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Abstract

We present solutions to a continuous patrolling game played on network. In this zero-sum game,

an Attacker chooses a time and place to attack a network for a fixed amount of time. A Patroller

patrols the network with the aim of intercepting the attack with maximum probability. Our

main result is the proof of a recent conjecture on the optimal patrolling strategy for trees. The

conjecture asserts that a particular patrolling strategy called the E-patrolling strategy is optimal

for all tree networks. The conjecture was previously known to be true in a limited class of special

cases. The E-patrolling strategy has the advantage of being straightforward to calculate and

implement. We prove the conjecture by presenting ε-optimal strategies for the Attacker which

provide upper bounds for the value of the game that come arbitrarily close to the lower bound

provided by the E-patrolling strategy. We also solve the patrolling game in some cases for

complete networks.
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1 Introduction

In the continuous patrolling game, introduced by Alpern et al. (2016), an Attacker picks a point on

a network Q and a time interval of fixed duration during which to carry out an attack. A Patroller

moves on the network at unit speed and intercepts the attack (and wins the game) if she reaches

the attacked point during the attack interval. Alpern et al. (2022) proposed a mixed strategy for

the Patroller, called the E-patrolling strategy, which was shown to be optimal for certain classes of

tree networks. In Conjecture 1 of that paper, they suggested that the E-patrolling strategy was

optimal for all trees. We refer to this conjecture as the tree patrolling conjecture. In this paper we

settle the tree patrolling conjecture by proving that the E-patrolling strategy is optimal for all tree

networks. We also solve the game in certain cases for complete networks (those for which every

pair of nodes is connected by precisely one arc).

The key idea we use to prove the conjecture for trees is that as long as the Attacker randomizes

over a large enough time period, there are mixed strategies that are arbitrarily close to being

optimal that simply pick the time of the attack uniformly over that period. This means that we

need only specify a distribution over the network Q. We define a mixed strategy for the Attacker

that is played over a large time interval [0, T ] and show that for any given ε > 0, this strategy is

ε-optimal for large enough T .

Most work in the area of patrolling games focuses on discrete models, such as Alpern et al.

(2018), Alpern et al. (2011), Lin et al. (2013), Pita et al. (2008), Yolmeh and Baykal-Gürsoy (2018)

and Zoroa et al. (2012). A disadvantage of discrete models is that in many real world examples of

patrolling, an attack or infiltration can occur anywhere continuously along a border, boundary or

network. Discrete models also assume that attacks occur at discrete times, but of course it is more

realistic to model time as continuous. This was the motivation behind the continuous patrolling

game introduced by Alpern et al. (2016). As well as the recent work of Alpern et al. (2022) on the

game, Garrec (2019) has also made some important contributions, including establishing that the

game has a value and optimal (or ε-optimal) strategies. Lin (2019) studied a different continuous

patrolling game on a perimeter.

The layout of the paper is as follows. In Section 2, we recall the definition of the continuous

patrolling game and give some background on previous work on the game. We also describe the

tree patrolling conjecture precisely. In Section 3, we work towards defining a decomposition of any
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tree Q which we call its subtree decomposition. This decomposition consists of a set of subtrees of

length at most α/2 containing all the leaf nodes and another connected set we call the core. We

also define the concept of the density of a subset of a network, which, for a given Attacker strategy,

is defined as the ratio of the probability the attack takes place in that subset to the length of the

subset. This definition is analogous to the concept of search density, which is well known in the

field of search games. The concept originates from the work of Gal (1979), but has been used more

recently in, for example, Alpern and Lidbetter (2013), Fokkink et al. (2019) and Hermans et al.

(2022). The ideas of density and the subtree decomposition are crucial for us to define in Section 4

the Attacker strategy that we proceed to show is ε-optimal. In Section 5 we solve the game on

complete networks for some values of α. In Section 6 we conclude.

The significance of our main result on trees lies in the fact that the E-patrolling strategy is

intuitive and easy to implement. Roughly speaking, the Patroller repeatedly tours the network,

but performs extra tours of subtrees of the network that are close to the leaf nodes.

2 Background and Definitions

In this section we make some definitions and give some more background to the continuous patrolling

game. We finish the section by stating the tree patrolling conjecture precisely.

We start by defining a network Q in a little more detail, though we refer the reader to Alpern et

al. (2022) for a precise definition. A network Q is given by a multigraph whose arcs can be viewed

as open intervals. The length of an arc a is denoted λ(a), and λ is extended to define a measure

on Q. At each end of an arc is a node, and we refer to points of Q that are not nodes as regular.

We also define a metric d on Q, where d(x, y) is the length of the shortest path between two points

x, y ∈ Q.

In the continuous patrolling game on Q, the Attacker picks a point x ∈ Q and a time t ≥ 0

at which to start the attack. The attack lasts for time α, where α > 0 is some parameter of the

problem known to both players, and is no greater than the minimum tour time of Q. The Patroller

picks a patrol of the network, which is given by a unit speed path S : [0,∞) → Q. If the patrol

intercepts the attack, then the Patroller wins the game. More precisely, the payoff of the game is

equal to 1 if x ∈ S([t, t + α]), otherwise the payoff is 0. The Patroller is the maximizer and the

Attacker is the minimizer.
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As mentioned in the Introduction, the continuous patrolling game was introduced in Alpern

et al. (2016). Garrec (2019) later proved that this zero-sum game has a value; moreover that the

Patroller has optimal mixed strategies and the Attacker has ε-optimal mixed strategies (that is

strategies that ensure the expected payoff is within ε of the value of the game, for any ε > 0).

Garrec also found optimal strategies in the game in some special cases, as did Alpern et al. (2016).

Alpern et al. (2022) solved the game in some further special cases. Firstly, they gave a solution

for arbitrary networks as long as α is shorter than the length of any arc of the network. Secondly,

they gave a solution for tree networks when α is such that a particular condition called the Leaf

Condition is satisfied. They defined a patrolling strategy called the E-patrolling strategy, and

showed that it is optimal for trees that satisfy the Leaf Condition. They conjectured that the

E-patrolling strategy is optimal for all tree networks (the tree patrolling conjecture). They verified

their conjecture for a class of star networks consisting of one long arc and an arbitrary number of

short arcs of equal length. They also verified it for one particular example of a tree network that

is not a star and does not satisfy the Leaf Condition.

Generally speaking, the Leaf Condition is satisfied when α is particular small and, in the case

of star networks, also when it is particularly large. This leaves a sizeable gap of values of α for

which the optimality of the E-patrolling strategy was unproven. In Section 4, we settle the tree

patrolling conjecture.

Of crucial importance to stating and proving the tree patrolling conjecture, we must first define

the extremity set E for a tree network Q.

Let Q be a tree network of length µ. For any set of points Y , we denote Y c for Q − Y and Y

for the topological closure of Y . If x is a regular point of Q, then Q − {x} has two components

Q1(x) and Q2(x) such that λ(Q1(x)) + λ(Q2(x)) = µ, and mini=1,2Qi(x) ≤ µ/2. If x is a node of

degree n (n ≥ 3), then Q− {x} has n components.

Definition 1 Let Q be a tree. The extremity set E ≡ E(Q,α) is defined as the set of all regular

points x ∈ Q such that mini=1,2λ(Qi(x)) < α/2.

Although it is convenient to define E as an open set, we will largely work with its topological

closure E. In Figure 1 we depict the set E in red for various values of α on a specific tree network

Q of length µ = 10. Note that E = Q for α ≥ 8, and it is easy to see that in fact for any tree

network Q, we have E = Q for all α > µ.

4



x1

x3

x4

E5

E3

E4

E1

x2

E2

(a) α = 2

x1

x3

x2

E5

E3

E4

E1

E2

(b) α = 4

x1

x3

x2

E4

E3

E1

E2

(c) α = 6

x∗

E3

E2

E1

(d) α = 8

Figure 1: The components of E are shown in red and the core E0 is shown in blue for α = 2, 4, 6, 8.

The local roots x∗, xi (i ≥ 1) are labeled as blue points.

We make a number of observations about E, which we state without proof.

Proposition 2 Let Q be a tree. Then

(i) E(Q,α1) ⊆ E(Q,α2) for any α1 ≤ α2;

(ii) there exists an unique α∗ such that E(Q,α∗) = Q and E(Q,α) 6= Q for any α < α∗;

(iii) if E(Q,α) 6= Q, then the boundary of each maximal connected component X of E is a

single point x, which we call the local root of X. When x is removed, the remaining disjoint

components of X are subtrees of measure at most α/2. We will also refer to x as the local root of

these subtrees.

We have labeled the local roots x1, x2, . . . in Figure 1. Both the location and number of local

roots may change as α changes. In the case α = 2, the set E has four maximal connected com-

ponents, and four corresponding local roots, x1, x2, x3 and x4. When α = 4 or 6, the set E has

only three maximal connected components with local roots x1, x2 and x3. When α = 8, the set E

has only one maximal connected component. In this case, we have labeled the local root x∗, to be
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defined later in Subsection 3.1.

Alpern et al. (2022) showed that the E-patrolling strategy guarantees that the value of the

continuous patrolling game on trees is at most α/(µ+ λ(E)). Roughly speaking, the E-patrolling

strategy repeatedly performs a tour of the tree, adding extra tours of each of the components of

E. For the details of the construction of the E-patrolling strategy, we refer the reader to Alpern

et al. (2022). We give here an example of the E-patrolling strategy for the network of Figure 1(b)

(α = 4). For i = 1, 2, 3, let Ci be a minimum length tour of the maximal connected component

of E with the local root xi. For example, C1 is a minimum length tour of subtree E1 ∪ E2. Let

SE be a tour which starts at x3, travels to x1 and follows C1 twice, then goes back to x3 and

performs C3 twice, then moves to x2 and performs C2 twice, and finally returns to x3. Then, the

E-patrolling strategy of the tree is a strategy which repeatedly performs SE with the starting point

chosen uniformly at random.

Conjecture 1 of Alpern et al. (2022) was as follows.

Conjecture 3 (Tree patrolling conjecture) If Q is a tree network, then for any α the E-

patrolling strategy is optimal and the value of the game is v∗ ≡ α/(µ+ λ(E)).

We will settle the tree patrolling conjecture in Section 4.

3 Subtree Decomposition and Density

In this section we introduce the notion of the local root of Q and the subtree decomposition of a

tree network in Subsection 3.1 and the idea of density in Subsection 3.2.

3.1 Subtree Decomposition

In order to define the subtree decomposition of a tree network, we first introduce a new subset of Q

here called the core of Q, defined as the closure of the complement of E and denoted E0 = E0(Q,α).

The core is connected and closed. The reason for this rather awkward definition is that E is only

defined on regular points, but informally we can think of the core as the complement of the extremity

set. The core is depicted in blue in Figure 1 for each value of α. As α increases, the extremity set

grows while the core shrinks. Notice that when α ≥ 8, the set E is equal to Q and E0 = ∅.

Thus, for α < α∗, any tree network Q can be expressed as the disjoint union of the core and

a set of subtrees each of length at most α/2 (see Proposition 2, part (iii)). This is the subtree
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decomposition of Q. It is easy to see that the core cannot contain any leaf nodes of Q. In the

remainder of this subsection we will show that for α ≥ α∗, we can form a decomposition of Q with

similar properties.

If α ≥ α∗, the set E has only one connected component, which is equal to Q. In this case, we

define the local root of Q.

Definition 4 Let Q be a tree and let α1, α2, . . . be a sequence of increasing positive numbers

converging to α∗. The local root of Q is the set ∩∞n=1E
0(Q,αn).

It is easy to show that the local root of Q is specified independently of the choice of sequence

(αn)∞n=1, and is in fact equal to ∩0<α<α∗E0(Q,α). The fact that the local root is non-empty follows

from Cantor’s intersection theorem, since it is the intersection of a sequence of non-empty, non-

increasing, closed sets, by Proposition 2, part (i). In fact, we will show in Proposition 5 that the

local root of Q is a singleton, and without ambiguity, we will call its unique member the local root

of Q and denote it by x∗. The local root of the tree Q is labeled in Figure 1.

Proposition 5 Let Q be a tree. Then,

(i) The local root of Q is a singleton, x∗.

(ii) Each of the maximal connected components of Q− {x∗} has measure at most α∗/2.

Proof. For (i), let (αn)∞n=1 be an increasing sequence converging to α∗ and let f be the real

function defined by f(α) = λ(E0(Q,α)). Then f is a continuous, and it follows that

λ(E0(Q,αn)) = f(αn)→ f(α∗) = λ(E0(Q,α∗)) = 0.

Now suppose the local root of Q contains two points x and y with x 6= y, and let ε = d(x, y). Let N

be such that f(αN ) < ε. Since E0(Q,αN ) is connected and contains both x and y, it must contain

the path from x to y. Therefore, its measure must be at least ε, contradicting f(αN ) < ε. So the

local root of Q is a singleton, x∗.

To prove (ii), assume for a contradiction that Q−{x∗} has a component Q1 with λ(Q1) > α∗/2.

First suppose that x∗ is a regular point. In this case, Q − {x∗} only has two components, and by

definition of α∗ (Proposition 2, part (ii)), the other component Q2 must satisfy λ(Q2) < α∗/2. Let

α′ = λ(Q2) + α∗/2 < α∗. Since λ(Q2) < α′/2, we must have x∗ ∈ E(Q,α′) by definition of the
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extremity set. But by definition of x∗ and because α′ < α∗, we must have x∗ ∈ E0(Q,α′), which is

a contradiction, since E(Q,α′) ∩ E0(Q,α′) = ∅

Now suppose x∗ is a node and let Q′ be the subtree Q1 ∪ {x∗}. Then, λ(Q′) = λ(Q1) > α∗/2.

Let z be a regular point on the arc incident to x∗ in Q′ such that d(x∗, z) < λ(Q1) − α∗/2. It is

easy to see that one component Q1(z) of Q−{z} is a subset of Q1 and the other component Q2(z)

contains x∗. We have λ(Q1(z)) = λ(Q1) − d(x∗, z) > α∗/2. So, λ(Q2(z)) < α∗/2, by definition of

α∗. Let α′′ = λ(Q2(z)) +α∗/2 < α∗. Since λ(Q2(z)) < α′′/2, we must have x∗ ∈ Q2(z) ⊂ E(Q,α′′)

by definition of the extremity set. Because x∗ is not in the boundary of Q2(z), it is obvious that

x∗ 6∈ E0(Q,α′′). But by definition of x∗ and because α′′ < α∗, we must have x∗ ∈ E0(Q,α′′), which

is again a contradiction. �

The local root x∗ of Q is labeled on part (d) of Figure 1. Note that it does not depend on α.

Proposition 5 implies that the tree Q can be expressed as a disjoint union of its local root and

a set of subtrees of length at most α/2. Combining this with the decomposition described earlier

in this subsection for α < α∗, we have shown the following.

Proposition 6 (Subtree decomposition of Q) For any tree Q and any attack time α, we can

express Q as a union of its core E0 and a set of closed subtrees E1, . . . , Ek whose union is E such

that λ(Ei) ≤ α/2 for each i = 1, . . . , k and
∑k

i=1 λ(Ei) = λ(E).

3.2 Density

In this subsection we introduce the concept of density.

Suppose a measure P on Q is fixed. For any measurable A ⊆ Q, we define the density ρP (A) ≡

ρ(A) by ρ(A) = P (A)/λ(A).

Suppose Q is a tree with a distinguished point O, called its root. We say a point y ∈ Q is above

a point (or arc) x if the unique path from O to y contains x. We write Qx for the subtree of Q

containing x and all points above x. We call a node x a branch node if it is not a leaf node. For

a branch node x of Q, we call the branches at x the collection of maximal disjoint components of

Qx − {x}.

We state the definition of the Equal Branch Density (EBD) distribution, as given in Alpern

and Lidbetter (2013), Alpern (2010) and Alpern and Lidbetter (2014).

Definition 7 For a tree Q with root O, the Equal Branch Density (EBD) distribution is the
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unique measure h on the leaf nodes of Q (not including O) such that at every branch node x all

the branches at x have the same density ρh.

In Figure 2, we illustrate the EBD distribution h on a tree Q of length 10 with root O and four

leaf nodes, A,B,C,D. The length of the three branches at O are λ(OA) = 3, λ(OBC) = 5, and

λ(OD) = 2. So, the measure h on all leaf nodes of each branch are h(OA) = 3/10, h(OD) = 2/10,

and h(OBC) = 5/10. The branch OA has one leaf node A, so the measure h on leaf node A is

h(A) = 3/10. Similarly, h(D) = 2/10. For the branch OBC, the two branches at branch node x

have length λ(xB) = 1, λ(xC) = 2. To ensure the two branches xB and xC have the same density,

we set h(B) = 1
3h(OBC) = 5

30 and h(C) = 2
3h(OBC) = 10

30 .

3
10

A O

x

B

D

2
10

5
30

C

10
30

Figure 2: The EBD distribution on the tree Q with the root O.

We state here an important property of the EBD distribution, which is a consequence of

Lemma 6 of Alpern and Lidbetter (2013).

Lemma 8 The EBD distribution h on a rooted tree Q has the property that for any subtree Z

with root x contained in Qx, we have ρh(Z) ≤ ρh(Qx).

4 Proof of the Tree Patrolling Conjecture

We begin this section by constructing an Attacker strategy in Subsection 4.1, which we call the

tree attack strategy. In Subsection 4.2, we will show that this strategy is ε-optimal.

4.1 The Tree Attack Strategy

The tree attack strategy is actually a collection of strategies, and is defined in terms of a parameter

T > 0, which we can think of as the length of some long time interval.
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Definition 9 (tree attack strategy) Let Q be a tree network, and let E0, E1, . . . , Ek be its

subtree decomposition. Let xj be the local root of Ej for j = 1, .., k. Let hj be the EBD measure

on Ej . For T > 0, the tree attack strategy (with parameter T ) begins at a time chosen uniformly

at random from the interval [0, T ]. The location of the attack is given by the measure e, defined

below.

(i) With probability e(E0) ≡ λ(E0)/(µ+ λ(E)), a point of E0 chosen uniformly at random.

(ii) With probability e(Ej) ≡ 2λ(Ej)/(µ + λ(E)), a point of Ej chosen according to the EBD

distribution hj , for j = 1, . . . , k.

The tree attack strategy is well defined. Indeed, the total probability e(Q) of attack is given by

e(Q) =

k∑
j=0

e(Ej) =
λ(E0)

µ+ λ(E)
+

k∑
j=1

2λ(Ej)

µ+ λ(E)
=

λ(E0)

µ+ λ(E)
+

2λ(E)

µ+ λ(E)
=
µ+ λ(E)

µ+ λ(E)
= 1.

We illustrate the tree attack strategy by revisiting the network Q with length µ = 10 from

Figure 1. We illustrate the attack probability at the leaf nodes and in E0 in Figure 3 for different

values of α.
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Figure 3: The tree attack strategy on the tree network Q.
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Observe that the density ρe(E
j) ≡ ρ(Ej) for any j = 1, . . . , k is

ρ(Ej) =
e(Ej)

λ(Ej)
=

2λ(Ej)

µ+ λ(E)

1

λ(Ej)
=

2

µ+ λ(E)
.

So, by Lemma 8, for any subtree Z of Ej such that xj ∈ Z,

ρ(Z) ≤ ρ(Ej) =
2

µ+ λ(E)
. (1)

4.2 ε-Optimality of the Tree Attack Strategy

Before proving the tree patrolling conjecture, we extend a lemma from Alpern et al. (2022) con-

cerning the uniform attack strategy. This is the strategy for the attacker that begins the attack

at an arbitrary time M (for example M = 0) at a point of the network chosen uniformly at ran-

dom. Alpern et al. (2022) showed that this strategy ensures the attack will be intercepted with

probability at most α/µ (this was also shown in Alpern et al. (2016) and Garrec (2019)).

Lemma 10 Let Z be a connected subset of a network Q. Consider an attack strategy that chooses

a point of Z uniformly at random to carry out the attack, and starts the attack at some time t,

which may be fixed or a random variable. Then for any Patroller strategy, the probability that

attack is intercepted is at most α/λ(Z).

Proof. The lemma is trivially true if α ≥ λ(Z), so assume that α < λ(Z). First suppose t is

fixed. Then Lemma 1 of Alpern et al. (2022) applied to the network Z says that probability of

interception is at most α/λ(Z).

Now suppose t is a random variable. Then from the previous paragraph, the probability the

attack is intercepted, conditional on the attack starting at fixed time t = t0 is at most α/λ(Z). It

follows that the unconditional probability of interception is also at most α/λ(Z). �

We are now ready to prove the tree patrolling conjecture.

Theorem 11 Let Q be a tree of length µ. Then for any ε > 0, there exists a value of T such that

the tree attack strategy (with parameter T ) cannot be intercepted with probability greater than

α/(µ+ λ(E)) + ε ≡ v∗ + ε. Hence, the value of the continuous patrolling game on Q is v∗ and the

E-patrolling strategy is optimal.
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Proof. Let ε > 0 be given, and suppose the Attacker uses the tree attack strategy (with parameter

T ), for some T , where the precise value of T will be specified later. Consider an arbitrary patrol

S, and let 0 = t0 < t1 < · · · < tm = T + α be the coursest partition of [0, T + α] such that S is

confined to a single set Ej (j = 0, 1, . . . , k) during each time interval [ti, ti+1]. For i = 1, . . . ,m, let

Ii = [ti−1, ti], let δi = ti − ti−1 and let Zi = S(Ii).

We will show that the probability P (S) that S intercepts the tree attack strategy is at most

v∗ + ε. To do so, we will calculate an upper bound for the probability Pi that S intercepts the

attack during each of the intervals Ii for each i = 1, . . . ,m, and we will show that the sum of these

upper bounds is no more than v∗ + ε.

First suppose m = 1. In this case, the patrol just stays in one component Ej during the whole

time [0, T + α] ≡ I1. If j 6= 0, the interception probability Pi is at most

e(Ej) = 2λ(Ej)/(µ+ λ(E)) ≤ α/(µ+ λ(E)) = v∗,

since λ(Ej) ≤ α/2. If j = 0, then by Lemma 10, then the interception probability Pi satisfies

Pi ≤
α

λ(E0)
· e(E0) =

α

λ(E0)
· λ(E0)

µ+ λ(E)
= v∗.

Now suppose m ≥ 2, and we calculate an upper bound of interception probability Pi in three

cases:

(i) Zi ⊆ E0;

(ii) i = 2, ..,m− 1 and Zi ⊆ Ej for some j = 1, . . . , k;

(iii) i = 1 or m and Zi ⊆ Ej for some j = 1, . . . , k.

Starting with case (i), when Zi ⊆ E0, we observe that at any time y ∈ Ii the patrol S can

intercept the attack at point S(y) starting in time [max(0, y−α), y]. Note that y−max(0, y−α) ≤ α.

Since S moves at unit speed, we have that λ(S(Ii)) ≤ δi. So, the conditional probability that S(Ii)

intercepts the attack given it takes place in E0 is at most (αδi)/(Tλ(E0)). This gives the bound

Pi ≤
αδi

Tλ(E0)
· e(E0) =

δiv
∗

T
. (2)

Second, in the case that i = 2, ..,m − 1 and Zi ⊆ Ej for some j = 1, . . . , k, the patrol must

perform a tour with the startpoint and endpoint xj . Because the length of this tour is at least

2λ(Zi), the patrol can spend at most time δi−2λ(Zi) ≥ 0 at leaf nodes of Ej . Therefore, Pi satisfies

Pi ≤
1

T
e(Zi)(α+ δi − 2λ(Zi)).

12



By (1), ρ(Zi) = e(Zi)/λ(Zi) ≤ ρ(Ej) = 2/(µ + λ(E)). Applying this to the inequality above and

rearranging,

Pi ≤
1

T
e(Zi)(α+ δi − 2λ(Zi))

≤ 1

T

2λ(Zi)

µ+ λ(E)
(α+ δi − 2λ(Zi))

=
1

T

α

µ+ λ(E)

(
δi −

(
δi − 2λ(Zi)

)(
1− 2λ(Zi)

α

))
.

As already observed, δi − 2λ(Zi) ≥ 0. Also, λ(Zi) ≤ λ(Ej) ≤ α/2, by definition of the subtree

decomposition, so
(
δi − 2λ(Zi)

)(
1− 2λ(Zi)

α

)
≥ 0. Consequently,

Pi ≤
1

T

α

µ+ λ(E)
δi =

δiv
∗

T
. (3)

Third, we consider the case that i = 1 or m and Zi ⊆ Ej for some j = 1, . . . , k. This case is

different from the second case since it is not necessary for the patrol to perform a tour in Ej . For

example, the patrol may start at a leaf node in Z1, stay within Z1 for sometime then move directly

to Z2. Therefore, the time the patrol can stay at leaf nodes in Ej is at most δi − λ(Zi) ≥ 0, and

the interception probability Pi satisfies

Pi ≤
1

T
e(Zi)(α+ δi − λ(Zi)).

The condition ρ(Zi) ≤ α/(µ + λ(E)) still holds since Zi contains xj , and must therefore be a

subtree of Ej . Applying this to the inequality above and rearranging,

Pi ≤
1

T

2λ(Zi)

µ+ λ(E)
(α+ δi − λ(Zi))

=
1

T

α

µ+ λ(E)

(
δi + 2λ(Zi)−

(
1− 2λ(Zi)

α

)
δi −

2(λ(Zi))
2

α

)
.

Since λ(Zi) ≤ λ(Ej) ≤ α/2, we have (1− 2λ(Zi)/α)δi ≥ 0 and

Pi ≤
1

T

α

µ+ λ(E)

(
δi + 2λ(Zi)

)
≤ 1

T

α

µ+ λ(E)
(δi + α) =

(δi + α)v∗

T
. (4)

Combining inequalities (2) - (4), we obtain

P (S) ≤
m∑
i=1

Pi ≤
2αv∗

T
+

m∑
i=1

δiv
∗

T
=

2αv∗

T
+
v∗

T
(T + α) ≤ v∗ + ε,

where we choose T = 3α/ε.
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We have shown that the tree attack strategy cannot be intercepted with probability greater

than v∗ + ε, so that the value of the game is at most v∗ + ε. Combining this with the lower bound

of v∗ from Alpern et al. (2022) given by the E-patrolling strategy, the rest of the theorem follows.

�

5 Solving the Game for Complete Networks

In this section, we study the game on complete networks. We begin this section by introducing some

standard definitions and the concept of a k-factorization of complete networks in Subsection 5.1.

In Subsection 5.2, we introduce a Patroller strategy which we call the complete network patrolling

strategy and show that this strategy is optimal for some values of α.

5.1 k-factorization of Complete Networks

In this section, we just consider simple networks (i.e networks that do not contain any loops and

for which there is at most one arc connecting any pair of nodes). A k-regular network is a simple

network all of whose nodes have degree k (k ≥ 1). A complete network is a k-regular network on

m (m ≥ 2) nodes where k = m− 1. We denote a complete network with n nodes by Kn. Note that

since the arcs of Kn may have different lengths, it is not uniquely defined.

We denote the set of arcs of a network Q by E(Q) and the set of nodes of Q by V (Q).

Definition 12 Let Q be a k-regular network. A k-factorization of Q is a set of sub-networks

F = {F1, . . . , Fz} such that

(i) for all i = 1, . . . , z, the sub-network Fi is a k-regular network with V (Fi) = V (Q),

(ii) E(Q) = ∪zi=1E(Fi) and

(iii) for any 1 ≤ i 6= j ≤ z, we have E(Fi) ∩ E(Fj) = ∅.

In particular, a 1-factorization of Q is a set of arc-disjoint perfect matchings whose union is

E(Q). In other words, a 1-factorization is an arc-coloring of a network where each color class

consists of a perfect matching. In Figure 4, we illustrate a 1-factorization of a complete network

K4 on four nodes with three color classes, red, blue, and green.
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Figure 4: 1-factorization of a complete network K4.

It is obvious that if Q has a 1-factorization, the number of nodes of Q must be even. It is well-

known that every complete network on 2n (n = 1, . . .) nodes admits a 1-factorization. Csaba et al.

(2016) showed that every k-regular network on 2n nodes has a 1-factorization if k ≥ 2dn/2e − 1.

For a small number of nodes 2n ≤ 4, the network K2n has a unique 1-factorization. When 2n ≥ 6,

the network K2n has many 1-factorizations (see Zinoviev, 2014). For example, K8 has 6240 distinct

1-factorizations.

5.2 A Patrolling Strategy for Complete Networks

In this subsection, we introduce a Patroller strategy for the complete network K2n on 2n (n =

1, 2, . . .) nodes and prove this strategy is optimal for some values of α. Note that a complete

network on an odd number of nodes is Eulerian. The solution for Eulerian networks was presented

in Garrec (2019) and Alpern et al. (2022).

Suppose the complete network K2n has a 1-factorization F = {F1, . . . , F2n−1}. We first observe

that for any i = 1, . . . , 2n − 1, the sub-network Qi = K2n − Fi is a k-regular network where

k = 2n− 2. Therefore, Qi is Eulerian for all i. We define the complete network patrolling strategy

below.

Definition 13 (complete network patrolling strategy) Let F = {F1, . . . , F2n−1} be a 1-factorization

of a complete network K2n. For i = 1, . . . , 2n − 1, let Qi = K2n − Fi and let Si be an Eulerian

tour of Qi starting at a randomly chosen point. The complete network patrolling strategy SF is a

patrol such that the Patroller chooses Si with probability si = λ(Qi)/((2n− 2)µ).

Note that SF is well defined, since

2n−1∑
i=1

si =

∑2n−1
i=1 λ(Qi)

(2n− 2)µ
=

∑2n−1
i=1

(
λ(K2n)− λ(Fi)

)
(2n− 2)µ

=

∑2n−1
i=1 λ(K2n)−

∑2n−1
i=1 λ(Fi)

(2n− 2)µ
=

(2n− 1)µ− µ
(2n− 2)µ

= 1.
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For a 1-factorization F , let δ(F ) = max1≤i≤2n−1 λ(Fi). We have the following result.

Proposition 14 Let F be a 1-factorization of the complete network K2n for some n = 1, 2, . . ..

For α ≤ µ− δ(F ), the strategy SF is optimal for the Patroller and the uniform attack strategy is

optimal for the Attacker on K2n. The value of the game is V = α/µ.

Proof. Consider an arbitrary attack taking place at some point x ∈ Q. We will show that the

patrol SF can intercept this attack with probability at least α/µ.

Let P (Si) be the probability that Si intercepts the attack, for i = 1, . . . , 2n− 1. For each i, we

have λ(Qi) = µ − λ(Fi) ≥ µ − δ(F ) ≥ α. It follows from Corollary 1 of Alpern et al. (2022) that

P (Si) = α/λ(Qi).

If x is a node, it is easy to see that x ∈ Qi for all i. So, the patrol SF will intercept the attack

with probability

P (SF ) =
2n−1∑
i=1

siP (Si) =
2n−1∑
i=1

λ(Qi)

(2n− 2)µ

α

λ(Qi)
=

2n− 1

2n− 2

α

µ
≥ α

µ
.

If x is not a node, there exists a unique j ∈ [2n − 1] such that x ∈ Fj (where [m] denotes the

set {1, . . . ,m}). So, x 6∈ Qj and x ∈ Qi for all i 6= j. The probability the patrol SF intercepts the

attack is

P (SF ) =
2n−1∑
i=1

siP (Si) =
∑

i∈[2n−1]
i 6=j

λ(Qi)

(2n− 2)µ

α

λ(Qi)
=

2n− 2

2n− 2

α

µ
=
α

µ
.

We have shown that V ≥ α/µ. But by Lemma 1 of Alpern et al. (2022) (or Lemma 10 of this

paper), the uniform attack strategy guarantees that V ≤ α/µ for any network. We conclude that

the strategy SF and the uniform attack strategy are optimal and the value of the game is V = α/µ.

�

As mentioned in Subsection 5.1, when the number of nodes 2n ≥ 6, the network K2n has

many 1-factorizations. Let F ∗ be a 1-factorization of K2n such that δ∗ = δ(F ∗) ≤ δ(F ) for any

1-factorization F of Q. We then have the following stronger result.

Proposition 15 For α ≤ µ − δ∗, the strategy SF
∗

and the uniform attack strategy are optimal.

The value of the game is V = α/µ.

In comparison with the recent work of Alpern et al. (2022), the complete network patrolling

strategy SF helps us solve the game for a significantly larger range of α. Alpern et al. (2022)
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introduced a patrolling strategy for networks without leaf arcs and proved it is optimal for α ≤ g

where g is the girth of the network, defined as the minimum length of a circuit in the network.

For a complete network K2n (n ≥ 2), the girth g is very small compared to µ − δ(F ), for any

1-factorization F . In fact, we have µ − δ(F ) ≥ n(n−1)
2 g. Indeed, by Theorem 1 of Alspach and

Gavlas (2001), any sub-network Qi = K2n − Fi (Fi ∈ F ) can be decomposed into circuits C4

of four arcs. Since |E(Qi)| = 2n(n − 1), a C4-decomposition of Qi has n(n − 1)/2 circuits and

the length of any circuit is not less than g by definition of g. So, λ(Qi) ≥ n(n−1)
2 g. Therefore,

µ− δ(F ) ≥ mini λ(Qi) ≥ n(n−1)
2 g for any 1-factorization F .

In summary, the patrolling strategy of Alpern et al. (2022) is known to be optimal for values

of α in (0, g], whereas the complete network patrolling strategy is known to be optimal for values

of α in (0, n(n−1)2 g], an interval that is O(n2) longer.

Notice that if Q is a network with unit length arcs (i.e every arc is of length 1), then δ(F ) = n

for all 1-factorizations F , so that δ∗ = n. Thus, for α ≤ µ − n, the value of the game is α/µ. In

fact, this bound can be tight. In other words, for some networks, for α > µ − δ∗, the value of the

game is strictly less than α/µ.

Proposition 16 Consider an attack strategy for the network K4 with unit length arcs which

attacks at a random point with a start time chosen uniformly at random from the interval [0, 6−α].

For µ − n = 4 < α ≤ 6, this attack strategy guarantees an interception probability of stricty less

than α/µ.

The proof of Proposition 16 is in the Appendix.

Remark 17

Proposition 14 can be extended to general k-regular networks Q on 2n (n ≥ 2) nodes. We consider

the case k ≥ n + 1 and k is odd. From Subsection 5.1, we know Q admits a 1-factorization

F = {F1, . . . , Fk}. Also, for all i = 1, . . . , k, the sub-network Qi = Q − Fi is Eulerian. It is well

known that a network Q all of whose nodes have degree at least |V (Q)|/2 is connected. So Qi

must be connected because all its nodes are of degree k − 1 ≥ n. Let Si be an Eulerian tour of Qi

which starts at a random point. Let S be a patrolling strategy which chooses Si with probability

λ(Qi)/
∑k

j=1 λ(Qj). Similarly to the proof of Proposition 14, it is easy to show that the strategy S

is optimal and the value of the game is α/µ for α ≤ µ− δ(F ).
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In general, if we know a k-regular network has an m-factorization, we can generalize Proposi-

tion 14 as follows.

Theorem 18 Let Q be a k-regular network on 2n vertices such that n ≥ 2 and k is odd. Assume

Q admits an m- factorization Fm for some odd m such that k ≥ n + m. Then, the value of the

game is V = α/µ for α ≤ µ− δ(F ).

Proof. Observe that |Fm| = k/m = r. Let Fm = {F1, . . . , Fr} and Qi = Q−Fi for Fi ∈ F . Then,

for all i = 1, . . . , r, the sub-network Qi is a k′-regular network where k′ = k−m. Since k ≥ n+m,

we have k′ ≥ n = V (Qi)/2 and Qi is connected. Moreover, k′ is even because k and m are odd.

Therefore, Qi is Eulerian for all i = 1, . . . , r.

Let Si be an Eulerian tour of Qi which starts at a point chosen randomly. Let SFm be a

patrolling strategy which picks Si with probability si = λ(Si)/
∑r

j=1 λ(Sj). Then, similarly to the

proof of Proposition 14, it can be shown that for α ≤ µ − δ(F ) ≤ mini λ(Qi), the patrol SFm can

intercept any attack with probability at least α/µ and V ≥ α/µ. Since the uniform attack strategy

can guarantee V ≤ α/µ (Alpern et al., 2022), for α ≤ µ− δ(F ), we conclude the value of the game

is V = α/µ, the uniform attack strategy is optimal for the Attacker and the patrol SFm is optimal

for the Patroller. �

6 Conclusion

We have settled a conjecture posed by Alpern et al. (2022) and thus shown that for tree networks,

an easily implementable patrolling strategy is optimal in the continuous patrolling game. Although

we have found ε-optimal attack strategies, we believe that optimal attack strategies exist in all

cases, and it may be of interest to refine the tree attack strategy defined in this paper to obtain

optimal strategies.

We have also solved the game for complete networks as long as α is sufficiently small, significantly

increasing the range of values of α for which a solution is known. The solution to the continuous

patrolling game remains open for many classes of networks for larger values of α. For example, for

a network with two nodes connected by an odd number of arcs, Garrec (2019) gave a solution for

the particular case of three unit arcs when α ≤ 2. Alpern et al. (2022) solved the game for any

arbitrary number of arcs for α ≤ µ−D where D is the length of the longest arc. The solution for
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this network for α > µ−D is still open. For future research, we could also consider some networks

which were well studied in the discrete setting but have not been studied in the continuous setting,

such as bipartite networks.
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Zoroa N, Fernández-Sáez M, Zoroa P (2012) Patrolling a perimeter. Eur. J. Oper. Res. 222(3):571–

582.

Appendix: proof of Proposition 16

Proof. Let w be an arbitrary patrol. Let I1 = [0, 6−α], I2 = [6−α, α], I3 = [α, 6] and I4 = [6,∞).

For i = 1, . . . , 4, let P (Ii) be the interception probability that w(Ii) contributes to P (w). Since the

attack time is chosen uniformly at random in the interval [0, 6−α], all attacks are finished by time

6 and P (I4) = 0.

We observe that P (I1) ≤ (6− α)/12. Indeed, during I1, the patrol can walk for length at most

6−α without any point being revisited (see Figure 5) and that walk gives interception probability
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0 6− α α 6

6− α 6− α

Figure 5: The maximum attacks that patrol w can intercept in the time interval [0, 6]. The starting

time of the attack [0, α − 6] is shown by the vertical lines. All attacks in the green area can be

intercepted and all attacks in the grey area will not be intercepted.

(6 − α)/(2µ) = (6 − α)/12. Similarly, we have P (I2) ≤ (2α − 6)/6 and P (I3) ≤ (6 − α)/12 (see

Figure 5). Then,

P (w) = P (I1) + P (I2) + P (I3) ≤
6− α

12
+

2α− 6

6
+

6− α
12

=
α

6
.

So, P (w) = α/6 if and only if all P (Ii) meet their bounds. In other words, in time [0, 6] the patrol

w must satisfy: (i) the patrol always walks with speed 1, and (ii) if any point x is revisited, then

Tj+1(x)− Tj(x) ≥ α where Tj(x) (j = 1, . . .) is the jth time x is visited.

v4

v1

v3v2

y

Figure 6: Unit length arc network K4.

We claim that there is no patrol satisfying both (i) and (ii). First, assume at time 0, the

patrol stays at a node. Since α > 4, w([0, 4]) must be a path consisting of 4 distinct adjacent

arcs. Without loss of generality, we consider 3 possible paths for w([0, 4]): w1 = (v1, v2, v3, v4, v2),

w2 = (v1, v2, v3, v4, v1), w3 = (v1, v2, v3, v1, v4) (see Figure 6). For w1, to continue, the patrol can

go to v3 or v1; however, both ways will immediately violate the condition (ii). For w2, the patrols

must continue by going from v1 to v3. Then, at v3, there is no way to continue without violating

21



the condition (ii). With the same analysis, w3 cannot be completed such that the condition (ii)

still holds.

Second, we consider the case that the patrol starts at a regular point y. We assume y ∈ (v1, v4)

and the patrol first travels from y to v1 at time t = d(y, v1) < 1. Since t + 3 < α, w([0, t + 3])

cannot contain the same arc twice. It is enough to examine three possible cases for w([0, t+ 3]):

• Case 1: w′ = (y, v1, v2, v3, v1)

• Case 2: w′′ = (y, v1, v2, v3, v4)

• Case 3: w′′ = (y, v1, v2, v4, v3)

Similar to the previous analysis, it is easy to see that in all cases condition (ii) cannot be satisfied.

For α = 6, it is easy to see that V < 1 since there is no tour which cover all arcs in time [0, 6].

So, for 4 < α, the attack cannot be intercepted with probability α/µ and the value of the game is

V < α/µ. �
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