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This work develops a powerful and versatile framework for determin-
ing acceptance ratios in Metropolis–Hastings-type Markov kernels widely
used in statistical sampling problems. Our approach allows us to derive new
classes of kernels which unify random walk or diffusion-type sampling meth-
ods with more complicated “extended phase space” algorithms based around
ideas from Hamiltonian dynamics. Our starting point is an abstract result de-
veloped in the generality of measurable state spaces that addresses proposal
kernels that possess a certain involution structure. Note that, while this under-
lying proposal structure suggests a scope which includes Hamiltonian-type
kernels, we demonstrate that our abstract result is, in an appropriate sense,
equivalent to an earlier general state space setting developed in (Ann. Appl.

Probab. 8 (1998) 1–9) where the connection to Hamiltonian methods was
more obscure.

On the basis of our abstract results we develop several new classes of
extended phase space, HMC-like algorithms. First we tackle the classical
finite-dimensional setting of a continuously distributed target measure. We
then consider an infinite-dimensional framework for targets which are ab-
solutely continuous with respect to a Gaussian measure with a trace-class
covariance. Each of these algorithm classes can be viewed as “surrogate-
trajectory” methods, providing a versatile methodology to bypass expensive
gradient computations through skillful reduced order modeling and/or data
driven approaches as we begin to explore in a forthcoming companion work
(Glatt-Holtz et al. (2023)). On the other hand, along with the connection of
our main abstract result to the framework in (Ann. Appl. Probab. 8 (1998) 1–
9), these algorithm classes provide a unifying picture connecting together a
number of popular existing algorithms which arise as special cases of our gen-
eral frameworks under suitable parameter choices. In particular we show that,
in the finite-dimensional setting, we can produce an algorithm class which
includes the Metropolis adjusted Langevin algorithm (MALA) and random
walk Metropolis method (RWMC) alongside a number of variants of the
HMC algorithm including the geometric approach introduced in (J. R. Stat.

Soc. Ser. B. Stat. Methodol. 73 (2011) 123–214). In the infinite-dimensional
situation, we show that the algorithm class we derive includes the precondi-
tioned Crank–Nicolson (pCN), ∞MALA and ∞HMC methods considered in
(Stoch. Dyn. 8 (2008) 319–350; Stochastic Process. Appl. 121 (2011) 2201–
2230; Statist. Sci. 28 (2013) 424–446) as special cases.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5280
1.1. Background: Formulating the accept–reject mechanism . . . . . . . . . . . . . . . . . . . . . . . . 5281
1.2. Overview of our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5284

Received October 2021; revised November 2022.
MSC2020 subject classifications. 65P10, 65C05.
Key words and phrases. Markov chain Monte Carlo (MCMC) algorithms, Metropolis–Hastings algorithms,

sampling on abstract state spaces, Hamiltonian Monte Carlo, surrogate trajectory methods.

5279



5280 N. GLATT-HOLTZ, J. KROMETIS AND C. MONDAINI

2. General formulation of the accept–reject mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5286
2.1. Preliminaries on measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5286
2.2. The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5288

3. Connection to the Tierney framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5293
3.1. Overview of Tierney’s formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5293
3.2. Reduction to the Tierney formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5294
3.3. An alternative proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5297

4. Approximate Hamiltonian Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5300
4.1. The finite-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5300

4.1.1. Hamiltonian and surrogate extended phase space dynamics . . . . . . . . . . . . . . . . . . 5301
4.1.2. Case 0: General extended phase space methods . . . . . . . . . . . . . . . . . . . . . . . . . 5302
4.1.3. Algebraic considerations for numerical splittings . . . . . . . . . . . . . . . . . . . . . . . . 5304
4.1.4. Case 1: Separable surrogate dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5305
4.1.5. Case 2: Splitting into Hamiltonian sub-dynamics . . . . . . . . . . . . . . . . . . . . . . . . 5307
4.1.6. Case 3: Nonseparable dynamics via implicit integrators . . . . . . . . . . . . . . . . . . . . 5309

4.2. The infinite-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5313
5. Connections with the classical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5318

5.1. Finite-dimensional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5318
5.1.1. The classical Metropolis–Hastings formulation . . . . . . . . . . . . . . . . . . . . . . . . . 5319
5.1.2. Random walk Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5319
5.1.3. The MALA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5320
5.1.4. Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5321

5.2. Hilbert space methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5322
5.2.1. The preconditioned Crank–Nicolson (pCN) algorithm . . . . . . . . . . . . . . . . . . . . . 5322
5.2.2. The infinite-dimensional Metropolis-adjusted Langevin algorithm (∞MALA) . . . . . . . . 5322
5.2.3. The infinite-dimensional Hamiltonian Monte Carlo (∞HMC) algorithm . . . . . . . . . . . 5323

Appendix A: Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5324
Appendix B: Proof of Theorem 4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5325
Appendix C: Proof of Corollary 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5328
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5330
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5330
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5330

1. Introduction. A central concern in modern computational probability and statistics is
the development of effective sampling methods. This is a nontrivial task particularly for high-
dimensional, noncanonical probability distributions with elaborate correlation structures. In-
deed, across a great diversity of situations in the pure and applied sciences and in engineer-
ing, it is crucial to be able to accurately resolve observable quantities from complex statistical
models which naturally arise. As such, sampling is a subject of ubiquitous significance in a
wide variety of application settings.

One of the most successful methodologies for sampling is the Markov chain Monte Carlo
(MCMC) approach. Starting from a given “target” probability distribution μ sitting on a state
space X one aims to find a Markov kernel P(q, dq̃) which holds μ as an invariant, that is,

∫
P(q, dq̃)μ(dq) = μ(dq̃).(1.1)

By iteratively sampling from such a kernel P as qn ∼ P(qn−1, dr) one hopes that P main-
tains desirable mixing properties so that, for example,

lim
N→∞

1

N

N∑

n=1

φ(qn) =
∫

φ(r)μ(dr)

across a variety of observables φ : X →R.
Of course, deriving such kernels P and determining their effectiveness is an art, the subject

of a wide and rapidly growing literature. Here the Metropolis–Hastings method, [43, 57], has
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served as a core foundation for the subject. See also, for example, [12, 51, 67] for more gen-
eral background. The basic idea of this method is to formulate a “proposal” Markov kernel
Q(q, dq̃) which does not necessarily maintain the invariance (1.1) but which is computation-
ally feasible to sample from. One then introduces an “accept–reject” mechanism which is
used to correct for bias in Q with respect to the given target measure μ. In this fashion one
builds a “Metropolis–Hastings” kernel P from Q which maintains (1.1) as follows: Starting
from a given current state qn−1, one samples a proposal state q̄n ∼ Q(qn−1, dr). Next one
determines an acceptance probability α ∈ [0,1]. The next step in the chain is then set to be
qn := q̄n with probability α and qn := qn−1 otherwise. Of course, the selection of Q and the
derivation of the appropriate accept–reject mechanism α depends heavily on the structure of
μ and underlying state space X which μ sits upon. Nevertheless, the Metropolis–Hastings
methodology encompasses many popular and effective sampling methods, including random
walk Monte Carlo (RWMC), the Metropolis adjusted Langevin (MALA) approach based on
numerical discretizations of appropriate stochastic dynamics [7, 68], and the Hamiltonian (or
Hybrid) Monte Carlo (HMC) algorithm [25, 59].

In this paper, we formulate a simple and quite flexible framework for determining the ac-
ceptance ratio α developed in an abstract setting applicable in the generality of measurable
spaces. The main result of this work, Theorem 2.1, unifies random walk or diffusion-type ap-
proaches with more complicated “extended phase space” algorithms like HMC. In particular,
while our framework appears “HMC-like” at first glance, we show that it in fact represents
an alternative formulation of the measure-theoretic approach to Metropolis–Hastings kernels
introduced in [72] where the connection to Hamiltonian algorithms is more obscure. On the
other hand, Theorem 2.1 allows us to derive novel classes of HMC-like algorithms both in
the finite and infinite-dimensional settings. These “extended phase space” algorithms provide
a versatile methodology to bypass expensive gradient computations through skillful reduced
order modeling and/or data driven approaches as we begin to explore in a forthcoming com-
panion work, [34]. Moreover, our algorithms provide a unified picture connecting a number
of popular existing algorithms which arise as special cases under suitable parameter choices.
Altogether, the theoretical unity and reach of our main result provides a basis for deriving
novel sampling algorithms while laying bare important relationships between existing meth-
ods.

1.1. Background: Formulating the accept–reject mechanism. Before outlining the main
contributions of this work in more detail we first lay out some further background on the
Metropolis–Hastings approach to give some context for our results here.

The original setting developed in [43, 57], addresses the case of a continuously distributed
target measure μ(dr) = p(r) dr on a state space X = R

N . Here one considers proposal ker-
nels which are also of the continuous form Q(q, dr) = q(q, r) dr. A simple calculation aimed
at establishing detailed balance for the resulting Markov transition kernel P as described
above, namely that

P(q, dq̃)μ(dq) = P(q̃, dq)μ(dq̃),(1.2)

a condition which is immediately seen to be sufficient for the invariance (1.1), yields the
acceptance probability

α(q, q̃) := 1 ∧ p(q̃)q(q̃,q)

p(q)q(q, q̃)
,(1.3)

where q is the current state and q̃ is the proposed next move.
While (1.3) encompasses a number of popular algorithms including the RWMC and

MALA methods, the determination of the acceptance probability α can be a much more
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complicated and delicate task in other cases of interest, particularly for popular Hamiltonian
(HMC) algorithms. Moreover, one is often interested in settings where the target measure sits
on a more general state space. Indeed, one class of Metropolis–Hastings algorithms motivat-
ing our work here addresses the situation where X is an infinite-dimensional Hilbert space
and one considers target measures which are absolutely continuous with respect to a Gaussian
probability measure μ0 so that

μ(dq) ∝ e−�(q)μ0(dq),(1.4)

for an appropriate, μ0-integrable potential � : X →R. This is an important and rich category
of measures which arise naturally in the Bayesian approach to PDE inverse problems, [20,
21, 24, 55, 63, 70] and also in computational chemistry, [38, 39, 41, 42, 66].

One of our aims in this manuscipt is to provide new insight into the derivation of a re-
cently discovered collection of Metropolis–Hastings algorithms [8, 10, 11, 22] that provide
a basis to effectively sample from such infinite-dimensional measures of the form (1.4). The
idea in these works, [10, 11, 22], is to appropriately precondition stochastic or Hamiltonian
dynamics related to the target measure μ and then to make a delicate choice for the numer-
ical discretization of these equations so that one obtains an effective proposal kernel Q. As
usual, an appropriate α is then introduced to correct for bias stemming from the original
dynamics, the numerical discretization of these dynamics, or both. In particular, this infinite-
dimensional approach results in an analogue of the random walk Monte Carlo algorithm with
the so called preconditioned Crank–Nicolson (pCN) algorithm as well as infinite-dimensional
formulations of the MALA [11, 22] and HMC [8, 10] algorithms. Each of these methods has
shown great promise by partially beating the “curse of dimensionality” as borne out by recent
theoretical developments [16, 26, 35, 40] and by effectively resolving certain challenging test
problems [8, 15, 21, 34].

Regarding the derivation of the α for the pCN and for the infinite-dimensional MALA
algorithms from [11, 22], one can make use of the abstract formulation due to Tierney [72] to
determine α. Tierney’s approach may be seen as an extension of [43] to general state spaces.
This is formulated as follows: Given a proposal kernel Q and a target measure μ, if the
measures

η(dq, dq̃) := Q(q, dq̃)μ(dq), η⊥(dq, dq̃) := η(dq̃, dq)(1.5)

are mutually absolutely continuous then one can define the acceptance probability α via the
Radon–Nikodym derivative, namely

α(q, q̃) := 1 ∧ dη⊥

dη
(q, q̃)(1.6)

to achieve detailed balance à la (1.2). Here note that in the appropriate finite-dimensional
setting (1.6) reduces to (1.3).

On the other hand, Tierney’s elegant formulation in [72] does not appear to cover HMC-
type “extended phase space” algorithms in an obvious way, even in the original finite-
dimensional formulation from [25]. In HMC sampling, the proposal is generated by inter-
preting the current state q as a position variable in a Hamiltonian system. One identifies a
Hamiltonian H such that the marginal of the Gibbs measure

M(dq, dv) ∝ e−H(q,v) dqdv(1.7)

onto position space corresponds to the desired target measure μ. Augmenting with a “mo-
mentum” (or sometimes “velocity”) variable v sampled from the v-marginal of M and then
integrating the associate Hamiltonian dynamics in (q,v)-space via an appropriately chosen
approximate integrator Ŝ, one obtains

(1.8) (q̃, ṽ) := Ŝ(q,v).
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The proposal q̃ is then given by q̃ = �1 ◦ Ŝ(q,v) where �1 represents projection onto the
position variable from the extended phase space. Then the acceptance ratio α̂ is specified as1

(1.9) α̂(q,v) := 1 ∧ exp
[
H(q,v) −H

(
Ŝ(q,v)

)]
,

where H is the Hamiltonian associated with the system.
Note carefully that α̂ in (1.9) depends not on the current and proposed states q, q̃ as in

(1.6), but rather on the current state q and the initially sampled auxiliary variable v. As such,
for Hamiltonian Monte Carlo algorithms, the acceptance probability α̂ is not accommodated
by the mechanism (1.6), at least not in an obvious fashion. It is also important to emphasize
that the validity of this accept–reject mechanism for the classical HMC algorithm (1.9) re-
quires one to formulate a numerical resolution Ŝ of the Hamiltonian dynamics which respects
certain delicate structural properties of the original Hamiltonian system; namely one typically
specifies Ŝ as a “geometric integration scheme,” one which preserves volumes on phase space
and whose dynamics maintains certain “reversibility properties” (see (4.10) below). The lat-
ter reversibility condition reflects an indispensable underlying involutive structure that we
exploit here.

Starting from [25, 59], the core ideas of this Hamiltonian approach have expanded into a
profusion of “extended phase space” methods. This literature includes a number of variations
on the Hamiltonian and symplectic structure leading to the formulation of (1.8) as well as use
of “surrogate dynamics” methods to reduce the cost or complexity of numerically expensive
gradient computations which arise. See, for example, [5, 8, 10, 33, 44, 47, 50, 51, 53, 56,
60, 61, 64, 65, 75, 76] and numerous other containing references. This large and rapidly
expanding literature is reflective of the success and effectiveness of the Hamiltonian approach
as, for example, can be seen in the wide adoption of the STAN software package, [30, 71], in
recent years.

It is therefore of great interest to provide a unified theoretical foundation for these various
works on extended phase space methods and, if possible, to place them in the context of the
original RWMC methods dating all the way back to [43, 57]. A number of recent contri-
butions preceding this current work are notable in this regard. For example, the monograph
[17] building on [27] provides a lucid and partially self-contained survey explaining various
underlying mechanisms involved in the derivation of (1.9) in the original finite-dimensional
setting. On the other hand recent work [3, 49, 62, 64] has identified the connection between
HMC methods and the involutive algorithms of Green [31, 32, 36]. Note that after publica-
tion of the initial draft of this manuscript, a related work [3] appeared, which contains an
abstract result similar to results appearing herein. As such, [3] parallels our focus on pro-
viding a unified view of reversible extended phase space Metropolis–Hastings algorithms.
Notwithstanding this overlapping scope, our two works diverge in addressing quite different
classes of algorithms. [3] explores connections to well-known algorithms within the statistics
literature, for example, NUTS [44], Bouncy particle sampler [18] and multiple-try Metropo-
lis [52]. On the other hand, our work contains contemporary examples that are more relevant
within applied mathematics by way of Bayesian inverse problems [24, 70]. In particular,
the use of Bayesian methods to estimate functional parameters in ordinary and partial dif-
ferential equations necessitates MCMC algorithms that generalize to (perhaps augmented)
infinite-dimensional state spaces.

Regarding the infinite-dimensional version of the HMC algorithm developed in [10] (see
also [8, 9]), the finite-dimensional setting is insufficient to derive an appropriate α̂ as in

1For the infinite-dimensional formulation in [10], (1.7) is formal and made sense of with respect to a refer-
ence Gaussian measure while H is typically almost surely infinite. As such, the “change in energy” �H(q,v) =
H(q,v) − H(Ŝ(q,v)) in (1.9) is computed via a separate formula that accounts for a certain “cancellation of
infinities” rather than by computing H directly. See Section 4.2 below and also [10] for further details.
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(1.9). In the original framing from [10] this infinite-dimensional case was justified via a
finite-dimensional approximation scheme reminiscent of an extended body of work on the
invariance of the Gibbs measure for Hamiltonian PDEs, see [19] and more recently [6, 58]
for a comprehensive survey of this research direction. On the other hand subsequent work [8,
9], provides notable insights into the underlying structural considerations at play in the for-
mulation of the infinite-dimensional setting by making delicate use of the Cameron–Martin
theorem.

1.2. Overview of our contribution. We turn finally to describe our contributions herein.
The main result of this work is Theorem 2.1, which provides a single, simple formulation
that subsumes all of the above algorithms and, we expect, many other methods of interest not
directly addressed here. The result is developed in the generality of measurable state spaces
(X,�X) to reversibly sample from a given target probability measure μ defined on �X .

To proceed we consider Markov kernels formulated as follows: select an additional mea-
surable space (Y,�Y ) and form the extended phase space X × Y . Fix any proposal map
S : X ×Y → X ×Y which is an involution operation, namely such that S2 = I , where we de-
note here and throughout S2 := S ◦S, and any reference Markov kernel V : X ×�Y → [0,1].
We obtain a proposal kernel Q(q, dq̃) from S and V by sampling v ∼ V(q, dw) and then
taking a proposed step as q̃ = �1 ◦ S(q,v), where �1 is the projection onto the “position
variable,” namely �1(q̃, ṽ) = q̃. Thus, in measure theoretic language, we have Q(q, dq̃) =
(�1 ◦S(q, ·))∗V(q, dq̃) where f ∗ν denotes the pushforward of a measure ν by a function f ;
see Section 2.1 below for details.

For such data μ, S and V , our result then determines a suitable acceptance probability as
a function of q and v given by

α̂(q,v) := 1 ∧
(

dS∗M

dM
(q,v)

)
where M(dq, dv) := V(q, dv)μ(dq)(1.10)

and where dS∗M/dM denotes the Radon–Nikodym derivative of the pushforward measure
S∗M with respect to M. Note that this acceptance ratio is well defined when S∗M is abso-
lutely continuous with respect to M but this condition can be relaxed, see Remark 2.4 below.
By adopting this measure theoretic language of pushforwards and Radon–Nikodym deriva-
tives, as reviewed for our purposes in Section 2.1, Theorem 2.1 affords a simple proof based
around the intuition of using α̂ to balance inflows and outflows between any two states q and
q̃ of the Markov chain.

We observe that Theorem 2.1 has a direct interpretation as an abstraction of the HMC
method, but one which provides the crucial insight that the role of the “Gibbs measure” as in
(1.7) and that of the “numerical integrator” as in (1.8) can be largely disconnected insofar as
achieving the detailed balance condition, (1.2), is concerned. In this analogy M, given as in
(1.10), specifies the Gibbs measure. Regarding the involution S, we notice that the solution
map Ŝ of a Hamiltonian system or any reasonable numerical resolution thereof is not typically
an involution. However, by taking S := R ◦ Ŝ, where R(q,v) = (q,−v) is the momentum flip
operation, one does indeed obtain an involution for a large class of “geometric” integration
schemes Ŝ. Thus, so long as S∗M is absolutely continuous with respect to M, the algorithmic
elements μ, V and S = R ◦ Ŝ are otherwise unrelated insofar as the scope of Theorem 2.1 is
concerned.

With Theorem 2.1 in hand, we proceed to demonstrate the reach and theoretical unity that
this result provides by detailing how it can be used to derive and to analyze a variety of
specific Metropolis–Hastings-type algorithms. We first observe that we can use Theorem 2.1
to recover the complete framework of the more traditional Metropolis–Hastings techniques
up to and including the abstract generality of Tierney’s formulation in [72]. Indeed, in Sec-
tion 3, we show that the formalisms in [72] and in Theorem 2.1 may be ultimately viewed
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as having an equivalent scope. On the other hand the “HMC-like” character of Theorem 2.1
described in the previous paragraph suggests an immediate connection to Hamiltonian-type
extended phase space methods. In Section 4, we use this observation as a crucial starting
point for deriving a variety of HMC-like sampling methods culminating in the derivation of
Algorithm 4.2, Algorithm 4.3, Algorithm 4.4 and Algorithm 4.5 provided below. The final
Section 5 outlines multiple ways that a selection of important sampling methods widely con-
sidered in the literature may be subsumed under Theorem 2.1. Here to obtain our selection of
V and S for a given target μ, we draw on various results in Section 4 and Section 3.

Regarding the equivalence of [72] and Theorem 2.1 we first consider in Section 3.2 pro-
posal kernels of the form

Q(q, dq̃) = F(q, ·)∗V(q, dq̃),(1.11)

for some F : X×Y → X such that F(q, ·) is invertible for each fixed q. We then demonstrate
that there exists a unique involution S whose projection onto the position space is F . With
this S in hand, we show that the main result in [72], namely the formulation (1.6), follows as
a special case of Theorem 2.1. See Proposition 3.3, Theorem 3.4 below for precise details.

Note that the scope of (1.11) trivially encompasses the results in [72] as seen, by selecting,
for any given proposal kernel Q, F(q,v) := v and V := Q. On the other hand, numerous
relevant examples including RWMC and MALA and even their Hilbert space counterparts,
[11, 22], can be recovered from nontrivial formulations of F and V . This leads to the interest-
ing observation that algorithms of interest can be recovered through multiple, nonequivalent
applications of Theorem 2.1.

Conversely, in the other direction, we observe in Section 3.3 that the results from [72] can
be suitably employed to provide a second, independent, proof of Theorem 2.1. Here, from the
given data of Theorem 2.1, namely the target μ, the involution S and kernel V , we proceed
by considering a suitable deterministic proposal kernel specified by S acting on the extended
phase space. The results in [72] are then applied for μ = M on this extended phase space.
In this way we obtain a kernel which, when appropriately integrated against V , yields the
desired kernel specified by Theorem 2.1. These details are given in Section 3.3 below.

In Section 4 we use Theorem 2.1 and the intuition it provides to develop some classes of
concrete, extended-phase space algorithms. We may view our methods as introducing addi-
tional “degrees of freedom” for the selection of parameters used for tuning HMC methods.
Crucially the approach includes functional parameters which allow greater latitude in select-
ing the numerical integration procedure used for approximating Hamiltonian dynamics. In
particular our formulation provides a flexible means of using reduced order modeling or data
driven approaches to avoid expensive gradient computations which arise. As already men-
tioned above, we begin to explore such applications for these algorithms in a forthcoming
companion work [34]. Note furthermore that our methods provide a unified view for an ex-
tensive existing literature around so called “surrogate trajectory methods” [8, 47, 50, 51, 56,
60, 61, 64, 65, 75, 76]. On the other hand, in Section 5, we show that a number of classi-
cal variants of HMC, MALA, RWMC as well as the Hilbert space methods ∞HMC, pCN,
∞MALA all fall as special cases of these algorithms introduced in Section 4, under an ap-
propriate choice of algorithmic parameters.

In Section 4.1 we begin by developing the finite-dimensional setting of a continuously
distributed target measure. To this end we provide a brief but self-contained tour of some ge-
ometric numerical methods for Hamiltonian systems highlighting how these methods connect
back to the setting of Theorem 2.1. In particular this presentation emphasizes the fundamental
role that volume preserving methods, palindromic splitting structures and reversibility play
in determining the involutive mapping S at the center of Theorem 2.1, while suggesting fur-
ther scope for deriving other Hamiltonian-type sampling methods in the finite-dimensional
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setting. Notably we address situations where the integrator is not assumed to have a gradient
structure in Algorithm 4.2 and generalize the use of some implicit integrators developed in
[33] culminating in Algorithm 4.4. Furthermore Proposition 4.9 and Theorem 4.12 suggest
possible variations on the usual setting of momentum flip reversibility which may be of some
use in future algorithmic developments.

In Section 4.2 we turn to address the infinite-dimensional Gaussian setting where our tar-
get measure has the form (1.4). Here we derive a quite general surrogate trajectory method
in Algorithm 4.5. Note that this algorithm includes ∞HMC, pCN, ∞MALA as well as ge-
ometric variations from [8] as important special cases. Our Hilbert space approach takes as
its starting point the method introduced in [10]. In this Gaussian base measure setting, the
implied Hamiltonian from [10] has the form H := H1 +H2 with

H1(q,v) := 1

2

∣∣C−1/2q
∣∣2 + 1

2

∣∣C−1/2v
∣∣2, H2(q,v) := �(q).(1.12)

The crucial insight in [10] is to use an appropriate preconditioning operator J along with a
particular Strang splitting defined around H1 and H2 to derive a numerical integrator of the
form Ŝ = (


(1)
δ/2 ◦


(2)
δ ◦


(1)
δ/2)

n for the algorithmic parameters δ > 0, the size of the numerical
time step, and n = T/δ where T > 0 is the total integration time. Here, for any t > 0,



(1)
t (q,v) =

(
q,v − tCD�(q)

)
,



(2)
t (q,v) =

(
cos(t)q + sin(t)v,− sin(t)q + cos(t)v

)
.

(1.13)

This delicate choice of splitting and preconditioning results, in the language of our framework
in Theorem 2.1, in an involution S = R ◦ Ŝ, where again R is the momentum flip operation,
such that S∗(μ ⊗ μ0) is absolutely continuous with respect to μ ⊗ μ0 or, in more heuristic
but concrete terms, in a “cancellation of infinities” as would appear in (1.9).

Our generalization of [10] to Algorithm 4.5 centers on the observation that we can replace
the term D� in (1.13) with essentially any reasonable function f : X → X and replace the
velocity proposal kernel V = μ0 suggested by (1.12) with any V such that V(q, dv) is abso-
lutely continuous with respect to μ0(dv) for any q. Indeed, in this more general setting, we
still obtain an involution S which maintains the absolute continuity of S∗M with respect to
M(dq, dv) ∝ e−�(q)μ0(dq)V(q, dv) required by Theorem 2.1. As already alluded to above,
the proof of invariance of the target μ in [10] follows an involved spectral approximation
approach analogous to [19]. Here in Theorem 4.18 we proceed similarly to [9] and provide
a different and more direct proof based on the Cameron–Martin theorem which reduces the
problem to computing dS∗(μ0 ⊗ μ0)/d(μ0 ⊗ μ0) and making use of a simple identity for
iterated pushforward maps, given as (2.8) below. Indeed, our involution S involves repeated

applications of the maps 

(1)
t , 


(2)
t ; the latter map 


(2)
t holds μ0 ⊗ μ0 invariant, while the

Radon–Nikodym derivative associated with the pushforward of μ0 ⊗μ0 by 

(1)
t can be com-

puted via the Cameron–Martin theorem.

2. General formulation of the accept–reject mechanism. This section is devoted to
the main result of the paper which we present as Theorem 2.1 in Section 2.2. Before stating
and proving this main result we briefly recall some measure theoretic terminologies and facts
in Section 2.1. For more details regarding this preliminary material, we refer the reader to,
for example, [1, 14, 28].

2.1. Preliminaries on measure theory. Let (X,�X) and (Y,�Y) be measurable spaces.
Given a measurable function φ : X → Y and a measure ν on (X,�X), the pushforward of ν

by φ, denoted as φ∗ν, is defined as the measure on Y given by

φ∗ν(A) := ν
(
φ−1(A)

)
for any A ∈ �Y.
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Clearly, for any measurable functions φ1, φ2 mapping between appropriate spaces, we have
that

(φ1 ◦ φ2)
∗ν = φ∗

1
(
φ∗

2ν
)
.(2.1)

We recall moreover that, given a (φ∗ν)-integrable function ψ : Y→R, that is, ψ ∈ L1(φ∗ν),
it follows that the composition ψ ◦ φ : X → R is in L1(ν) and the following change of vari-
ables formula holds:

∫

Y
ψ(w)φ∗ν(dw) =

∫

X
ψ

(
φ(w)

)
ν(dw).(2.2)

Let us observe that if w̄ is a random variable sampled from a probability measure ν then
φ(w̄) is distributed as φ∗ν. Furthermore it is worth noticing that, in the special case when
X = R

N and ν is any Borel measure on R
N which is absolutely continuous with respect to

Lebesgue measure, namely when

ν(dw) = p(w) dw

for some density function p :RN →R, then for any diffeomorphism φ :RN →R
N , we have

φ∗ν(dw) = p
(
φ−1(w)

)∣∣det∇φ−1(w)
∣∣dw.(2.3)

Next recall that, given measures ν and ρ on a measurable space (X,�X), we say that ν is
absolutely continuous with respect to ρ, and write ν 
 ρ, if ν(A) = 0 whenever ρ(A) = 0,
for A ∈ �X. If ν and ρ are two sigma-finite measures on (X,�X) such that ν 
 ρ then there
exists a ρ-almost unique function dν/dρ ∈ L1(ρ) such that

ν(A) =
∫

A

dν

dρ
(w)ρ(dw), A ∈ �X,(2.4)

called the Radon–Nikodym derivative of ν with respect to ρ. In particular, if ν1, ν2 and ρ are
sigma-finite measures on (X,�X) with ν1 
 ρ and ν2 
 ρ, namely

ν1(dw) = φ1(w)ρ(dw), ν2(dw) = φ2(w)ρ(dw),

where φ1 = dν1/dρ and φ2 = dν2/dρ, and if φ2 > 0 ρ-a.e. then ν1 
 ν2 and

dν1

dν2
(w) = φ1(w)

φ2(w)
for ρ-a.e. w ∈X.(2.5)

It also immediately follows from (2.4) that, given sigma-finite measures ν, ρ and γ on
(X,�X) such that ν 
 ρ and ρ 
 γ , then ν 
 γ and

dν

dγ
(w) = dν

dρ
(w)

dρ

dγ
(w) for γ -a.e. w ∈ X.(2.6)

Moreover, given a measurable and invertible mapping φ : X → X with measurable inverse2

φ−1 : X → X, and sigma-finite measures ν and ρ on (X,�X) with ν 
 ρ, it follows that
φ∗ν 
 φ∗ρ and

dφ∗ν

dφ∗ρ
(w) = dν

dρ

(
φ−1(w)

)
for (φ∗ρ)-a.e w ∈ X.(2.7)

2Here it is worth pointing out that when X is a Polish space then, for any measurable and invertible mapping

φ : X→X, its inverse φ−1 is always a measurable mapping, see, for example, [1], Theorem 12.29.
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This follows by noticing that, for any (φ∗ν)-integrable function ψ : X → R, we have from
(2.2) and (2.4) that

∫

X
ψ(w)φ∗ν(dw) =

∫

X
ψ

(
φ(w)

)
ν(dw) =

∫

X
ψ

(
φ(w)

)dν

dρ
(w)ρ(dw)

=
∫

X
ψ(w)

dν

dρ

(
φ−1(w)

)
φ∗ρ(dw).

Finally we observe that, given a sigma-finite measure ν on (X,�X), and a sequence φi :
X → X, i = 1, . . . , n, of measurable and invertible functions with measurable inverses φ−1

i :
X →X and such that φ∗

i ν 
 ν for each i = 1, . . . , n, then (φn ◦ · · · ◦ φ1)
∗ν 
 ν and

d(φn ◦ · · · ◦ φ1)
∗ν

dν
(w) = dφ∗

nν

dν
(w)

n−1∏

i=1

dφ∗
i ν

dν

(
(φn ◦ · · · ◦ φi+1)

−1(w)
)

for ν-a.e. w ∈ X.

(2.8)

To derive this identity, notice that for every ((φn ◦ · · · ◦φ1)
∗ν)-integrable function ψ : X→R

we have∫
ψ(w)(φn ◦ · · · ◦ φ2 ◦ φ1)

∗ν(dw)

=
∫

ψ
(
φn ◦ · · · ◦ φ2(w)

)
φ∗

1ν(dw) =
∫

ψ
(
φn ◦ · · · ◦ φ2(w)

)dφ∗
1ν

dν
(w)ν(dw)

=
∫

ψ
(
φn ◦ · · · ◦ φ3(w)

)dφ∗
1ν

dν

(
φ−1

2 (w)
)
φ∗

2ν(dw)

=
∫

ψ
(
φn ◦ · · · ◦ φ3(w)

)dφ∗
1ν

dν

(
φ−1

2 (w)
)dφ∗

2ν

dν
(w)ν(dw)

=
∫

ψ
(
φn ◦ · · · ◦ φ4(w)

)dφ∗
1 (ν)

dν

(
φ−1

2 ◦ φ−1
3 (w)

)dφ∗
2ν

dν

(
φ−1

3 (w)
)
φ∗

3ν(dw)

= · · · =
∫

ψ(w)

(
n−1∏

i=1

dφ∗
i ν

dν

(
(φn ◦ · · · ◦ φi+1)

−1(w)
)
)

dφ∗
nν

dν
(w)ν(dw).

2.2. The main result. As alluded to above in the Introduction, our main theorem shows
how to define an acceptance probability that yields a reversible sampling algorithm when the
proposal kernel is given in terms of an involution S defined on an extended parameter space,
namely X × Y for measurable spaces (X,�X) and (Y,�Y ). More specifically, denoting by
�1 : X × Y → X the projection mapping onto the first component, that is,

�1(q,v) = q for all (q,v) ∈ X × Y,(2.9)

we consider the case of proposal kernels given as Q(q, dq̃) = (�1 ◦ S(q, ·))∗V(q, ·)(dq̃), for
some Markov kernel V : X × �Y → [0,1].

To avoid dealing with further technical measure theoretical details, in the statement below
and throughout the manuscript we apply the general results from Section 2.1 concerning
sigma-finite measures in the particular context of probability measures.

THEOREM 2.1. Let (X,�X) and (Y,�Y ) be measurable spaces. Let μ be a probability

measure on X, and let V : X × �Y → [0,1] be a Markov kernel. Let M be the probability

measure on X × Y defined as

M(dq, dv) = V(q, dv)μ(dq).(2.10)
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Suppose there exists a measurable mapping S : X × Y → X × Y satisfying the following

properties:

(P1) S is an involution, that is, S2 = I ;
(P2) S∗M is absolutely continuous with respect to M.

Let α̂ : X × Y →R be the function defined by

α̂(q,v) := 1 ∧ dS∗M

dM
(q,v), (q,v) ∈ X × Y,(2.11)

and let P : X × �X → [0,1] be the Markov transition kernel defined as

(2.12) P(q, dq̃) =
∫

Y
α̂(q,v)δ�1◦S(q,v)(dq̃)V(q, dv) + δq(dq̃)

∫

Y

(
1 − α̂(q,v)

)
V(q, dv),

for q ∈ X. Then, P satisfies detailed balance with respect to μ, that is,

P(q, dq̃)μ(dq) = P(q̃, dq)μ(dq̃),(2.13)

so that, in particular, μ is P invariant.

Before presenting the proof, we try to provide some intuition. Under the assumptions, if
S maps (q,v) to (q̃, ṽ), then S will map (q̃, ṽ) back to (q,v). That is, if a proposal q̃ can
be generated from the Markov kernel starting from q, then a proposal q can similarly be
generated starting from q̃. By appropriately selecting α to balance these two flows—from
(q,v) to S(q,v) and vice versa—we can achieve detailed balance and therefore invariance.
We now turn to the details.

PROOF. It suffices to show that for every bounded measurable function ϕ : X × X → R

we have
∫

X

∫

X
ϕ(q, q̃)P (q, dq̃)μ(dq) =

∫

X

∫

X
ϕ(q, q̃)P (q̃, dq)μ(dq̃).(2.14)

From the definitions of P and M in (2.12), (2.10) and Fubini it follows that
∫

X

∫

X
ϕ(q, q̃)P (q, dq̃)μ(dq)

=
∫

X

∫

Y
ϕ

(
q,�1 ◦ S(q,v)

)
α̂(q,v)M(dq, dv) +

∫

X

∫

Y
ϕ(q,q)

(
1 − α̂(q,v)

)
M(dq, dv)

=: (I ) + (II).

Analogously, for the right-hand side of (2.14) we have
∫

X

∫

X
ϕ(q, q̃)P (q̃, dq)μ(dq̃)

=
∫

X

∫

Y
ϕ

(
�1 ◦ S(q̃,v), q̃

)
α̂(q̃,v)M(dq̃, dv) +

∫

X

∫

Y
ϕ(q̃, q̃)

(
1 − α̂(q̃,v)

)
M(dq̃, dv)

=: (III) + (IV).

Clearly, (II) = (IV). We now show that (I ) = (III).
Invoking assumption (P1), we obtain

(I ) =
∫

X

∫

Y
ϕ

(
q,�1 ◦ S(q,v)

)
α̂(q,v)M(dq, dv)

=
∫

X

∫

Y
ϕ

(
�1 ◦ S2(q,v),�1 ◦ S(q,v)

)
α̂

(
S2(q,v)

)
M(dq, dv).
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Algorithm 2.1

1: Choose q0 ∈ X

2: for k ≥ 0 do

3: Sample vk ∼ V(qk, ·)
4: Propose qk+1 = �1 ◦ S(qk,vk)

5: Set qk+1 = qk+1 with probability α̂(qk,vk) given by (2.11), otherwise qk+1 = qk

Thus, by Fubini, the change of variables formula, (2.2), and then invoking assumption (P2),
we write

(I ) =
∫

X×Y
ϕ

(
�1 ◦ S(q,v),q

)
α̂

(
S(q,v)

)
S∗M(dq, dv)

=
∫

X×Y
ϕ

(
�1 ◦ S(q,v),q

)
α̂

(
S(q,v)

) dS∗M

dM
(q,v)M(dq, dv).

(2.15)

Hence, in order to conclude that (I ) = (III), it suffices to show that

α̂
(
S(q,v)

) dS∗M

dM
(q,v) = α̂(q,v) for M-a.e. (q,v) ∈ X × Y.(2.16)

Since dS∗M/dM(q,v) ≥ 0 M-a.e., from the definition of α̂ in (2.11) it follows that

α̂
(
S(q,v)

) dS∗M

dM
(q,v) = dS∗M

dM
(q,v) ∧

(
dS∗M

dM
(q,v)

dS∗M

dM

(
S(q,v)

))
(2.17)

for M-a.e. (q,v) ∈ X × Y . Now from (2.8) and assumption (P1) we have that

(2.18)
dS∗M

dM
(q,v)

dS∗M

dM

(
S(q,v)

)
= d(S2)∗M

dM
(q,v) = 1 for M-a.e. (q,v) ∈ X × Y.

Plugging (2.18) into (2.17), we obtain (2.16). This concludes the proof. �

The MCMC sampling scheme resulting from Theorem 2.1 is summarized in Algo-
rithm 2.1.

We conclude this section with a number of remarks clarifying the scope of Theorem 2.1.

REMARK 2.2. If in Theorem 2.1 we assumed in addition that X and Y are Radon spaces
(i.e., separable metric spaces on which every probability measure is tight), then we could take
M to be any probability measure on X ×Y with first marginal μ, that is, �∗

1M = μ. Indeed,
in this case it follows from the disintegration theorem that there exists a Markov kernel V :
X × �Y → [0,1] such that M is written as in (2.10); see, for example, [2], Theorem 5.3.1.

REMARK 2.3. Assumptions (P1) and (P2) in Theorem 2.1 imply that the measures
S∗M and M are in fact mutually absolutely continuous. Indeed, if E ⊂ X × Y is such that
S∗M(E) = 0, then by definition of pushforwards we have M(S−1(E)) = 0. Thus assump-
tion (P2) implies that S∗M(S−1(E)) = 0, and with (P1) we obtain

0 = S∗M
(
S−1(E)

)
= M

(
S−1(

S−1(E)
))

= M
(
S2(E)

)
= M(E).

Hence, M(E) = 0, so that M 
 S∗M.

REMARK 2.4 (Generalizations of Theorem 2.1). We notice that the statement of The-
orem 2.1 in fact holds under a more general form. Namely, similarly as in [72], we could
disregard assumption (P2) and define the acceptance probability α̂ in (2.11) as α̂(q,v) =
1 ∧ dS∗

M

dM
(q,v) for all (q,v) in a measurable subset O ⊂ X × Y where S∗MO 
 MO, and
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0 otherwise. Here MO denotes the restriction of the measure M to the set O. However, it
is worth pointing out that in practice this set O could be empty, in which case α̂ ≡ 0 and
the corresponding MCMC algorithm would always reject the proposals, a clearly undesirable
behavior.

Moreover, instead of defining α̂ explicitly as in (2.11), we could have taken α̂ to be any
measurable function for which (2.16) holds (particularly on the set O, under the setting of the
previous paragraph). Indeed, (2.11) gives just one such example. It is worth pointing however
that, as noticed in [72], Section 3, the standard choice given in (2.11) yields the maximum
acceptance probability among all possible choices of α̂ satisfying (2.16), since

α̂
(
S(q,v)

) dS∗M

dM
(q,v) = α̂(q,v) ≤ 1 ∧ dS∗M

dM
(q,v), (q,v) ∈ X × Y.

Finally, assumption (P1) can be replaced by the following more general condition:

(P1′) (S2)∗M = M, �1 ◦ S2 = �1, and S is invertible with measurable inverse S−1 :
X × Y → X × Y .

Indeed, we arrive at the same identity (2.15) by noticing that

(I ) =
∫

X

∫

Y
ϕ

(
q,�1 ◦ S(q,v)

)
α̂(q,v)M(dq, dv)

=
∫

X

∫

Y
ϕ

(
q,�1 ◦ S(q,v)

)
α̂(q,v)

(
S2)∗

M(dq, dv)

=
∫

X

∫

Y
ϕ

(
�1 ◦ S(q,v),�1 ◦ S2(q,v)

)
α̂

(
S(q,v)

)
S∗M(dq, dv)

=
∫

X

∫

Y
ϕ

(
�1 ◦ S(q,v),q

)
α̂

(
S(q,v)

)
S∗M(dq, dv).

Moreover the conclusion in (2.18) still holds since with the assumption (S2)∗M = M it
follows that S∗M = (S−1)∗(S2)∗M = (S−1)∗M. Therefore, invoking (2.8), we obtain

dS∗M

dM
(q,v)

dS∗M

dM

(
S(q,v)

)
= d(S−1)∗M

dM
(q,v)

d(S−1)∗M

dM

(
S(q,v)

)

= d((S−1)2)∗M

dM
(q,v) = 1

for M-a.e. (q,v) ∈ X × Y , where the last identity holds since
((

S−1)2)∗
M =

((
S−1)2)∗(

S2)∗
M = M.

Note that, all of the applications of Theorem 2.1 developed in Section 4, Section 5 below
fall within the particular involutive structure of Theorem 2.1, (P1). It would thus be interesting
to identify an example of MCMC algorithm that would require the more general framework
from (P1′).

REMARK 2.5. For many MCMC algorithms, the associated proposal kernel is defined
from a mapping S as in Theorem 2.1 that is in turn given in terms of a numerical integrator of
a suitably chosen dynamics. Denoting such an integrator by a measurable mapping Ŝ : X ×
Y → X ×Y , one commonly seeks a corresponding measurable mapping R : X ×Y → X ×Y

such that

R ◦ Ŝ = Ŝ−1 ◦ R.(2.19)

In the context of vector spaces X, Y , the condition (2.19) is referred to in the theory of geo-
metric integrators as the reversibility of Ŝ with respect to R, and R is often taken as a linear
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invertible mapping (see, e.g., [37], Definition V.1.2). Frequently, one can find R commen-
surate with (2.19) which is also an involution, that is, R2 = I . For example, in the case of
the HMC algorithm, where Ŝ represents a numerical integrator of a suitable Hamiltonian
dynamics, R is commonly taken as the “momentum-flip” involution R(q,v) = (q,−v), see
Section 4 and Section 5.1.4, Section 5.2.3 below.

We thus define S := R◦ Ŝ, and conclude from (2.19) and R2 = I that S2 = I , that is, S is an
involution, so that assumption (P1) of Theorem 2.1 is satisfied. In fact, if instead of R2 = I

we assume more generally that (R2)∗M = M, �1 ◦ R2 = �1, and R is invertible with
measurable inverse, then clearly (2.19) implies that S2 = (R ◦ Ŝ)2 = R2, so that S satisfies
the more general condition (P1′) in Remark 2.4. Here again it would be interesting to identify
an example of MCMC algorithm for which this more general setting for R is required.

REMARK 2.6 (Connection with the Metropolis–Hastings–Green algorithm). As already
mentioned in the Introduction, Algorithm 2.1 may be seen as a generalization to abstract state
spaces of the so called Metropolis–Hastings–Green algorithm [31, 32, 36]. We can make
this connection explicit as follows. Let X = R

N and fix any continuously distributed target
probability measure μ(dq) = p(q) dq. We consider any Markovian proposal kernel V :RN ×
B(RM) → [0,1] of the form V(q, dv) = q(q,v) dv where q : RN×M → [0,∞) is such that∫
RM q(q,v) dv = 1 for any q ∈ R

N . Finally select any S : RN+M → R
N+M which is C1 and

is an involution, namely we assume that S ◦ S(z) = z for every z ∈ R
N+M . Then, referring

back to (2.11) and recalling (2.3), (2.5), we obtain a Markov kernel P of the form (2.12) with
the acceptance probability given by

α̂(q,v) = 1 ∧ ρ(S(q,v))|det∇S(q,v)|
ρ(q,v)

where ρ(q,v) := p(q)q(q,v).(2.20)

Thus with these specifications for μ, V and S we see that the algorithm derived in [36] (see
also [31], Section 1.2) falls out as a special case of Algorithm 2.1.

[36] also considered the possibility of combining proposals from a collection of differ-
ent sampling mechanisms where the proposal mechanism employed is selected at random
according to a state dependent probability. This “multi-kernel” approach developed in [36]
can be generalized to an abstract context similar to Theorem 2.1 in a fashion which recovers
the results in [36] as a special case. To see this we proceed as follows. Fix a measurable
space (X,�X) along with a collection of auxiliary measurable spaces (Yj ,�Yj

) defined for
j = 1, . . . ,L. Our target measure μ is any probability measure on X. On each extended
phase space X × Yj for j = 1, . . . ,L we assume that we have defined a Markov proposal
kernel Vj (q, dvj ) and a measurable involution Sj : X ×Yj → X ×Yj such that S∗

jMj is ab-
solutely continuous with respect to Mj where Mj (dq, dv) = Vj (q, dv)μ(dq). Finally we
suppose we have defined, for each j = 1, . . . ,L, a measurable function κj : X → [0,1] in
such a way that

∑L
j=1 κj (q) = 1 for each q ∈ X. With these ingredients in hand we define

Pj : X × �Y → [0,1], for j = 1, . . .L to be the Markov transition kernels given as

Pj (q, dq̃)

=
∫

Y
α̂j (q,vj )δ�1◦Sj (q,vj )(dq̃)Vj (q, dvj ) + δq(dq̃)

∫

Y

(
1 − α̂j (q,vj )

)
Vj (q, dvj ),

with

α̂j (q,v) := 1 ∧
(

κj (�1 ◦ Sj (q,vj ))

κj (q)

dS∗
jMj

dMj

(q,vj )

)
, (q,vj ) ∈ X × Yj .

We now define a compound kernel P : X ×�X → [0,1] as P(q, dq̃) = ∑L
j=1 κj (q)Pj (q, q̃).

Following the proof of Theorem 2.1 mutatis mutandis we obtain that P is reversible with
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respect to μ. Moreover, in the special case when μ(dq) = p(q) dq, Yj = R
Mj , Vj (q, dvj ) =

qj (q,vj ) dvj , we recover the formulation in [36] as described in [31], Section 1.3.
Note that the connection between the Metropolis–Hasting–Green algorithm and Hamilto-

nian Monte Carlo sampling, where the Hamiltonian dynamic or more precisely a well chosen
numerical discretization of the dynamics provides an associated involution, seems to be more
recent. See [49, 62]. Indeed, below in Section 4.1 we show how the usage of Hamiltonian
dynamics can allow one to derive a broad class of involutions S and thus to recover numer-
ous formulations of Hamiltonian Monte Carlo (essentially) as special cases of the general
observation leading to (2.20).

We note that Theorem 2.1 has connections to the results presented in [3], Section 3.1,
which we discuss further in Remark 3.8.

3. Connection to the Tierney framework. In this section, we connect our main result,
Theorem 2.1, to the formulation of reversible Metropolis–Hastings algorithms on general
state spaces X laid out previously in [72]. We show that the two frameworks connect or
overlap in several different and interesting ways. On the one hand, in Section 3.2 with Theo-
rem 3.4, we prove that Theorem 2.1 subsumes the main result in [72]. In fact we demonstrate
that this connection can often be made in multiple, nonequivalent ways; namely, in cases of
interest, a variety of different choices for S and V in (2.12) can ultimately yield the same de-
sired Markov kernel P̄ specified in Tierney’s formulation. In particular note that Theorem 3.4
is employed in Section 5 below to provide further insights for the derivation of various clas-
sical MCMC algorithms. On the other hand, in Section 3.3, we establish that the main results
in [72] can be used to develop a proof of Theorem 2.1 distinct from the one presented above
in Section 2.

3.1. Overview of Tierney’s formulation. Before turning to the main results in this section
let us begin by recalling some of the framework and notation from [72]. As above in Section 2
we let (X ,�X ) be any measurable space. Starting with a target probability measure μ on X

and a proposal Markov kernel Q : X ×�X → [0,1], [72] considers the Metropolis–Hastings-
type Markov kernel defined as

P̄ (q, dq̃) = α(q, q̃)Q(q, dq̃) + δq(dq̃)

∫

X

(
1 − α(q, r)

)
Q(q, dr), q ∈ X ,(3.1)

with the acceptance ratio α given by

α(q, q̃) := 1 ∧ dη⊥

dη
(q, q̃), q, q̃ ∈ X .(3.2)

Here the measures η, η⊥ are given by

η(dq, dq̃) = μ(dq)Q(q, dq̃), η⊥(dq, dq̃) = η(dq̃, dq) = μ(dq̃)Q(q̃, dq)(3.3)

and are assumed to be mutually absolutely continuous, so that in particular α in (3.2) is
well defined.3 Tierney then shows, [72], Theorem 2, that (3.1), (3.2) yields a Markov ker-
nel satisfying detailed balance with respect to μ, namely, cf. (2.13), P̄ (q, dq̃)μ(dq) =
P̄ (q̃, dq)μ(dq̃).

As an important preliminary observation we notice that the formulation in [72], that is,
(3.1), (3.2), can be recovered from Theorem 2.1 in a straightforward fashion as follows:

3In fact [72] allows for η, η⊥ to be mutually absolutely continuous only on a subset O ⊂ X × X, in which case
α is defined to be zero on Oc . A similar generalization holds for Theorem 2.1; see Remark 2.4. But for simplicity
of presentation we restrict ourselves to the case of mutual absolute continuity here.
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REMARK 3.1. Given the inputs Q, μ we take X := X , Y := X and set

V(q, dv) := Q(q, dv), S(q,v) := (v,q).(3.4)

Clearly S is an involution and it is easy to see that, with these choices (cf. (2.10)), M = η

and S∗M = η⊥ so that dS∗M/dM = dη⊥/dη. Therefore (2.12) reduces to (3.1) under this
V and S.

3.2. Reduction to the Tierney formulation. The observation in Remark 3.1, recovering
(3.1) from (2.12), can be extended more broadly. Here a starting point is to notice that we
are in fact writing the proposal kernel in (3.1) as Q(q, dq̃) = F(q, ·)∗V(q, ·)(dq̃) but in a
trivial fashion where Q = V and F(q,v) = v. The insight is that a desired Q, along with the
involution S required for (2.12) which recovers the kernel (3.1), can often be identified from
other, nontrivial, choices for F and V .

We formulate this generalization as follows. Let (X,�X) and (Y,�Y ) be measurable
spaces. We consider proposals q̃ ∼ Q(q, dq̃) made from some starting point q ∈ X which
are generated in the following fashion:

1. Draw v ∼ V(q, ·), for some Markov kernel V : X × �Y → [0,1].
2. Compute q̃ = F(q,v) from a (measurable) deterministic map F : X × Y → X.

In other words we are considering the proposal kernel Q in the formulation

Q(q, dq̃) =
∫

Y
δF(q,v)(dq̃)V(q, dv) = F(q, ·)∗V(q, ·)(dq̃).(3.5)

We assume throughout what follows that, for a given sample q ∈ X and proposal q̃ ∈ X, F

can be inverted to obtain the v ∈ Y such that F(q,v) = q̃, namely,

for each q ∈ X, the map F(q, ·) : Y → X is one-to-one.(3.6)

REMARK 3.2. One may formulate Q as in (3.5) maintaining (3.6) in a nontrivial fashion
for MCMC methods with additive noise such as the RWMC, pCN and MALA schemes, all
of which fall into the framework (3.1) outlined in [72]. In other words, for each of these
examples, we may determine F and V in a form distinct from (3.4); see, for example, (5.1),
(5.5), (5.10) and (5.12) in Section 5 below. By contrast, (3.6) does not encompass HMC, for
which there may be more than one v leading to the same proposal.

We now show in Theorem 3.4 that in the formulation (3.5) under (3.6) we may obtain a
suitable involution S which yields an equivalence between the Markov transition kernels in
(2.12), Theorem 2.1, and (3.1), from [72]. As a preliminary step we show how to construct
this involution S in (q,v)-space corresponding to any F satisfying (3.6).

PROPOSITION 3.3. Let X, Y be any sets and let F : X×Y → X be a mapping satisfying

(3.6), that is, such that for each fixed q ∈ X, F(q, ·) : Y → X is one-to-one. Then, there exists

a unique mapping S : X × Y → X × Y such that �1 ◦ S = F and S2 = I , given by

S(q,v) =
(
F(q,v),F

(
F(q,v), ·

)−1
(q)

)
for all (q,v) ∈ X × Y.(3.7)

PROOF. First, let us verify that S defined in (3.7) satisfies the required properties. Clearly,
�1 ◦ S = F , so it remains to show that S2 = I . Define the maps B1 : X × Y → X × X and
B2 : X × X → X × X by

(3.8) B1(q,v) =
(
q,F (q,v)

)
, B2(q, q̃) = (q̃,q)
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for all q ∈ X, q̃ ∈ X and v ∈ Y . Note that B2
2 = I trivially and by assumption (3.6) we have

B−1
1 (q, q̃) =

(
q,F (q, ·)−1(q̃)

)
for all (q, q̃) ∈ X × X.

Then it is not difficult to check that S as in (3.7) can be written as

(3.9) S(q,v) = B−1
1 ◦ B2 ◦ B1(q,v) for all (q,v) ∈ X × Y.

Then clearly S2 = I since B2
2 = I .

Now suppose that S̄ : X × Y → X × Y is any mapping satisfying the required properties,
that is, �1 ◦ S̄ = F and S̄2 = I . Let G : X × Y → Y such that

S̄(q,v) =
(
F(q,v),G(q,v)

)
for all (q,v) ∈ X × Y.

Thus,

S̄2(q,v) = S̄
(
S̄(q,v)

)
=

(
F

(
F(q,v),G(q,v)

)
,G

(
F(q,v),G(q,v)

))
.

Since S̄2 = I , it follows in particular that

F
(
F(q,v),G(q,v)

)
= q,

which implies

G(q,v) = F
(
F(q,v), ·

)−1
(q).

Therefore, S̄ = S. This concludes the proof. �

With Proposition 3.3 in hand we now turn to our equivalence result:

THEOREM 3.4. Let X and Y be measurable spaces. Take μ to be a probability measure

on X and consider an associated proposal kernel Q satisfying (3.5), (3.6), that is, Q(q, dq̃) =
(F (q, ·))∗V(q, ·)(dq̃), where V : X × �Y → [0,1] is a Markov kernel and F : X × Y → X

is a measurable mapping such that F(q, ·) : Y → X is one-to-one for each fixed q ∈ X and,
additionally, its inverse F(q, ·)−1 is measurable.4 We define the probability measures η, η⊥

on X×X as in (3.3) and let S : X×Y → X×Y be the unique mapping satisfying �1 ◦S = F

and S2 = I , given by (3.7) in Proposition 3.3. Then, denoting by M the probability measure

on X × Y defined as in (2.10), we have:

(i) the measure η⊥ is absolutely continuous with respect to η if and only if S∗M is

absolutely continuous with respect to M.
(ii) Moreover, under either of the equivalent circumstances in (i), we have

dη⊥

dη

(
q,F (q,v)

)
= dS∗M

dM
(q,v)(3.10)

for M-a.e. (q,v) ∈ X × Y or, equivalently,

dη⊥

dη
(q, q̃) = dS∗M

dM

(
q,F (q, ·)−1(q̃)

)
(3.11)

for η-a.e. (q, q̃) ∈ X × X.

4As remarked in Section 2.1, here we notice again that if X and Y are Polish spaces, that is, separable and
completely metrizable, then the fact that, for each fixed q ∈ X, F(q, ·) is a measurable and one-to-one mapping
between Polish spaces automatically implies that its inverse is measurable; see, for example, [1], Theorem 12.29.
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(iii) Furthermore, under either of these equivalent absolute continuity conditions, the

Markov kernels given by (2.12) and (3.1) coincide, where α and α̂ are as defined in (3.2)
and (2.11), respectively. These acceptance functions α and α̂ maintain the relationships

α(q, q̃) = α̂
(
q,F (q, ·)−1(q̃)

)
, α̂(q,v) = α

(
q,F (q,v)

)
(3.12)

for q ∈ X, q̃ ∈ X and v ∈ Y .

REMARK 3.5. Reiterating the discussion at the beginning of this subsection, notice that,
modulo the requirement that X = Y , we see that Theorem 3.4 reduces to Remark 3.1 by
taking F(q,v) = v and V = Q.

PROOF. Let B1 : X ×Y → X ×X and B2 : X ×X → X ×X be defined as in (3.8). Then
it is not hard to see from (3.3) that

(3.13) η⊥(dq, dq̃) = B∗
2 η(dq, dq̃)

and similarly from (3.5) that

(3.14) η(dq, dq̃) = B∗
1M(dq, dq̃).

Then combining (3.9), (3.13) and (3.14) yields

(3.15) η⊥(dq, dq̃) = (B2 ◦ B1)
∗M(dq, dq̃) = (B1 ◦ S)∗M(dq, dq̃).

Let us first show that η⊥ 
 η implies S∗M 
 M. Indeed, let A be a measurable subset
of X × Y such that M(A) = 0. By the assumptions on F it follows that B1 is a one-to-one
measurable mapping with measurable inverse. Then B1(A) is also a Borel set in X×X. From
(3.14), we thus obtain

0 = M(A) = M
(
B−1

1 ◦ B1(A)
)
= B∗

1M
(
B1(A)

)
= η

(
B1(A)

)
.

Since η⊥ 
 η, this implies that η⊥(B1(A)) = 0. With (3.15), we deduce

0 = η⊥(
B1(A)

)
= (B1 ◦ S)∗M

(
B1(A)

)
= S∗M

(
B−1

1 ◦ B1(A)
)
= S∗M(A).

This shows that S∗M 
 M. The reciprocal claim, that S∗M 
 M implies η⊥ 
 η, follows
similarly by invoking (3.14) and (3.15). This concludes the proof of item (i).

Now assuming any of the equivalent circumstances in (i), notice that, for any bounded and
measurable function ϕ : X × X →R, application of (3.15) and (3.14) yields

∫

X×Y
ϕ(q,v)S∗M(dq, dv) =

∫

X×X
ϕ

(
B−1

1 (q, q̃)
)
(B1 ◦ S)∗M(dq, dq̃)

=
∫

X×X
ϕ

(
B−1

1 (q, q̃)
)
η⊥(dq, dq̃)

=
∫

X×X
ϕ

(
B−1

1 (q, q̃)
)dη⊥

dη
(q, q̃)η(dq, dq̃)

=
∫

X×X
ϕ

(
B−1

1 (q, q̃)
)dη⊥

dη
(q, q̃)B∗

1M(dq, dq̃)

=
∫

X×Y
ϕ(q,v)

dη⊥

dη

(
B1(q,v)

)
M(dq, dv),

so that

dS∗M

dM
(q,v) = dη⊥

dη

(
B1(q,v)

)
= dη⊥

dη

(
q,F (q,v)

)
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for M-a.e. (q,v) ∈ X × Y . Clearly, this implies (3.11). Indeed, if E ⊂ X × X is the set of
points (q, q̃) ∈ X × X where (3.11) does not hold, then it is not difficult to see that (3.10)
does not hold for every (q,v) ∈ B−1

1 (E). But since (3.10) holds M-a.e., then B∗
1M(E) =

M(B−1
1 (E)) = 0. Hence, from (3.14), η(E) = 0, so that (3.11) holds for η-a.e. (q, q̃) ∈

X × X. Similarly, (3.11) implies (3.10), so that these are indeed equivalent.
Finally, concerning the coincidence of the kernels P and P̄ in (iii), beginning from (3.1)

and applying (3.5) followed by (3.10), we have

(3.16)
P̄ (q, dq̃)

= α(q, q̃)Q(q, dq̃) + δq(dq̃)

∫

X

(
1 − α(q, r)

)
Q(q, dr)

= α(q, q̃)F (q, ·)∗V(q, ·)(dq̃) + δq(dq̃)

∫

X

(
1 − α(q, r)

)
F(q, ·)∗V(q, ·)(dr)

=
∫

X
δr(dq̃)α(q, r)F (q, ·)∗V(q, ·)(dr) + δq(dq̃)

∫

X

(
1 − α(q, r)

)
F(q, ·)∗V(q, ·)(dr)

=
∫

X
δF(q,v)(dq̃)α

(
q,F (q,v)

)
V(q, dv) + δq(dq̃)

∫

X

(
1 − α

(
q,F (q,v)

))
V(q, dv)

=
∫

X
δ�1◦S(q,v)(dq̃)α̂(q,v)V(q, dv) + δq(dq̃)

∫

X

(
1 − α̂(q,v)

)
V(q, dv),

which is (2.12). The proof is now complete. �

3.3. An alternative proof of Theorem 2.1. Turning to our second task in this section we
now show how the formulation in [72] can be employed to develop a second independent
proof of Theorem 2.1. Here we proceed by defining an appropriate proposal kernel Q on
a product space X × Y , with (X,�X) and (Y,�Y ) being any measurable spaces, and then
taking an appropriate marginal of the corresponding transition kernel P̄ as in (3.1).

We start with a more general result which is actually independent of this particular product
structure.

THEOREM 3.6. Let (X ,�X ) be a measurable space and let M be any probability mea-

sure on X . Suppose there exists a measurable mapping S : X → X satisfying the following

properties:

(P1) S is an involution, that is, S2 = I ;
(P2) S∗M is absolutely continuous with respect to M.

Consider the Markov kernel Q on X defined as

Q(u, dũ) = δS(u)(dũ), u ∈ X ,(3.17)

and let η, η⊥ be the measures on X ×X given as

η(du, dũ) = Q(u, dũ)M(du), η⊥(du, dũ) = η(dũ, du).(3.18)

Then η and η⊥ are mutually absolutely continuous, with

dη⊥

dη
(u, ũ) = dS∗M

dM
(u) for η-a.e. (u, ũ) ∈ X ×X .(3.19)

Consequently, the Markov kernel P̄ on X defined as in (3.1) for Q, α, η and η⊥ as in (3.17),
(3.2) and (3.18), respectively, written here as

P̄ (u, dũ) = α(u, ũ)δS(u)(dũ) + δu(dũ)
[
1 − α

(
u, S(u)

)]
,(3.20)

satisfies detailed balance with respect to M.
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PROOF. Let ϕ : X × X → R be any bounded and measurable function. Recalling the
definition of η and η⊥ from (3.18), we have

∫

X×X

ϕ(u, ũ)η⊥(du, dũ) =
∫

X×X

ϕ(u, ũ)η(dũ, du) =
∫

X×X

ϕ(u, ũ)δS(ũ)(du)M(dũ)

=
∫

X

ϕ
(
S(ũ), ũ

)
M(dũ).

Now invoking properties (P1) and (P2) of S, we deduce that
∫

X×X

ϕ(u, ũ)η⊥(du, dũ) =
∫

X

ϕ
(
S(ũ), S2(ũ)

)
M(dũ) =

∫

X

ϕ
(
u, S(u)

)
S∗M(du)

=
∫

X

ϕ
(
u, S(u)

)dS∗M

dM
(u)M(du)

=
∫

X×X

ϕ(u, ũ)
dS∗M

dM
(u)δS(u)(dũ)M(du)

=
∫

X×X

ϕ(u, ũ)
dS∗M

dM
(u)η(du, dũ).

This shows that η⊥ 
 η and that (3.19) holds. Similarly, we can show that η 
 η⊥, so that
in fact η and η⊥ are mutually absolutely continuous.

The observation that P̄ defined in (3.1) can be written as (3.20) for Q as in (3.17) is clear.
Finally, the fact that P̄ is reversible with respect to M follows as a consequence of the general
result given in [72], Theorem 2. The proof is complete. �

Applying Theorem 3.6 combined with a suitable marginalization of the Markov kernel P̄

in (3.20) now yields the result of Theorem 2.1.

COROLLARY 3.7. Let (X,�X) and (Y,�Y ) be measurable spaces. Let μ be a proba-

bility measure on X, and V : X × �Y → [0,1] be a Markov kernel. Consider X = X × Y

and suppose there exists a measurable mapping S : X → X satisfying properties (P1)–(P2)
from Theorem 2.1 (with M specified as in (2.10) relative to inputs V and μ given here). Let

P̄ be the Markov kernel on X defined as in (3.20), and define P to be the Markov kernel on

X given as

P(q, dq̃) :=
∫

Y

∫

Y
P̄

(
(q,v), dq̃d ṽ

)
V(q, dv) for all q ∈ X and A ∈ �X,(3.21)

or equivalently as P(q,A) :=
∫
Y P̄ ((q,v),A × Y)V(q, dv) for all q ∈ X and A ∈ �X . Then

P satisfies detailed balance with respect to μ. Moreover, P(q, ·) coincides with the definition

given in (2.12) for μ-a.e. q ∈ X.

PROOF. The statement that P defined in (3.21) satisfies detailed balance with respect
to μ follows immediately from the fact that P̄ satisfies detailed balance with respect to M

defined in (2.10), as a consequence of Theorem 3.6. For the second claim, notice that for each
fixed q ∈ X and A ∈ �X we have according to the definition of P̄ in (3.20) that

(3.22)

P(q,A) =
∫

Y

∫

A×Y
α

(
(q,v), (q̃, ṽ)

)
δS(q,v)(dq̃, dṽ)V(q, dv)

+
∫

Y

∫

A×Y
δ(q,v)(dq̃, dṽ)

[
1 − α

(
(q,v), S(q,v)

)]
V(q, dv)

=: (I1) + (I2).
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For the first term, we write

(3.23)

(I1) =
∫

Y

∫

X×Y
1A×Y (q̃, ṽ)α

(
(q,v), (q̃, ṽ)

)
δS(q,v)(dq̃, dṽ)V(q, dv)

=
∫

Y
1A×Y

(
S(q,v)

)
α

(
(q,v), S(q,v)

)
V(q, dv)

=
∫

Y

∫

A
δ�1◦S(q,v)(dq̃)α

(
(q,v), S(q,v)

)
V(q, dv),

while for the second term

(I2) =
∫

A
δq(dq̃)

∫

Y

[
1 − α

(
(q,v), S(q,v)

)]
V(q, dv).(3.24)

Moreover, it is not difficult to show that (3.19) implies

dη⊥

dη

(
(q,v), S(q,v)

)
= dS∗M

dM
(q,v) for M-a.e. (q,v) ∈ X × Y,

so that

α
(
(q,v), S(q,v)

)
= α̂(q,v) for M-a.e. (q,v) ∈ X × X,(3.25)

for α̂ as defined in (2.11).
Consequently, from (3.22)–(3.24) and (3.25), we conclude that for μ-a.e. q ∈ X and every

A ∈ �X

P(q,A) =
∫

X

∫

A
δ�1◦S(q,v)(dq̃)α̂(q,v)V(q, dv) +

∫

A
δq(dq̃)

∫

X

[
1 − α̂(q,v)

]
V(q, dv),

which coincides with the Markov kernel defined in (2.12). This finishes the proof. �

REMARK 3.8 (Connection to [3]). We note that [3] uses a similar two-step extended
phase space presentation to develop a general result for Metropolis–Hastings kernels. Specifi-
cally, Theorem 3 in [3] is analogous to Theorem 3.6, whereas Proposition 1 in [3] corresponds
to Corollary 3.7.

REMARK 3.9. In regard to the results of Theorem 3.6 and Corollary 3.7, we notice that a
slightly different approach to constructing a Markov transition kernel on a product space X ×
Y is provided in [27], Algorithm 1 (see also [17], Section 5.3), described as follows. Assume,
similarly as in Remark 2.5, that the mapping S from Theorem 3.6 is given as R◦ Ŝ, with R, Ŝ :
X × Y → X × Y being two measurable mappings such that S = R ◦ Ŝ satisfies assumptions
(P1)–(P2) from Theorem 2.1 and, additionally, that R∗M =M. Then, the Markov transition
kernel resulting from [27], Algorithm 1, can be written as

P̄ ′(u, dũ) = α′(u)δ
Ŝ(u)

(dũ) + δR(u)(dũ)
[
1 − α′(u)

]
,(3.26)

where

α′(u) = 1 ∧ d(Ŝ−1)∗M

dM
(u) for u ∈ X × Y,(3.27)

with M as defined in (2.10). Here assumptions (P1)–(P2) together with R∗M = M imply
that the Radon–Nikodym derivative in (3.27) is well defined, since

(
Ŝ−1)∗

M =
(
S−1 ◦ R

)∗
M =

(
S−1)∗

R∗M =
(
S−1)∗

M = S∗M.

In fact, in the setting from [27], X and Y are taken as finite-dimensional spaces, and α′ is
written in terms of the density of M with respect to the corresponding Lebesgue measure in
X × Y .
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Most importantly, we notice that in contrast to P̄ defined in (3.20), the transition ker-
nel P̄ ′ in (3.26) does not in general satisfy detailed balance with respect to the probability
measure M. Indeed, it is shown in [27], Section V, that P̄ ′ satisfies a modified form of the
standard detailed balance condition. Nevertheless, if we assume in addition that R is such
that �1 ◦ R = �1 then by taking the marginalization of P̄ ′ as in (3.21) it is not difficult
to show that we obtain a Markov kernel on X that also coincides a.e. with the one from
(2.12), and thus satisfies detailed balance with respect to the first marginal of M, that is,
μ = �∗

1M.

4. Approximate Hamiltonian Monte Carlo methods. This section derives and stud-
ies some “extended phase space” sampling methods. We first consider the classical finite-
dimensional setting involving a continuously distributed target measure in Section 4.1 lead-
ing to Algorithm 4.1, Algorithm 4.2, Algorithm 4.3 and Algorithm 4.4. We then turn to the
infinite-dimensional Gaussian–Hilbert space framework in Section 4.2 culminating in Algo-
rithm 4.5.

The developments presented here are ultimately based on an application of Theorem 2.1
while drawing on an extended library of HMC samplers sitting on the foundation of a rich va-
riety of numerical methods employed for the effective discretization of Hamiltonian systems.
We provide an essentially self-contained presentation of some elements of this extensive and
disparate literature laying out a toolbox which can be expanded upon to derive further algo-
rithms in the future.

On the one hand the results below can be seen as representing a class of surrogate trajectory
methods, reflective of a growing body of literature; cf. [5, 8, 47, 50, 51, 56, 60, 61, 64, 65,
75, 76]. These works seek to partially avoid expensive gradient computations dictated by
classical HMC formulations. In this connection it is notable that our methods allow for a
variety of gradient-free approximations where the dynamics may not be symplectic but are
merely volume-preserving (see Definition 4.1 below). From a slightly different perspective
we may see the results in this section as providing a large “parameter space” of possible
samplers which include many popular and recently discovered methods as important special
cases. We make explicit the parameter choices connecting back to existing methods below in
Section 5, further illustrating and enriching the unifying outlook provided by Theorem 2.1.

4.1. The finite-dimensional case. We begin with the classical setting where the target
measure μ sits on R

N . Recall that, in this finite-dimensional context, our goal is to sample
measures μ, which are presumed to be continuously distributed. For convenience, we also
assume that μ is strictly positive, but see Remark 2.4. Thus, we may write μ in the potential
form

μ(dq) = 1

ZU

e−U(q) dq, ZU =
∫

RN
e−U(q) dq,(4.1)

where U :RN →R is any measurable function such that e−U(q) ∈ L1(RN ). Typically we will
additionally suppose that U ∈ C1.

In order to develop our results we need to introduce some elements from the theory of
geometric integration and from Hamiltonian dynamical systems more broadly. We have tried
to keep our discussion here as elementary and as self-contained as possible but it includes
a number of results which are covered in much more detail and with a much wider scope
elsewhere. See, for example, [17, 37, 48, 61] and we refer to [4, 45, 54] for the broader
context of Hamiltonian systems.
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4.1.1. Hamiltonian and surrogate extended phase space dynamics. The starting point of
the HMC approach involves selecting a Hamiltonian function H : R2N → R such that the
marginal of the associated Gibbs measure

M(dq, dv) := 1

ZH

e−H(q,v) dqdv, ZH =
∫

R2N
e−H(q,v) dqdv,(4.2)

with respect to the “position” variable q coincides with the target measure μ defined in (4.1).
As such, it is natural to consider a Hamiltonian given by

H(q,v) = U(q) +K(q,v) + lnZK(q), ZK(q) :=
∫

RN
e−K(q,v) dv(4.3)

for some C1 function K :R2N →R such that v �→ e−K(q,v) ∈ L1(RN ), for each fixed q ∈ R
N .

Here the term lnZK(q) is included precisely to ensure that the marginal of M with respect
to q coincides with μ. Therefore, M from (4.2) can be written as

M(dq, dv) = V(q, dv)μ(dq), V(q, dv) = 1

ZK(q)
e−K(q,v) dv,(4.4)

with ZH = ZU from (4.1). Denoting by B(RN ) the σ -algebra of Borel sets in R
N , it fol-

lows by construction that V : RN × B(RN ) → [0,1] is a Markov kernel, and M defines a
probability measure on R

2N .
Note that typically one considers

K(q,v) = 1

2

〈
M(q)−1v,v

〉
(4.5)

for an appropriately chosen symmetric positive definite “mass matrix” M , so that K(q,v)

corresponds to the negative log-density of the R
N -valued gaussian distribution N(0,M(q)).

Classically, M is q independent and often simply taken to be the identity (but see the infinite-
dimensional formulation in Section 4.2 and Section 5.2 below). On the other hand, the Rie-
mannian manifold HMC method introduced in [33] considers cases where we introduce a
dependence on q in M in (4.5), thus providing an important motivating example for allow-
ing “position-dependence” in the formulation of the kinetic portion of the Hamiltonian in
(4.3). Note also that “non-Gaussian” choices for K are also relevant. See, for example, the
relativistic HMC algorithm developed in [53]. Both of these HMC variants are briefly de-
scribed in Section 5.1.4 below where they are connected back to the generalized frameworks
we consider here.

Having determined H as in (4.3) one now considers the associated Hamiltonian dynamics
for the pair z = (q,v) ∈R

2N as

dz

dt
= J−1∇H(z), z(0) = (q0,v0),(4.6)

where J is any 2N × 2N real matrix which is antisymmetric and invertible. Here the typical
form for J is

J :=
(

0 −I

I 0

)
(4.7)

but other “noncanonical” choices for J are relevant for sampling. For example, in the infinite-
dimensional version of HMC derived in [10], which we consider in Section 4.2, Section 5.2.3
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below, J is used to “precondition” the dynamics, see (4.52). Other possibilities for J are
studied, for example, with the so called magnetic HMC methods introduced in [73].

Since H is invariant under the flow associated to (4.6), the Gibbs measure M given as (4.2)
is invariant with respect to this flow. This implies that the Markov transition kernel associated
to the dynamics of the q variable in (4.6), given by

P t (q0,A) := P
(
q(t;q0,v0) ∈ A

)
, v0 ∼ V(q0, ·),(4.8)

defined for some t ≥ 0, for all q0 ∈ R
N and any Borel set A ⊂ R

N , holds the q-marginal
of M, that is, the target μ, as an invariant measure. For a fixed integration time T > 0, P T

as given in (4.8) defines the Markov kernel for what is known as the exact HMC algorithm,
which is of theoretical interest as an idealization of HMC, [16, 35]. However this P T is
of much less practical significance because it is typically impossible to exactly resolve the
solution operator for (4.6). Instead, one resorts to a skillfully chosen numerical approximation
Ŝ(q0,v0) for the solution of (4.6) at the time T that is commensurate with the setting of
Theorem 2.1.

In view of obtaining a wider class of HMC-like algorithms to sample from μ in (4.1), we
replace (4.6) with the following general dynamics:

dq

dt
= f1(q,v),

dv

dt
= f2(q,v),

(
q(0),v(0)

)
= (q0,v0),(4.9)

for suitably regular functions f1 : R2N → R
N and f2 : R2N → R

N . Here an underlying idea
for considering the more general dynamic (4.9) is that we may aim to replace the right-hand
side of (4.6), J−1∇H(z), with an artfully chosen approximation (f1(q,v), f2(q,v)), one that
is computationally cheaper to evaluate while maintaining essential features of J−1∇H(z).
Therefore (4.9) is the starting point for a methodology to resolve the target μ with a lower
overall computational cost. In this connection notice that, in contrast to (4.6), the system
(4.9) for general functions f1 and f2 may not be a Hamiltonian system, and also may not be
expected to hold M as an invariant measure.

Below we illustrate some classes of MCMC algorithms resulting from such f1, f2 which
still preserve the target measure μ as invariant, as long as the integrator Ŝ and accept–reject
function α̂ are chosen appropriately. In Proposition 4.3 below, we show how Theorem 2.1
can be used to derive an appropriate accept–reject mechanism assuming certain natural struc-
tural properties of the map Ŝ. Then, in a series of subsections, we introduce three classes of
algorithms developed around different considerations for approximating (4.6) with (4.9); see
(4.23), (4.30) and (4.36)–(4.37) below.

4.1.2. Case 0: General extended phase space methods. Before introducing our first and
most general algorithm class, let us first recall some basic definitions from the theory of
Hamiltonian dynamical systems which we need here and below.

DEFINITION 4.1. Let Ŝ :R2N →R
2N be a C1 map.

(i) Fix any linear invertible map R :R2N →R
2N . We say that Ŝ is reversible with respect

to R (or simply R-reversible) if Ŝ is itself invertible and

R ◦ Ŝ(z) = Ŝ−1 ◦ R(z)(4.10)

for every z ∈ R
2N .
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(ii) We say that Ŝ is symplectic, with respect to an invertible (typically antisymmetric)
matrix J , if

(
∇Ŝ(z)

)∗
J∇Ŝ(z) = J(4.11)

for every z ∈ R
2N , where A∗ denotes the conjugate transpose of a matrix A.5

Let us collect a few elementary properties of symplectic and R-reversible mappings under
Definition 4.1 whose proofs are immediate.

LEMMA 4.2. (i) Under (4.10) it follows that if additionally R is an involution, that is,
R ◦ R = I , then R ◦ Ŝ is an involution, that is,

R ◦ Ŝ ◦ R ◦ Ŝ(z) = z(4.12)

for every z ∈ R
2N .

(ii) If Ŝ is symplectic, with respect to any invertible matrix J , then Ŝ is volume preserving

in R
2N , namely

∣∣det∇Ŝ(z)
∣∣ = 1(4.13)

for every z ∈ R
2N .

(iii) If Ŝ1, Ŝ2 are two symplectic mappings, then their composition Ŝ1 ◦ Ŝ2 is also symplec-

tic. Similarly, under the weaker condition that Ŝ1, Ŝ2 are both volume preserving, à la (4.13),
then so too Ŝ1 ◦ Ŝ2 must be volume preserving.

It is immediately clear that these two properties introduced in Definition 4.1 together with
Lemma 4.2 are tailor-made for Theorem 2.1. See also Remark 2.6 and the identity (2.20). We
formalize this as follows.

PROPOSITION 4.3. Fix any C1 potential functions U : RN → R and K : R2N → R

so that we can define a probability measure μ(dq) = Z−1
U

e−U(q) dq and a Markov kernel

V(q, dv) = ZK(q)−1e−K(q,v) dv as in (4.1) and (4.4), respectively. Consider the associated

Hamiltonian H = U + K + lnZU as defined in (4.3). Let Ŝ : R2N → R
2N be a C1 mapping

which is reversible with respect to a linear involution R as in Definition 4.1(i). Then:

(i) the kernel P defined as in (2.12) with S = R ◦ Ŝ and with α̂ defined as

α̂(q,v) = 1 ∧
[
exp

(
−H

(
R ◦ Ŝ(q,v)

)
+H(q,v)

)∣∣det∇Ŝ(q,v)
∣∣](4.14)

satisfies detailed balance with respect to μ as in (2.13).
(ii) If we furthermore assume that Ŝ is symplectic, a la (4.11), or merely volume-

preserving as in (4.13) then α̂ reduces to

α̂(q,v) = 1 ∧
[
exp

(
−H

(
R ◦ Ŝ(q,v)

)
+H(q,v)

)]
.(4.15)

5Equivalently, one may consider the symplectic form �(z̃, z) := 〈z̃, J z〉, for z̃, z ∈ R
2N and assert that Ŝ is

symplectic if � is invariant under the pullback by Ŝ, that is, we have that Ŝ∗� = �. Here recall that, in this context,
(Ŝ∗�)w(z̃, z) := �(∇Ŝ(w)z̃,∇Ŝ(w)z), for z̃, z,w ∈ R

2N . We observe that, in the case where J is canonical,
namely when J is of the form (4.7), then we may write � = dq ∧ dv := ∑N

j=1 dqj ∧ dvj with d the exterior
derivative and ∧ the wedge product so that dqj ∧ dvj (z̃, z) = q̃j v̄j − q̄j ṽj for z̃ = (q̃, ṽ), z = (q,v). See, for

example, [74] for basic definitions. As identified in, for example, [48], Chapter 4.1, we therefore have that Ŝ is
symplectic with respect to the canonical form � when dq ∧ dv = dq ∧ dv where (q,v) = Ŝ(q,v).
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Algorithm 4.1 Generic extended phase space algorithm to sample from μ(dq) =
Z−1
U

e−U(q) dq

1: Select the algorithm parameters:

(i) The momentum kernel V(q, dv) = ZK(q)−1e−K(q,v) dv ∈ Pr(RN ), for each fixed
q ∈ R

N .
(ii) The integrator Ŝ, and the linear involution R such that Ŝ is R-reversible (see (4.10),

(4.12)).

2: Choose q0 ∈R
N .

3: for k ≥ 0 do

4: Sample vk ∼ V(qk, ·).
5: Propose qk+1 := �1 ◦ R ◦ Ŝ(qk,vk), where �1(q,v) = q.
6: Set qk+1 := qk+1 with probability α̂(qk,vk) for α̂ given by (4.14), and otherwise take

qk+1 := qk .

(iii) On the other hand, if we assume that H is invariant under R, namely

H(q,v) = H
(
R(q,v)

)
,(4.16)

then α̂ becomes

α̂(q,v) = 1 ∧
[
exp

(
−H

(
Ŝ(q,v)

)
+H(q,v)

)∣∣det∇Ŝ(q,v)
∣∣].(4.17)

(iv) Finally if both Ŝ is volume-preserving and (4.16) holds we can take α̂ as

α̂(q,v) = 1 ∧ exp
(
−H

(
Ŝ(q,v)

)
+H(q,v)

)
.(4.18)

PROOF. Let M be the probability measure on R
2N defined as in (4.2), (4.4), namely

M(dq, dv) = V(q, dv) μ(dq) = Z−1
H

e−H(q,v) dqdv. Since M has a strictly positive density
with respect to the Lebesgue measure and, by Lemma 4.2(i), S = R ◦ Ŝ is an involution, then
the result follows directly from Theorem 2.1 once we compute dS∗M/dM. Here we use
(2.3) and (2.5) to obtain that

dS∗M

dM
(q,v) = exp

(
−H

(
S−1(q,v)

)
+H(q,v)

)∣∣det∇S−1(q,v)
∣∣

= exp
(
−H

(
S(q,v)

)
+H(q,v)

)∣∣det∇R
(
Ŝ(q,v)

)∣∣∣∣det∇Ŝ(q,v)
∣∣.

(4.19)

Since R is a linear involution then clearly |det∇R(z)| = 1 for any z ∈ R
2N , so that (4.14)

follows from (2.11) and (4.19). Now (4.15) follows immediately from Lemma 4.2(ii), and the
remaining identities (4.17) and (4.18) are clear, completing the proof. �

We summarize the algorithm resulting from Proposition 4.3 in Algorithm 4.1.

4.1.3. Algebraic considerations for numerical splittings. With the above formulations
in place we next present some approaches to constructing suitable numerical integrators Ŝ

from the general system (4.9) that are commensurate with the setting of Proposition 4.3.
Here the reversibility condition (4.10) leading to (4.12) is indispensable. Our starting point
for constructing such reversible integrators out of a well chosen discretization of (4.9) are
dictated by the following basic algebraic observations which will be useful here and again
further on in Section 4.2.

LEMMA 4.4. Let R : X → X be a mapping on a set X .
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(i) Suppose that Tj , T̄j : X → X are such that R ◦ Tj = T̄j ◦ R for j = 1, . . . n. Then,
taking T := T1 ◦ · · · ◦ Tn and T̄ := T̄1 ◦ · · · ◦ T̄n, we have that R ◦ T = T̄ ◦R.

(ii) If Sj : X → X , j = 1, . . . , n, are invertible mappings satisfying R ◦ Sj = S
−1
j ◦ R,

then the “palindromic” composition S defined as

S := S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn ◦ Sn−1 ◦ · · · ◦ S2 ◦ S1(4.20)

satisfies R ◦ S = S−1 ◦R.

PROOF. The first item, (i), is obvious. For (ii) notice that, due to the palindromic structure
of S , its inverse S−1 maintains the same palindromic structure, with

S
−1
1 ◦ S−1

2 ◦ · · · ◦ S−1
n−1 ◦ S−1

n ◦ S−1
n−1 ◦ · · · ◦ S−1

2 ◦ S−1
1 = S−1,

so that R ◦ S = S−1 ◦R follows directly from item (i). �

Next let us introduce some definitions.

DEFINITION 4.5. Fix δ0 > 0 and suppose that for each δ ∈ (−δ0, δ0) we have an invert-
ible map Ŝδ :R2N →R

2N .

(i) We define the adjoint of Ŝδ , denoted as Ŝ∗
δ , according to Ŝ∗

δ := (Ŝ−δ)
−1.

(ii) We say Ŝδ is symmetric (or self-adjoint) if Ŝ∗
δ = Ŝδ .

The following desirable properties around this adjoint operation are immediate.

LEMMA 4.6. (i) Given maps collections of invertible maps Ŝ , T̂ as in Definition 4.5 we

have Ŝ∗∗ = Ŝ and also (ŜT̂ )∗ = T̂ ∗Ŝ∗. In particular Ŝ∗Ŝ is symmetric.
(ii) If Ŝδ is symmetric for some δ ∈ R then Ŝ

−1
δ = Ŝ−δ .

We now have everything in hand to implement algorithms around the dynamics (4.9) dis-
cretized in a suitable form to apply Proposition 4.3 in three specific cases.

4.1.4. Case 1: Separable surrogate dynamics. One particular case of (4.9) we consider
is when f1 depends only on v and f2 depends only on q. Namely, in this case, (4.9) reduces
to

dq

dt
= f1(v),

dv

dt
= f2(q),

(
q(0),v(0)

)
= (q0,v0),(4.21)

for some C1 functions f1, f2 : RN → R
N . Here we have in mind the situation where our

Hamiltonian H and matrix J in (4.6) in have the separable form

H(q,v) := U(q) +K(v) and J :=
(

0 −A

A∗ 0

)
,(4.22)

for some invertible matrix A ∈ R
N×N , so that f1 and f2 would serve as suitable approxima-

tions of the form

f1(v) ≈
(
A∗)−1∇K(v), f2(q) ≈ −A−1∇U(q).(4.23)

In this case, (4.21) we may consider the classical leapfrog integrator. This scheme is de-
fined by splitting the dynamics (4.21) into

dq

dt
= 0,

dv

dt
= f2(q) and

dq

dt
= f1(v),

dv

dt
= 0,(4.24)
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with analytical solutions given explicitly for any time t and initial datum (q0,v0) ∈ R
2N as



(1)
t (q0,v0) =

(
q0,v0 + tf2(q0)

)
and 


(2)
t (q0,v0) =

(
q0 + tf1(v0),v0

)
,(4.25)

respectively. Given time steps δ1, δ2 > 0 and a number of iterations n ∈ N, a leapfrog-type
integrator for (4.21) is then defined according to the following Strang splitting:

Ŝ(q0,v0) = Ŝn,δ1,δ2(q0,v0) :=
(



(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

)n
(q0,v0)

for all (q0,v0) ∈ R
2N .

(4.26)

Under minimal condition on f1, f2 we have the following result placing the map (4.26)
defined from (4.21) in the setting of Proposition 4.3.

THEOREM 4.7. Consider the dynamics in (4.24), resolved as (4.25), for any given C1

functions f1, f2 : RN → R
N . For any time steps δ1, δ2 > 0 and any number of iterations

n ∈N, we take Ŝn,δ1,δ2 to be the integrator defined in (4.26). Then:

(i) Ŝn,δ1,δ2 is volume-preserving, that is, |det∇Ŝn,δ1,δ2(z)| = 1 for all z ∈ R
2N .

(ii) If we furthermore assume that

f1(−v) = −f1(v) for every v ∈ R
N(4.27)

then Ŝn,δ1,δ2 is reversible with respect to the momentum flip involution R in the sense of

Definition 4.1, (4.10). Here R is given by

R(q,v) = (q,−v), (q,v) ∈ R
2N .(4.28)

PROOF. Start with the first item, (i). From (4.25) it follows that

∇

(1)
t (q,v) =

(
I 0

t∇f2(q) I

)
and ∇


(2)
t (q,v) =

(
I t∇f1(v)

0 I

)
,

so that, clearly, |det∇

(1)
t (z)| = |det∇


(2)
t (z)| = 1 for every z ∈ R

2N and each t ≥ 0. From
(4.26) it thus follows that |det∇Ŝn,δ1,δ2(z)| = 1 for all z ∈ R

2N . Regarding the reversibility
claim in item (ii) we observe that 
(j) is symmetric in the sense of Definition 4.5(ii) for
j = 1,2. On the other hand it is also direct to check that R


(j)
t = 


(j)
−t R for any t ≥ 0 and

j = 1,2. Here note the use of the condition (4.27) for 
(2). Thus with Lemma 4.6(ii) and
Lemma 4.4(ii), noting the palindromic structure in (4.26), we obtain the desired reversibility
claim for Ŝn,δ1,δ2 , completing the proof. �

We summarize and present the algorithm directly resulting from Theorem 4.7 and Propo-
sition 4.3(ii). As we make explicit in Section 5.1 below this algorithm includes the classical
random walk Monte Carlo (RWMC), Metropolis adjusted Langevin (MALA), and Hamilto-
nian Monte Carlo (HMC) algorithms as special cases under suitable parameter choices.

REMARK 4.8. Algorithm 4.2 derived from (4.21) can be further generalized in several
directions. For example, (4.26) can be replaced with any palindromic splitting involving the
maps 
(1), 
(2) defined in (4.25). The reversibility condition (4.27) as suitable for the mo-
mentum flip operation R in (4.28) can be replaced with a more general condition (4.41) as
we explore in Theorem 4.12 below.
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Algorithm 4.2 Generalized leapfrog for surrogate dynamics to sample μ(dq) =
Z−1
U

e−U(q) dq

1: Select the algorithm parameters:

(i) The proposal distribution V(q, dv) = ZK(q)−1e−K(q,v) dv ∈ Pr(RN ) for each q ∈
R

N .
(ii) The surrogate functions f1, f2 : RN → R

N defining 

(1)
t (q,v) := (q,v + tf2(q)),

and 

(2)
t (q,v) := (q + tf1(v),v), where f1 satisfies f1(−v) = −f1(v) for all v ∈

R
N .

(iii) The time step sizes δ1, δ2 > 0.
(iv) The number of iterations n.

2: Choose q0 ∈R
N .

3: for k ≥ 0 do

4: Sample vk ∼ V(qk, dv).
5: Propose (qk+1,vk+1) := (


(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

)n(qk,vk).
6: Set qk+1 := qk+1 with probability 1 ∧ [exp(−H(qk+1,−vk+1) +H(qk,vk))], other-

wise take qk+1 := qk .

4.1.5. Case 2: Splitting into Hamiltonian sub-dynamics. A second case of interest arises
when we consider a surrogate of the form

J−1∇H(z) ≈
m∑

j=1

J−1
j ∇Hj (z)(4.29)

for (4.6) where each Jj is antisymmetric and invertible and each Hj : RN → R is suitably
smooth. Corresponding to each element in this sum, (4.29), we consider mappings 
(j) where

{



(j)
t

}
t≥0 is the solution map for

dz

dt
= J−1

j ∇Hj (z),(4.30)

defined so long as each of the associated Hamiltonian systems admits a globally defined
dynamic. The idea here is that we might formulate the approximation in (4.29) so that each
{
(j)

t }t≥0 has an explicitly solvable form while in any case preserving crucial structural prop-
erties of Hamiltonian systems commensurate with the setting of Proposition 4.3. As such,
(4.29) would suggest that a suitable composition of the maps 
(j) would yield a reasonable
approximation for (4.6). Keeping in mind Lemma 4.4, we select for some l ∈ N, n ∈ N, any
j1, . . . , jl ∈ {1, . . . ,m}, any δ1, . . . , δl > 0, and define

Ŝ(q0,v0) :=
(



(j1)
δ1

◦ · · · ◦ 

(jl)
δl

◦ 

(jl)
δl

◦ · · · ◦ 

(j1)
δ1

)n
(q0,v0)

for all (q0,v0) ∈ R
2N .

(4.31)

Before providing conditions under which (4.31) yields a suitable class of sampling algo-
rithms we first recall some basic properties of Hamiltonian dynamical systems that will be
needed.

PROPOSITION 4.9. Suppose that {
t }t≥0 is the solution operator of

dz

dt
= J−1∇H̃(z)(4.32)

for a matrix J which is antisymmetric and invertible and a C2 Hamiltonian function H̃ :
R

2N →R such that the dynamics (4.32) are uniquely and globally defined. Then,
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(i) for every t ≥ 0, 
t is symplectic (with respect to J ) as in Definition 4.1(ii).
(ii) Suppose we have a linear involution R :R2N →R

2N such that

RJ−1R∗ = −J−1(4.33)

and

H̃(Rz) = H̃(z) for every z ∈R
2N .(4.34)

Then, for every t ≥ 0, 
t is reversible with respect to R in the sense of Definition 4.1(i).
(iii) In particular, consider

J =
(

0 −A

A∗ 0

)
,

for an invertible A and we assume that H̃ is symmetric in its second variable, namely

H̃(q,v) = H̃(q,−v), for any (q,v) ∈ R
2N . Then, for every t ≥ 0, 
t is reversible with respect

to the momentum flip involution R as in (4.28).

PROOF. For the first item let B(t)(z) := (∇
t (z))
∗J∇
t (z) and notice that B(0)(z) =

J z while dB(z)/dt = 0.
Regarding the second item, given any solution z(t) of (4.32) we consider z̃(t) := Rz(−t).

Observe that, with the assumption that R is an involution,

d z̃(t)

dt
= −RJ−1∇H̃

(
z(−t)

)
= −RJ−1∇H̃

(
Rz̃(t)

)
.

Now, from (4.34), we have

R∗∇H̃(Rz̄) = ∇H̃(z̄) for every z̄ ∈ R
2N

and so with the fact that R∗ is an involution and our assumption (4.33) we conclude that z̃(t)

must also obey (4.32). From this symmetry observation and the uniqueness of solutions of
(4.32), we infer


t (Rz0) = R
−t (z0) for any t ∈ R, and any z0 ∈ R
2N .

Thus

(R ◦ 
t ◦ R ◦ 
t )(z0) = R
t

(
R
t (z0)

)
= 
−t

(

t (z0)

)
= z0

as desired for the second item. The third item follows from the second with a direct compu-
tation showing that (4.33) holds for these specific choices of J and R. The proof is complete.

�

REMARK 4.10. See [73], Lemma 2, for variations on the theme of Proposition 4.9(ii)
with some interesting applications in deriving further HMC-type sampling algorithms.

THEOREM 4.11. Fix a collection of C2 functions Hj :R2N →R along with correspond-

ing antisymmetric and invertible 2N × 2N real matrices Jj for j = 1, . . . ,m. Assume the

Hamiltonian dynamics associated to each of these pairs, à la (4.32), are uniquely and glob-

ally defined. Let {
(j)
t }t∈R be the associated solution maps as in (4.30). Furthermore suppose

that there exists a linear involution R such that

RJ−1
j R∗ = −J−1

j and Hj ◦ R =Hj for each j = 1, . . . ,m.(4.35)

Select any l ∈ N, n ∈ N, along with orderings j1, . . . , jl ∈ {1, . . . ,m}, and time step sizes

δ1, . . . , δl > 0, and define Ŝ as in (4.31). Then, according to this definition (4.31), Ŝ is both

symplectic and reversible with respect to R in the sense given in Definition 4.1.
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Algorithm 4.3 Palindromic iterations of Hamiltonian surrogates to sample μ(dq) =
Z−1
U

e−U(q) dq

1: Select the algorithm parameters:

(i) The proposal distribution V(q, dv) = ZK(q)−1e−K(q,v) dv ∈ Pr(RN ) for each q ∈
R

N .
(ii) For some j = 1, . . . ,m determine a set of surrogate Hj : R2N → R and associ-

ated symplectic matrices Jj yielding solution maps {
(j)}t∈R defined according to
dz/dt = J−1

j ∇Hj (z).

(iii) Identify a linear involution R such that RJ−1
j R∗ = −J−1

j and Hj ◦ R = Hj for
j = 1, . . . ,m.

(iv) An operation ordering j1, . . . , jl ∈ {1, . . . ,m} along with associated time step sizes
δ1, δ2, . . . , δl > 0.

(v) The number of iterations n.

2: Choose q0 ∈R
N .

3: for k ≥ 0 do

4: Sample vk ∼ V(qk, dv).
5: Propose (qk+1,vk+1) := (


(j1)
δ1

◦ · · · ◦ 

(jl)
δl

◦ 

(jl)
δl

◦ · · · ◦ 

(j1)
δ1

)n(qk,vk).
6: Set qk+1 := qk+1 with probability 1 ∧ [exp(−H(R(qk+1,vk+1)) + H(qk,vk))] and

otherwise take qk+1 := qk .

PROOF. According to Proposition 4.9 each 
(ji) is symplectic and is reversible with
respect to R for i = 1, . . . ,m. Keeping in mind the palindromic structure of Ŝ in regards to
reversibility, it is therefore clear that these two properties extend to Ŝ . The proof is complete.

�

We now summarize our second class of sampling methods in Algorithm 4.3. This algo-
rithm is derived from Theorem 4.11 with Proposition 4.3. As previously with Algorithm 4.2,
this class includes classical formulations of RWMC, MALA and HMC as notable special
cases in a fashion which we make precise in Section 5.1 below. Note also that a special case
of (4.31) yields the type of “nonstandard” splittings which proves to be desirable for the
setting of (4.51) in Section 4.2, Section 5.2.3 below.

4.1.6. Case 3: Nonseparable dynamics via implicit integrators. We turn to our final case
where (4.9) is assumed to have a “nonseparable” form unsuitable for either of the formula-
tions previously considered in Section 4.1.4 or Section 4.1.5. This situation arises, for exam-
ple, from the consideration of position dependent kinetic energy terms in (4.3) as developed
previously in [33]. Here, in this position dependent case, we have

f1(q,v) ≈
(
A∗)−1∇vK(q,v),(4.36)

f2(q,v) ≈ −A−1(
∇q

(
U(q) +K(q,v)

)
+ ZK(q)−1∇qZK(q)

)
,(4.37)

when, as above, (4.6) is defined with a matrix J of the separated form given in (4.22). In this
nonseparable case, implicit numerical discretizations for (4.9) provides a means of maintain-
ing indispensable structural properties, namely the reversibility and volume preservation con-
ditions, required by Proposition 4.3. Following ideas from [33, 37, 48], we consider schemes
starting from the so-called Euler-B and Euler-A methods applied to (4.9).

Start with the Euler-B scheme which is defined, for a fixed time step δ > 0, number of iter-
ations n ∈ N and any initial point (q0,v0) ∈ R

2N , by (qn,vn) := (Ŝ
(B)
δ )n(q0,v0). Here each
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iteration step (q,v) := Ŝ
(B)
δ (q,v) is specified, for a given q,v ∈ R

N through the following
implicit system of equations:

q = q + δf1(q,v), v = v + δf2(q,v).(4.38)

It is not difficult to check that the adjoint of Ŝ
(B)
δ , cf. Definition 4.5, is the Euler-A method

which is defined implicitly for a single step as (q,v) := Ŝ
(A)
δ (q,v) where

q = q + δf1(q,v), v = v + δf2(q,v),(4.39)

for given q,v ∈ R
N . Balancing these two schemes, (4.38) and (4.39), leads to the consid-

eration of a symmetric integrator called the generalized Störmer–Verlet method. Relative to
the parameters δ > 0 and n ≥ 1 we define Ŝ = Ŝn,δ := (Ŝ

(A)
δ/2 ◦ Ŝ

(B)
δ/2 )n so that, for any given

(q0,v0) ∈ R
2N , (qn,vn) := Ŝn,δ(q0,v0) is computed inductively according to

vm+1/2 = vm + δ

2
f2(qm,vm+1/2),

qm+1 = qm + δ

2

[
f1(qm,vm+1/2) + f1(qm+1,vm+1/2)

]
,

vm+1 = vm+1/2 + δ

2
f2(qm+1,vm+1/2)

(4.40)

for m = 0, . . . , n − 1. Note carefully that (4.40) reduces to (4.26) in the special case when f2
depends only on q, f1 only on v, and we take δ1 = δ/2, δ2 = δ. See also Remark 4.16 below
for further commentary around this point.

We next establish conditions on f1 and f2 which yield desirable reversibility and volume-
preservation properties for the scheme (4.40). In the statement below, �1,�2 : R2N → R

2N

denote the projections onto the first and second components, respectively, that is,

�1(q,v) = q, �2(q,v) = v for all (q,v) ∈ R
2N .

THEOREM 4.12. Suppose that f1, f2 : R2N → R
N are C1 functions and assume that,

for some δ > 0, the maps Ŝ
(B)
δ/2 , Ŝ

(A)
δ/2 specified implicitly from (4.38), (4.39) are uniquely

and globally defined and are C1; cf. Remark 4.13 below. For any n ≥ 1 we consider the

generalized Störmer–Verlet implicit integration scheme Ŝ = Ŝn,δ := (Ŝ
(A)
δ/2 ◦ Ŝ

(B)
δ/2 )n as given

by (4.40).

(i) Suppose that, for some linear invertible matrix R, the mapping f = (f1, f2) satisfies

Rf(�1z,�2z̃) = −f(�1 ◦ Rz,�2 ◦ Rz̃) for all z, z̃ ∈R
2N .(4.41)

Then Ŝ is reversible with respect to R, in the sense of Definition 4.1(i). In particular, if f1
and f2 maintain

f1(q,v) = −f1(q,−v), f2(q,v) = f2(q,−v) for all (q,v) ∈ R
2N ,(4.42)

then Ŝ is reversible with respect to the “momentum-flip involution operation” (4.28).
(ii) Now suppose that f1, f2 :R2N →R

N are such that

∇qf1(q,v) + (∇vf2)
∗(q,v) = 0 and

∇vf1(q,v),∇qf2(q,v) are symmetric matrices,
(4.43)

for all (q,v) ∈ R
2N . Then Ŝ is symplectic relative to the canonical form J as in (4.7) in the

sense of Definition 4.1(ii).
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(iii) Finally consider the case where f(z) = J̃−1∇H̃(z), for each z ∈ R
2N where H̃ ∈ C2

and where J̃ is of the form

J̃ =
(

0 −E−1

E−1 0

)
(4.44)

for some invertible matrix E ∈ R
N×N . Then, in this circumstance, Ŝ is volume-preserving,

that is, |det∇Ŝ(z)| = 1 for all z ∈ R
2N .

The proof of Theorem 4.12 is presented in Appendix A.
Let us make several further technical remarks concerning Theorem 4.12.

REMARK 4.13. It is natural to ask if there are reasonable conditions which may be
placed on f := (f1, f2) and on δ > 0 in (4.40) guaranteeing a unique solution to this implic-
itly defined scheme. Here, suppose, for example, that f satisfies a global Lipschitz condition,
namely

∣∣f(z̃) − f(z)
∣∣ ≤ K|z̃ − z| for any z̃, z ∈ R

N ,(4.45)

where K > 0 is an absolute constant independent of z̃, z. Then, under (4.45), for any δ < K−1

the scheme (4.40) is uniquely defined for any n ≥ 1, as may be readily demonstrated using
the Banach fixed point theorem. Indeed, noting that (4.40) is a composition of the Euler A
and B subschemes, (4.38) and (4.39), we may apply this fixed point argument to each of these
substeps in turn. Regarding the Euler B step, (4.38), consider, for any q,v, q̃, ṽ ∈ R

N ,

Fδ(q,v, q̃, ṽ) :=
(
q̃ + δf1(q, ṽ), ṽ + δf2(q, ṽ)

)
.

Under (4.45) it is clear that, for any fixed q̃, ṽ ∈ R
N the map (q,v) �→ Fδ(q,v, q̃, ṽ) is con-

tractive on R
2N so long as δ < K−1 and hence, for any given q̃, ṽ and δ we obtain a unique

(q∗,v∗) such that (q∗,v∗) = Fδ(q
∗,v∗, q̃, ṽ). In other words we have shown that (4.38) must

have a unique solution. Of course precisely the same argument may be applied also to (4.39).
Finally we note that, under (4.45) it is direct to show that Ŝ

(A)
δ and Ŝ

(B)
δ are C1 functions.

REMARK 4.14. In the case where f(z) = J̃−1∇H̃(z) the reversibility condition (4.41)
in Theorem 4.12(i) can be characterized as follows. Given any linear invertible mapping
R :R2N →R

2N , which we write in the block form

R =
(
A B

C D

)
, A,B,C,D ∈R

N×N ,

we suppose that

H̃(�1 ◦ Rz,�2 ◦ Rz̃) = H̃(�1z,�2z̃) for all z, z̃ ∈ R
2N ,(4.46)

and that

RJ̃−1R∗
0 = −J̃−1 where R0 :=

(
A 0
0 D

)
.(4.47)

To see that these conditions yield (4.41) observe that using (4.46) we obtain after a direct
calculation that ∇H̃(�1z,�2z̃) = R∗

0∇H̃(�1 ◦ Rz,�2 ◦ Rz̃), for any z, z̃ ∈ R
2N . Thus

Rf(�1z,�2z̃) = RJ̃−1∇H̃(�1z,�2z̃) = RJ̃−1R∗
0∇H̃(�1 ◦ Rz,�2 ◦ Rz̃)

= −J̃−1∇H̃(�1 ◦ Rz,�2 ◦ Rz̃) = −f(�1 ◦ Rz,�2 ◦ Rz̃),

where the third equality follows from (4.47). Note that this condition (4.46), (4.47) is com-
parable to (4.33), (4.34) in Proposition 4.9.
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Algorithm 4.4 Surrogates for nonseparable Hamiltonians to sample μ(dq) = Z−1
U

e−U(q) dq

1: Select the algorithm parameters:

(i) The proposal distribution V(q, dv) = ZK(q)−1e−K(q,v) dv ∈ Pr(RN ) for each q ∈
R

N .
(ii) Surrogate functions f1, f2 : R2N → R

N specified so that either (4.43) holds or
(f1(z), f2(z)) = J−1∇H(z) where J is as in (4.44).

(iii) Relative to f1, f2 identify a linear involution R maintaining (4.41) (see in particular
(4.42)).

(iv) The time step δ > 0 and number of iterations n ≥ 1.

2: Choose q0 ∈R
N .

3: for k ≥ 0 do

4: Sample vk ∼ V(qk, dv).
5: Propose (qk+1,vk+1) := Ŝn,δ(qk,vk) where Ŝn,δ = (Ŝ

(A)
δ/2 ◦ Ŝ

(B)
δ/2 )n is defined implic-

itly via (4.40).
6: Set qk+1 := qk+1 with probability 1 ∧ [exp(−H(R(qk+1,vk+1)) + H(qk,vk))] and

otherwise take qk+1 := qk .

REMARK 4.15. In [37], Theorem 3.3, it is shown that if J̃ is of the form in (4.44) with
E = I , then Ŝ(A) and Ŝ(B) are in fact symplectic integrators with respect to J̃ . Namely,
(∇Ŝ

(A)
δ (z))∗J̃∇Ŝ

(A)
δ (z) = J̃ , for all z ∈ R

2N , and analogously for Ŝ(B). This can be verified
directly from (A.4) by taking E = I or by repeating the approach given in Theorem 4.12(ii).
However, the same does not seem to hold for a general invertible E ∈ R

N×N .

Combining Theorem 4.12 with Proposition 4.3 we now formulate the final algorithm of
this section as Algorithm 4.4.

REMARK 4.16. The methods described in Algorithm 4.2, Algorithm 4.3 and Algo-
rithm 4.4 have quite a bit of overlapping scope and can be generalized in a number of im-
mediate ways working from the frameworks developed here. Regarding the scope of the
methods notice, for example, that Algorithm 4.2 is actually a special case of Algorithm 4.3
when f1(v) = (A∗)−1∇K̃(v), f2(q) = −A−1∇Ũ(q), for any K̃, Ũ ∈ C1 and any invertible
A, or a special case of Algorithm 4.4 when, more generally, f1 = f1(v), f2 = f2(q), with
appropriate choices for the time steps. In fact, as already observed above, (4.40) reduces to
(4.26) with δ1 = δ/2 and δ2 = δ whenever f1 only depends on v and f2 only on q.

Regarding further generalizations we observe that Algorithm 4.2 and Algorithm 4.4 are
easily extended to any palindromic splitting of 
(1), 
(2) or of Ŝ(A), Ŝ(B) in the fashion of
(4.31) in Algorithm 4.3. Note that the efficacy of such extended palindromic settings have
been explored in more depth recently in [17]. In a different direction we note that in all of
the above algorithms we have identified conditions guaranteeing that the integrator is sym-
plectic or at least volume preserving. In principle, Algorithm 4.1 allows for schemes Ŝ where
|det(∇Ŝ(z))| �≡ 1. However, at least within a naive set-up, the computational requirements
around such gradient terms would appear to be lethal. Nevertheless, see the recent work [49].

REMARK 4.17. People who have applied HMC to complicated problems may have en-
countered scenarios where the implementation of the numerical integrator was incorrect, but
the sampler still produced correct results. The structure of Algorithm 4.1, Algorithm 4.2, Al-
gorithm 4.3 and Algorithm 4.4 (see also [61]) provides an explanation for this phenomenon—
as long as the integrator and acceptance ratio are consistent with each other, the accept/reject
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step will correct for any errors in the propagation in the dynamical system, whether they be
due to discretization errors or bugs in the implementation.

4.2. The infinite-dimensional case. We turn now to introduce our second class of gener-
alized trajectory methods. These methods, summarized in Algorithm 4.5 below, are adapted
to sampling from measures which are defined on a separable Hilbert space and which are
absolutely continuous with respect to a certain class of Gaussian base measures. As men-
tioned above, our approach here takes its inspiration from a preconditioned HMC method
introduced in [10] and later revisited in [8, 9]. Actually, as we show below in Section 5.2, the
algorithms introduced in [8, 10] along with the pCN and ∞-MALA samplers from, for ex-
ample, [11, 22] all fall out as special parameter choices in our class of samplers summarized
in Algorithm 4.5.

Let us begin by making our infinite-dimensional setting precise. Throughout this section
we assume that the parameter space X is a separable Hilbert space, with associated norm and
inner product denoted by | · | and 〈·, ·〉, respectively. We take BX to signify the associated
σ -algebra of Borel subsets of X. On X we consider target probability measures of the form

μ(dq) = 1

Z
e−�(q)μ0(dq), Z =

∫

X
e−�(q)μ0(dq),(4.48)

for some potential function � : X → R such that e−�(q) is μ0-integrable, and with μ0 given
as a centered Gaussian measure on X with covariance operator C : X → X, that is, μ0 =
N (0,C).

Regarding the covariance structure for the Gaussian measure μ0, we assume throughout
what follows that C is a trace-class, symmetric and strictly positive definite operator. By the
spectral theorem, it follows that X admits a complete orthonormal basis {ei}i∈N consisting
of eigenfunctions of C, corresponding to a nonincreasing sequence of positive eigenvalues
{λi}i∈N.6 We thus define the fractional powers Cγ of C for any γ ∈R as

Cγ q =
∞∑

i=1

λ
γ
i 〈q, ei〉ei for all q ∈ Dom

(
Cγ )

,(4.49)

where Dom(Cγ ) can be characterized as the set of all q ∈ X such that
∑∞

i=1 λ
2γ
i 〈q, ei〉2 < ∞

when γ ≤ 0 while taking Dom(Cγ ) as the dual relative to X of Dom(C−γ ) when γ > 0. We
refer the reader to [13, 23] for further general background on the wider theory of Gaussian
measures on function spaces.

The preconditioned Hamiltonian Monte Carlo algorithm introduced in [10] to sample from
μ(dq) = Z−1e−�(q)μ0(dq) is based on the following Hamiltonian function:

H(q,v) := 1

2

∣∣C−1/2v
∣∣2 + 1

2

∣∣C−1/2q
∣∣2 + �(q).(4.50)

The potential function � is assumed to be Fréchet differentiable, with its Fréchet derivative
denoted by D� : X → X, where the Hilbert space X is identified with its dual. It thus follows
that (4.50) has an associated (noncanonical) Hamiltonian dynamic given by

dq

dt
= v,

dv

dt
= −q − CD�(q),(4.51)

which formally corresponds to the more compact formulation (4.6) with the following choice
of “preconditioning” operator:

J :=
(

0 −C−1

C−1 0

)
.(4.52)

6Here we note that the trace-class condition amounts to requiring that
∑∞

j=1 λj < ∞.
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Under suitable assumptions on the potential function �, one can show that the Hamiltonian
flow associated to (4.51) holds μ ⊗ μ0 as an invariant measure, see [10], Theorem 3.1. As
a consequence, the Markov transition kernel associated to the evolution of the q variable in
(4.51), defined as

P t (q0,A) := P
(
q(t;q0,v0) ∈ A

)
, v0 ∼ μ0,

for all q0 ∈ X and A ∈ BX , holds the marginal of μ ⊗ μ0 onto the q variable, that is, μ, as an
invariant measure.

A crucial insight in [10] later revisited in [8, 9], is that each of the components of a certain
Strang splitting of (4.51) given by

dq

dt
= 0,

dv

dt
= −CD�(q) and

dq

dt
= v,

dv

dt
= −q,(4.53)

yield maps 

(1)
t , 


(2)
t such that 


(i)
t (μ0 ⊗ μ0) are absolutely continuous with respect to

μ0 ⊗ μ0 for i = 1,2 and any t ≥ 0.7 Taking (4.50) and the splitting (4.53) of (4.51) as a
starting point therefore suggests the following more general class of trajectory methods.

First we may replace H(q,v) in (4.50) with a more general class of nonseparable Hamil-
tonians which allows for a “position”-dependent kinetic energy component, namely

H(q,v) := �̂(q,v) + 1

2

∣∣C−1/2v
∣∣2 + 1

2

∣∣C−1/2q
∣∣2 + �(q)(4.54)

for a measurable function �̂ : X × X → R. In view of obtaining a well-defined probability
measure on the extended state space X ×X, we require the following integrability condition:

∫

X×X
exp

(
−�̂(q,v) − �(q)

)
μ0 ⊗ μ0(dq, dv) < ∞.(4.55)

We further assume that
∫

X
exp

(
−�̂(q,v)

)
μ0(dv) = 1, μ0 almost surely in q.(4.56)

This later assumption ensures that the position marginal of the Gibbs measure M associated
to H given by (4.54) is the desired target measure μ as in (4.48). We can therefore write, in
the notational formulation of Theorem 2.1,

M(dq, dv) = V(q, dv)μ(dq) where V(q, dv) = exp
(
−�̂(q,v)

)
μ0(dv),(4.57)

so that (4.55) implies mutual absolute continuity between M and M0 := μ0 ⊗ μ0.8

A Hamiltonian dynamic associated to the nonseparable Hamiltonian in (4.54) can be for-
mally written as

dz

dt
= J−1DH(z),(4.58)

for some general “preconditioning” operator J , and where DH denotes the Fréchet deriva-
tive of H. Under appropriate assumptions on J and H, and following a similar finite-
dimensionalization argument as in [10], one can show that such dynamic holds the proba-
bility measure M from (4.57) as invariant. However, notwithstanding Section 4.1.6 above,

7In fact it is not hard to see that 

(2)
t leaves μ0 ⊗ μ0 fixed as is shown in the proof of Theorem 4.18 below.

8One can formally relate (4.3), (4.2) and (4.54), (4.57) as follows: We assume that ZK(q) :=
∫

exp(−�̂(q,v)−
1
2 |C−1/2v|2) dv ≡ 1 so that (4.3) reduces to (4.54) by setting K(q,v) = �̂(q,v) + 1

2 |C−1/2v|2 and U(q) =
1
2 |C−1/2q|2 + �(q). Of course these relationships are purely formal when dim(X) = ∞ since the Lebesgue
measure is ill-defined in infinite dimensions.
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deriving a suitable numerical integrator for (4.58) that is well-defined particularly in this
infinite-dimensional context is a nontrivial task.

An alternative consists in defining a suitable “surrogate dynamics” for (4.58) that can be
more easily integrated. Here we consider the following general and possibly gradient-free
“surrogate dynamics,” namely

dq

dt
= v,

dv

dt
= −q − f (q),(4.59)

where f : X → X is a measurable mapping. In order to maintain absolute continuity with
respect to μ0, we assume that f (q) is in the Cameron–Martin space of μ0 for every q ∈ X,
or in other words

f (q) ∈ Dom
(
C−1/2)

for every q ∈ X.(4.60)

Notably, in the particular case that the kernel V from (4.57) is given by V(q, ·) = μ0 =
N (0,C) for every q ∈ X, as in (4.50), we may view f as a surrogate for CD�. Then, fol-
lowing (4.53), we consider a numerical discretization of (4.59) by first splitting the dynamics
into

dq

dt
= 0,

dv

dt
= −f (q)(4.61)

and
dq

dt
= v,

dv

dt
= −q.(4.62)

Clearly, the solution of (4.61) at any time t starting from (q0,v0) ∈ X × X is given by



(1)
f,t (q0,v0) = 


(1)
t (q0,v0) =

(
q0,v0 − tf (q0)

)
,(4.63)

while the corresponding solution of (4.62) is given by



(2)
t (q0,v0) =

(
cos(t)q0 + sin(t)v0,− sin(t)q0 + cos(t)v0

)
.(4.64)

For any fixed time steps δ1 > 0 and δ2 > 0 for (4.63) and (4.64), respectively, and a fixed
number n ∈ N of iterative steps, we consider a numerical integrator for (4.59) starting from
(q0,v0) ∈ X × X given by the following Strang-type splitting:

Ŝ(q0,v0) =
(



(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

)n
(q0,v0).(4.65)

Here note that, with R taken as the usual “momentum-flip” operator defined in (4.28), and
invoking Lemma 4.4.(i) and Lemma 4.2.(i), it is direct to verify that S = R◦ Ŝ is an involution.
For convenience, we also denote by �i(q0,v0) = (qi,vi) the solution arising from i steps
taken in the process of (4.65), that is,

�i(q0,v0) = (qi,vi) =
(



(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

)i
(q0,v0),(4.66)

for i = 1, . . . , n.
We notice that, in contrast to (4.51), the system (4.59) for general f may not generate

a Hamiltonian dynamics, and also may not hold μ ⊗ μ0 as an invariant measure. Similarly
with a more general class of Gibbsian measures M as in (4.54), (4.57) it is not clear how to
select an f so that the resulting flow (4.59) holds M as an invariant.9 Nevertheless, as we
now demonstrate, the class of numerical integrators Ŝ defined by (4.65) and by “momentum
selection” mechanisms V given in (4.57) allow for the identification of an accept–reject func-
tion α̂ as in (2.11) which generates a sampling algorithm of the form (2.12) that is reversible
with respect to the desired target measure μ.

9In this sense we may understand the algorithms introduced in [8] as themselves being surrogate methods.
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THEOREM 4.18. Let X be a separable Hilbert space, and take C : X → X to be a trace-

class, symmetric and strictly positive definite operator. Let μ0 = N (0,C) and consider a

measurable mapping � : X → R with e−�(·) ∈ L1(μ0). Under these assumptions, we con-

sider a target probability measure μ as in (4.48). Fix also any measurable f : X → X such

that f (q) is in the Cameron–Martin space of μ0 for every q ∈ X, namely (4.60). Let Ŝ be

the numerical integrator for the dynamics (4.59) defined in (4.65) for any fixed discretization

parameters δ1 > 0, δ2 > 0, and number of iteration steps n ≥ 1. Finally, consider the Markov

kernel V and probability measure M defined in (4.57), with �̂ satisfying conditions (4.55)
and (4.56).

Then, taking R to be the “momentum-flip” operator as defined in (4.28), S := R ◦ Ŝ is an

involution and (R ◦ Ŝ)∗M is absolutely continuous with respect to M. Furthermore, defining

the function α̂ : X × X → [0,1] as

α̂(q0,v0) := 1 ∧ d(R ◦ Ŝ)∗M

dM
(q0,v0), (q0,v0) ∈ X × X,(4.67)

it follows that the associated Markov kernel P : X × BX → [0,1] given as in (2.12), with

these choices of S and V , is reversible with respect to μ. Moreover, invoking the notation

from (4.66), we have

d(R ◦ Ŝ)∗M

dM
(q0,v0)

= exp

(
�(q0) + �̂(q0,v0) − �(qn) − �̂(qn,−vn)

− δ2
1

2

[∣∣C−1/2f (q0)
∣∣2 −

∣∣C−1/2f (qn)
∣∣2]

+ 2δ1

n−1∑

i=1

〈
C−1/2vi,C

−1/2f (qi)
〉

+ δ1
[〈
C−1/2v0,C

−1/2f (q0)
〉
+

〈
C−1/2vn,C

−1/2f (qn)
〉]
)
,

(4.68)

for M-a.e. (q0,v0) ∈ X × X.

We summarize the class of algorithms to sample from measures of the form μ(dq) ∝
e−�(q)μ0(dq) for μ0 = N(0,C) resulting from Theorem 4.18 as Algorithm 4.5.

Our proof of Theorem 4.18 is based around the basic properties of pushforward measures
(2.6), (2.7) and (2.8), but shares similar ideas to the argument given in [9], Proposition 3.1,
so we save our presentation for Appendix B. To provide some general intuition beyond the
technical details of the proof, we notice that the integrator S = R ◦ Ŝ in this case involves
repeated applications of the maps 


(1)
δ1

, 

(2)
δ2

and R. The latter two maps hold μ0 ⊗ μ0 in-
variant, while the Radon–Nikodym derivative associated with the pushforward of μ0 ⊗μ0 by



(1)
δ1

can be computed via the Cameron–Martin theorem. We then repeatedly apply property
(2.8) to compute the Radon–Nikodym derivative associated with the pushforward of μ0 ⊗μ0
by S, which, combined with a simple decomposition using (2.6) and (2.7), yields the desired
acceptance probability given by (4.67), (4.68).

To finish this section, we notice that by using a similar idea as in Theorem 4.18, we can
also obtain a rigorous reversibility result for a generalized/surrogate version of the infinite-
dimensional Metropolis-adjusted Langevin algorithm (∞MALA) for sampling from mea-
sures μ of the form (4.48), as introduced in [11, 22]. In explaining this connection, let us
consider, for simplicity, only the case when V(q, ·) = N (0,C), for every q ∈ X, with a suit-
able covariance operator C.
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Algorithm 4.5 Splittings of preconditioned dynamics for Gaussian–Hilbert space targets
e−�(q)

Z
μ0(dq)

1: Select the algorithm parameters:

(i) The form of �̂(q,v) for the proposal distribution V(q, dv) :=
exp(−�̂(q,v))μ0(dv).

(ii) The approximation f of D�.
(iii) The discretization time step parameters δ1 > 0, δ2 > 0 in the splittings (4.63) and

(4.64) respectively.
(iv) The number of iterative steps n ∈ N now defining Ŝ in (4.65).

2: Choose q0 ∈ X

3: for k ≥ 0 do

4: Sample vk ∼ V(qk, dv)

5: Propose qk+1 := �1 ◦ Ŝ(qk,vk), with Ŝ as defined in (4.65)
6: Set qk+1 := qk+1 with probability α̂(qk,vk) given by (4.67), computed via (4.68),

otherwise take qk+1 := qk .

We recall that such Langevin-type algorithms are defined for a given Fréchet differentiable
potential function � : X → R and covariance operator C : X → X as in (4.48), through the
following Langevin dynamic:

dq + 1

2
K

(
C−1q + D�(q)

)
dt =

√
K dW(4.69)

for some “preconditioning” operator K : X → X and a cylindrical Brownian motion W

evolving on X (see, e.g., [23] for the general setting of such stochastic evolution equa-
tions). Under appropriate assumptions on the potential �, it follows that such dynamics holds
μ(dq) ∝ e−�(q)μ0(dq) as an invariant measure, and thus effective MCMC proposals can be
generated by taking suitable numerical discretizations of (4.69) [11, 22].

Similarly as in (4.59), here we consider the following more general dynamics:

dq + 1

2
KC−1q + f (q) dt =

√
K dW,(4.70)

for some measurable mapping f : X → X. In practice we would expect f to be taken as
a suitable approximation of KD�. Choosing K = C and taking a semi-implicit Euler time
discretization of (4.70) where the linear part of the drift is approximated in a Crank–Nicolson
fashion, yields, for a fixed time step δ > 0,

q̃ − q

δ
= −1

2

(
q + q̃

2
+ f (q)

)
+ 1√

δ
v, v ∼ μ0 = N (0,C).(4.71)

Solving (4.71) for q̃ and denoting ρ = (4 − δ)/(4 + δ) thus yields the following proposal
map:

F(q,v) := ρq +
√

1 − ρ2
(

v −
√

δ

2
f (q)

)
, q ∈ X, v ∼ μ0,(4.72)

which then defines the proposal kernel Q(q, dq̃) = F(q, ·)∗μ0(dq̃).
To account for the bias introduced both by replacing KD� with the surrogate f 10 and from

the numerical discretization, the resulting proposal kernel Q may be complemented with an

10Here, in contrast to (4.69), the dynamics (4.70) are not guaranteed to hold μ as an invariant measure in general.
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appropriate accept–reject function α so as to yield a Markov transition kernel P̄ as in (3.1)
for which μ is invariant. Following the approach by [72] recalled in Section 3, such an α can
be obtained as in (3.2), by computing the Radon–Nikodym derivative dη⊥/dη directly, for
η(dq, dq̃) = F(q, ·)∗μ0(dq̃)μ(dq) and η⊥(dq, dq̃) = η(dq̃, dq), similarly as done in [11].

Alternatively, we may obtain dη⊥/dη explicitly as a special case of (4.68), by invoking
(3.11) and defining an associated involution mapping S on X ×X according to (3.7). Indeed,
denoting Ŝ = R ◦S, where R is the “momentum-flip” map (4.28), so that S = R ◦ Ŝ, it follows
from a similar observation in [9] that Ŝ is the particular case of (4.65) for n = 1 and specific
choices of δ1, δ2. This yields the following corollary, whose complete proof is presented in
Appendix C.

COROLLARY 4.19. Let X be a separable Hilbert space, and take C : X → X to be a

trace-class, symmetric and strictly positive definite operator. Let μ0 = N (0,C) and consider

a measurable mapping � : X → R with e−�(·) ∈ L1(μ0). Under these assumptions, we con-

sider a target probability measure μ as in (4.48). Fix also any measurable f : X → X such

that f (q) is in the Cameron–Martin space of μ0 for every q ∈ X, namely (4.60).
Let Q : X × BX → [0,1] be the Markov kernel Q(q, dq̃) = F(q, ·)∗μ0(dq̃), with F as

defined in (4.72). Let η,η⊥ ∈ Pr(X × X) as in (3.3), namely η(dq, dq̃) = Q(q, dq̃)μ(dq),
and η⊥(dq, dq̃) := η(dq̃, dq). Then, it follows that

dη⊥

dη
(q, q̃) = β(q̃,q)

β(q, q̃)
,

where

β(q, q̃) := exp
(
−�(q) − δ

8

∣∣C−1/2f (q)
∣∣2 −

√
δ

2

〈
C−1/2(q̃ − ρq)√

1 − ρ2
,C−1/2f (q)

〉)
.

Consequently, defining α : X × X → [0,1] as in (3.2), that is,

α(q, q̃) := 1 ∧ dη⊥

dη
(q, q̃) = 1 ∧ β(q̃,q)

β(q, q̃)
,(4.73)

then it follows that, with these choices of α and Q, the corresponding Markov kernel P̄ :
X ×BX → [0,1] given as in (3.1) satisfies detailed balance with respect to μ.

5. Connections with the classical algorithms. In this final section we make explicit
how a variety of established MCMC method can be derived from Theorem 2.1. Here it is no-
table and interesting that many of the algorithms discussed here can be derived by multiple,
nonequivalent, applications of Theorem 2.1; namely different choices of S, V in (2.12) may
ultimately lead to the same sampling kernel. In fact the machinery introduced in Section 3,
Section 4 plays an important role here, identifying and/or clarifying various connections be-
tween a number of popular sampling methods.

First in Section 5.1 we consider methods defined for sampling continuous distributions
on R

N . Further on in Section 5.2 we consider the Hilbert space methods introduced more
recently in, for example, [10, 11, 22].

5.1. Finite-dimensional methods. For all examples in this subsection, we assume a finite-
dimensional state space X = R

N , and consider a continuously distributed target measure
μ(dq) = p(q) dq. We often write μ in the potential form (4.1) convenient for Hamiltonian
methods, that is, μ(dq) ∝ e−U(q) dq for some suitably regular potential function U : RN →
R.
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5.1.1. The classical Metropolis–Hastings formulation. Start first with the situation when
we consider a general continuously distributed Markov kernel Q(q, dq̃) := q(q, q̃) dq̃, where
q : RN × R

N → R
+ is a measurable mapping such that

∫
q(q, q̃) dq̃ = 1 for any q ∈ R

N .
Recalling the identity (2.5), this is a special case of Tierney’s formulation [72]. Therefore,
precisely as a special case of Remark 3.1, we derive the classical Hastings ratio [43], that is,
(1.3), from Theorem 2.1 as follows: take S(q,v) = (v,q) which is clearly a volume preserv-
ing involution. Set V = Q so that M(dq, dv) = p(q)q(q,v) dqdv. Thus, comparing (2.11)
with (2.3) we obtain (1.3). Here, strictly speaking, we would need that both p > 0 and q > 0
almost everywhere to obtain the condition (P2) in Theorem 2.1, but see Remark 2.4.

Note that, with this choice for S, V , we may view [43] as a special case of the Metropolis–
Hastings–Green algorithm, [36], discussed above in Remark 2.6. Also, it is amusing to ob-
serve that the classical Hastings ratio, (1.3), falls out as special case of Algorithm 4.2. To
see this write the proposal density q in the potential form q(q,v) = ZK(q)−1e−K(q,v) and set
V = Q. In (4.26), we select f1(v) = v, f2(q) = −q and set δ1 = δ2 = 1. Similar connections
between each of the other algorithms in Section 4 and the acceptance probability (1.3) can be
drawn as well.

5.1.2. Random walk Monte Carlo. Perhaps the simplest Metropolis–Hastings method is
the random walk Monte Carlo (RWMC) algorithm: Take a proposal map F :RN ×R

N →R
N

given by

(5.1) F(q,v) := q + v, v ∼ ν,

where ν(dq̃) = q(q̃) dq̃ = Z−1
K

e−K(q̃) dq̃ is some jumping probability distribution on R
N .

With this definition, (2.3) and noting that F(q, ·)−1(q̃) = q̃ − q for any fixed q ∈ R
N , the

associated proposal kernel takes the form

Q(q, dq̃) := F(q, ·)∗ν(dq̃) = q(q̃ − q) dq̃ = Z−1
K

e−K(q̃−q) dq̃.(5.2)

Clearly this case falls under the rubric of the usual Hastings ratio, (1.3), which translates to

(5.3) α(q, q̃) := 1 ∧ p(q̃)q(q − q̃)

p(q)q(q̃ − q)
= 1 ∧ exp

(
U(q) − U(q̃) +K(q̃ − q) −K(q − q̃)

)
;

cf., for example, [46], equation 3.38 or [29], equation 11.2. Typically, ν is taken to be a zero-
mean Gaussian distribution N (0,C), for some covariance matrix C on R

N×N . Note that, in
this particular symmetric case and in general, the terms involving q cancel in (1.3) which is
the classical Metropolis case.

Let us observe that the machinery in Section 3.2 reveals a slightly different S and V which
yield the same RWMC algorithm from Theorem 2.1. Comparing (5.2) with (3.7) and us-
ing that F(q, ·)−1(q̃) = q̃ − q we obtain the involution S(q,v) := (q + v,−v) and then set
V(q, dv) := ν(dv). Thus, according to (2.20), it follows that

α̂(q,v) = 1 ∧ dS∗(μ ⊗ ν)

d(μ ⊗ ν)
(q,v) = 1 ∧ p(q + v)q(−v)

p(q)q(v)

= 1 ∧ exp
(
−U(q + v) −K(−v) + U(q) +K(v)

)
,

which thus recovers α by invoking (3.12). Finally note that this choice of S and V turns out
to be a special case of Algorithm 4.2. To see this take f1 := 0 (and/or δ1 = 0), set f2(v) :=
v, δ2 = 1 and choose n = 1. According to (4.26), we have S = R ◦ Ŝ with R the usual
momentum-flip involution as in (4.28).
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5.1.3. The MALA algorithm. As introduced in [7, 68], the MALA algorithm uses as its
starting point a numerical resolution of the Langevin dynamic

dq + 1

2
∇U(q) dt = dW,(5.4)

so chosen in order that the target measure μ(dq) ∝ e−U(q) dq is an invariant. Here W is an N -
dimensional Brownian motion so that (5.4) is an Itô stochastic differential equation evolving
on R

N . By taking an explicit Euler numerical discretization of (5.4) with time step δ2, we

obtain the proposal kernel Q(q, dq̃) := F(q, ·)∗ν(dq̃) where ν(dv) = (2π)−N/2e− 1
2 |v|2 dv,

that is, normally distributed with unit covariance, and

F(q,v) := q − δ2

2
∇U(q) + δv.(5.5)

A corresponding acceptance probability α can be directly obtained as in (3.2), that is,
α(q, q̃) = 1 ∧ dη⊥/dη(q, q̃), with

η(dq, dq̃) = F(q, ·)∗ν(dq̃)μ(dq) ∝ exp
(
−U(q) − 1

2δ2

∣∣∣∣q̃ − q + δ2

2
∇U(q)

∣∣∣∣
2)

dqdq̃,

so that

(5.6)
α(q, q̃)

= 1 ∧ exp
(
−U(q̃) − 1

2δ2

∣∣∣∣q − q̃ + δ2

2
∇U(q̃)

∣∣∣∣
2
+ U(q) + 1

2δ2

∣∣∣∣q̃ − q + δ2

2
∇U(q)

∣∣∣∣
2)

.

Alternatively, we notice that under this setting the MALA algorithm can also be seen as
a particular case of Algorithm 2.1 associated to Theorem 2.1, by defining an involution map
S as in Proposition 3.3 and invoking Theorem 3.4(ii). Indeed, observe that, for each fixed q,
F(q, ·) is invertible in v with

F(q, ·)−1(q̃) = 1

δ

(
q̃ − q + δ2

2
∇U(q)

)
.

Invoking Proposition 3.3, one obtains the desired involution S from (3.7) as

S(q,v) =
(

q − δ2

2
∇U(q) + δv,

δ

2
∇U(q) − v + δ

2
∇U

(
q − δ2

2
∇U(q) + δv

))
.(5.7)

The acceptance probability α̂ from Theorem 2.1, that is, α̂(q,v) = 1 ∧ dS∗(μ ⊗ ν)/d(μ ⊗
ν)(q,v), is given particularly in this finite-dimensional context by formula (2.20), with

p(q) ∝ e−U(q) and q(q,v) ∝ e− 1
2 |v|2 . However, computing ∇S directly from the definition

in (5.7) might turn out to be an impractical task.
Instead, we notice that MALA is a special case of Algorithm 4.2 and that S in (5.7) can

be written as R ◦ Ŝ1,δ , where R is the velocity-flip involution R(q,v) = (q,−v) and Ŝ1,δ

is the numerical integrator defined in (4.26) with n = 1, 2δ1 = δ2 = δ and applied to the
Hamiltonian dynamic (4.6) with canonical J as in (4.7) in R

2N corresponding to the separated
Hamiltonian H(q,v) = U(q) + 1

2 |v|2, (q,v) ∈ R
2N . This leads us to choose f1(v) = v and

f2(q) = −∇U(q). It thus follows from Theorem 4.7 (or alternatively Proposition 4.9(i)) that
S is volume-preserving, so that |det∇S(q,v)| = 1, for all (q,v) ∈ R

2N .
Now from (2.20), or equivalently (4.15), we have

α̂(q,v) = 1 ∧ e−H(S(q,v))+H(q,v)

= 1 ∧ exp
(
−U

(
F(q,v)

)
− 1

2

∣∣F
(
F(q,v), ·

)−1
(q)

∣∣2 + U(q) + 1

2
|v|2

)
.
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Invoking (3.12), we thus recover α as in (5.6). This shows that in this setting MALA is a par-
ticular case of Algorithm 2.1, or equivalently Algorithm 4.2, corresponding to the involution

S as given in (5.7) and the kernel V(q, dv) = ν(dv) ∝ e− 1
2 |v|2 dv.

5.1.4. Hamiltonian Monte Carlo. In the classical HMC algorithm from [25, 61], one
takes K in the Hamiltonian (4.3) as in (4.5), that is, K(v) = 1

2〈M−1v,v〉, for a so that the
Markov kernel V(q, ·) is the (q-independent) RN -valued gaussian ν = N (0,M). Here, M is
a positive-definite mass matrix in R

N×N which is an algorithmic parameter to be chosen. The
corresponding Hamiltonian dynamics is given as in (4.6) with the standard choice of matrix
J from (4.7), thus written as

dq

dt
= M−1v,

dv

dt
= −∇U(q).(5.8)

A typical choice of numerical integrator Ŝ for such dynamics is given by the leapfrog integra-
tor Ŝn,δ = (


(1)
δ/2 ◦ 


(2)
δ ◦ 


(1)
δ/2)

n defined as in (4.26) for a given time step 2δ1 = δ2 = δ > 0,

number of iterations n ∈ N and taking f1(v) = M−1v, f2(q) = −∇U(q). Here note that
T := δ · n is understood as the total integration time of our numerical approximation of
(5.8). A direct calculation (or see Proposition 4.9, Theorem 4.7) yields that each of the so-
lution maps 


(1)
δ/2 and 


(2)
δ are reversible with respect to the “momentum”-flip involution

R(q,v) = (q,−v). Hence, by Lemma 4.4(i), Ŝn,δ is reversible with respect to R, so that
S := R ◦ Ŝn,δ is an involution. The classical HMC algorithm thus follows as a special case of
Algorithm 4.2 under these choices.

Other more recent versions of HMC can also be seen to be special cases of Algorithm 4.2.
For example, in the relativistic HMC method from [53] the kinetic portion K of the Hamilto-
nian in (4.3) is given as

K(v) = mc2
( |v|2

m2c2 + 1
)1/2

(5.9)

up to the user-determined algorithmic parameters m,c > 0, In the physical analogy drawn
here these parameters correspond to “mass” and the “speed of light,” respectively. To connect
back to Algorithm 4.2 we keep the same choices for V , R as the classical case and we now
take f1(v) = K(v) as in (5.9) leaving f2(q) = −∇U(q) to once again define Ŝ = (


(1)
δ/2 ◦



(2)
δ ◦ 


(1)
δ/2)

n according to the associated leap-frog steps 
(1), 
(2).
Another version is the Riemannian manifold Hamiltonian Monte Carlo (RMHMC) intro-

duced in [33]. Here one considers K in (4.3) as the negative log-density of a normal distribu-
tion with “position”-dependent covariance matrix. More specifically,

K(q,v) = 1

2

〈
M(q)−1v,v

〉
,

so that V(q, ·) = N (0,M(q)). The corresponding Hamiltonian dynamics is written as in (4.6)
with J taken in the canonical form as in (4.7). The standard numerical integrator in this case
is given by the implicit mapping Ŝn,δ defined in (4.40), for given choices of time step δ > 0
and number of steps n ∈ N and f1, f2 taken as equalities in (4.36)–(4.37) and note that here
ZK(q) = 1

2 ln(2π) + N
2 ln(detM(q)). From Theorem 4.12, it follows that Ŝn,δ is symplectic

(and hence volume preserving) as well as reversible with respect to the momentum-flip invo-
lution R in (4.28). Therefore, the RMHMC method follows as a special case of Algorithm 4.4
under this setting.
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5.2. Hilbert space methods. As in the setting from Section 4.2, here we consider ex-
amples where X is a separable Hilbert space, and the target measure μ is of the form
(4.48). Namely, μ(dq) ∝ e−�(q)μ0(dq), with μ0 = N (0,C), for a suitable potential function
� : X →R and covariance operator C : X → X which is symmetric, positive and trace-class.
In particular we will see that all of the algorithms presented in this subsection fall out as
special case of Algorithm 4.5 under suitable parameter choices.

5.2.1. The preconditioned Crank–Nicolson (pCN) algorithm. The preconditioned
Crank–Nicolson MCMC algorithm [11, 22] is derived from the dynamics (4.70) in the par-
ticular case when f = 0 and K = C, so that

dq = −1

2
qdt +

√
C dW,

which defines an Ornstein–Uhlenbeck process, and holds μ0 = N (0,C) as an invariant mea-
sure.

Following a similar derivation as in (4.71)–(4.72), the pCN proposal map is written as

F(q,v) = ρq +
√

1 − ρ2v, q ∈ X, v ∼ μ0 = N (0,C),(5.10)

namely we can write the proposal kernel in the form (3.5) with this F and V(q, dv) = μ0(dv).
Here we recall that ρ := (4 − δ)/(4 + δ) for a fixed time step δ > 0.

As in [72], a suitable accept–reject function is given as α(q, q̃) = 1 ∧ dη⊥/dη(q, q̃), for
q, q̃ ∈ X, where η(dq, dq̃) = F(q, ·)∗μ0(dq̃)μ(dq) and η⊥(dq, dq̃) = η(dq̃, dq), with F as
in (5.10), μ0 = N (0,C) and μ as in (4.48). Such α can be computed by noticing that

dη⊥

dη
(q, q̃) = exp

[
�(q) − �(q̃)

]dη⊥
0

dη0
(q, q̃),

where η0(dq, dq̃) := F(q, ·)∗μ0(dq̃)μ0(dq). Further, it is not difficult to check, for example,
via equivalence of characteristic functionals, that η⊥

0 = η0, so that dη⊥
0 /dη0(q, q̃) = 1 for η0-

a.e. (q, q̃) ∈ X × X and thus

(5.11) α(q, q̃) = 1 ∧ exp
[
�(q) − �(q̃)

]

(cf., e.g., [8, 11, 22]).
As an alternate route, α can also be computed by invoking formula (3.12) with S given

by Proposition 3.3, as done in (C.7) below. Indeed, taking f = 0 in (C.7) yields immediately
(5.11). Regarding the connection to Algorithm 4.5, from (C.3) below, here we notice that
the associated involution S derived from (3.7) can be written as S = R ◦ 


(2)
δ2

, where R is

the momentum-flip operator (4.28), δ2 > 0 is such that ρ = cos δ2, and 

(2)
t is as defined in

(4.64).

5.2.2. The infinite-dimensional Metropolis-adjusted Langevin algorithm (∞MALA). The
infinite-dimensional Metropolis-adjusted Langevin algorithm (∞MALA) [11, 22] is derived
from the Langevin dynamic (4.69) via the numerical discretization (4.71). In this case, for a
fixed time step δ > 0, it follows from (4.72) with f = CD� that the proposal map is given
by

F(q,v) := ρq +
√

1 − ρ2
(

v −
√

δ

2
CD�(q)

)
, q ∈ X, v ∼ μ0,(5.12)

where we recall that ρ = (4 − δ)/(4 + δ). Together with the decomposition in (C.3) below, it
thus follows that ∞MALA is the particular case of Algorithm 4.5 with the specific choices
�̂ = 0 (i.e., V(q, ·) = μ0 for all q ∈ X), f = CD�, δ1 :=

√
δ/2, δ2 := cos−1 ρ and n = 1.
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Moreover, from (4.73) it follows that an accept–reject function for ∞MALA is given by

α(q, q̃) = 1 ∧ β(q̃,q)

β(q, q̃)
,(5.13)

where

β(q, q̃) := exp
(
−�(q) − δ

8

∣∣C1/2D�(q)
∣∣2 −

√
δ

2

〈
q̃ − ρq√
1 − ρ2

,D�(q)

〉)
,

for η-a.e. (q, q̃) ∈ X×X. Here, η(dq, dq̃) = F(q, ·)∗μ0(dq̃)μ(dq) with F as given in (5.12).

5.2.3. The infinite-dimensional Hamiltonian Monte Carlo (∞HMC) algorithm. The
infinite-dimensional Hamiltonian Monte Carlo algorithm introduced in [10] is the particu-
lar case of Algorithm 4.5 when �̂ = 0 (i.e., V(q, ·) = μ0 for all q ∈ X), f = CD�, and when
the discretization parameters δ1, δ2 from (4.65) are defined as δ1 := δ/2 and δ2 := δ for some
fixed time step δ > 0. From (4.68), it thus follows that an acceptance probability in this case
is given by

α̂(q0,v0) = 1 ∧ d(R ◦ Ŝ)∗(μ ⊗ μ0)

d(μ ⊗ μ0)
(q0,v0)

= 1 ∧ exp

(
�(q0) − �(qn) − δ2

8

[∣∣C1/2D�(q0)
∣∣2 −

∣∣C1/2D�(qn)
∣∣2]

+ δ

n−1∑

i=1

〈
vi,D�(qi)

〉
+ δ

2

[〈
v0,D�(q0)

〉
+

〈
vn,D�(qn)

〉]
)
,

where R is the “momentum-flip” map (4.28), and we invoked similar notation as in (4.66).
A geometric version of this ∞HMC algorithm that considers a certain position-dependent

kinetic energy as in (4.54) was developed in [8]. Specifically, the kernel V(q, ·) at
each q ∈ X is taken to be a Gaussian N (0,K(q)), for a position-dependent covari-
ance operator K(q) : X → X that is assumed to be trace-class, symmetric and strictly
positive definite. Here one assumes additionally that Im(K(q)1/2) = Im(C1/2), and that
(C−1/2K(q)1/2)(C−1/2K(q)1/2)∗ − I is a Hilbert–Schmidt operator on X, for μ0-a.e. q ∈ X.
Under these assumptions, it follows from the Feldman–Hajek theorem that V(q, ·) =
N (0,K(q)) and μ0 = N (0,C) are mutually absolutely continuous for μ0-a.e. q ∈ X (see,
e.g., [23]), so that �̂ in (4.57) is well defined. The authors then consider the following surro-
gate dynamic from the full corresponding Hamiltonian system:

dq

dt
= v,

dv

dt
= −K(q)

[
C−1q + D�(q)

]
,

which is thus a particular case of the general system (4.59) with

f (q) = K(q)
[(
C−1 −K−1(q)

)
q + D�(q)

]
.(5.14)

Due to the fixed assumptions on K(q) and C, it follows that such f satisfies (4.60). Proceeding
with a numerical splitting as in (4.61)–(4.62), (4.65), we obtain that this geometric version
of the ∞HMC algorithm is a particular case of Algorithm 4.5 with the choices V(q, ·) =
N (0,K(q)), f as in (5.14), δ1 = δ and δ2 = δ/2 for a given time step δ > 0, and any number
of iterative steps n ∈ N.
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APPENDIX A: PROOF OF THEOREM 4.12

We begin with the first item and prove that Ŝ is R-reversible under assumption (4.41).
Since Ŝ is the n-fold composition of Ŝ

(A)
δ/2 ◦ Ŝ

(B)
δ/2 , due to Lemma 4.4(ii), it suffices to show that

Ŝ
(A)
δ/2 ◦ Ŝ

(B)
δ/2 is R-reversible. Moreover, as we already observed above, it is direct to verify that

the adjoint of the Euler-B scheme is the Euler-A scheme in sense given in Definition 4.5(i).
In other words we have that (Ŝ

(B)
δ/2 )∗ = Ŝ

(A)
δ/2 and so, as observed in Lemma 4.6(i), we infer

that Ŝ
(A)
δ/2 ◦ Ŝ

(B)
δ/2 is symmetric. Invoking Lemma 4.6(ii) and Lemma 4.4(i), it therefore suffices

to show that

R ◦ Ŝ
(A)
δ/2 = Ŝ

(A)
−δ/2 ◦ R and R ◦ Ŝ

(B)
δ/2 = Ŝ

(B)
−δ/2 ◦ R.(A.1)

Let us verify the statement in (A.1) for Ŝ
(A)
δ/2 . Let z = (q,v) ∈ R

2N and denote z = (q,v) :=
Ŝ

(A)
δ/2 (z). From (4.39), we have

z = z + δ

2
f(q,v) = z + δ

2
f(�1z,�2z).

Applying R and invoking (4.41), it follows that

Rz = Rz + δ

2
Rf(�1z,�2z) = Rz − δ

2
f(�1 ◦ Rz,�2 ◦ Rz).(A.2)

On the other hand, denoting z̃ := Ŝ
(A)
−δ/2(Rz), we have again from (4.39) that

z̃ = Rz − δ

2
f(�1z̃,�2 ◦ Rz).(A.3)

From (A.2), (A.3) we conclude by uniqueness of solutions for (4.38) that Rz = z̃ or in other
words R ◦ Ŝ

(A)
δ/2 (z) = Ŝ

(A)
−δ/2 ◦ R(z), for every z ∈ R

2N as desired. The proof for Ŝ(B) is analo-
gous. Finally, notice that if R is the momentum-flip involution (4.28), then (4.41) reduces to
the requirement (4.42). This finishes the proof of the first item.

Turning to the second item we follow the approach in [48], Chapter 4.1, and show that
dq ∧ dv = dq ∧ dv for (q,v) = Ŝ

(A)
δ/2 (q,v) and for (q,v) = Ŝ

(B)
δ/2 (q,v). Here d is the exterior

derivative and ∧ is the wedge product. See the footnote in Definition 4.1 above and reference,
for example, [48, 74] for further details and proper definitions. Starting with Euler-A we have,
referring back to (4.39), that

dq = dq + δ

2
∇qf1(q,v) dq + δ

2
∇vf1(q,v) dv,

dv = dv + δ

2
∇qf2(q,v) dq + δ

2
∇vf2(q,v) dv.

We now compute dq ∧ dv by expanding first in dv then in dq appropriately. As illustrated
in [48], Chapter 3.6, we make use of the identity that dw ∧ (Adw̃) = (A∗ dw) ∧ dw̃ for
any w, w̃ ∈ R

N and any N × N matrix A so that in particular dw ∧ (Adw) = 0 when A is
symmetric. With our standing assumption (4.43) we find

dq ∧ dv

= dq ∧
(
dv + δ

2
∇qf2(q,v) dq + δ

2
∇vf2(q,v) dv

)

= dq ∧ dv + dq ∧
(

δ

2
∇vf2(q,v) dv

)
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= dq ∧ dv +
(

δ

2
∇qf1(q,v) dq + δ

2
∇vf1(q,v) dv

)
∧ dv + dq ∧

(
δ

2
∇vf2(q,v) dv

)

= dq ∧ dv,

as desired in the first case. Regarding Euler-B, (4.38), we have

dq = dq + δ

2
∇qf1(q,v) dq + δ

2
∇vf1(q,v) dv,

dv = dv + δ

2
∇qf2(q,v) dq + δ

2
∇vf2(q,v) dv.

Similar to the previous case but now expanding first in dq and then in dv we have:

dq ∧ dv =
(
dq + δ

2
∇qf1(q,v) dq + δ

2
∇vf1(q,v) dv

)
∧ dv

= dq ∧ dv +
(

δ

2
∇qf1(q,v) dq

)
∧ dv

= dq ∧
(
dv + δ

2
∇qf2(q,v) dq + δ

2
∇vf2(q,v) dv

)
+

(
δ

2
∇qf1(q,v) dq

)
∧ dv

= dq ∧ dv,

completing the proof of the second item.
We address the final item (iii) showing in this case that Ŝ is volume-preserving by explicitly

computing det∇Ŝ. Since Ŝ is the composition of half-steps of Ŝ(B) and Ŝ(A), it suffices to
verify that each of these integrators is volume-preserving. We show this only for Ŝ(A), since
the proof for Ŝ(B) follows analogously. Taking (f1(z), f2(z)) = J̃−1∇H̃(z) in (4.39) and
differentiating (q∗,v∗) = Ŝ

(A)
δ (q,v) with respect to q and v, it follows that

(
I −δEH̃vv

0 I + δEH̃qv

)
∇Ŝ

(A)
1,δ (q,v) =

(
I + δEH̃vq 0
−δEH̃qq I

)
,

where H̃qq, H̃qv, H̃vq, H̃vv ∈ R
N×N are evaluated at (q∗,v∗) and denote the matrices of

second-order partial derivatives of H̃ with respect to the variables q and/or v. Therefore,

(A.4)

∇Ŝ
(A)
δ (q,v)

=
(
I + δEH̃vq − δ2EH̃vv(I + δEH̃qv)

−1EH̃qq δEH̃vv(I + δEH̃qv)
−1

−δ(I + δEH̃qv)
−1EH̃qq (I + δEH̃qv)

−1

)
.

Invoking the formula for the determinant of block matrices, namely

(A.5)

det
(
A B

C D

)
= det

(
AD − BD−1CD

)
whenever A,B,C,D ∈R

N×N and D is invertible

(see, e.g., [69]), a direct calculation yields that |det∇Ŝ
(A)
δ (q,v)| = 1 for any (q,v) ∈ R

2N .
The proof is now complete.

APPENDIX B: PROOF OF THEOREM 4.18

As usual we proceed by establishing conditions (P1), (P2) in Theorem 2.1 for the elements
S = R ◦ Ŝ and M specified according to (4.65) and (4.57), respectively. In the process of
establishing (P2) we demonstrate (4.68) by making suitable use of various identities from
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Section 2.1. Regarding (P1), from the definitions of 

(1)
t and 


(2)
t in (4.63) and (4.64), it is

not difficult to check that
(
R ◦ 


(1)
t

)2 = I and
(
R ◦ 


(2)
t

)2 = I for any t ≥ 0.(B.1)

Hence, from Lemma 4.4(i) and Lemma 4.2(i) it follows that (R ◦ Ŝ)2 = I , so that S is indeed
an involution and thus condition (P1) is verified.

Turning to condition (P2) of Theorem 2.1 we introduce an intermediate measure M0 =
μ0 ⊗ μ0. Notice that, embedded in the assumption (4.55), we have that M and M0 must
be mutually absolutely continuous and hence it follows that S∗M and S∗M0 must also be
mutually absolutely continuous. Thus, in order to establish (P2), it suffices to prove that
S∗M0 is absolutely continuous with respect to M0. This being true, notice moreover that,
with the fact that S is an involution and the aide of the identities (2.6), (2.7), we have

dS∗M

dM
(q,v) = dM0

dM
(q,v)

dM

dM0

(
S(q,v)

)dS∗M0

dM0
(q,v)(B.2)

for M-a.e. (q,v) ∈ X × X. Here, using (2.5), we have

dM0

dM
(q0,v0) = Z exp

(
�(q0) + �̂(q0,v0)

)
(B.3)

and similarly, invoking the notation introduced in (4.66),

dM

dM0

(
S(q0,v0)

)
= dM

dM0
(qn,−vn) = 1

Z
exp

(
−�(qn) − �̂(qn,−vn)

)
.(B.4)

We now show that indeed S∗M0 
 M0 and compute dS∗M0/dM0 by breaking S up
into its constituent maps and making repeated usage of (2.8). Start by noticing that the map-
pings 


(1)
δ1

and 

(2)
δ2

defined in (4.63)–(4.64) satisfy (

(i)
δi

)∗M0 
 M0, i = 1,2. Indeed, it
is not difficult to check via, for example, the equivalence of characteristic functionals that
the rotation mapping 


(2)
δ2

preserves the measure M0, that is, (

(2)
δ2

)∗M0 = M0, so that in
particular

d(

(2)
δ2

)∗M0

dM0
(q,v) = 1 for M0-a.e. (q,v) ∈ X × X.(B.5)

Regarding 

(1)
δ1

we denote by G : X × X → X the mapping corresponding to the second

component of 

(1)
δ1

, that is,

G(q,v) := v − δ1f (q), (q,v) ∈ X × X,

and thus obtain
(



(1)
δ1

)∗
M0(dq, dv) = G(q, ·)∗μ0(dv)μ0(dq).

Now, for v ∼ μ0 = N (0,C) it follows that for each fixed q ∈ X, G(q,v) ∼ N (−δ1f (q),C).
Hence, for each q ∈ X, G(q, ·)∗μ0 = Law(G(q,v)) = N (−δ1f (q),C). Under our assump-
tion (4.60), namely that f (q) ∈ Dom(C−1/2), we have that μ0 and G(q, ·)∗μ0 are mutually
absolutely continuous and, consequently, (


(1)
δ1

)∗M0 
 M0, with

d(

(1)
δ1

)∗M0

dM0
(q,v) = dG(q, ·)∗μ0

dμ0
(v)

= exp
(
−δ1

〈
C−1/2f (q),C−1/2v

〉
− δ2

1

2

∣∣C−1/2f (q)
∣∣2

)(B.6)

for M0-a.e. (q,v) ∈ X × X (see, e.g., [23], Theorem 2.23).
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From (2.8) and (B.5) and recalling the notation (4.66), we deduce that the mapping � :=



(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

satisfies �∗M0 
 M0 and

d�∗M0

dM0
(q,v) =

d(

(1)
δ1

)∗M0

dM0

((



(1)
δ1

◦ 

(2)
δ2

)−1
(q,v)

)d(

(1)
δ1

)∗M0

dM0
(q,v),(B.7)

for M0-a.e. (q,v) ∈ X × X. Consequently, invoking (2.8) once again, we obtain that Ŝ = �n

satisfies Ŝ∗M0 
 M0, with

dŜ∗M0

dM0
(q,v) =

n∏

i=1

d�∗M0

dM0

((
�i−1)−1

(q,v)
)
,(B.8)

for M0-a.e. (q,v) ∈ X × X, where we set �0 := I .
Finally, it is not difficult to check (e.g., via equivalence of characteristic functionals) that

the momentum-flip operator R, defined as in (4.28), preserves the measure M0, so that

dR∗M0

dM0
(q,v) = 1 for M0-a.e. (q,v) ∈ X × X.

Therefore, with a third application of (2.8), we deduce that (R ◦ Ŝ)∗M0 
 M0 and

d(R ◦ Ŝ)∗M0

dM0
(q,v) = dŜ∗M0

dM0

(
R−1(q,v)

)dR∗M0

dM0
(q,v)

= dŜ∗M0

dM0

(
R(q,v)

)
,

(B.9)

for M0-a.e. (q,v) ∈ X × X, where in the last equality we used that R2 = I .
Moreover, from (B.8) and (B.9) it follows that for M0-a.e. (q,v) ∈ X × X

d(R ◦ Ŝ)∗M0

dM0
(q,v) =

n∏

i=1

d�∗M0

dM0

((
�i−1)−1 ◦ R(q,v)

)

=
n∏

i=1

d�∗M0

dM0

(
R ◦ �i−1(q,v)

)
.

(B.10)

To justify the second equality, observe that from (B.1), (4.66) together with Lemma 4.4 and
the fact that R2 = I we deduce that (�i−1)−1 ◦ R = R ◦ �i−1, for all i = 1, . . . , n. With
similar logic we observe that (


(1)
δ1

◦ 

(2)
δ2

)−1 ◦ R = 

(1)
δ1

◦ R ◦ � and obtain, invoking the
notation in (4.66), that for i = 1, . . . , n and (q0,v0) ∈ X × X

(



(1)
δ1

◦ 

(2)
δ2

)−1 ◦ R ◦ �i−1(q0,v0) = 

(1)
δ1

◦ R ◦ �i(q0,v0) = 

(1)
δ1

◦ R(qi,vi)

=
(
qi,−vi − δ1f (qi)

)
.

Therefore, with these observations (B.10), (B.7) and then (B.6), we obtain for M0-a.e.
(q0,v0) ∈ X × X

d(R ◦ Ŝ)∗M0

dM0
(q0,v0)

=
n∏

i=1

d(

(1)
δ1

)∗M0

dM0

(



(1)
δ1

◦ R ◦ �i(q0,v0)
)d(


(1)
δ1

)∗M0

dM0

(
R ◦ �i−1(q0,v0)

)

=
n∏

i=1

exp
(
−δ1

〈
C−1/2f (qi),−C−1/2(

vi + δ1f (qi)
)〉

− δ2
1

2

∣∣C−1/2f (qi)
∣∣2

)
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× exp
(
−δ1

〈
C−1/2f (qi−1),−C−1/2vi−1

〉
− δ2

1

2

∣∣C−1/2f (qi−1)
∣∣2

)

= exp

(
δ2

1

2

∣∣C−1/2f (qn)
∣∣2 − δ2

1

2

∣∣C−1/2f (q0)
∣∣2

+ δ1

n∑

i=1

[〈
C−1/2f (qi−1),C

−1/2vi−1
〉
+

〈
C−1/2f (qi),C

−1/2vi

〉]
)
.

Thus, together with (B.2), this identity combines with (B.3), (B.4) to conclude (4.68). The
proof is now complete.

REMARK B.1. As similarly pointed out in [9], we emphasize that the proof of Theo-
rem 4.18 provides some additional clarification regarding the particular choice of numerical
integrator for (4.51) that allowed the derivation of ∞HMC in [10] as a well-defined algorithm
in infinite dimensions. Indeed, if we choose instead the classical “leapfrog” integrator de-
scribed in (4.26) within the finite-dimensional setting, and apply it to the infinite-dimensional
dynamics (4.59), we obtain the following splitting:

dq

dt
= 0,

dv

dt
= −q − f (q) and

dq

dt
= v,

dv

dt
= 0.

The corresponding solution mappings for a given time t ≥ 0 are given respectively by



(1)
t (q0,v0) =

(
q0,v0 − tq0 − tf (q0)

)
and 


(2)
t (q0,v0) = (q0 + tv0,v0).

Following the proof of Theorem 4.18, we notice that here the measures (

(1)
δ1

)∗(μ0 ⊗μ0) and

(

(2)
δ2

)∗(μ0 ⊗ μ0) can be written as

(



(1)
δ1

)∗
(μ0 ⊗ μ0)(dq, dv) = G(q, ·)∗μ0(dv)μ0(dq) for G(q,v) := v − tq − tf (q)

and
(



(2)
δ2

)∗
(μ0 ⊗ μ0)(dq, dv) = F(·,v)∗μ0(dq)μ0(dv) for F(q,v) := q + tv.

Now, since μ0 =N (0,C), it follows that G(q, ·)∗μ0 = N (−tq− tf (q),C) and F(·,v)∗μ0 =
N (tv,C). However, |C−1/2(q + f (q))| and |C−1/2v| are infinite for μ0-a.e. q ∈ X and μ0-
a.e. v ∈ X, respectively, and thus −tq − tf (q) /∈ Dom(C−1/2) and tv /∈ Dom(C−1/2) almost
surely. This implies that the Cameron–Martin formula (see [23], Theorem 2.23) cannot be
applied as done in (B.6), a crucial step for the remainder of the proof.

In summary, this shows that the validity of Theorem 4.18 relies on utilizing maps 

(1)
t

and 

(2)
t for which their corresponding pushforwards on the product of Gaussians, namely

(

(1)
t )∗(μ0 ⊗ μ0) and (


(2)
t )∗(μ0 ⊗ μ0), with μ0 =N (0,C), are absolutely continuous with

respect to the product μ0 ⊗ μ0. In Theorem 4.18, this is achieved with a “rotation” mapping,



(2)
t as in (4.64), and a mapping given by a “shift” within Dom(C−1/2), 


(1)
t as in (4.63).

APPENDIX C: PROOF OF COROLLARY 4.19

Notice that for each fixed q ∈ X, the mapping F(q, ·) : X → X defined in (4.72) is invert-
ible, with

F(q, ·)−1(q̃) = 1√
1 − ρ2

(q̃ − ρq) +
√

δ

2
f (q).(C.1)
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Now, in view of (3.7), we compute

(C.2)

F
(
F(q,v), ·

)−1
(q)

= 1√
1 − ρ2

(
q − ρF(q,v)

)
+

√
δ

2
f

(
F(q,v)

)

= 1√
1 − ρ2

[
q − ρ

(
ρq +

√
1 − ρ2

(
v −

√
δ

2
f (q)

))]
+

√
δ

2
f

(
F(q,v)

)

=
√

1 − ρ2q − ρv + ρ

√
δ

2
f (q) +

√
δ

2
f

(
F(q,v)

)
.

Thus, it follows by Proposition 3.3 or direct calculation that

S(q,v) =
(
F(q,v),F

(
F(q,v), ·

)−1
(q)

)

is an involution in X × X.
Moreover, denote Ŝ = R ◦ S, where R is the “momentum-flip” map (4.28), so that S =

R ◦ Ŝ. Following an observation from [9], we notice that such Ŝ is the particular one-step case
of (4.65) regarding Algorithm 4.5 for specific choices of δ1, δ2. Namely, taking δ1 :=

√
δ/2

and δ2 := cos−1 ρ, we have

S = R ◦ Ŝ, Ŝ = 

(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

,(C.3)

where 

(1)
t and 


(2)
t are as defined in (4.63) and (4.64), respectively. It thus follows from

(4.68) with M = μ ⊗ μ0 that for (μ ⊗ μ0)-a.e. (q,v) ∈ X × X

(C.4)

dS∗(μ ⊗ μ0)

d(μ ⊗ μ0)
(q,v) = exp

(
�(q) − �(q̃) − δ

8

[∣∣C−1/2f (q)
∣∣2 −

∣∣C−1/2f (q̃)
∣∣2]

+
√

δ

2

[〈
C−1/2v,C−1/2f (q)

〉
+

〈
C−1/2ṽ,C−1/2f (q̃)

〉])
,

where (q̃, ṽ) = 

(1)
δ1

◦ 

(2)
δ2

◦ 

(1)
δ1

(q,v) = R ◦ S(q,v), so that

q̃ = F(q,v) and ṽ = −F
(
F(q,v), ·

)−1
(q),(C.5)

with F as defined in (4.72). Plugging ṽ as given in (C.5) and (C.2) into (C.4), we obtain after
rearranging terms that for (μ ⊗ μ0)-a.e. (q,v) ∈ X × X

(C.6)
dS∗(μ ⊗ μ0)

d(μ ⊗ μ0)
(q,v)

= exp
(
�(q) − �(q̃) − δ

8

[∣∣C−1/2f (q)
∣∣2 +

∣∣C−1/2f (q̃)
∣∣2]

+
√

δ

2

〈
C−1/2v,C−1/2f (q)

〉

−
√

δ

2

〈
C−1/2(√

1 − ρ2q − ρv
)
+ ρ

√
δ

2
C−1/2f (q),C−1/2f (q̃)

〉)
.

In view of (3.12), we plug v = F(q, ·)−1(q̃) as given in (C.1) into (C.6) to obtain that

α(q, q̃) := 1 ∧ dS∗(μ ⊗ μ0)

d(μ ⊗ μ0)

(
q,F (q, ·)−1(q̃)

)
= 1 ∧ β(q̃,q)

β(q, q̃)
,(C.7)
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where

β(q, q̃) := exp
(
−�(q) − δ

8

∣∣C−1/2f (q)
∣∣2 −

√
δ

2

〈
C−1/2(q̃ − ρq)√

1 − ρ2
,C−1/2f (q)

〉)
,

for η-a.e. (q, q̃) ∈ X × X, where we recall that η(dq, dq̃) = F(q, ·)∗μ0(dq̃)μ(dq). This
completes the proof. We notice that formula (C.7) for the accept–reject function concurs with
[11, 22] in the particular case f = CD�.
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