Applied Geography 157 (2023) 103017

ELSEVIER

journal homepage: www.elsevier.com/locate/apgeog

ApPLIED
GEOGRAPHY

Contents lists available at ScienceDirect

Applied Geography

Social and environmental vulnerability to flooding: Investigating

cross-scale hypotheses

Selena Hinojos ?, Lauren McPhillips ", Peter Stempel ¢, Caitlin Grady *

2 Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC, USA
Y Departments of Civil and Environmental Engineering, Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, USA
¢ Department of Landscape Architecture, The Pennsylvania State University, University Park, PA, USA

ARTICLE INFO

Handling Editor: J Peng

Keywords:

Flooding

Social vulnerability
Index

Scale

Natural hazard
MAUP

Modifiable areal unit problem
SOVI

Flood exposure
Indicators

Social equity

ABSTRACT

Flooding is a natural hazard that touches nearly all facets of the globe and is expected to become more frequent
and intensified due to climate and land-use change. However, flooding does not impact all individuals equally.
Therefore, understanding how flooding impacts distribute across populations of different socioeconomic and
demographic backgrounds is vital. One approach to reducing flood risk on people is using indicators, such as
social vulnerability indices and flood exposure metrics, to inform decision-making for flood risk management.
However, such indicators can face the scale and zonal effect produced by the Modifiable Areal Unit Problem
(MAUP). This study investigates how the U.S. Census block group, tract, and county scale selection impacts social
vulnerability and flood exposure outcomes within coastal Virginia, USA. Here we show how (1) scale selection
can obstruct our understanding of drivers of vulnerability, (2) increasingly aggregated scales significantly un-
dercount highly vulnerable populations, and (3) hotspot clusters of social vulnerability and flood exposure can
identify variable priority areas for current and future flood risk reduction. Study results present considerations
about using such indicators, given the real-life consequences that can occur due to the MAUP. The results of this
work warrant understanding the implications of scale selection on research methodological approaches and what
this means for practitioners and policymakers that utilize such information to help guide flood mitigation

strategies.

1. Introduction

Flooding is a near-ubiquitous natural hazard faced globally. The
frequency and extent of flooding impacts on the interconnected natural,
social, economic, and built environment are projected to rise due to
accelerated climate and land-use change. The United States, in 2021
alone, endured six billion-dollar flooding and tropical cyclone events
(NCEI, 2022). The risk of flooding, or the product of flood exposure,
hazard, and vulnerability (Qiang et al., 2017), from such events is un-
equally experienced across socioeconomic and demographic groups
(Gourevitch et al., 2022). Hazard and environmental justice scholars
have demonstrated clear patterns of flooding inequities faced by people
of color and lower-income populations in the U.S. (Mazumder et al.,
2022), for example (Chakraborty et al., 2014; Collins et al., 2019; Lin-
scott et al., 2022). Inequitable social conditions such as marginalizing
policies, systematic deprivation of resource access, placement within
flood-prone areas, and poor infrastructure have disproportionately
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impacted underserved and underestimated communities. Such condi-
tions enhance these social groups’ vulnerabilities by decreasing their
ability to prepare financially, respond to the threat of an imminent flood
event, and recover from a flood if implicated (Cutter et al., 2003).
Practitioners and policymakers widely utilize index-based measures
to quantify hard-to-measure social vulnerabilities (Rufat et al., 2019).
Scholars acknowledge the utility of understanding the landscape of so-
cial vulnerability to help guide natural hazard risk reduction planning
and recovery, despite criticisms about certain shortcomings like sensi-
tivity to selected indicators (Spielman et al., 2020). One widely used
index within hazards literature is the “hazard-of-place” Social Vulner-
ability Index (SoVI) (Cutter et al., 2003), a data-driven quantitative
method and theoretical framework used to understand a community’s
relative sensitivity and adaptive capacity to natural hazards (Gu et al.,
2018; Spielman et al., 2020). SoVI embeds epistemic uncertainty (Tate,
2013), one ambiguity being the ‘scale’ (size) of areal units being
analyzed, which is essential in vulnerability assessments (Fekete et al.,
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2010). Scale selection is a multifaceted decision based on the factors
such as project objectives and the intended end-use. However, the se-
lection of scale and whether such selection has unintended conse-
quences remains an underexplored area of literature.

Although multiple studies explore the uncertainty and sensitivity of
SoVI construction (Schmidtlein et al., 2008; Tate, 2013), such as indi-
cator selection (e.g., Spielman et al., 2020), limited studies investigate
how scale impacts the outcome of index-based measures for flood risk
results. Many studies explore flood vulnerabilities at different scales,
such as the Census block group (BG) (Pricope et al., 2019), tract (Shao
et al., 2020; Tate et al., 2021; Y (Victor) Wang & Sebastian, 2021), and
county scale (Khajehei et al., 2020). However, there are limited multi-
and cross-scale studies investigating vulnerabilities to flooding (Remo
et al., 2016). Two U.S.-based multi-scale flood vulnerability studies
revealed that finer spatial scales had identified more vulnerable com-
munities overlooked at larger spatial scales (e.g., block-level vs. tract)
(Remo et al., 2016; Tanir et al., 2021).

SoVI or any other index or analysis embeds socioeconomic and de-
mographic data that has aggregated point data at certain scales, which
can result in the unsolved spatial analysis phenomenon called the
Modifiable Areal Unit Problem (MAUP). The MAUP occurs when
selecting aerial units based on identical data can alter the analytical
results (Fotheringham & Wong, 1991; Openshaw, 1984). The MAUP can
arise by modifying a unit’s size or shape, referred to as the scale and
zonation effect. The scale effect occurs based on the size of the aggre-
gation. For decreased levels of aggregation or greater areal units, the
correlations between the variables tend to decrease while the variation
increases, given that the data’s extremes are more dominant than with
lesser areal units (Fotheringham & Wong, 1991; Openshaw & Taylor,
1979). Whereas the zoning effect occurs based on the shape or config-
uration of the system across geographic space (Fotheringham & Wong,
1991). These effects of the MAUP can regroup data observation into
infinite arrangements, effectively producing new summary values that
alter the understanding of that observation (Buzzelli, 2020). To the
extent that indices like SoVI rely on Census data that does not use
standardized areal units, they are subject to the MAUP.

This research seeks to address the knowledge gap in understanding
and applying indices of social vulnerability and flood risk. Utilizing the
case study area of coastal Virginia, we address the following research
questions: 1) How does scale influence social correlates of the SoVI in-
dicators within coastal VA? 2) Where does high and low social vulner-
ability coincide with flood exposure in coastal VA? How does this vary
across scales? 3) What implications does this raise for researcher
methods? We aim to explore how the MAUP and the selection of scale (e.
g., BG, tract, county) impact outcomes relating to SoVI and flood risk.
Our findings could guide future decision-making about scale selection
within flood vulnerability quantification. Furthermore, they could pro-
vide insight into managing hazard risk equitably, thereby reducing the
risk of floods on communities.

2. Materials and methods
2.1. Study area

The site of investigation for our work is coastal VA, a historically rich
and socially complex region that encompasses around 6 million people,
around 70% of the state’s population (Bureau, 2020; VA Dept. of Cons.
and Rec, 2021). These Virginians face unprecedented coastal and inland
flooding pressures from changing precipitation patterns and containing
areas with the second largest population centers at risk of sea level rise
in the U.S. (NOAA, 2023). The flood risk that these communities face is
extreme. For example, by 2080, there is an expected 180% increase in
the number of residents exposed to coastal flooding — around 943,000
people (VA Dept. of Cons. and Rec, 2021). This low-lying region is also
highly vulnerable to economic, environmental, and cultural loss, with
250,000 acres of land just under 5 feet above the high tide line (Strauss
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et al., 2014). Nearly 9.3% of coastal Virginians face poverty, of which
13.2% fall within the 2020 floodplain, making this site a prime area for a
social vulnerability and flood exposure investigation (VA Dept. of Cons.
and Rec, 2021).

Within coastal VA, there are eight Planning District Commissions
(PDCs) and Regional Commissions (RCs), which are political sub-
divisions of voluntary associations of the local government. These
commissions bridge intergovernmental cooperation, determine common
needs, study regional issues, and determine cost-saving viable solutions,
among other obligations (VA Dept. of Cons. and Rec, 2021). The
geographical boundaries of the commissions encompass four master
planning regions: Fall Line North, Fall Line South, Hampton Roads, and
Rural Coastal VA. These regions are actively utilized for the Virginia
Coastal Resilience Master Plan, which is a call to action for the
Commonwealth to protect and foster an equitably resilient coast for all
Virginians. Therefore, to bridge policy relevance, the BGs, tracts, and
counties within the boundaries of the commissions were used for this
study (Fig. 1) (See supplementary section S.1 for additional spatial
features of coastal VA).

2.2. Research design

We used socioeconomic and demographic information, land cover,
and 100-year floodplain data across BG, tract, and county scales to
investigate the spatial relationships between social vulnerability and
flood exposure across these scales in coastal VA. Fig. 2 summarizes the
three methodological elements used. First, we produced three social
vulnerability indices (SoVIs) using principal component analysis (PCA).
The SoVIs were generated at the BG, tract, and county scale based on the
Census Bureau’s 2019 American Community Survey (ACS). Then, we
developed three flood hazard exposure metrics (HEMs) by combining
the 2019 National Land Cover Database (NLCD) land cover data with the
Federal Emergency Management Agency (FEMA) 100-year flood hazard
data through a dasymetric mapping technique, following the approach
of Tate et al. (2021). The HEMs are the percent of habitable areas that
are flood exposed per BG, tract, or county. Collectively, the HEMs and
SoVIs were spatially analyzed using a bivariate Local Indicators of
Spatial Association (LISA) approach to identify hotspots and outliers of
spatial autocorrelation between social vulnerability and flood exposure.
Lastly, we analyzed Moran’s I coefficients to detect variable spatial
patterns for the SoVIs, HEMs, and the spatial clusters of HEMs sur-
rounded by SoVIs.

2.3. Social vulnerability index

We adapted the “hazards-of-place” model approach based on spatial
vulnerability indicators from the latest edition of SoVI (Hazards and
Vulnerability Research Institute, 2015) to measure the spatial distribu-
tion of social vulnerability to flooding (Cutter et al., 2003). This
inductive model utilizes PCA to generate principal component (PC)
factors that contain much of the variation among the set of indicators
(Hotelling, 1933; Pearson, 1901). The factors are then aggregated to
produce a composite SoVI score. We selected the SoVI and the PCA
approach for this study based on its widespread adoption within
vulnerability assessment frameworks (Abson et al., 2012; de Loyola
Hummell et al., 2016; Rabby et al., 2019; Schmidtlein et al., 2011;
Tasnuva et al., 2020; C. Wang & Yarnal, 2012) and for comparability
purposes.

Twenty-nine socioeconomic, demographic, and ethnic indicators
(Table 1) were extracted at the BG, tract, and county scale from the
2015-2019 U.S. Census ACS (US Census Bureau, 2019) for the SoVI
analysis using the tidycensus R package (Walker, 2022). We selected
these three scales for comparability objectives, uncertainty reduction,
and maintaining indicator and temporal uniformity (Supplementary
Section S.2).

In line with previous literature (HVRI, 2016), we completed standard
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Fig. 1. Study site selection of Coastal Virginia and the Master Planning Regions encompassing the Planning District Commissions (PDCs) and Regional Commis-

sions (RCs).
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Fig. 2. Analytical framework of the study.

computation and normalization, verification of linearity and accuracy of
the data, diagnostic testing, z-score standardization, eigenvalue-based
Kaiser selection criterion, varimax rotation, and used an additive
model to produce the SoVI scores (Equation (1)) (Supplementary Section
S.3).

S0VIseore =X [(£ or |)) Factor, +..(£ or ) Factorx] @

We spatially mapped the SoVI factor scores into six divergent classes
based on the standard deviation from the mean to highlight the most and

least vulnerable areal units per scale, ranging from —1.5 (lower
vulnerability) to +2.5 (higher vulnerability). We utilized Python
Version 3.9 to perform all SoVI analyses (see Supplementary Section
S.4).

2.4. Flood hagard

To represent flood hazard, we utilized the FEMA National Flood
Hazard Layer (NFHL) 100-year high-risk floodplain. The flood hazard
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Table 1
The social vulnerability indicators utilized for the SoVI creation (Modified from
Tate et al., 2021).

Category Indicator Indicator Code
Age % Population <5 years & > 65 years UNDER50VER65

Median Age MEDAGE
Education % Less than 12th grade education LIMEDU
Employment % Employment in extractive industries EMPEXT

% Employment in service industries EMPSER
Race % Black or African American BLACK

% Asian ASIAN

% American Indian or Alaskan Native AIAN
Ethnicity % Hispanic HISP
Family % Children living in married coupled CHILDMF

Structure families

% Female-headed households FEMHH

People per housing unit HHDENSITY
Gender % Female FEM

% Female participation in labor force FEMLABFORCE
Health % Population without health insurance NOHEALTHINS
Housing % Renters RENTER

% Rent burdened RENTBUR

Median gross rent MEDRENT

% Mobile homes MOBHOME

% Unoccupied housing units VACANTHH
Wealth Median housing value MEDHHVALUE

% Civilian unemployment UNEMP
Income % Poverty POV

% Households earning > $200,000 HH200k

annually

Per capita income PERCAPINC
Dependence % Households receiving social security HHSSINC

Nursing home residents per capita NURSINGHPERCAP
Language % Limited English proficiency LIMENG
Mobility % Housing unit with no car NOTRANS

*A bolded indicator implies that an increase in the indicator results in a
reduction of social vulnerability.

layers, representing fluvial (riverine) and coastal flood types, are
available from the FEMA Flood Map Service Center (FEMA, 2022). The
FEMA flood hazard data is scrutinized for the spatial (Qiang et al., 2017)
and temporal scarcity (Birkland et al., 2003) within the U.S., as well as
the ability to capture pluvial (rainfall-driven) flood hazards (NASEM,
2019); however, it has been the standard since 1968 in determining
federal flood insurance and general community tactics to combat
flooding risks (Blessing et al., 2017). We selected FEMA flood maps for
this analysis given the high spatial resolution, the regularity for use in
policy and regional development (Huang & Wang, 2020; Qiang, 2019b),
and prevalence in guiding local planning (Huang & Wang, 2020).

To process these data, we disaggregated the NFHL county shapefiles
into binary raster grids at a 30-m resolution at the BG, tract, and county
scales. Each cell in the flood grid represented being within the 100-year
floodplain (wet cell) or outside of the floodplain (dry or no-data cell).
No-data classified cells are open-water areas. We conducted all hazard
analyses in ArcGIS Pro Version 2.9.2.

2.5. Flood exposure

To measure people’s exposure to flooding, we then calculated the
relative area of habitability across scales using land cover data. Popu-
lation exposure disaggregated based on land cover is one approach to
measuring flood exposure (Debbage, 2019; Qiang, 2019a; Tate et al.,
2021); however, there are several alternative methods of quantifying
exposure that vary in accuracy and resolution, see (Crowell et al., 2010;
Huang & Wang, 2020; Yager & Rosoff, 2017).

The land cover data is a 30-m resolution raster containing cells with
20 different land cover types categorized by the Anderson Land Cover
Classification System (NLCD, 2019). Following the approach of Tate
et al., 2021, we used the dasymetric categories of the EnviroAtlas map
from the U.S. Environmental Protection Agency (EPA) to identify areas
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in which people are most likely to reside based on land type (Tate et al.,
2021; US EPA, O., 2015). Based on the underlying assumption of the
EnviroAtlas dasymetric population map, we assume the population is
equally distributed, and land cover classes of open water, perennial
ice/snow, and emergent herbaceous wetlands are considered uninhab-
itable land cover types. Habitable areas include developed, barren,
forest, shrubland, herbaceous, planted/cultivated, and wetland land
cover (Supplementary Section S.5). Habitability categories 1 through 5
were retained for this study, and non-habitable categories were
removed. The sum of habitable cells per spatial scale from the binary
raster of land cover acted as the denominator for the HEMs.

2.6. Hazard exposure metric

Combining flood hazard and flood exposure, we created hazard
exposure metrics (HEMs) to measure areas within the floodplain in
which people reside. We completed this by combining the FEMA flood
hazard raster with the flood exposure habitable land cover raster
through a dasymetric population mapping technique. Dasymetric map-
ping is a geospatial technique that can utilize land cover to distribute
population data more accurately across a geographic boundary, such as
BGs, tracts, and counties (US EPA, O., 2015). This technique has been
applied in other flood exposure and risk analyses see (Debbage, 2019;
Flores et al., 2023; Maantay & Maroko, 2009; Montgomery & Chakra-
borty, 2013; Qiang, 2019a; Tate et al., 2021; Wing et al., 2018).

Through a cell-by-cell stacked raster approach, we combined the
habitable land use cells with the FEMA flood hazard cells. The sum of the
habitable cells within the floodplain per BG, tract, and county was
retained for the numerator of the HEMs. Finally, the ratio of flooded
habitable cells to habitable cells across scales produces the HEMs
(Equation (2)).

> Habitable flood exposed areas (per areal unit)

HEMs = 2
s > Habitable areas (per areal unit) 2

We then spatially mapped the resulting HEM scores into four
divergent classes based on the standard deviation from the mean to
highlight the most and least flood hazard-exposed geographical units,
ranging from —0.5 (lower HEM) to +1.5 (higher HEM). Note that
additional operations within ArcGIS Pro were necessary to create the
HEMs (Supplementary Section S.6).

2.7. Spatial analysis of HEM and SoVI

We employed a bivariate LISA cluster mapping technique to examine
the spatial relationship between the HEMs and the composite SoVIs
scores at BG, tract, and county scale. The LISA approach identifies local
patterns where data values present strongly positive spatial associations
(clusters) or strongly negative spatial associations (outliers). We iden-
tified four types of LISA clusters and outliers by how flood hazard
exposure values vary with social vulnerability values. 1) High-High
(H-H), a geographic unit, and its neighboring units both ranked high
in the HEM and SOVI. 2) Low-Low (L-L), a geographic unit, and its
neighboring units both ranked low in the HEM and SOVI. 3) High-Low
(H-L), HEM is ranked high in a geographic unit, while SoVI is ranked
low in the neighboring units. 3) Low-High (L-H), HEM is ranked low in a
geographic unit, while SoVI is ranked high in the neighboring units.
GeoDa™ version 1.8 was utilized for the exploratory spatial analysis of
LISA clusters (detailed LISA steps are outlined in Supplementary Section
S.7).

3. Results
3.1. The effect of spatial scale on social vulnerability

We found that no indicators within the first PC factor F1 load
consistently across scales (Fig. 3). This reveals that there is no leading
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represents F’s relative correlation (—1 to +1). The dominant indicator with a correlation greater than +0.50 is characterized as a primary driver within that PC factor
loading (F). The diamonds ({)) represent an indicator with a correlation > =+ 0.50. The percent variance explained by each F is displayed.

vulnerability indicator that transverses scales. We also found that the
following eight indicators lack an explanation across two or more scales:
employment in extractive industries, Asian, American Indian or Alaskan
Native, rent burdened, mobile homes, unoccupied housing units,
civilian unemployment, and nursing home residents per capita. Specif-
ically, the eight indicators present significant prevalence in at least one
scale but are generally the least influential in the model, loading on the
PCs with the least variance.

Additionally, across the SoVIs, there are consistent themes that vary
across PC factors. The following indicators are highly loading factors on
PCF1, F2, or F3 across scales: employment in service industries, Black or
African American, children living in married coupled families, female-
headed households, renters, housing unit with no car, poverty, low
values of median gross rent, median housing value, households earning
> $200,000 annually, and per capita income. Therefore, economic in-
equities, socially vulnerable demographic groups, and mobility chal-
lenges could be considered significant drivers of social vulnerability
within coastal VA.

The PCA revealed dissimilarities in the dimensions of social vulner-
ability detected with scale. The variance explained by the vulnerability
data at the BG, tract, and county scales is 66.1, 66.0, and 84.3 percent.
This result suggests that the SoVI data is better explained at the county
scale versus the less aggregated scales. The pooled summary results,
including the number of PC factors, the associated indicators, general
themes, and the individual and cumulative percent variance found at
each scale, can be found in the Supplementary Section S.8.

The SoVI maps reveal that the finer aggregated BG and tract scales
identify greater detailed areas of vulnerability that are not easily
interpretable at the county scale (Fig. 4). Spatial trends show contrasting
results between scales. A single geographical unit could be characterized
as high vulnerability at one scale and featured as low vulnerability at
another due to the MAUP.

We found that larger aggregated scales accounted for more people at
lower SoVI levels, whereas less aggregated (finer spatial) scales reported
more people at medium and high SoVI levels (Fig. 5). This result sug-
gests that finer spatial scales could be valuable in detecting populations
that could be neglected at greater aggregated scales.

3.2. The spatial pattern of flood hazard exposure

The spatial choropleth maps representing the HEMs show consistent
spatial patterns with elevated flood exposure along the coastline,
beginning at Virginia Beach, toward the Chesapeake Bay, and within the
eastern shore of VA (Fig. 6). The increased exposure is an anticipated
conclusion given the proximity to major inland and coastal water bodies.
However, there are spatial differences in the HEMs based on the statis-
tical subdivisions between scales. For example, the mean flood exposure
within coastal VA at the BG, tract, and county scale as percent are 9.5,
10.3, and 12.2, respectively. Results exhibit an increase in mean flood
exposure per areal unit with scale. This is an expected result, given that
increased aggregated scales are likely to dampen the influence of
extremes.

3.3. The spatial distribution of flood exposure and social vulnerability

Three bivariate (i) LISA cluster maps and (ii) cluster significance
maps at the BG, tract, and county scale spatially identify local clusters
and local spatial outliers of the HEMs surrounded by the SoVIs (Fig. 7).
The significance maps show that the statistical significance of the indi-
vidual clusters fluctuates greatly with scale. The spatial differences in
the bivariate cluster maps were unexpected, given that the same foun-
dational unaggregated data is utilized for SoVI and HEM creation.
However, a consistent spatial trend across scales is areas of L-L occurring
in northern coastal VA. Generally, spatial variability of statistically
identified clusters decreases at the county scale; for example, H-L areas
of vulnerability are not significant within coastal VA — which is not the
case at the BG and tract scale. Following previous trends, smaller
aggregated scales (BG and tract) provided greater detail on the land-
scape of flood exposure and social vulnerability.

From a flood risk reduction perspective, areas of variable flood
exposure surrounded by high vulnerability (H-H and L-H) are target
locations to prioritize. H-H locations are the most at risk, given elevated
vulnerability and exposure. L-H areas could be considered high risk in
the future with intensified flood events and alterations of the landscape.
The difference across scale in population counts encompassing highly
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vulnerable communities within such target locations, at the magnitude
of hundreds of thousands of people, is concerning from a methodological
and flood risk management perspective (Fig. 8 Panel A). Likewise, the
clusters and outliers account for variable trends in population density
(Fig. 8 Panel B). Mixed spatial density trends within the bivariate ex-
tremes of H-L and L-H outliers depict opposing trends across scales.
However, H-H clusters present primarily low population density, and L-
L clusters contain highly populated regions. For example, the average
population density across L-L clusters is 1.1 million people per sq. Mile.
See Supplementary Section S.9 for not statistically significant and total
count between scales, the relative number of aggregated units, and
average HEMs and SoVIs values.

3.4. Indicator variability of flood exposure and social vulnerability
clusters and outliers

The percent change between the indicators averages within coastal
VA against the H-H, L-L, H-L, and L-H spatial clusters were calculated to
understand how the social vulnerability indicators varied with flood
exposure throughout scale (Supplementary Section S.10 Tables S10a,
S10b, S10c, S10d). This investigative approach follows Tate et al., 2021.
Outcomes reveal that the landscape of flood risk based on the LISA
analysis reveals somewhat consistent but diverging trends, which could
impact the strategy of flood resiliency approaches implemented. For
example, in areas of H-H, consistent themes across scales include an
increase, relative to the averages of coastal VA, in limited education,
mobility challenges, lower income, and a decrease in Asian populations

(Supplementary Table S10a). However, the influence of distinguishing
indicators moving into H-H clusters is, for example, the percent change
of mobile homes at the tract (213%) and county (232%) scale, which
depicts a different geography of vulnerability at the BG scale (21%).
Contradictory indicators such as language barriers where there is a
negative percent change of at the BG (—45.1) and tract (—36.0),
compared to a positive percent change at the county scale (51.3%). See
supplementary section S.10 for a detailed analysis of the remaining
spatial clusters (L-L, H-L, and L-H).

3.5. Variability of spatial autocorrelation across scale

The global Moran’s I statistics for the SoVIs, HEMs, and the clusters
and outliers of HEMs surrounded by SoVIs present variable trends for
spatial autocorrelation (Table 2, see supplementary section S.11 for the
Moran’s scatterplots, LISA cluster maps, and statistical significance
maps). Moran’s I statistics for HEMs show a decrease as the level of
aggregation increases. However, the opposite is true for the univariate
SoVIs and bivariate HEMs and SoVIs.

4. Discussion
4.1. Variability of social vulnerability characteristics across scale
Our research found that the choice of spatial scale for data aggre-

gation considerably impacts the correlation of social vulnerability in-
dicators across Coastal VA, thus showing the effect of the MAUP. As
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elaborated on by Chu et al., 2021, Census data is a non-modifiable entity
that does not change temporally within a specific year (Chu et al., 2021).
Therefore, the correlation of the indicators used for the SoVI creation
was expected to be identical across scales. However, to an extent, similar
themes of vulnerability are apparent across scales, such as low income
and wealth, lack of transportation, vulnerable family structures, and
young children and elderly populations, these results present similar
themes within literature (see Kleinosky et al., 2007 and VA Dept. of
Cons. and Rec, 2021) (Supplementary Section S.8 tables S8a, S8b, and
S8c¢). Analogous to Schmidtlein et al., 2008, this result suggests that the
effect of scale does not hinder the identification of significant drivers of
vulnerability. However, arguably of most interest are indicators that are
not consistent across scales with the SoVI measures, such as vacant
households, Asian populations, and unemployed populations that are
highly prevalent at one spatial scale and not as influential at another.
This further confirms a conclusion made by Spielman et al., 2020 that
the SoVI lacks internal consistency, which presents doubt in interpreting
how valid this measurement scheme is in explaining social vulnerability
and confirms calls to the sensitivity of the indicators (Spielman et al.,
2020). Counter to previous scholarship, we found that the SoVI algo-
rithm is not robust to minor changes in indicator selection and the level
of aggregation (Schmidtlein et al., 2008).

4.2. Scale selection influence on social vulnerability identification

Through this study, we found that the number of PCs used for the
SoVI creation and percent variance is contingent on scale selection. The
BG and tract scales presented less percent variance than the county
scale. Within the MAUP literature, percent variance is expected to
decrease with increased aggregation (Prouse et al., 2014) due to a
smoothing process of data extremes that occurs at greater spatial scales,
which is indicative of information loss and generalization (Fothering-
ham & Wong, 1991; Openshaw & Taylor, 1979; Wong, 1996). However,
a multi-scale SoVI comparison for South Carolina at the tract and county
level showed increased percent variance with increased aggregation

(Schmidtlein et al., 2008). Schmidtlein et al. rationalized the result
given that the original construction of the “hazard-of-place” SoVI model
was designed for the county scale, which presents two viewpoints of the
SoVI results. Nonetheless, this result indicates that the SoVI model lacks
internal consistency, which is imperative for a measurement instrument
(Spielman et al., 2020).

Additionally, our results are consistent with other multi-scale studies
(Remo et al., 2016; Tanir et al., 2021) that found that highly socially
vulnerable residents were better detected at finer spatial scales than at
coarser scales. In other words, if this study had been performed only at
the county scale, the SoVI would have underreported a substantial
number of people classified as highly vulnerable. However, there are
contrasting results for vulnerability within the same spatial area across
scales, which is a real problem brought on by the MAUP and influenced
by the original Census data, which is also highlighted by a cross-scale
study on social resilience (Chu et al., 2021). Therefore, understanding
the extent to which scale affects the subsequent decision-making for
resource allocation and risk-management strategies for priority pop-
ulations within SoVI analysis is warranted as the MAUP can manifest
itself into real-life consequences for people (Buzzelli, 2020).

4.3. The landscape of flood hazard exposure and social vulnerability

A key contribution of this study is highlighting the effect scale se-
lection has on hotspot identification for the spatial relationship of flood
exposure and social vulnerability. We found inconsistencies between the
bivariate LISA maps and the degree of spatial autocorrelations which
suggests that the scale effect is prevalent in flood vulnerability risk as-
sessments. The prevalence of the scale effect can impact the identifica-
tion of priority areas for flood risk reduction strategies. Generally,
mitigation strategies are implemented at the county or jurisdictional
level (Frazier et al., 2013; Remo et al., 2013). However, our research
demonstrates the possibility of overlooking highly vulnerable pop-
ulations at greater aggregated spatial scales (county) in flood vulnera-
bility analyses — echoing other multi-scale flood vulnerability studies
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(Remo et al., 2016; Tanir et al., 2021). As seen in Fig. 4, dense urban
areas can vastly shift socioeconomic and demographic characteristics
over a landscape; therefore, it is integral to consider how the selection of
scale serves the flood risk mitigation strategies and the study area type.
To avoid the ethical pitfalls of the ecological fallacy encountered when
utilizing aggregated data (Alker, 1969; Clark & Avery, 1976), our work
suggests the importance of including multi-scale analyses to reduce
incorrect multilevel inferences made based on a single scale.

4.4. Spatial structure shifts across scales

As a result of this work, we found that scale selection based on the
aggregated data plays a part in spatial association patterns. Generally,
spatial autocorrelation is expected to decrease with increased aggrega-
tion (Y. H. Chou, 1991; Y.-H. Chou, 1995; Qi & Wu, 1996; Xu et al.,
2017). Xu et al., 2017 described this as scale synthesis, which imitates a
peak-cutting and valley-filling process, where smaller and isolated high
values (H-H hot spots) or low values (L-L hot spots) are replaced or cut
at increased aggregated scales. The Moran’s I statistics for HEMs were
found to be consistent with MAUP literature, however, an opposing
trend was revealed for univariate SoVIs and bivariate HEMs and SoVIs.
We interpret that given that the global Moran’s I statistics are based on
the contiguous spatial weight matrix, the increased null SoVI values at
the BG level could have impacted the resulting spatial structure and
trend, which is a similar inference by Chu et al., 2021.

4.5. Implications of scale on researcher approach and implementation

What implications does this raise for research methodological

approaches? As described by Buzzelli, 2020, it is incorrect to assume
that more minor aggregated spatial scales more closely represent what is
occurring at the ground level than larger spatial scales (Buzzelli, 2020).
There are tradeoffs with increased variability at smaller scales and
increased generalization due to a smoothing effect occurring at larger
spatial scales - highlighting why the effects of the MAUP is still an area of
high inquiry within many topic areas of literature (for e.g., Barnes et al.,
2016; Zhang et al., 2022). However, the tradeoff of increased variability
presents to be a safer alternative than not accounting for highly
vulnerable and flood-exposed communities. Additionally, a multi-scale
social vulnerability or flood risk analysis may not be achievable across
all organizations, such as local governments with limited resources and
capacity (Burnstein & Rogin, 2022). Based on the results of this work
within coastal VA, which we acknowledge could be variable across the
study area, we would recommend that a smaller aggregated scale with
minimal data loss be utilized for flood risk and social vulnerability
analysis. For Coastal VA, we would advise Census tracts for flood
vulnerability analysis based on the explained variance and overall data
quality. The tract scale offers minimal data loss with greater spatial
detail than the BG or county scales.

4.6. Limitations and future work

A few inherent limitations exist in this study’s creation and point to
future directions for research. First, we choose equal weighting of PCs to
quantify vulnerability scores with the SoVI. This subjective choice
weighs the dominant loading factor with high variance as equivalent to
low percent variance factor loadings, altering our SoVI understandings.
Second, the additive method is based on our interpretation of the
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indicators’ influence on vulnerability. Therefore, the divergent SoVI
results could be a combination of the PCA method approaches and the
MAUP effects. Third, there was a lack of data quality accompanying the
Census ACS data (King, 2001). Inconsistent missing data and gaps are a
challenge in vulnerability assessments. We observed significant data
gaps by validating the Census data used for this study. For example, we
found a case in which 2018, 2019, and 2020 ACS 5-year estimates
accounted for 7, 0, and 238 mobile homes, respectively, over a
three-year survey period. As such, large variations such as these produce

data gaps and inconsistencies that hinder the ability to understand the
extent to which the data loss is supplementing observed social vulner-
ability and flood exposure spatial analysis trends across scale versus the
MAUP. Lastly, in quantifying flood exposure, although adequate for the
desired motivation of this work, future studies could consider incorpo-
rating advanced flood exposure approaches and data sources. For
example, see Huang and Wang (2020), that better account for the het-
erogeneity of population distribution within the floodplain at a
micro-level. Researchers could also leverage the advancements made by
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Table 2

The univariate (SoVIs, HEMs) and bivariate (LISA hotspots) Moran’s I by spatial
scale. The global Moran’s I is based on 999 permutations with a pseudo-
significance level of p < 0.05.

Analysis Type Spatial Global P- Z-
Scale Moran’s I Value Value
Univariate Global Moran’s I BG 0.249 0.001 25.6
(SoVI) Tract 0.444 0.001 28.5
County 0.114 0.091 1.40
Univariate Global Moran’s 1 BG 0.531 0.001 55.7
(HEM) Tract 0.433 0.001 26.2
County 0.230 0.002 3.66
Bivariate Global Moran’s [ BG 0.008 0.121 1.14
(HEM and SoVI) Tract 0.096 0.001 8.19
County 0.107 0.063 1.53

Flores et al. (2023) in dasymetric mapping using population density
estimation within habitable areas. These approaches present promising
opportunities to improve the accuracy of estimating populations
exposed to flood hazards.

Future directions for this work could consider exploring the temporal
and spatial aspects based on the new release of the 2020 Census. An
exploration across data products could lend insight into data quality and
further understanding of the effect of the MAUP on flood vulnerability
quantification. Additionally, to our knowledge, all multi-scale flood
vulnerability studies have been performed locally or at a single state
level. There are only two U.S.-based multi-scale flood vulnerability
studies that followed a similar approach to social vulnerability index
creation with a divergent method of flood exposure and loss estimation
through FEMA’s Hazus-MH flood loss modeling software (Remo et al.,
2016; Tanir et al., 2021). These flood vulnerability studies, along with
this work, have been performed locally or at a single state level.
Therefore, a national-based multi-scale flood vulnerability, potentially
incorporating additional scales not explored in this work, such as block,
jurisdictional, or state level, could lend insight into the heterogeneity of
hotspots and outliers of flood exposure and social vulnerability within
the continental US. Lastly, several indicator-based methodological ap-
proaches exist for quantifying social vulnerability to natural hazards, for
example, see (CDC, 2020; Fitton et al., 2021), with contention on how to
best measure vulnerability, such as indicator selection (Mavhura et al.,
2017). There is a lack of studies that investigate not only how to measure
the validity of such indices in practice (Bucherie et al., 2022) but also
how the differences among the construction of current indices (e.g.,
spatial scale, indicators) impact decision-making for flood hazard
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management and adaptation. Further research is needed to bridge this
gap and enhance our understanding of the quality and effectiveness of
social vulnerability indices.

5. Conclusion

Our research highlights that scale selection matters in social
vulnerability index and flood exposure metric creation. The vulnera-
bility analysis showcased that scale influences the correlation of social
vulnerability indicators. We found that there is not a consistent indicator
across scales driving vulnerability; however, themes of economic in-
equities and mobility challenges transverse scales within coastal VA.
This is an important finding as income and wealth are critical factors in
determining how a household responds and recovers from a flood event
(Gourevitch et al., 2022). Based on the choropleth mappings of the
SoVIs, we found that greater aggregated scales overlooked areas of
higher vulnerability detected at more minor aggregated scales. If used to
inform flood mitigation policies and programs, it would further add to
an inequitable landscape of flood risk.

The HEMs findings further demonstrated the effect of scale on
summary values. The mean flood exposure shifts from 9.5, 10.3, and
12.2 percent at the BG, tract, and county scales. Like the SoVI analysis,
choropleth mappings of HEMs identified areas of high flood exposure at
smaller aggregated scales neglected at larger spatial scales. However,
the patterns of flood exposure are generally mirrored throughout scale,
detecting patterns of increased compound flooding towards the coast
and upwards towards the Chesapeake Bay.

Based on the bivariate LISA, which identified hotspots and outliers of
flood exposure (HEMs) surrounded by social vulnerability (SoVIs), we
found that scale selection can highlight different priority areas for flood
mitigation and risk reduction. For example, highly vulnerable areas with
varying exposure — target locations for current and future flood risk
reduction — accounted for hundreds of thousands more people at the BG
and tract scale than at the county scale. Then by investigating the social
vulnerability indicators associated with each cluster and outlier type, we
found that the identified priority indicators of social vulnerability to
high flood exposure in coastal VA vary with scale. Overall, this body of
work contributes to the knowledge gap in understanding how the MAUP
and selection of scale impact flood vulnerability results.
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