For i =1,...,m, let
I = [ti—1,ti], let 6; = t; — t,—1 and let Z; = S(I;).

We will show that the probability P(S) that S intercepts the tree attack strategy is at most
v* + e. To do so, we will calculate an upper bound for the probability P; that S intercepts the
attack during each of the intervals I; for each i = 1,...,m, and we will show that the sum of these
upper bounds is no more than v* + €.

First suppose m = 1. In this case, the patrol just stays in one component E’ during the whole

time [0,7 + o] = I. If j # 0, the interception probability P; is at most
e(E7) = 2M(E’) /(1 + A(E)) < o/ (1 + A(E)) = 0%,

since A\(E’) < a/2. If j = 0, then by Lemma 10, then the interception probability P; satisfies

o __«a ANE)
B3 B = e

Now suppose m > 2, and we calculate an upper bound of interception probability P; in three

cases:
(i) Zi C EY;
(i) i =2,...,m—1and Z; C EJ for some j = 1,..., k;
(iii) i =1 or m and Z; C E for some j =1,...,k.
Starting with case (i), when Z; C EY, we observe that at any time y € I; the patrol S can
intercept the attack at point S(y) starting in time [max(0, y—«), y]. Note that y—max(0,y—a) < a.
Since S moves at unit speed, we have that A(S(I;)) < d;. So, the conditional probability that S(I;)

intercepts the attack given it takes place in E° is at most (ad;)/(TA(E)). This gives the bound

«ad; 0 o;v*
P NEY) e(E”) - (2)

Second, in the case that i = 2,..,m — 1 and Z; C E7 for some j = 1,...,k, the patrol must
perform a tour with the startpoint and endpoint ;. Because the length of this tour is at least

2)\(Z;), the patrol can spend at most time &; —2A(Z;) > 0 at leaf nodes of E’. Therefore, P; satisfies

1
Py < ze(Zi)(a+ 8 = 2M(Zy)).

12



By (1), p(Z;) = e(Z;)/\NZi) < p(E7) = 2/(pn + A(E)). Applying this to the inequality above and

rearranging,
1
P, < ze(Zi){a+ 6 —2M(2)
< ;&Z(L)a,)(a +9; —2X(Z;))
1

T%)\() (@» — (6 — 2M(Zy)) (1 = 2A(()[Zi))) .

As already observed, &; — 2\(Z;) > 0. Also, A(Z;) < ME7) < /2, by definition of the subtree
decomposition, so ((5 —2)\(Z )(1 Exl)) > 0. Consequently,

1 « o;v*
P <= = . 3
T Tu+NE)T T ®)
Third, we consider the case that i = 1 or m and Z; C E’ for some j = 1,...,k. This case is

different from the second case since it is not necessary for the patrol to perform a tour in E7. For
example, the patrol may start at a leaf node in Zy, stay within Z; for sometime then move directly
to Zo. Therefore, the time the patrol can stay at leaf nodes in E7 is at most &; — A(Z;) > 0, and

the interception probability P; satisfies
1
P < Te(Zi)(Oé +0; — M(Zy)).

The condition p(Z;) < a/(pn + A(E)) still holds since Z; contains x;, and must therefore be a

subtree of E7. Applying this to the inequality above and rearranging,

1 2)\Z;)
P < Tm(a +6; — A(Zi))
_ 1 a . N 2M(Z)\ o 20M(Z)?
e (Mm(z) (1 “ )51 A ) .
Since A(Z;) < M(E’) < /2, we have (1 — 2\(Z;)/a)é; > 0 and
o 0; + a)v*
P < jlﬂlH)\(E)(&'—l-Q)\(Zz’)) < jlﬂ/H-)\(E)((Si—{—a):(—i—T)' (4)

Combining inequalities (2) - (4), we obtain

- 200F o= Giv* 2av* v .
P(S) <) Pi< IDIE + (T +a) <o +e,

where we choose T' = 3a/e.

13



We have shown that the tree attack strategy cannot be intercepted with probability greater
than v* 4+ €, so that the value of the game is at most v* + . Combining this with the lower bound
of v* from Alpern et al. (2022) given by the E-patrolling strategy, the rest of the theorem follows.
O

5 Solving the Game for Complete Networks

In this section, we study the game on complete networks. We begin this section by introducing some
standard definitions and the concept of a k-factorization of complete networks in Subsection 5.1.
In Subsection 5.2, we introduce a Patroller strategy which we call the complete network patrolling

strategy and show that this strategy is optimal for some values of .

5.1 k-factorization of Complete Networks

In this section, we just consider simple networks (i.e networks that do not contain any loops and
for which there is at most one arc connecting any pair of nodes). A k-regular network is a simple
network all of whose nodes have degree k (k > 1). A complete network is a k-regular network on
m (m > 2) nodes where k = m — 1. We denote a complete network with n nodes by K,. Note that
since the arcs of K, may have different lengths, it is not uniquely defined.

We denote the set of arcs of a network @ by E(Q) and the set of nodes of @ by V(Q).

Definition 12 Let Q be a k-regular network. A k-factorization of () is a set of sub-networks
F ={Fy,...,F.} such that

(i) for alli =1,..., 2, the sub-network F; is a k-regular network with V(F;) = V(Q),
(i) E(Q) = U7 E(F;) and
(ili) for any 1 <1 # j < z, we have E(F;) N E(F;) = 0.

In particular, a 1-factorization of () is a set of arc-disjoint perfect matchings whose union is
E(Q). In other words, a l-factorization is an arc-coloring of a network where each color class
consists of a perfect matching. In Figure 4, we illustrate a 1-factorization of a complete network

K4 on four nodes with three color classes, red, blue, and green.
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Figure 4: 1-factorization of a complete network Kj.

It is obvious that if () has a 1-factorization, the number of nodes of () must be even. It is well-
known that every complete network on 2n (n = 1,...) nodes admits a 1-factorization. Csaba et al.
(2016) showed that every k-regular network on 2n nodes has a 1-factorization if £ > 2[n/2] — 1.
For a small number of nodes 2n < 4, the network Ko, has a unique 1-factorization. When 2n > 6,
the network Ko, has many 1-factorizations (see Zinoviev, 2014). For example, Kg has 6240 distinct

1-factorizations.

5.2 A Patrolling Strategy for Complete Networks

In this subsection, we introduce a Patroller strategy for the complete network Ky, on 2n (n =
1,2,...) nodes and prove this strategy is optimal for some values of a. Note that a complete
network on an odd number of nodes is Eulerian. The solution for Eulerian networks was presented
in Garrec (2019) and Alpern et al. (2022).

Suppose the complete network Ko, has a 1-factorization F' = {F},..., Fa,_1}. We first observe
that for any ¢ = 1,...,2n — 1, the sub-network @; = Ks, — F; is a k-regular network where
k = 2n — 2. Therefore, Q; is Eulerian for all . We define the complete network patrolling strategy

below.

Definition 13 (complete network patrolling strategy) Let F' = {F},..., Fy,_1} be a 1-factorization
of a complete network Ks,,. For i = 1,...,2n — 1, let Q); = Ko, — F; and let S; be an Eulerian
tour of Q; starting at a randomly chosen point. The complete network patrolling strategy S¥ is a

patrol such that the Patroller chooses S; with probability s; = A(Q:)/((2n — 2)u).

Note that S is well defined, since

Qfg _EPTANQ) S (AU — M) X MKe) = SPTANE) _ @n—Du—p
i=1 Z (2n = 2)p (2n —2)u (2n —2)p (2n —2)u :
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For a 1-factorization F, let 6(F) = maxi<j<an—1 A(F;). We have the following result.

Proposition 14 Let F' be a 1-factorization of the complete network Ko, for some n = 1,2,....
For o <y — 6(F), the strategy S is optimal for the Patroller and the uniform attack strategy is

optimal for the Attacker on Ky,,. The value of the game is V = a/p.

Proof. Consider an arbitrary attack taking place at some point € ). We will show that the
patrol ST can intercept this attack with probability at least o /1.

Let P(S;) be the probability that S; intercepts the attack, for ¢ = 1,...,2n — 1. For each i, we
have A(Q;) = p — A(F;) > p— 6(F) > a. It follows from Corollary 1 of Alpern et al. (2022) that
P(Si) = a/ Qi)

If = is a node, it is easy to see that x € Q; for all i. So, the patrol S will intercept the attack

with probability

e i AMQ)) a 2n—la _ «
Fy _ . N — v — hd hd
P = 2 sPS)= 2 o gpnig) ~ 25

If z is not a node, there exists a unique j € [2n — 1] such that = € F} (where [m] denotes the
set {1,...,m}). So, ¢ Q; and = € Q; for all i # j. The probability the patrol S intercepts the

attack is
2n—1

AM@y) a 2n—-2a «
P(St = s;P(S;) = _ a_e
(5°) ; (5 ,L.E[anz_l] @2n—2)pAQi) 2n—2p pn
i
We have shown that V' > a/p. But by Lemma 1 of Alpern et al. (2022) (or Lemma 10 of this

paper), the uniform attack strategy guarantees that V' < «/u for any network. We conclude that
the strategy S and the uniform attack strategy are optimal and the value of the game is V = o/ .
O

As mentioned in Subsection 5.1, when the number of nodes 2n > 6, the network Ky, has
many 1-factorizations. Let F* be a 1-factorization of Ky, such that ¢* = 6(F™*) < §(F') for any

1-factorization F' of Q). We then have the following stronger result.

Proposition 15 For a < p — ¢*, the strategy S¥ and the uniform attack strategy are optimal.

The value of the game is V = o/ p.

In comparison with the recent work of Alpern et al. (2022), the complete network patrolling

strategy ST helps us solve the game for a significantly larger range of a. Alpern et al. (2022)
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introduced a patrolling strategy for networks without leaf arcs and proved it is optimal for a < g
where ¢ is the girth of the network, defined as the minimum length of a circuit in the network.
For a complete network Ko, (n > 2), the girth g is very small compared to u — §(F), for any
1-factorization F. In fact, we have u — §(F) > n("T_l)g. Indeed, by Theorem 1 of Alspach and
Gavlas (2001), any sub-network Q; = Ky, — F; (F; € F) can be decomposed into circuits Cjy
of four arcs. Since |E(Q;)| = 2n(n — 1), a Cy-decomposition of @; has n(n — 1)/2 circuits and
the length of any circuit is not less than g by definition of g. So, A(Q;) > @g. Therefore,
w—0(F) > min; A\(Q;) > @g for any 1-factorization F.

In summary, the patrolling strategy of Alpern et al. (2022) is known to be optimal for values
of a in (0, g], whereas the complete network patrolling strategy is known to be optimal for values
of o in (0, @g], an interval that is O(n?) longer.

Notice that if @ is a network with unit length arcs (i.e every arc is of length 1), then §(F) =n
for all 1-factorizations F', so that 6* = n. Thus, for « < u — n, the value of the game is a/u. In

fact, this bound can be tight. In other words, for some networks, for a > p — §*, the value of the

game is strictly less than o/p.

Proposition 16 Consider an attack strategy for the network K4 with unit length arcs which
attacks at a random point with a start time chosen uniformly at random from the interval [0, 6 —a].
For y —n =4 < o < 6, this attack strategy guarantees an interception probability of stricty less

than o/ p.

The proof of Proposition 16 is in the Appendix.

Remark 17

Proposition 14 can be extended to general k-regular networks @ on 2n (n > 2) nodes. We consider
the case K > n + 1 and k is odd. From Subsection 5.1, we know @) admits a 1-factorization
F ={Fy,...,Fx}. Also, for all i = 1,...,k, the sub-network Q; = @ — F; is Eulerian. It is well
known that a network @ all of whose nodes have degree at least |V (Q)|/2 is connected. So Q;
must be connected because all its nodes are of degree k — 1 > n. Let S; be an Eulerian tour of Q;
which starts at a random point. Let S be a patrolling strategy which chooses S; with probability
ANQq)/ Z§:1 A(Q;). Similarly to the proof of Proposition 14, it is easy to show that the strategy S

is optimal and the value of the game is a/p for o < p — §(F).
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In general, if we know a k-regular network has an m-factorization, we can generalize Proposi-

tion 14 as follows.

Theorem 18 Let (Q be a k-regular network on 2n vertices such that n > 2 and k is odd. Assume
() admits an m- factorization Fj, for some odd m such that &k > n + m. Then, the value of the

game is V = a/p for a < pp— 0(F).

Proof. Observe that |F,,| = k/m =r. Let F,,, = {F1,...,F.} and Q; = Q — F; for F; € F. Then,
foralli=1,...,r, the sub-network Q; is a k’-regular network where ¥’ = k —m. Since k > n +m,
we have k' > n = V(Q;)/2 and Q; is connected. Moreover, k' is even because k and m are odd.
Therefore, (Q; is Eulerian for all ¢ =1,...,r.

Let S; be an Eulerian tour of @; which starts at a point chosen randomly. Let Sf™ be a
patrolling strategy which picks S; with probability s; = A\(S;)/ 22:1 A(S;). Then, similarly to the
proof of Proposition 14, it can be shown that for o < pu — 6(F) < min; A(Q;), the patrol S¥= can
intercept any attack with probability at least oo/ and V' > a/p. Since the uniform attack strategy
can guarantee V < a/p (Alpern et al., 2022), for o < p— §(F'), we conclude the value of the game
is V' = «/p, the uniform attack strategy is optimal for the Attacker and the patrol SFm is optimal
for the Patroller. O

6 Conclusion

We have settled a conjecture posed by Alpern et al. (2022) and thus shown that for tree networks,
an eagsily implementable patrolling strategy is optimal in the continuous patrolling game. Although
we have found e-optimal attack strategies, we believe that optimal attack strategies exist in all
cases, and it may be of interest to refine the tree attack strategy defined in this paper to obtain
optimal strategies.

We have also solved the game for complete networks as long as « is sufficiently small, significantly
increasing the range of values of « for which a solution is known. The solution to the continuous
patrolling game remains open for many classes of networks for larger values of «.. For example, for
a network with two nodes connected by an odd number of arcs, Garrec (2019) gave a solution for
the particular case of three unit arcs when o < 2. Alpern et al. (2022) solved the game for any

arbitrary number of arcs for o < y — D where D is the length of the longest arc. The solution for
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this network for a > p — D is still open. For future research, we could also consider some networks
which were well studied in the discrete setting but have not been studied in the continuous setting,

such as bipartite networks.
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Appendix: proof of Proposition 16

Proof. Let w be an arbitrary patrol. Let I = [0,6—a], [» = [6—«, ], I3 = [, 6] and Iy = [6, 00).
Fori=1,...,4, let P(I;) be the interception probability that w(I;) contributes to P(w). Since the
attack time is chosen uniformly at random in the interval [0,6 — o], all attacks are finished by time
6 and P(I4) = 0.

We observe that P(I1) < (6 — «)/12. Indeed, during I3, the patrol can walk for length at most

6 — a without any point being revisited (see Figure 5) and that walk gives interception probability

20



6 — « &

Figure 5: The maximum attacks that patrol w can intercept in the time interval [0, 6]. The starting
time of the attack [0, — 6] is shown by the vertical lines. All attacks in the green area can be

intercepted and all attacks in the grey area will not be intercepted.

(6 —a)/(2u) = (6 — «)/12. Similarly, we have P(I3) < (2o —6)/6 and P(I3) < (6 — a)/12 (see
Figure 5). Then,

P(w) = P(I) + P(I) + P(I;) < 0 =% 4 20 =0 6o

So, P(w) = /6 if and only if all P(I;) meet their bounds. In other words, in time [0, 6] the patrol
w must satisfy: (i) the patrol always walks with speed 1, and (ii) if any point x is revisited, then

Tjt1(x) — Tj(x) > o where Tj(z) (j = 1,...) is the j* time z is visited.

U1

V2 U3

Figure 6: Unit length arc network Kjy.

We claim that there is no patrol satisfying both (i) and (ii). First, assume at time 0, the
patrol stays at a node. Since a > 4, w([0,4]) must be a path consisting of 4 distinct adjacent
arcs. Without loss of generality, we consider 3 possible paths for w([0,4]): w; = (v1,v2,v3, v4,v2),
we = (v1,v2,v3,v4,v1), wg = (v1,v2,v3,v1,v4) (see Figure 6). For wi, to continue, the patrol can
go to vz or vy; however, both ways will immediately violate the condition (ii). For ws, the patrols

must continue by going from v; to v3. Then, at vs, there is no way to continue without violating
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the condition (ii). With the same analysis, w3 cannot be completed such that the condition (ii)
still holds.

Second, we consider the case that the patrol starts at a regular point y. We assume y € (v1,v4)
and the patrol first travels from y to v; at time ¢t = d(y,v;) < 1. Since t + 3 < «, w([0,t + 3])

cannot contain the same arc twice. It is enough to examine three possible cases for w([0,t + 3]):
e Case 1: w' = (y,v1,v2,v3,01)
e Case 2: w” = (y,v1,v9,v3,04)
e Case 3: v’ = (y,v1,v2,v4,03)

Similar to the previous analysis, it is easy to see that in all cases condition (ii) cannot be satisfied.

For a = 6, it is easy to see that V' < 1 since there is no tour which cover all arcs in time [0, 6].
So, for 4 < «, the attack cannot be intercepted with probability a/u and the value of the game is
V <a/p. O
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