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A B S T R A C T   

Flooding is a natural hazard that touches nearly all facets of the globe and is expected to become more frequent 
and intensified due to climate and land-use change. However, flooding does not impact all individuals equally. 
Therefore, understanding how flooding impacts distribute across populations of different socioeconomic and 
demographic backgrounds is vital. One approach to reducing flood risk on people is using indicators, such as 
social vulnerability indices and flood exposure metrics, to inform decision-making for flood risk management. 
However, such indicators can face the scale and zonal effect produced by the Modifiable Areal Unit Problem 
(MAUP). This study investigates how the U.S. Census block group, tract, and county scale selection impacts social 
vulnerability and flood exposure outcomes within coastal Virginia, USA. Here we show how (1) scale selection 
can obstruct our understanding of drivers of vulnerability, (2) increasingly aggregated scales significantly un
dercount highly vulnerable populations, and (3) hotspot clusters of social vulnerability and flood exposure can 
identify variable priority areas for current and future flood risk reduction. Study results present considerations 
about using such indicators, given the real-life consequences that can occur due to the MAUP. The results of this 
work warrant understanding the implications of scale selection on research methodological approaches and what 
this means for practitioners and policymakers that utilize such information to help guide flood mitigation 
strategies.   

1. Introduction 

Flooding is a near-ubiquitous natural hazard faced globally. The 
frequency and extent of flooding impacts on the interconnected natural, 
social, economic, and built environment are projected to rise due to 
accelerated climate and land-use change. The United States, in 2021 
alone, endured six billion-dollar flooding and tropical cyclone events 
(NCEI, 2022). The risk of flooding, or the product of flood exposure, 
hazard, and vulnerability (Qiang et al., 2017), from such events is un
equally experienced across socioeconomic and demographic groups 
(Gourevitch et al., 2022). Hazard and environmental justice scholars 
have demonstrated clear patterns of flooding inequities faced by people 
of color and lower-income populations in the U.S. (Mazumder et al., 
2022), for example (Chakraborty et al., 2014; Collins et al., 2019; Lin
scott et al., 2022). Inequitable social conditions such as marginalizing 
policies, systematic deprivation of resource access, placement within 
flood-prone areas, and poor infrastructure have disproportionately 

impacted underserved and underestimated communities. Such condi
tions enhance these social groups’ vulnerabilities by decreasing their 
ability to prepare financially, respond to the threat of an imminent flood 
event, and recover from a flood if implicated (Cutter et al., 2003). 

Practitioners and policymakers widely utilize index-based measures 
to quantify hard-to-measure social vulnerabilities (Rufat et al., 2019). 
Scholars acknowledge the utility of understanding the landscape of so
cial vulnerability to help guide natural hazard risk reduction planning 
and recovery, despite criticisms about certain shortcomings like sensi
tivity to selected indicators (Spielman et al., 2020). One widely used 
index within hazards literature is the “hazard-of-place” Social Vulner
ability Index (SoVI) (Cutter et al., 2003), a data-driven quantitative 
method and theoretical framework used to understand a community’s 
relative sensitivity and adaptive capacity to natural hazards (Gu et al., 
2018; Spielman et al., 2020). SoVI embeds epistemic uncertainty (Tate, 
2013), one ambiguity being the ‘scale’ (size) of areal units being 
analyzed, which is essential in vulnerability assessments (Fekete et al., 
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2010). Scale selection is a multifaceted decision based on the factors 
such as project objectives and the intended end-use. However, the se
lection of scale and whether such selection has unintended conse
quences remains an underexplored area of literature. 

Although multiple studies explore the uncertainty and sensitivity of 
SoVI construction (Schmidtlein et al., 2008; Tate, 2013), such as indi
cator selection (e.g., Spielman et al., 2020), limited studies investigate 
how scale impacts the outcome of index-based measures for flood risk 
results. Many studies explore flood vulnerabilities at different scales, 
such as the Census block group (BG) (Pricope et al., 2019), tract (Shao 
et al., 2020; Tate et al., 2021; Y (Victor) Wang & Sebastian, 2021), and 
county scale (Khajehei et al., 2020). However, there are limited multi- 
and cross-scale studies investigating vulnerabilities to flooding (Remo 
et al., 2016). Two U.S.-based multi-scale flood vulnerability studies 
revealed that finer spatial scales had identified more vulnerable com
munities overlooked at larger spatial scales (e.g., block-level vs. tract) 
(Remo et al., 2016; Tanir et al., 2021). 

SoVI or any other index or analysis embeds socioeconomic and de
mographic data that has aggregated point data at certain scales, which 
can result in the unsolved spatial analysis phenomenon called the 
Modifiable Areal Unit Problem (MAUP). The MAUP occurs when 
selecting aerial units based on identical data can alter the analytical 
results (Fotheringham & Wong, 1991; Openshaw, 1984). The MAUP can 
arise by modifying a unit’s size or shape, referred to as the scale and 
zonation effect. The scale effect occurs based on the size of the aggre
gation. For decreased levels of aggregation or greater areal units, the 
correlations between the variables tend to decrease while the variation 
increases, given that the data’s extremes are more dominant than with 
lesser areal units (Fotheringham & Wong, 1991; Openshaw & Taylor, 
1979). Whereas the zoning effect occurs based on the shape or config
uration of the system across geographic space (Fotheringham & Wong, 
1991). These effects of the MAUP can regroup data observation into 
infinite arrangements, effectively producing new summary values that 
alter the understanding of that observation (Buzzelli, 2020). To the 
extent that indices like SoVI rely on Census data that does not use 
standardized areal units, they are subject to the MAUP. 

This research seeks to address the knowledge gap in understanding 
and applying indices of social vulnerability and flood risk. Utilizing the 
case study area of coastal Virginia, we address the following research 
questions: 1) How does scale influence social correlates of the SoVI in
dicators within coastal VA? 2) Where does high and low social vulner
ability coincide with flood exposure in coastal VA? How does this vary 
across scales? 3) What implications does this raise for researcher 
methods? We aim to explore how the MAUP and the selection of scale (e. 
g., BG, tract, county) impact outcomes relating to SoVI and flood risk. 
Our findings could guide future decision-making about scale selection 
within flood vulnerability quantification. Furthermore, they could pro
vide insight into managing hazard risk equitably, thereby reducing the 
risk of floods on communities. 

2. Materials and methods 

2.1. Study area 

The site of investigation for our work is coastal VA, a historically rich 
and socially complex region that encompasses around 6 million people, 
around 70% of the state’s population (Bureau, 2020; VA Dept. of Cons. 
and Rec, 2021). These Virginians face unprecedented coastal and inland 
flooding pressures from changing precipitation patterns and containing 
areas with the second largest population centers at risk of sea level rise 
in the U.S. (NOAA, 2023). The flood risk that these communities face is 
extreme. For example, by 2080, there is an expected 180% increase in 
the number of residents exposed to coastal flooding – around 943,000 
people (VA Dept. of Cons. and Rec, 2021). This low-lying region is also 
highly vulnerable to economic, environmental, and cultural loss, with 
250,000 acres of land just under 5 feet above the high tide line (Strauss 

et al., 2014). Nearly 9.3% of coastal Virginians face poverty, of which 
13.2% fall within the 2020 floodplain, making this site a prime area for a 
social vulnerability and flood exposure investigation (VA Dept. of Cons. 
and Rec, 2021). 

Within coastal VA, there are eight Planning District Commissions 
(PDCs) and Regional Commissions (RCs), which are political sub
divisions of voluntary associations of the local government. These 
commissions bridge intergovernmental cooperation, determine common 
needs, study regional issues, and determine cost-saving viable solutions, 
among other obligations (VA Dept. of Cons. and Rec, 2021). The 
geographical boundaries of the commissions encompass four master 
planning regions: Fall Line North, Fall Line South, Hampton Roads, and 
Rural Coastal VA. These regions are actively utilized for the Virginia 
Coastal Resilience Master Plan, which is a call to action for the 
Commonwealth to protect and foster an equitably resilient coast for all 
Virginians. Therefore, to bridge policy relevance, the BGs, tracts, and 
counties within the boundaries of the commissions were used for this 
study (Fig. 1) (See supplementary section S.1 for additional spatial 
features of coastal VA). 

2.2. Research design 

We used socioeconomic and demographic information, land cover, 
and 100-year floodplain data across BG, tract, and county scales to 
investigate the spatial relationships between social vulnerability and 
flood exposure across these scales in coastal VA. Fig. 2 summarizes the 
three methodological elements used. First, we produced three social 
vulnerability indices (SoVIs) using principal component analysis (PCA). 
The SoVIs were generated at the BG, tract, and county scale based on the 
Census Bureau’s 2019 American Community Survey (ACS). Then, we 
developed three flood hazard exposure metrics (HEMs) by combining 
the 2019 National Land Cover Database (NLCD) land cover data with the 
Federal Emergency Management Agency (FEMA) 100-year flood hazard 
data through a dasymetric mapping technique, following the approach 
of Tate et al. (2021). The HEMs are the percent of habitable areas that 
are flood exposed per BG, tract, or county. Collectively, the HEMs and 
SoVIs were spatially analyzed using a bivariate Local Indicators of 
Spatial Association (LISA) approach to identify hotspots and outliers of 
spatial autocorrelation between social vulnerability and flood exposure. 
Lastly, we analyzed Moran’s I coefficients to detect variable spatial 
patterns for the SoVIs, HEMs, and the spatial clusters of HEMs sur
rounded by SoVIs. 

2.3. Social vulnerability index 

We adapted the “hazards-of-place” model approach based on spatial 
vulnerability indicators from the latest edition of SoVI (Hazards and 
Vulnerability Research Institute, 2015) to measure the spatial distribu
tion of social vulnerability to flooding (Cutter et al., 2003). This 
inductive model utilizes PCA to generate principal component (PC) 
factors that contain much of the variation among the set of indicators 
(Hotelling, 1933; Pearson, 1901). The factors are then aggregated to 
produce a composite SoVI score. We selected the SoVI and the PCA 
approach for this study based on its widespread adoption within 
vulnerability assessment frameworks (Abson et al., 2012; de Loyola 
Hummell et al., 2016; Rabby et al., 2019; Schmidtlein et al., 2011; 
Tasnuva et al., 2020; C. Wang & Yarnal, 2012) and for comparability 
purposes. 

Twenty-nine socioeconomic, demographic, and ethnic indicators 
(Table 1) were extracted at the BG, tract, and county scale from the 
2015–2019 U.S. Census ACS (US Census Bureau, 2019) for the SoVI 
analysis using the tidycensus R package (Walker, 2022). We selected 
these three scales for comparability objectives, uncertainty reduction, 
and maintaining indicator and temporal uniformity (Supplementary 
Section S.2). 

In line with previous literature (HVRI, 2016), we completed standard 
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computation and normalization, verification of linearity and accuracy of 
the data, diagnostic testing, z-score standardization, eigenvalue-based 
Kaiser selection criterion, varimax rotation, and used an additive 
model to produce the SoVI scores (Equation (1)) (Supplementary Section 
S.3). 

SoVIScore = Σ [(± or ‖) Factor1 + ..(± or ‖) FactorX
]

(1) 

We spatially mapped the SoVI factor scores into six divergent classes 
based on the standard deviation from the mean to highlight the most and 

least vulnerable areal units per scale, ranging from −1.5 (lower 
vulnerability) to +2.5 (higher vulnerability). We utilized Python 
Version 3.9 to perform all SoVI analyses (see Supplementary Section 
S.4). 

2.4. Flood hazard 

To represent flood hazard, we utilized the FEMA National Flood 
Hazard Layer (NFHL) 100-year high-risk floodplain. The flood hazard 

Fig. 1. Study site selection of Coastal Virginia and the Master Planning Regions encompassing the Planning District Commissions (PDCs) and Regional Commis
sions (RCs). 

Fig. 2. Analytical framework of the study.  
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layers, representing fluvial (riverine) and coastal flood types, are 
available from the FEMA Flood Map Service Center (FEMA, 2022). The 
FEMA flood hazard data is scrutinized for the spatial (Qiang et al., 2017) 
and temporal scarcity (Birkland et al., 2003) within the U.S., as well as 
the ability to capture pluvial (rainfall-driven) flood hazards (NASEM, 
2019); however, it has been the standard since 1968 in determining 
federal flood insurance and general community tactics to combat 
flooding risks (Blessing et al., 2017). We selected FEMA flood maps for 
this analysis given the high spatial resolution, the regularity for use in 
policy and regional development (Huang & Wang, 2020; Qiang, 2019b), 
and prevalence in guiding local planning (Huang & Wang, 2020). 

To process these data, we disaggregated the NFHL county shapefiles 
into binary raster grids at a 30-m resolution at the BG, tract, and county 
scales. Each cell in the flood grid represented being within the 100-year 
floodplain (wet cell) or outside of the floodplain (dry or no-data cell). 
No-data classified cells are open-water areas. We conducted all hazard 
analyses in ArcGIS Pro Version 2.9.2. 

2.5. Flood exposure 

To measure people’s exposure to flooding, we then calculated the 
relative area of habitability across scales using land cover data. Popu
lation exposure disaggregated based on land cover is one approach to 
measuring flood exposure (Debbage, 2019; Qiang, 2019a; Tate et al., 
2021); however, there are several alternative methods of quantifying 
exposure that vary in accuracy and resolution, see (Crowell et al., 2010; 
Huang & Wang, 2020; Yager & Rosoff, 2017). 

The land cover data is a 30-m resolution raster containing cells with 
20 different land cover types categorized by the Anderson Land Cover 
Classification System (NLCD, 2019). Following the approach of Tate 
et al., 2021, we used the dasymetric categories of the EnviroAtlas map 
from the U.S. Environmental Protection Agency (EPA) to identify areas 

in which people are most likely to reside based on land type (Tate et al., 
2021; US EPA, O., 2015). Based on the underlying assumption of the 
EnviroAtlas dasymetric population map, we assume the population is 
equally distributed, and land cover classes of open water, perennial 
ice/snow, and emergent herbaceous wetlands are considered uninhab
itable land cover types. Habitable areas include developed, barren, 
forest, shrubland, herbaceous, planted/cultivated, and wetland land 
cover (Supplementary Section S.5). Habitability categories 1 through 5 
were retained for this study, and non-habitable categories were 
removed. The sum of habitable cells per spatial scale from the binary 
raster of land cover acted as the denominator for the HEMs. 

2.6. Hazard exposure metric 

Combining flood hazard and flood exposure, we created hazard 
exposure metrics (HEMs) to measure areas within the floodplain in 
which people reside. We completed this by combining the FEMA flood 
hazard raster with the flood exposure habitable land cover raster 
through a dasymetric population mapping technique. Dasymetric map
ping is a geospatial technique that can utilize land cover to distribute 
population data more accurately across a geographic boundary, such as 
BGs, tracts, and counties (US EPA, O., 2015). This technique has been 
applied in other flood exposure and risk analyses see (Debbage, 2019; 
Flores et al., 2023; Maantay & Maroko, 2009; Montgomery & Chakra
borty, 2013; Qiang, 2019a; Tate et al., 2021; Wing et al., 2018). 

Through a cell-by-cell stacked raster approach, we combined the 
habitable land use cells with the FEMA flood hazard cells. The sum of the 
habitable cells within the floodplain per BG, tract, and county was 
retained for the numerator of the HEMs. Finally, the ratio of flooded 
habitable cells to habitable cells across scales produces the HEMs 
(Equation (2)). 

HEMs =

∑
Habitable flood exposed areas (per areal unit)

∑
Habitable areas (per areal unit)

(2) 

We then spatially mapped the resulting HEM scores into four 
divergent classes based on the standard deviation from the mean to 
highlight the most and least flood hazard-exposed geographical units, 
ranging from −0.5 (lower HEM) to +1.5 (higher HEM). Note that 
additional operations within ArcGIS Pro were necessary to create the 
HEMs (Supplementary Section S.6). 

2.7. Spatial analysis of HEM and SoVI 

We employed a bivariate LISA cluster mapping technique to examine 
the spatial relationship between the HEMs and the composite SoVIs 
scores at BG, tract, and county scale. The LISA approach identifies local 
patterns where data values present strongly positive spatial associations 
(clusters) or strongly negative spatial associations (outliers). We iden
tified four types of LISA clusters and outliers by how flood hazard 
exposure values vary with social vulnerability values. 1) High-High 
(H–H), a geographic unit, and its neighboring units both ranked high 
in the HEM and SOVI. 2) Low-Low (L-L), a geographic unit, and its 
neighboring units both ranked low in the HEM and SOVI. 3) High-Low 
(H-L), HEM is ranked high in a geographic unit, while SoVI is ranked 
low in the neighboring units. 3) Low-High (L-H), HEM is ranked low in a 
geographic unit, while SoVI is ranked high in the neighboring units. 
GeoDa™ version 1.8 was utilized for the exploratory spatial analysis of 
LISA clusters (detailed LISA steps are outlined in Supplementary Section 
S.7). 

3. Results 

3.1. The effect of spatial scale on social vulnerability 

We found that no indicators within the first PC factor F1 load 
consistently across scales (Fig. 3). This reveals that there is no leading 

Table 1 
The social vulnerability indicators utilized for the SoVI creation (Modified from 
Tate et al., 2021).  

Category Indicator Indicator Code 

Age % Population <5 years & ≥ 65 years UNDER5OVER65 
Median Age MEDAGE 

Education % Less than 12th grade education LIMEDU 
Employment % Employment in extractive industries EMPEXT 

% Employment in service industries EMPSER 
Race % Black or African American BLACK 

% Asian ASIAN 
% American Indian or Alaskan Native AIAN 

Ethnicity % Hispanic HISP 
Family 

Structure 
% Children living in married coupled 
families 

CHILDMF 

% Female-headed households FEMHH 
People per housing unit HHDENSITY 

Gender % Female FEM 
% Female participation in labor force FEMLABFORCE 

Health % Population without health insurance NOHEALTHINS 
Housing % Renters RENTER 

% Rent burdened RENTBUR 
Median gross rent MEDRENT 
% Mobile homes MOBHOME 
% Unoccupied housing units VACANTHH 

Wealth Median housing value MEDHHVALUE 
% Civilian unemployment UNEMP 

Income % Poverty POV 
% Households earning ≥ $200,000 
annually 

HH200k 

Per capita income PERCAPINC 
Dependence % Households receiving social security HHSSINC 

Nursing home residents per capita NURSINGHPERCAP 
Language % Limited English proficiency LIMENG 
Mobility % Housing unit with no car NOTRANS 

*A bolded indicator implies that an increase in the indicator results in a 
reduction of social vulnerability. 
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vulnerability indicator that transverses scales. We also found that the 
following eight indicators lack an explanation across two or more scales: 
employment in extractive industries, Asian, American Indian or Alaskan 
Native, rent burdened, mobile homes, unoccupied housing units, 
civilian unemployment, and nursing home residents per capita. Specif
ically, the eight indicators present significant prevalence in at least one 
scale but are generally the least influential in the model, loading on the 
PCs with the least variance. 

Additionally, across the SoVIs, there are consistent themes that vary 
across PC factors. The following indicators are highly loading factors on 
PC F1, F2, or F3 across scales: employment in service industries, Black or 
African American, children living in married coupled families, female- 
headed households, renters, housing unit with no car, poverty, low 
values of median gross rent, median housing value, households earning 
≥ $200,000 annually, and per capita income. Therefore, economic in
equities, socially vulnerable demographic groups, and mobility chal
lenges could be considered significant drivers of social vulnerability 
within coastal VA. 

The PCA revealed dissimilarities in the dimensions of social vulner
ability detected with scale. The variance explained by the vulnerability 
data at the BG, tract, and county scales is 66.1, 66.0, and 84.3 percent. 
This result suggests that the SoVI data is better explained at the county 
scale versus the less aggregated scales. The pooled summary results, 
including the number of PC factors, the associated indicators, general 
themes, and the individual and cumulative percent variance found at 
each scale, can be found in the Supplementary Section S.8. 

The SoVI maps reveal that the finer aggregated BG and tract scales 
identify greater detailed areas of vulnerability that are not easily 
interpretable at the county scale (Fig. 4). Spatial trends show contrasting 
results between scales. A single geographical unit could be characterized 
as high vulnerability at one scale and featured as low vulnerability at 
another due to the MAUP. 

We found that larger aggregated scales accounted for more people at 
lower SoVI levels, whereas less aggregated (finer spatial) scales reported 
more people at medium and high SoVI levels (Fig. 5). This result sug
gests that finer spatial scales could be valuable in detecting populations 
that could be neglected at greater aggregated scales. 

3.2. The spatial pattern of flood hazard exposure 

The spatial choropleth maps representing the HEMs show consistent 
spatial patterns with elevated flood exposure along the coastline, 
beginning at Virginia Beach, toward the Chesapeake Bay, and within the 
eastern shore of VA (Fig. 6). The increased exposure is an anticipated 
conclusion given the proximity to major inland and coastal water bodies. 
However, there are spatial differences in the HEMs based on the statis
tical subdivisions between scales. For example, the mean flood exposure 
within coastal VA at the BG, tract, and county scale as percent are 9.5, 
10.3, and 12.2, respectively. Results exhibit an increase in mean flood 
exposure per areal unit with scale. This is an expected result, given that 
increased aggregated scales are likely to dampen the influence of 
extremes. 

3.3. The spatial distribution of flood exposure and social vulnerability 

Three bivariate (i) LISA cluster maps and (ii) cluster significance 
maps at the BG, tract, and county scale spatially identify local clusters 
and local spatial outliers of the HEMs surrounded by the SoVIs (Fig. 7). 
The significance maps show that the statistical significance of the indi
vidual clusters fluctuates greatly with scale. The spatial differences in 
the bivariate cluster maps were unexpected, given that the same foun
dational unaggregated data is utilized for SoVI and HEM creation. 
However, a consistent spatial trend across scales is areas of L-L occurring 
in northern coastal VA. Generally, spatial variability of statistically 
identified clusters decreases at the county scale; for example, H-L areas 
of vulnerability are not significant within coastal VA – which is not the 
case at the BG and tract scale. Following previous trends, smaller 
aggregated scales (BG and tract) provided greater detail on the land
scape of flood exposure and social vulnerability. 

From a flood risk reduction perspective, areas of variable flood 
exposure surrounded by high vulnerability (H–H and L-H) are target 
locations to prioritize. H–H locations are the most at risk, given elevated 
vulnerability and exposure. L-H areas could be considered high risk in 
the future with intensified flood events and alterations of the landscape. 
The difference across scale in population counts encompassing highly 

Fig. 3. The PC factor loadings (F) or correlation of indicators to social vulnerability (social correlates) at the (a) BG, (b) tract, and (c) county scale. The scale bar 
represents F’s relative correlation (−1 to +1). The dominant indicator with a correlation greater than ±0.50 is characterized as a primary driver within that PC factor 
loading (F). The diamonds (◊) represent an indicator with a correlation ≥ ± 0.50. The percent variance explained by each F is displayed. 
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vulnerable communities within such target locations, at the magnitude 
of hundreds of thousands of people, is concerning from a methodological 
and flood risk management perspective (Fig. 8 Panel A). Likewise, the 
clusters and outliers account for variable trends in population density 
(Fig. 8 Panel B). Mixed spatial density trends within the bivariate ex
tremes of H-L and L-H outliers depict opposing trends across scales. 
However, H–H clusters present primarily low population density, and L- 
L clusters contain highly populated regions. For example, the average 
population density across L-L clusters is 1.1 million people per sq. Mile. 
See Supplementary Section S.9 for not statistically significant and total 
count between scales, the relative number of aggregated units, and 
average HEMs and SoVIs values. 

3.4. Indicator variability of flood exposure and social vulnerability 
clusters and outliers 

The percent change between the indicators averages within coastal 
VA against the H–H, L-L, H-L, and L-H spatial clusters were calculated to 
understand how the social vulnerability indicators varied with flood 
exposure throughout scale (Supplementary Section S.10 Tables S10a, 
S10b, S10c, S10d). This investigative approach follows Tate et al., 2021. 
Outcomes reveal that the landscape of flood risk based on the LISA 
analysis reveals somewhat consistent but diverging trends, which could 
impact the strategy of flood resiliency approaches implemented. For 
example, in areas of H–H, consistent themes across scales include an 
increase, relative to the averages of coastal VA, in limited education, 
mobility challenges, lower income, and a decrease in Asian populations 

(Supplementary Table S10a). However, the influence of distinguishing 
indicators moving into H–H clusters is, for example, the percent change 
of mobile homes at the tract (213%) and county (232%) scale, which 
depicts a different geography of vulnerability at the BG scale (21%). 
Contradictory indicators such as language barriers where there is a 
negative percent change of at the BG (−45.1) and tract (−36.0), 
compared to a positive percent change at the county scale (51.3%). See 
supplementary section S.10 for a detailed analysis of the remaining 
spatial clusters (L-L, H-L, and L-H). 

3.5. Variability of spatial autocorrelation across scale 

The global Moran’s I statistics for the SoVIs, HEMs, and the clusters 
and outliers of HEMs surrounded by SoVIs present variable trends for 
spatial autocorrelation (Table 2, see supplementary section S.11 for the 
Moran’s scatterplots, LISA cluster maps, and statistical significance 
maps). Moran’s I statistics for HEMs show a decrease as the level of 
aggregation increases. However, the opposite is true for the univariate 
SoVIs and bivariate HEMs and SoVIs. 

4. Discussion 

4.1. Variability of social vulnerability characteristics across scale 

Our research found that the choice of spatial scale for data aggre
gation considerably impacts the correlation of social vulnerability in
dicators across Coastal VA, thus showing the effect of the MAUP. As 

Fig. 4. The SoVI spatial distribution at the (a) BG, (b) tract, and (c) county scale. Each map contains six classes based on a standard deviation classification, which are 
very low (<-1.5), low (−1.5 to −0.5), low-medium (−0.5 – 0.5), medium-high (0.5–1.5), high (1.5–2.5), and very high (>2.5) social vulnerability. The areas excluded 
due to insufficient data are highlighted. 
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elaborated on by Chu et al., 2021, Census data is a non-modifiable entity 
that does not change temporally within a specific year (Chu et al., 2021). 
Therefore, the correlation of the indicators used for the SoVI creation 
was expected to be identical across scales. However, to an extent, similar 
themes of vulnerability are apparent across scales, such as low income 
and wealth, lack of transportation, vulnerable family structures, and 
young children and elderly populations, these results present similar 
themes within literature (see Kleinosky et al., 2007 and VA Dept. of 
Cons. and Rec, 2021) (Supplementary Section S.8 tables S8a, S8b, and 
S8c). Analogous to Schmidtlein et al., 2008, this result suggests that the 
effect of scale does not hinder the identification of significant drivers of 
vulnerability. However, arguably of most interest are indicators that are 
not consistent across scales with the SoVI measures, such as vacant 
households, Asian populations, and unemployed populations that are 
highly prevalent at one spatial scale and not as influential at another. 
This further confirms a conclusion made by Spielman et al., 2020 that 
the SoVI lacks internal consistency, which presents doubt in interpreting 
how valid this measurement scheme is in explaining social vulnerability 
and confirms calls to the sensitivity of the indicators (Spielman et al., 
2020). Counter to previous scholarship, we found that the SoVI algo
rithm is not robust to minor changes in indicator selection and the level 
of aggregation (Schmidtlein et al., 2008). 

4.2. Scale selection influence on social vulnerability identification 

Through this study, we found that the number of PCs used for the 
SoVI creation and percent variance is contingent on scale selection. The 
BG and tract scales presented less percent variance than the county 
scale. Within the MAUP literature, percent variance is expected to 
decrease with increased aggregation (Prouse et al., 2014) due to a 
smoothing process of data extremes that occurs at greater spatial scales, 
which is indicative of information loss and generalization (Fothering
ham & Wong, 1991; Openshaw & Taylor, 1979; Wong, 1996). However, 
a multi-scale SoVI comparison for South Carolina at the tract and county 
level showed increased percent variance with increased aggregation 

(Schmidtlein et al., 2008). Schmidtlein et al. rationalized the result 
given that the original construction of the “hazard-of-place” SoVI model 
was designed for the county scale, which presents two viewpoints of the 
SoVI results. Nonetheless, this result indicates that the SoVI model lacks 
internal consistency, which is imperative for a measurement instrument 
(Spielman et al., 2020). 

Additionally, our results are consistent with other multi-scale studies 
(Remo et al., 2016; Tanir et al., 2021) that found that highly socially 
vulnerable residents were better detected at finer spatial scales than at 
coarser scales. In other words, if this study had been performed only at 
the county scale, the SoVI would have underreported a substantial 
number of people classified as highly vulnerable. However, there are 
contrasting results for vulnerability within the same spatial area across 
scales, which is a real problem brought on by the MAUP and influenced 
by the original Census data, which is also highlighted by a cross-scale 
study on social resilience (Chu et al., 2021). Therefore, understanding 
the extent to which scale affects the subsequent decision-making for 
resource allocation and risk-management strategies for priority pop
ulations within SoVI analysis is warranted as the MAUP can manifest 
itself into real-life consequences for people (Buzzelli, 2020). 

4.3. The landscape of flood hazard exposure and social vulnerability 

A key contribution of this study is highlighting the effect scale se
lection has on hotspot identification for the spatial relationship of flood 
exposure and social vulnerability. We found inconsistencies between the 
bivariate LISA maps and the degree of spatial autocorrelations which 
suggests that the scale effect is prevalent in flood vulnerability risk as
sessments. The prevalence of the scale effect can impact the identifica
tion of priority areas for flood risk reduction strategies. Generally, 
mitigation strategies are implemented at the county or jurisdictional 
level (Frazier et al., 2013; Remo et al., 2013). However, our research 
demonstrates the possibility of overlooking highly vulnerable pop
ulations at greater aggregated spatial scales (county) in flood vulnera
bility analyses – echoing other multi-scale flood vulnerability studies 

Fig. 5. The percent of the total population accounted for at varying levels of social vulnerability (based on one standard deviation) at the BG, tract, and county scale.  
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(Remo et al., 2016; Tanir et al., 2021). As seen in Fig. 4, dense urban 
areas can vastly shift socioeconomic and demographic characteristics 
over a landscape; therefore, it is integral to consider how the selection of 
scale serves the flood risk mitigation strategies and the study area type. 
To avoid the ethical pitfalls of the ecological fallacy encountered when 
utilizing aggregated data (Alker, 1969; Clark & Avery, 1976), our work 
suggests the importance of including multi-scale analyses to reduce 
incorrect multilevel inferences made based on a single scale. 

4.4. Spatial structure shifts across scales 

As a result of this work, we found that scale selection based on the 
aggregated data plays a part in spatial association patterns. Generally, 
spatial autocorrelation is expected to decrease with increased aggrega
tion (Y. H. Chou, 1991; Y.-H. Chou, 1995; Qi & Wu, 1996; Xu et al., 
2017). Xu et al., 2017 described this as scale synthesis, which imitates a 
peak-cutting and valley-filling process, where smaller and isolated high 
values (H–H hot spots) or low values (L-L hot spots) are replaced or cut 
at increased aggregated scales. The Moran’s I statistics for HEMs were 
found to be consistent with MAUP literature, however, an opposing 
trend was revealed for univariate SoVIs and bivariate HEMs and SoVIs. 
We interpret that given that the global Moran’s I statistics are based on 
the contiguous spatial weight matrix, the increased null SoVI values at 
the BG level could have impacted the resulting spatial structure and 
trend, which is a similar inference by Chu et al., 2021. 

4.5. Implications of scale on researcher approach and implementation 

What implications does this raise for research methodological 

approaches? As described by Buzzelli, 2020, it is incorrect to assume 
that more minor aggregated spatial scales more closely represent what is 
occurring at the ground level than larger spatial scales (Buzzelli, 2020). 
There are tradeoffs with increased variability at smaller scales and 
increased generalization due to a smoothing effect occurring at larger 
spatial scales - highlighting why the effects of the MAUP is still an area of 
high inquiry within many topic areas of literature (for e.g., Barnes et al., 
2016; Zhang et al., 2022). However, the tradeoff of increased variability 
presents to be a safer alternative than not accounting for highly 
vulnerable and flood-exposed communities. Additionally, a multi-scale 
social vulnerability or flood risk analysis may not be achievable across 
all organizations, such as local governments with limited resources and 
capacity (Burnstein & Rogin, 2022). Based on the results of this work 
within coastal VA, which we acknowledge could be variable across the 
study area, we would recommend that a smaller aggregated scale with 
minimal data loss be utilized for flood risk and social vulnerability 
analysis. For Coastal VA, we would advise Census tracts for flood 
vulnerability analysis based on the explained variance and overall data 
quality. The tract scale offers minimal data loss with greater spatial 
detail than the BG or county scales. 

4.6. Limitations and future work 

A few inherent limitations exist in this study’s creation and point to 
future directions for research. First, we choose equal weighting of PCs to 
quantify vulnerability scores with the SoVI. This subjective choice 
weighs the dominant loading factor with high variance as equivalent to 
low percent variance factor loadings, altering our SoVI understandings. 
Second, the additive method is based on our interpretation of the 

Fig. 6. The HEMs at the (a) BG, (b) tract, and (c) county scale.  
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indicators’ influence on vulnerability. Therefore, the divergent SoVI 
results could be a combination of the PCA method approaches and the 
MAUP effects. Third, there was a lack of data quality accompanying the 
Census ACS data (King, 2001). Inconsistent missing data and gaps are a 
challenge in vulnerability assessments. We observed significant data 
gaps by validating the Census data used for this study. For example, we 
found a case in which 2018, 2019, and 2020 ACS 5-year estimates 
accounted for 7, 0, and 238 mobile homes, respectively, over a 
three-year survey period. As such, large variations such as these produce 

data gaps and inconsistencies that hinder the ability to understand the 
extent to which the data loss is supplementing observed social vulner
ability and flood exposure spatial analysis trends across scale versus the 
MAUP. Lastly, in quantifying flood exposure, although adequate for the 
desired motivation of this work, future studies could consider incorpo
rating advanced flood exposure approaches and data sources. For 
example, see Huang and Wang (2020), that better account for the het
erogeneity of population distribution within the floodplain at a 
micro-level. Researchers could also leverage the advancements made by 

Fig. 7. Bivariate LISA (i) cluster maps and (ii) cluster significance maps of HEM surrounded by SoVI at the (a) BG, (b) tract, and (c) county scale.  
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Flores et al. (2023) in dasymetric mapping using population density 
estimation within habitable areas. These approaches present promising 
opportunities to improve the accuracy of estimating populations 
exposed to flood hazards. 

Future directions for this work could consider exploring the temporal 
and spatial aspects based on the new release of the 2020 Census. An 
exploration across data products could lend insight into data quality and 
further understanding of the effect of the MAUP on flood vulnerability 
quantification. Additionally, to our knowledge, all multi-scale flood 
vulnerability studies have been performed locally or at a single state 
level. There are only two U.S.-based multi-scale flood vulnerability 
studies that followed a similar approach to social vulnerability index 
creation with a divergent method of flood exposure and loss estimation 
through FEMA’s Hazus-MH flood loss modeling software (Remo et al., 
2016; Tanir et al., 2021). These flood vulnerability studies, along with 
this work, have been performed locally or at a single state level. 
Therefore, a national-based multi-scale flood vulnerability, potentially 
incorporating additional scales not explored in this work, such as block, 
jurisdictional, or state level, could lend insight into the heterogeneity of 
hotspots and outliers of flood exposure and social vulnerability within 
the continental US. Lastly, several indicator-based methodological ap
proaches exist for quantifying social vulnerability to natural hazards, for 
example, see (CDC, 2020; Fitton et al., 2021), with contention on how to 
best measure vulnerability, such as indicator selection (Mavhura et al., 
2017). There is a lack of studies that investigate not only how to measure 
the validity of such indices in practice (Bucherie et al., 2022) but also 
how the differences among the construction of current indices (e.g., 
spatial scale, indicators) impact decision-making for flood hazard 

management and adaptation. Further research is needed to bridge this 
gap and enhance our understanding of the quality and effectiveness of 
social vulnerability indices. 

5. Conclusion 

Our research highlights that scale selection matters in social 
vulnerability index and flood exposure metric creation. The vulnera
bility analysis showcased that scale influences the correlation of social 
vulnerability indicators. We found that there is not a consistent indicator 
across scales driving vulnerability; however, themes of economic in
equities and mobility challenges transverse scales within coastal VA. 
This is an important finding as income and wealth are critical factors in 
determining how a household responds and recovers from a flood event 
(Gourevitch et al., 2022). Based on the choropleth mappings of the 
SoVIs, we found that greater aggregated scales overlooked areas of 
higher vulnerability detected at more minor aggregated scales. If used to 
inform flood mitigation policies and programs, it would further add to 
an inequitable landscape of flood risk. 

The HEMs findings further demonstrated the effect of scale on 
summary values. The mean flood exposure shifts from 9.5, 10.3, and 
12.2 percent at the BG, tract, and county scales. Like the SoVI analysis, 
choropleth mappings of HEMs identified areas of high flood exposure at 
smaller aggregated scales neglected at larger spatial scales. However, 
the patterns of flood exposure are generally mirrored throughout scale, 
detecting patterns of increased compound flooding towards the coast 
and upwards towards the Chesapeake Bay. 

Based on the bivariate LISA, which identified hotspots and outliers of 
flood exposure (HEMs) surrounded by social vulnerability (SoVIs), we 
found that scale selection can highlight different priority areas for flood 
mitigation and risk reduction. For example, highly vulnerable areas with 
varying exposure – target locations for current and future flood risk 
reduction – accounted for hundreds of thousands more people at the BG 
and tract scale than at the county scale. Then by investigating the social 
vulnerability indicators associated with each cluster and outlier type, we 
found that the identified priority indicators of social vulnerability to 
high flood exposure in coastal VA vary with scale. Overall, this body of 
work contributes to the knowledge gap in understanding how the MAUP 
and selection of scale impact flood vulnerability results. 
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