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Abstract: There is a clear and present desire from government authorities to actualize processes and procedures that place equity at the
forefront of decision-making and improve supply chain resilience. Following a federal executive order, several agencies including the
Federal Emergency Management Agency have instituted initiatives focused on equity in resilience planning, recognizing the variance in
how different populations are impacted during disturbances. To actualize policy and programmatic priorities, decision makers need tools
that are theoretically grounded yet computationally simplistic and adoptable for participants outside of academia. Thus, developing
methodology that is deployable at scale within the framework of average agency capabilities remains critical. This research seeks
to leverage network science, transportation theory, and social vulnerability analysis to explore the relationship between the exposure
of counties to food supply disruptions through the road and highway transportation network and their community social vulnerability.
This result highlights that in our food transportation network, targeted attacks are not more impactful than random removals when fewer
nodes are removed. Our results also found that the most exposed counties are generally in the southeastern portion of the region. In our
study area, a large part of the exposure is due to the high food-inflow demand. The framework presented is both theoretically grounded
and computationally simplistic and presents a potential strategy for understanding social vulnerability alongside critical infrastructure
resilience. DOI: 10.1061/JITSE4.ISENG-2258. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Transportation infrastructure is crucial to economic prosperity
and the functioning of modern society, but unanticipated events,
human-caused accidents, and/or malicious attacks can disable or
reduce the capacity of components of the system. In the United
States, agricultural freight movement is heavily reliant on roads
and highways, thus transportation by roads and highways are vital
for feeding the US population and disruptions to road networks can
have implications on the food security of communities (Gomez
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et al. 2020; Lin et al. 2014). There has been an increasing interest
in modeling the impacts of failures on transportation networks with
the aim of making freight flow less vulnerable to different disturb-
ances (Faturechi and Miller-Hooks 2015; Mattsson and Jenelius
2015; Miller-Hooks et al. 2012; Reggiani et al. 2015). Studies on
the vulnerability and risk of transportation network usually focus
on the operational and economic impacts of disruptions without
considering the societal equity dimensions that inform unequal
impacts on communities. Yet, perturbations to physical food trans-
portation networks have the potential to negatively impact socially
vulnerable populations (Cutter 2017; Cutter et al. 2008). Concerns
relating to the disproportionate impacts placed on people reliant on
food commodities for their livelihoods are themes of interest in the
resilience research domain (Cutter 2017), and the need to balance
efficiency with equity and vulnerability considerations in transporta-
tion studies is widely acknowledged (Ahmed et al. 2008; Manaugh
and El-Geneidy 2012; Novak et al. 2020; Pereira et al. 2017). Because
the systems engineering community is increasingly finding applica-
tions in context for urban planning (Reid and Wood 2022), the topic
of food supply vulnerability is ripe for exploration across disciplines.
Thus, this paper seeks to integrate traditional network resilience sys-
tem modeling with social vulnerability assessments to explore the
topic of food supply vulnerability across different disciplines.

In previous infrastructure risk assessments, network-based ap-
proaches have been used to assess the short- and long-term conse-
quences of disruptions in supply chain systems including various
transportation systems (Bellamy and Basole 2013; Faturechi and
Miller-Hooks 2015; Jansuwan et al. 2021; Ouyang 2014). Two
types of network disruption methods, topological approaches
and flow-based approaches, are often used to capture critical infra-
structure resilience, each with its strengths and weaknesses based
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on the simplicity or complexity of the system model (Ouyang
2014). The outcomes from such network assessments could be used
to prioritize interventions, such as strategic disinvestment of road
infrastructure (Novak et al. 2020), climate-related resilient trans-
portation interventions (Demirel et al. 2015; Papilloud et al.
2020), and (post-)disaster transportation infrastructure investments
(Merschman et al. 2020; Nelson et al. 2019). However, these
assessments often fail to consider the exposure of transportation
users, including users in rural, low-density, low-income, and dis-
advantaged communities. To address this gap, Jenelius et al. (2006)
introduced the concept of user exposure in a road network analysis
case study, which quantifies the risk of different users within the
transportation network. This approach considers the unequal im-
pacts of disruption on communities and can help to identify
vulnerable populations that require targeted interventions.

Assessing the spatial distribution of impacts caused by physical
perturbations in a transportation network can help determine the
priorities for rerouting commodity flows or repairing and maintain-
ing critical components. However, the capacity of local commun-
ities to withstand and recover from unanticipated events depends
on various social and economic factors. Therefore, understanding
the broader societal consequences of physical disruption is impor-
tant when assessing the allocation of resources to reduce commu-
nity vulnerability. The term social vulnerability specifies how
societal characteristics of individuals, groups, or communities im-
pact their ability to anticipate, cope with, and recover from hazards
and/or unprecedented events (Cutter et al. 2003, 2008). Most often,
the most vulnerable communities are those with limited resources
to withstand the effects of disruptive events (Cutter et al. 2003;
Paton et al. 2006). More specifically, a key cause of social vulner-
ability is inequality (e.g., inaccessibility to resources, income, age,
physical limitations), which reduces the capacity of certain subpo-
pulations to cope with and recover from hazards (Cutter et al.
2003). Social vulnerability indicators have been developed and
employed to demonstrate how subpopulations experience these im-
pacts and hardships distinctively, and to address the vulnerabilities
that arise due to the surrounding social environment (Cutter et al.
2003; Morrow 1999; Tierney 2009). In vulnerability studies, the
majority of the literature that accounts for societal aspects in the
context of physical infrastructure disruptions does so in qualitative
terms or generalities, without necessarily showcasing applied
real-world research outcomes (Garschagen and Sandholz 2018).
Quantitative approaches such as the Social Vulnerability Index
(SoVI) combine a large number of social factors into a single
composite score at a certain scale, measuring sociodemographic
dimensions without direct ties to physical aspects of specific hazard
risks (Cutter et al. 2003, 2008). Integrating a social vulnerability
assessment while leveraging transportation risk analyses could
provide information of impacts on vulnerable communities that
could be relevant in risk mitigation and planning.

Recent studies have incorporated various measures of social
vulnerability alongside infrastructure to analyze the disparate
impacts of disruptions to utilities (Balakrishnan and Zhang 2018),
power grids (Boyle et al. 2022), healthcare facilities (Dong et al.
2020), and critical infrastructure networks (Eid and El-adaway
2017; Karakoc et al. 2020; Lobban et al. 2021). The consideration
of social vulnerability dimensions has also been leveraged for
studying disaster preparedness efforts and humanitarian supply
chain management (Gralla et al. 2014; Huang et al. 2011). To date,
limited attention has been given to a transportation network.
Transportation equity and vulnerability studies have defined
equity-weighted transportation demands based on the theoretical
minimization equation of various types (Jafino 2021) or user-
related distributed travel time changes due to disruption (Jenelius
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et al. 2006; Tahmasbi et al. 2021) without leveraging the depth
of knowledge from social vulnerability studies literature. This
research thus proposes an integrative approach that highlights
social vulnerability in the context of a disruption in commodity
flows due to disruptions in transportation infrastructure to bridge
social vulnerability, food supply chain, and transportation network
analysis.

In addition to research gaps, there is a clear and present desire
from federal authorities to actualize processes and procedures that
place equity at the forefront of decision-making (Executive Office
of the President 2021a) and improve supply chain resilience
(Executive Office of the President 2021b). The Federal Emergency
Management Agency has instituted several initiatives focused on
equity in emergencies, recognizing the variance in how different
populations are impacted in emergency situations (FEMA 2022).
To actualize policy and programmatic priorities, decision makers
need tools that are theoretically grounded yet computationally
simplistic and adoptable for participants outside of academia.
Thus, developing methodology that is deployable at scale within
the framework of average agency capabilities remains critical.
This research seeks to leverage network science, transportation
theory, and social vulnerability analysis to explore the relation-
ship between the exposure of counties to food supply disruptions
through the road and highway transportation network and their
social vulnerability.

We propose a framework guided by theory alongside computa-
tionally reasonable construction to test the usability of incorporat-
ing social vulnerability with commodity transportation resilience.
We apply this methodology to the US Mid-Atlantic region covering
the states of New York, Pennsylvania, and New Jersey. Currently,
there is limited work that targets how freight transportation net-
work disruptions may impact counties with different levels of social
vulnerability. Thus, integrating these concepts and creating a frame-
work that can evaluate the impacts of disruptions in transportation
networks on vulnerable populations can signal to policymakers
areas for investment, and be instructive for emergency prepared-
ness. In this work, we ask
1. How does a physical freight transportation network in the
Mid-Atlantic region behave under different failure scenarios,
and which counties are most exposed to disruption?

What counties have a higher social vulnerability to disruptions?

3. How can we understand the potential sociotechnical implica-
tions of freight transportation disruption by combining the
two previous research questions?

I

Materials and Methods

To leverage network science, transportation theory, and social
vulnerability analysis to analyze our research questions around
exposure, disruptions, and social vulnerability, we created a sys-
tems model combining existing data (Fig. 1). All data leveraged
in this analysis are open source and available (see Supplemental
Materials).

Study Area and Freight Transportation Network
Creation

For this case study, the Mid-Atlantic region of the United States
serves as an exploratory area of investigation. The three states con-
sidered are New Jersey, New York, and Pennsylvania. These states
are home to 40.9 million people, which is about 13% of the US
population. This region is of particular interest because it includes
thousands of miles of key bridges, railroads, highways, and tunnels
critical to the movement of goods and people countrywide.
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Fig. 1. Integrated transportation network and social vulnerability assessment framework.

We established the base roadway network using the national
highway network data set of the Freight Analysis Framework
(FAF) as a starting point. We selected the most populous cities
[origins/destinations (ODs)] between the states as the center point
for food commodity transportation in and out of the counties.
The total city/county selection was 40 city/county pairs, nine in
New Jersey, 15 in New York, and 16 in Pennsylvania. To reduce
computational burdens but still retain sufficient redundancy,
we took several steps to simplify the network. First, we selected
major highways and local roads with greater than or equal to 20
trucks/road segment/day. We chose to simplify our network using
truck volume because it created a mostly continuous network.
Using other simplification techniques, such as speed limit or number
of lanes or road type, the network was significantly disconnected,
because speed limits and numbers of lanes may change suddenly.
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We then aggregated the N-CAST travel time data set to the des-
ignated pathways. Disjointed road network segments were merged,
and the network was planarized (adding nodes for intersections of
crossing segments) and cleaned (removed unnecessary or dangling
paths). Road segments near the boundaries of states to the closest
intersection out of state were included if they were likely to be used
for rerouting or deviation, so additional intersections in the states
of Ohio, West Virginia, Maryland, and Delaware were also utilized.
When N-CAST travel time data were not available, Google Maps
data were used for road segments with missing travel time
attributes.

The final weighted and directed freight transportation network
is illustrated in Fig. 2. The Mid-Atlantic freight transportation
network consists of 509 nodes (40 centroid/county nodes, 469
intersections), 906 weighted edges [attributes: length (mi), average

Travel time (hours)

(b)

Fig. 2. Mid-Atlantic transportation network represented by a weighted directed graph with a set of nodes and a set of connecting edges: (a) full
network, where nodes are intersections and city/county locations and edges are highway routes; and (b) generalized visualization of network as shown
over map of Mid-Atlantic states and counties, where nodes symbolize highway intersections and the city/county pair locations, and the edges
represent the weighted highway routes [attributes: length (mi), average speed (mi/h), and travel time (h)].
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speed (mi/h), and travel time (h)], and 478 OD shortest paths
(five per OD pair). In this exploratory analysis, we considered this
Mid-Atlantic region as a closed system, thus we did not simulate
traffic across the system boundaries.

Transport Behavior and Flow Assignment

To complete our network assignments, we calculated shortest
paths, assigned traffic flows, and distributed food commodity flows
to our network. We constrained the network to consider five short-
est paths. Shortest paths were determined using existing probability
formulas where the utility of a given route, U,, is a function of
travel time on route r and a standard time coefficient, 3, set to —1
based on existing literature (Ding-Mastera 2016; Modesti and
Sciomachen 1998)

U,=p8xm, (1)

The probability of choosing a route, p,, was defined in propor-
tion to the whole choice set

~exp(U,)
Pr = S Rexp(U,) @

Food flow was assigned to the network leveraging existing intra-
national commodity flows from the Federal Highway Administra-
tion’s (FHWA’s) FAF (Hwang et al. 2016). The OD FAF4 flows
are provided at a coarse spatial resolution, so we leveraged the
data-driven downscaled commodity flows for county-to-county
origin and destinations for all seven food-related classes (SCTG 1-7)
(Lin et al. 2019).

In our analysis, we considered five shortest paths as possible
routes for county-level food transportation by truck. We chose
to consider the five shortest paths for both computational minimi-
zation as well as following practices by a number of existing studies
that determined five shortest paths was a viable analysis point
for theoretical experiments in transport modeling behavior (Jha
et al. 1998; Rahman et al. 2012; Shafiei et al. 2020; Zhu and
Levinson 2015).

Table 1. Input variables for the social vulnerability index

Social Vulnerability Index

To quantify vulnerability to commodity flow disruptions, we cal-
culate a SoVI to understand the spatial variability of household
food insecurity in New York, New Jersey, and Pennsylvania, and
to determine the relationship social vulnerability may have corre-
lating to commodity flow transportation disruptions. Our SoVI
consists of 17 variables spanning four domains of race and ethnic-
ity, economic status, housing composition, and housing type
(Table 1) derived from county-level census data from the 2019
American Community Survey (US Census Bureau 2019). We selected
this variable set based on existing literature that documents rela-
tionships between these socioeconomic indicators and vulnerability
across food, water, and energy natural hazard research, thus repre-
senting important indicators relevant to material disruption in the
food supply chain. For the theoretical justification grounding SoVI
variable selection, see the Supplemental Materials.

We began by testing for multicollinearity among the initial iden-
tified 19 variables, resulting in 17 variables. Then we normalized
the selected variables using the total population and/or households
of the respective county. The input variables were scaled and cen-
tered using z-score standardization by subtracting by the mean and
dividing by the standard deviation. Principal component analysis
(PCA) was employed to calculate the social vulnerability scores
and determine the dominant social factors. After performing PCA,
five principal components (PCs) were identified based on the
Kaiser selection criterion, which indicates an eigenvalue greater
than 1. Overall, the five PCs describe approximately 79.3% of
the variance. From the determination of the PCs, varimax rotation
was implemented to understand the dominant social factors of the
PCA output. The social factors were assigned factor names based
on the theme of the principal variables, which were selected if the
correlation was greater than (+) 0.50 (Table 2).

The five factor scores were then placed in an additive model to
produce the composite social vulnerability score [Eq. (3)]. The
factors were provided equal weighting given no defensible method
for a weighting scheme (Cutter et al. 2003). Additionally, in SoVI
construction, it is important to identify directionality with the
principal variables (+, —). All variables increase vulnerability and
are therefore added together. The summed overall SoVI factor
scores were then spatially mapped into five divergent classes based

Domain Variable No. Description
Race and ethnicity 1 Percent Black or African American
2 Percent Hispanic or Latino
3 Percentage of Alaska Native and American Indian Population
Household composition 4 Percent of population under 18 years old
5 Percent of population over 65 years old
6 Percent females
7 Percent female-headed households, no spouse present
8 Percent female-headed households, no spouse present, with children under 18 years
9 Percent male-headed households, no spouse/partner present, with children under 18 years
10 Percent female-headed households, no spouse present, living alone
11 Percent male-headed households, no spouse present, living alone
12 Percent of population with no high school diploma, 25 years and over
13 Percent of civilian noninstitutionalized population with a disability
Economic status 14 Percent living in poverty (<200% of the poverty level)
Household type 15 Percent of mobile home housing units
16 Percent multifamily housing units (five or more units)
17 Percent of housing units built up to 1989
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Table 2. Dimension of social vulnerability (components, principal variables, and direction of influence)

Percent variance

Component name explained

Cardinality

Principal variables (* correlation) (effect of SoVI)

1. Ethnicity, race, and multifamily housing 27.5

2. Education and low income 17.9

Hispanic or Latino (+0.88) +
Black or African American (40.87)
Multifamily housing (+0.76)

Single female with children under 18 years old (+0.75)

Older adults (over 65 years old) (—0.74)

Female-headed households, no spouse present (40.70)

Mobile home housing (—0.60)

Education (no high school diploma) (+0.90) +

Income (£200% poverty level) (+0.81)

Civilian noninstitutionalized population with a disability (40.76)

3. Men and women living alone 153

4. Female and children 10.8

5. American Indian and Alaska Native (AIAN) 7.71

Single female living alone (+0.92) +
Single male living alone (4-0.70)

Housing built before the year 1989 (4-0.50)

Female (+0.82) +
Children (under 18 years old) (40.65)

American Indian and Alaska Native (+0.88) +
Single men with children under 18 years old (+0.58)

on the standard deviation from the mean to highlight the most and
least vulnerable block groups (BGs), ranging from —1.5 (lower vul-
nerability) to +1.5 (higher vulnerability)

overall SoVIscore = Factor 1 + Factor 2 + Factor 3 + Factor 4
-+ Factor 5 (3)

Analysis of Network Impact and Exposure

In this study, we performed three phases of analysis. The first phase
evaluated the system-level impact to the network in terms of per-
formance due to both random and deterministic or targeted disrup-
tion. The second phase considered the exposure of each county’s
food supply to disruptions in the network. The third phase analyzed
whether there are relationships between social vulnerability and
network exposure.

In Phase 1, we conducted our random disturbance analysis by
selecting one node (or edge) at random, removing it from the net-
work, and then measuring the impact on shortest paths and food
flows. We repeated this process until we removed 40 nodes or
edges. The choice of 40 node/edge removal was made for several
reasons including computational efficiency, alignment with pre-
vious literature, and the presence of 40 city/county node pairs.
Additionally, we chose not to focus on low-probability, high-intensity
events that would disrupt far more than 40 nodes/edges because
our food-flow data represent an annual time span. Thus, such
low-probability, high-intensity events are unlikely to occur for
the duration that matched the time scale of our food-flow data.
To assess the average importance of different types of nodes (edges),
we also assessed three cases: (1) removing any node (or edge) in
the list, (2) removing only nodes (or edges) representing the loca-
tions of counties that are origins or destinations of food flows, and
(3) removing only intersection nodes (or edges). To account for the
uncertainty in the selection of the random node to be removed, we
ran 1,000 realizations of this node removal process with different
random nodes being removed in each realization. For the determin-
istic (i.e., targeted) disruptions of nodes (or edges) in the network,
we selected nodes and edges using centrality-based indexes (Mattsson
and Jenelius 2015; Zhang et al. 2015). The centrality-based metrics
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used here are betweenness centrality and closeness centrality (see
Supplemental Materials for formal definition).

For the second phase of our analysis, we calculated the expo-
sure (Jenelius et al. 2006; Rodriguez-Nuifiez and Garcia-Palomares
2014) of counties to food-flow access due to disruptive events. This
allowed us to determine how vulnerable counties are to disruptions
in flood-flow access due to unexpected events. The standard indi-
cator of accessibility for the user is the cost of travel. Thus, we
employed the average travel time 77 between OD pairs as a measure
of travel cost and considered either the total food-inflow 71 or
food-outflow T'0O volume of each OD pair as the significant weight.
First, we calculated the exposure of the county nodes by determin-
ing the average increase in travel time for trips starting (origin) or
ending (destination) in the county i (j) when a random node 7 in the
set of all nodes N, is disrupted. Then we multiplied this change
in travel cost by the total food-inflow weight of the county node.
This measurement is defined as the food-flow weighted exposure
(FFWE), which helps us understand how disruption in the network
affects a county’s access to food flow [Eq. (4)]

tt n)j tt;
FFWE; = e, (N< 5T ) TI; 4)
n

Finally, to bring the exploratory analysis to a close, for Phase 3
we investigated various relationships between SoVI and exposure
across our study region. We investigated the relationship between
inflow and outflow with SoVI as well as the relationship with SoVI
and exposure across each of the five main dimensions.

Results

First, we present and discuss the results from the network response
to disruptions analysis and the exposure of nodes to disruptions in
the freight transportation network. Next, the social vulnerability of
counties in the Mid-Atlantic region is investigated and discussed.
Finally, we investigate freight transport-related inequalities in
counties in the Mid-Atlantic region by looking at the intersection
of the social vulnerability and exposure to food transportation
disruptions of counties.
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Fig. 3. Impact vulnerability analysis: (a and b) percent of shortest paths impacted due to removal of random (any scenario) and deterministic com-
ponents: (a) node removal; and (b) edge removal. (c and d) percent of food flows impacted due to removal of random (any scenario) and deterministic
components: (c) node removal; and (d) edge removal. Confidence bands around the random node/edge removal curve show +1 standard deviation.

Because we considered five shortest paths as possible routes
for county-level food transportation by truck, we assumed that
the number of shortest paths or food transportation routes will be
affected as a result of a node/edge removal, which in turn affects
the capacity of the network to transport food commodities. Thus, the
percentage of shortest paths after a node/edge removal describes
the connectivity of the network, while the percentage of flows
(by volume) indicates the strength of the network after the impact.
Fig. 3 shows the difference between impacts to the network caused
by random disruptions and deterministic attacks (centrality based
and flow based). The impact to the network is shown both as a
function of the percentage of shortest paths [Figs. 3(a and b)]
and food flows [Figs. 3(c and b)] impacted after nodes and edges
are removed from the network.

When we investigated connectivity, or the percent of paths im-
pacted, we found that for the first 10 nodes removed, deterministic
attacks based on closeness and betweenness centrality and maxi-
mum flow fell within the random range [Figs. 3(a and b)]. This
means that in our network, targeted attacks are not more impactful
than random removals when fewer nodes are removed. After the
removal of ~10 nodes, we found that the attacks based on the
maximum flow volume of nodes can produce higher impacts than
random disruptions, whereas for centrality-based attacks the im-
pacts are largely random. The curve representing removal of nodes
with the highest betweenness centrality falls within the random
range during the entire sequence of node removals. This suggests
that betweenness centrality alone might not be suitable to assess
connectivity in our transportation network. After ~25 nodes are re-
moved, attacks based on closeness centrality hinder connectivity
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more than those based on maximum flow or random disruption
[Fig. 3(a)]. This suggests that for a large number of nodes impacted,
attacks based on closeness centrality hinder connectivity more than
those based on maximum flow.

In our analysis of edge removal, we discovered that the impact
on network connectivity is less significant than the impact of ran-
dom edge removal when considering both betweenness centrality
and maximum total flow [Fig. 3(b)]. This suggests that removing
edges based on their centrality does not have as strong an impact on
network connectivity as randomly removing edges. As expected,
when examining the only county subset of nodes and edges during
the random impact analysis, we found that their removal had a
greater effect on connectivity compared to the removal of only
intersection and all node/edge categories when removing nodes
or edges one at a time (see Supplemental Materials). Additionally,
in our network, removing nodes has a more substantial impact
on connectivity than edge removal across all element types inclu-
ding any, only county, and only intersection (see Supplemental
Materials).

Analysis of the disruptive scenarios reveals that the impact is
much greater in the maximum total flow targeted attack than in
the other centrality-based and random attacks. As previous authors
have mentioned, the flow-based features of networks are not often
considered in the literature, or when they are, they can be misrep-
resented due to weak estimates of function (Matisziw et al. 2009;
Ouyang et al. 2014). Intuitively, connectivity is an important factor
to understand when studying risk within networks, this assessment
confirms that network flow, in our case, also shows an important
component of risk assessment.
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Fig. 4. Food-flow weighted exposure ranking for the 40 network-defined
counties from most vulnerable to least vulnerable county (1 to 40).

Our results also found that the counties with the highest food-
weighted exposure ranking are generally located in the southeast of
the region (Fig. 4). In our study area, a large portion of this expo-
sure metric is attributed to the high demand for food inflow in the
area (Fig. 6). Erie County (Buffalo), New York, situated in the
northwestern part of the region, is the most susceptible county
in terms of this food-weighted exposure metric. This county,
located on the periphery of the network, has both a small number
of connecting edges to the rest of the network and a high total
amount of food inflow (Fig. 6). In contrast, the less exposed
counties in the western region of Pennsylvania can maintain service
and accessibility during disruptions, with their functionality
remaining close to their original state. Hence, when nodes or edges
are removed or not functioning in the network, the county food-
flow exposure to disruptions will be lower in areas where more
alternative routes are available. While one might expect that a
higher number of intersections would reduce exposure, our results
show no significant correlation between county exposure and the
number of network nodes within the county.

Analyzing the spatial distribution of SoVI scores, we observe
differences in social vulnerability between counties (Fig. 5). The
map demonstrates that 4% of the total counties have a lower
vulnerability (< —1.5 standard deviation), 27% of the counties have
a moderate to lower vulnerability (—1.5 to —0.5 standard
deviation), 42% of the counties have a moderate vulnerability
(—0.5 to 0.5 standard deviation), 22% have a moderate to higher
vulnerability (0.5 to 1.5 standard deviation), and 5% a have higher
vulnerability (> 1.5 standard deviation). Of the counties selected
for the network analysis, Philadelphia County, Pennsylvania, and
Essex County, New Jersey, have the highest overall social vulner-
ability, ranging between 0.5 and 1.5 times the standard deviation.

For the total county food-flow plots, we see some variability
among the county’s total flow and social vulnerability index score
(i.e., flow and SoVI value do not have the same trends). Fig. 6(a)
demonstrates that some locations have both high food flows and
high vulnerability. For example, Erie County, New York, has the
highest inflow value (~4.1 x 10° t/year) and a moderate to high
social vulnerability (0.5-1.5 standard deviation). The most socially
vulnerable counties (> 1.5 standard deviation), Philadelphia County,
Pennsylvania, and Essex County, New Jersey, have total inflow
values of ~1.0x 10° and ~9.6 x 10°, respectively (outflows:
~9.95 x 10° and ~1.17 x 10° t/year). From Fig. 7, Niagara
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Fig. 5. Overall social vulnerability index scores for all counties in the
Mid-Atlantic region.

County, New York, has the most outflow (~3.9 x 10° t/year)
and a moderate to high social vulnerability (0.5-1.5 standard
deviation). Lehigh County follows with a total inflow of ~1.4 x
10° t/year and with a moderate social vulnerability, and Lancaster
County, Pennsylvania, with a total outflow of ~2.4 x 10° t/year
and low to moderate vulnerability (—1.5 to —0.5 standard
deviation).

Vulnerability to disruptions is not only determined by the
potential physical network failures, but also by the capability of
communities to withstand unprecedented events. To further test
vulnerability by exploring both disruption impacts and the capa-
bility of communities to withstand them, we show a scatterplot
of food-weighted exposure versus SoVI ranking for the 40
network-defined counties in Fig. 7. To distinguish these commun-
ities we can view quadrants based on high and low exposure and
vulnerability ranks. Quadrant 1, in the bottom left side of the
scatter, includes the high exposure—high SoVI category, which is
composed by the top counties with exposure and vulnerability
ranks below 20. Quadrant 2, high exposure—low SoVI, consists
of counties with an exposure rank 1-20 and SoVI rank 21-40.
Quadrant 3, low exposure—high SoVI, includes counties with an
exposure rank greater than 20 and a SoVI rank of 20 or less. Last,
low exposure—low SoVI is classified as counties with a food-flow
exposure and SoVI ranking greater than 20. Both Figs. 7 and 8
suggest no significant linear correlation but can still highlight
vulnerable regions where additional resources might be necessary.
Counties with high exposure—high SoVI include Essex County and
Camden County, New Jersey; Erie County, Niagara County, and
Queens, New York; and Philadelphia County, Pennsylvania. These
areas could be particularly vulnerable in scenarios where critical
transportation routes are disrupted and highlight areas where plan-
ning and investment in infrastructure and hazard mitigation could
protect vulnerable communities. Counties with low exposure—low
SoVI include Monmouth County and Ocean County, New Jersey;
Tompkins County, New York; and Allegheny County and Centre
County, Pennsylvania.

Examining food-weighted exposure and SoVI in more detail,
Fig. 8 compares standard score values for the 40 network-defined
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Fig. 6. Total county food (a) inflow; and (b) outflow; and SoVI score for the 40 network-defined counties.

counties. From this scatterplot we can see how counties are now
grouped close together and recognize the gap between vulnerability
categories. Additionally, we can spot a few outliers that set apart
from the rest, for example, Erie County, New York; Philadelphia
County, Pennsylvania; and Essex County, New Jersey.
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Discussion and Limitations
Integrating and comparing the counties for both network exposure
and SoVI provides a transformative framework that highlights the

ways that social vulnerability interacts with disruption to transportation
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infrastructure and access to goods. This framework can be applied
to other or larger areas and scenarios, and this type of analysis could
provide decision makers with a more holistic view into how actions
to protect transportation infrastructure like road retrofitting and pro-
tection, as well as emergency response, could take into account the
social vulnerability of communities that are impacted.

Advances in data availability would strengthen future work in
this area. There were some limitations in this study, data availability
being the main one. In this study, our analysis was constrained to
the county scale because this was the smallest scale of commodity
flow data available. If data were available below the county scale,
the transportation network and subsequent disruption analysis
could be conducted in greater detail, which would allow for better
characterization of the impacts on communities. Additionally, we
used yearly commodity flow data. Thus, the amounts of food flow
disrupted are for theoretical comparisons only because disruption
most often occurs on a much smaller timescale. Despite these lim-
itations, we believe the framework presented in this exploratory re-
search that investigates theoretical interconnections and addresses
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ethical implications in transportation disruption analysis is a useful
first step in this research.

Another important implication of our methodological choices
revolves around the simplification of the road network. We re-
moved roads that were not transited by >20 trucks per day, which
removed many tertiary roads. In reality, these tertiary roads may
indeed serve connectivity needs when major routes are blocked.
Thus, future analyses could expand the complexity of our network
to consider all possible routing behaviors. Additionally, restricting
movement to five shortest paths could be unbounded for future
analyses allowing for more path routing possibilities. We also stud-
ied the removal of 40 nodes/edges due to computational efficiency,
previous literature, and the presence of 40 city/county node pairs.
In reality, however, there may be low-probability, high-intensity
events that exceed the 40 node/edge removal. We chose not to study
these extremely low-probability events because our food-flow data
represent an annual volume and such events do not last for such a
long period of disruption. Future work in the emergency manage-
ment space could adapt our methodological approach to study such
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disruptions with access to real-time or shorter time duration data on
food flows.

An organic future step is to expand the road network to include
all US counties. Additionally, incorporating other freight commod-
ities, such as industrial commodities, would allow for analysis
beyond food systems. However, to do so, we must produce data
sets of industrial commodities at a finer spatial scale. Further, this
network disruption analysis could be expanded by including differ-
ent infrastructure types in a multilayer network framework. For
example, other infrastructure types to consider could include other
modes of transportation (e.g., rail, water, air), agricultural and in-
dustrial products processing plants, retailers, electricity generation
infrastructure, and water treatment plants. This critical infrastruc-
ture network could simulate more real-world disturbances such as
floods, drought, and hurricanes.

The implications of this work could help practitioners discover
critical locations that influence disruption to food-flow commod-
ities due to road network perturbations. These areas could be pri-
oritized for transportation planning so that the critical routes, roads,
and/or intersections are prioritized for hazard mitigation and pro-
tection. Identification of communities that are vulnerable to access
loss to food, water, and energy resources could allow managers to
promote the inclusion of people’s needs in the relief and resource
allocation siting decision-making. Discovering the most vulnerable
communities could inform emergency response planning or those
who wish to prioritize resource allocations among certain commun-
ities to reduce the societal impact of the loss of accessibility.
However, there is still work to be done on what stakeholders are
responsible for mitigating disruption risks and protecting human
well-being (Grady et al. 2021).

Conclusions

Understanding the impact of disruptions on different communities
is crucial for analyzing the sustainability and equity of infrastructure
systems. This study combined a county-level social vulnerability
assessment with transportation network analysis to better compre-
hend the effects of disruption and to inform decisions that can
allocate resources and assistance to the most vulnerable areas. This
research identified the overall network impacts due to disruptions
and highlighted the most exposed counties, which are more suscep-
tible to food-flow commodity disruptions based on their position
within the network. By utilizing a social vulnerability index, this
study demonstrated how different communities experience hard-
ships and pinpointed areas with socially vulnerable populations.
The comparison of network vulnerability and SoVI helped identify
the most at-risk communities to inform emergency response plan-
ning. Prioritizing these areas for resource allocation could help
minimize the societal impact of accessibility loss.

To conclude, integrating social equity dimensions into trans-
portation planning is just one step toward a more comprehensive
approach. Including social vulnerability in transportation and
commodity flow studies is essential for promoting equitable trans-
portation planning and hazard mitigation. Further research in this
area is necessary to support policymakers and planners in creating
systems that serve all.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
All of the constructed databases were formed using open and

© ASCE

04023026-10

available public information as indicated throughout the methods
and Supplemental Materials.

Acknowledgments

The authors would like to acknowledge the National Science
Foundation Grants Nos. 1941657 and 2244715 for providing
support for this work. Author C. Grady is the sole PI for Grant
Nos. 1941657 and 2244715. This grant also supported authors
L. Delgado and S. Hinojos. The authors would also like to thank
Vikash Gayah and Ilgin Gueller for their helpful suggestions.

Supplemental Materials

There are supplemental materials associated with this paper online
in the ASCE Library (www.ascelibrary.org).

References

Ahmed, Q. L., H. Lu, and S. Ye. 2008. “Urban transportation and equity:
A case study of Beijing and Karachi.” Transp. Res. Part A: Policy
Pract. 42 (1): 125-139. https://doi.org/10.1016/j.tra.2007.06.004.

Balakrishnan, S., and Z. Zhang. 2018. “Developing priority index for
managing utility disruptions in urban areas with focus on cascading
and interdependent effects.” Transp. Res. Rec. 2672 (1): 101-112. https:/
doi.org/10.1177/03611981187742309.

Bellamy, M. A., and R. C. Basole. 2013. “Network analysis of supply chain
systems: A systematic review and future research.” Syst. Eng. 16 (2):
235-249. https://doi.org/10.1002/sys.21238.

Boyle, E., A. Inanlouganji, T. Carvalhaes, P. Jevtic, G. Pedrielli, and
T. A. Reddy. 2022. “Social vulnerability and power loss mitigation:
A case study of Puerto Rico.” Int. J. Disaster Risk Reduct. 82 (Nov):
103357. https://doi.org/10.1016/j.ijdrr.2022.103357.

Cutter, S. L. 2017. “The perilous nature of food supplies: Natural hazards,
social vulnerability, and disaster resilience.” Environ.: Sci. Policy
Sustainable Dev. 59 (1): 4-15. https://doi.org/10.1080/00139157.2017
.1252603.

Cutter, S. L., L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, and
J. Webb. 2008. “A place-based model for understanding community
resilience to natural disasters.” Global Environ. Change 18 (4): 598-606.
https://doi.org/10.1016/j.gloenvcha.2008.07.013.

Cutter, S. L., B. J. Boruff, and W. L. Shirley. 2003. “Social vulnerability to
environmental hazards.” Social Sci. Q. 84 (2): 242-261. https://doi.org
/10.1111/1540-6237.8402002.

Demirel, H., M. Kompil, and F. Nemry. 2015. “A framework to analyze the
vulnerability of European road networks due to sea-level rise (SLR) and
sea storm surges.” Transp. Res. Part A: Policy Pract. 81 (Nov): 62-76.
https://doi.org/10.1016/j.tra.2015.05.002.

Ding-Mastera, J. 2016. “Adaptive route choice in stochastic time-dependent
networks: Routing algorithms and choice modeling.” Doctoral disser-
tation, Dept. of Civil Engineering, Univ. of Massachusetts Amherst.

Dong, S., A. Esmalian, H. Farahmand, and A. Mostafavi. 2020. “An inte-
grated physical-social analysis of disrupted access to critical facilities
and community service-loss tolerance in urban flooding.” Comput.
Environ. Urban Syst. 80 (Mar): 101443. https://doi.org/10.1016/j
.compenvurbsys.2019.101443.

Eid, M. S., and I. H. El-adaway. 2017. “Integrating the social vulnerability
of host communities and the objective functions of associated stakehold-
ers during disaster recovery processes using agent-based modeling.”
J. Comput. Civ. Eng. 31 (5): 04017030. https://doi.org/10.1061/(ASCE)
CP.1943-5487.0000680.

Executive Office of the President. 2021a. “Executive Order 13985:
Advancing racial equity and support for underserved communities
through the federal government.” Fed. Regist. 86 (14): 7009-7013.

Executive Office of the President. 2021b. “Executive order 14017:
America’s supply chains.” Fed. Regist. 86 (38): 11849-11854.

J. Infrastruct. Syst.

J. Infrastruct. Syst., 2023, 29(4): 04023026


http://www.ascelibrary.org
https://doi.org/10.1016/j.tra.2007.06.004
https://doi.org/10.1177/0361198118774239
https://doi.org/10.1177/0361198118774239
https://doi.org/10.1002/sys.21238
https://doi.org/10.1016/j.ijdrr.2022.103357
https://doi.org/10.1080/00139157.2017.1252603
https://doi.org/10.1080/00139157.2017.1252603
https://doi.org/10.1016/j.gloenvcha.2008.07.013
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1016/j.tra.2015.05.002
https://doi.org/10.1016/j.compenvurbsys.2019.101443
https://doi.org/10.1016/j.compenvurbsys.2019.101443
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000680
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000680

Downloaded from ascelibrary.org by George Washington University on 01/02/24. Copyright ASCE. For personal use only; all rights reserved.

Faturechi, R., and E. Miller-Hooks. 2015. “Measuring the performance
of transportation infrastructure systems in disasters: A comprehensive
review.” J. Infrastruct. Syst. 21 (1): 04014025. https://doi.org/10.1061
/(ASCE)IS.1943-555X.0000212.

FEMA. 2022. “Equity.” Accessed August 3, 2022. https://www.fema.gov
/emergency-managers/national-preparedness/equity.

Garschagen, M., and S. Sandholz. 2018. “The role of minimum supply
and social vulnerability assessment for governing critical infrastruc-
ture failure: Current gaps and future agenda.” Nat. Hazards Earth
Syst. Sci. 18 (4): 1233-1246. https://doi.org/10.5194/nhess-18-1233
-2018.

Gomez, M., S. Garcia, S. Rajtmajer, C. Grady, and A. Mejia. 2020.
“Fragility of a multilayer network of international supply chains.” Appl.
Network Sci. 5 (1): 71. https://doi.org/10.1007/s41109-020-00310-1.

Grady, C. A., S. Rajtmajer, and L. Dennis. 2021. “When smart systems fail:
The ethics of cyber—physical critical infrastructure risk.” /EEE Trans.
Technol. Soc. 2 (1): 6-14. https://doi.org/10.1109/TTS.2021.3058605.

Gralla, E., J. Goentzel, and C. Fine. 2014. “Assessing trade-offs among
multiple objectives for humanitarian aid delivery using expert prefer-
ences.” Prod. Oper. Manage. 23 (6): 978-989. https://doi.org/10.1111
/poms.12110.

Huang, M., K. Smilowitz, and B. Balcik. 2011. “Models for relief routing:
Equity, efficiency and efficacy.” Procedia - Social Behav. Sci. 17 (1):
416-437. https://doi.org/10.1016/j.sbspro.2011.04.525.

Hwang, H.-L., S. Hargrove, S.-M. Chin, D. W. Wilson, H. Lim, J. Chen,
R. Taylor, B. Peterson, and D. Davidson. 2016. The freight analysis
[framework version 4 (FAF4)—Building the FAF4 regional database:
Data sources and estimation methodologies. Oak Ridge, TN: Oak
Ridge National Lab.

Jafino, B. A.2021. “An equity-based transport network criticality analysis.”
Transp. Res. Part A: Policy Pract. 144 (Feb): 204-221. https://doi.org
/10.1016/j.tra.2020.12.013.

Jansuwan, S., A. Chen, and X. Xu. 2021. “Analysis of freight transportation
network redundancy: An application to Utah’s bi-modal network for
transporting coal.” Transp. Res. Part A: Policy Pract. 151 (Sep):
154-171. https://doi.org/10.1016/j.tra.2021.06.019.

Jenelius, E., T. Petersen, and L.-G. Mattsson. 2006. “Importance and
exposure in road network vulnerability analysis.” Transp. Res. Part A:
Policy Pract. 40 (7): 537-560. https://doi.org/10.1016/j.tra.2005
.11.003.

Jha, M., S. Madanat, and S. Peeta. 1998. “Perception updating and day-to-
day travel choice dynamics in traffic networks with information
provision.” Transp. Res. Part C: Emerging Technol. 6 (3): 189-212.
https://doi.org/10.1016/S0968-090X(98)00015-1.

Karakoc, D. B., K. Barker, C. W. Zobel, and Y. Almoghathawi. 2020.
“Social vulnerability and equity perspectives on interdependent infra-
structure network component importance.” Sustainable Cities Soc.
57 (Jun): 102072. https://doi.org/10.1016/j.scs.2020.102072.

Lin, X., Q. Dang, and M. Konar. 2014. “A network analysis of food flows
within the United States of America.” Environ. Sci. Technol. 48 (10):
5439-5447. https://doi.org/10.1021/es500471d.

Lin, X., P. Ruess, L. Marston, and M. Konar. 2019. “Food flows between
counties in the United States.” Environ. Res. Lett. 14 (8): 084011.
https://doi.org/10.1088/1748-9326/ab29ae.

Lobban, H., Y. Almoghathawi, N. Morshedlou, and K. Barker. 2021.
“Community vulnerability perspective on robust protection planning
in interdependent infrastructure networks.” Proc. Inst. Mech. Eng.,
Part O: J. Risk Reliab. 235 (5): 798-813. https://doi.org/10.1177
/1748006X21991038.

Manaugh, K., and A. M. El-Geneidy. 2012. “Who benefits from new trans-
portation infrastructure? Using accessibility measures to evaluate social
equity in transit provision.” In Accessibility and transport planning:
Challenges for Europe and North America, 221-227. London: Edward
Elgar.

Matisziw, T. C., A. T. Murray, and T. H. Grubesic. 2009. “Exploring the
vulnerability of network infrastructure to disruption.” Ann. Reg. Sci.
43 (2): 307-321. https://doi.org/10.1007/s00168-008-0235-x.

Mattsson, L.-G., and E. Jenelius. 2015. “Vulnerability and resilience
of transport systems—A discussion of recent research.” Transp. Res.

© ASCE

04023026-11

Part A: Policy Pract. 81 (Mar): 16-34. https://doi.org/10.1016/j.tra
.2015.06.002.

Merschman, E., M. Doustmohammadi, A. M. Salman, and M. Anderson.
2020. “Postdisaster decision framework for bridge repair prioritization
to improve road network resilience.” Transp. Res. Rec. 2674 (3): 81-92.
https://doi.org/10.1177/0361198120908870.

Miller-Hooks, E., X. Zhang, and R. Faturechi. 2012. “Measuring and
maximizing resilience of freight transportation networks.” Comput.
Oper. Res. 39 (7): 1633-1643. https://doi.org/10.1016/j.cor.2011
.09.017.

Modesti, P., and A. Sciomachen. 1998. “A utility measure for finding multi-
objective shortest paths in urban multimodal transportation networks.”
Eur. J. Oper. Res. 111 (3): 495-508. https://doi.org/10.1016/S0377
-2217(97)00376-7.

Morrow, B. H. 1999. “Identifying and mapping community vulnerability.”
Disasters 23 (1): 1-18. https://doi.org/10.1111/1467-7717.00102.
Nelson, A., S. Lindbergh, L. Stephenson, J. Halpern, F. A. Arroyo, X. Espinet,
and M. C. Gonzilez. 2019. “Coupling natural hazard estimates with
road network analysis to assess vulnerability and risk: Case study of
Freetown (Sierra Leone).” Transp. Res. Rec. 2673 (8): 11-24.

https://doi.org/10.1177/0361198118822272.

Novak, D. C., J. F. Sullivan, K. Sentoff, and J. Dowds. 2020. “A framework
to guide strategic disinvestment in roadway infrastructure considering
social vulnerability.” Transp. Res. Part A: Policy Pract. 132 (Feb):
436-451. https://doi.org/10.1016/j.tra.2019.11.021.

Ouyang, M. 2014. “Review on modeling and simulation of interdependent
critical infrastructure systems.” Reliab. Eng. Syst. Saf. 121 (Jan): 43-60.
https://doi.org/10.1016/j.ress.2013.06.040.

Ouyang, M., L. Zhao, L. Hong, and Z. Pan. 2014. “Comparisons of com-
plex network based models and real train flow model to analyze Chinese
railway vulnerability.” Reliab. Eng. Syst. Saf. 123 (Mar): 38—46. https:/
doi.org/10.1016/j.ress.2013.10.003.

Papilloud, T., V. Rothlisberger, S. Loreti, and M. Keiler. 2020. “Flood
exposure analysis of road infrastructure—Comparison of different
methods at national level.” Int. J. Disaster Risk Reduct. 47 (Aug):
101548. https://doi.org/10.1016/j.ijdrr.2020.101548.

Paton, D., J. Mcclure, and P. Buergelt. 2006. “Natural hazard resilience:
The role of individual and household preparedness.” In Disaster resil-
ience an integrated approach, edited by D. Paton and D. Johnston,
105-127. Springfield, IL: Charles C Thomas Publisher.

Pereira, R. H. M., T. Schwanen, and D. Banister. 2017. “Distributive justice
and equity in transportation.” Transp. Rev. 37 (2): 170-191. https://doi
.org/10.1080/01441647.2016.1257660.

Rahman, A., N. E. Lownes, J. N. Ivan, L. Fiondella, S. Rajasekaran, and
R. Ammar. 2012. “A game theory approach to identify alternative regu-
latory frameworks for hazardous materials routing.” In Proc., IEEE
Conf. on Technologies for Homeland Security (HST), 489-494. New
York: IEEE.

Reggiani, A., P. Nijkamp, and D. Lanzi. 2015. “Transport resilience and
vulnerability: The role of connectivity.” Transp. Res. Part A: Policy
Pract. 81 (Nov): 4-15. https://doi.org/10.1016/j.tra.2014.12.012.

Reid, J., and D. Wood. 2022. “Systems engineering applied to urban
planning and development: A review and research agenda.” Syst.
Eng. 26 (1): 88-103. https://doi.org/10.1002/sys.21642.

Rodriguez-Nuifiez, E., and J. C. Garcia-Palomares. 2014. “Measuring the
vulnerability of public transport networks.” J. Transp. Geogr. 35 (Feb):
50-63. https://doi.org/10.1016/j.jtrangeo.2014.01.008.

Shafiei, S., A.-S. Mihaita, H. Nguyen, C. Bentley, and C. Cai. 2020.
“Short-term traffic prediction under non-recurrent incident conditions
integrating data-driven models and traffic simulation.” In Proc., Trans-
portation Research Board 99th Annual Meeting. Washington, DC:
Transportation Research Record.

Tahmasbi, B., H. Haghshenas, and S. Birzhandi. 2021. “Network vulnerabil-
ity analysis based on the overall and inequity impacts of the distribution
of the added travel time to the network users.” Eur. J. Transp. Infra-
struct. Res. 21 (1): 94—-114. https://doi.org/10.18757/EJTIR.2021.21.1
.5363.

Tierney, K. 2009. Disaster response: Research findings and their implica-
tions for resilience measures. CARRI Research Rep. No. 57. Boulder,
CO: Univ. of Colorado Boulder.

J. Infrastruct. Syst.

J. Infrastruct. Syst., 2023, 29(4): 04023026


https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212
https://www.fema.gov/emergency-managers/national-preparedness/equity
https://www.fema.gov/emergency-managers/national-preparedness/equity
https://doi.org/10.5194/nhess-18-1233-2018
https://doi.org/10.5194/nhess-18-1233-2018
https://doi.org/10.1007/s41109-020-00310-1
https://doi.org/10.1109/TTS.2021.3058605
https://doi.org/10.1111/poms.12110
https://doi.org/10.1111/poms.12110
https://doi.org/10.1016/j.sbspro.2011.04.525
https://doi.org/10.1016/j.tra.2020.12.013
https://doi.org/10.1016/j.tra.2020.12.013
https://doi.org/10.1016/j.tra.2021.06.019
https://doi.org/10.1016/j.tra.2005.11.003
https://doi.org/10.1016/j.tra.2005.11.003
https://doi.org/10.1016/S0968-090X(98)00015-1
https://doi.org/10.1016/j.scs.2020.102072
https://doi.org/10.1021/es500471d
https://doi.org/10.1088/1748-9326/ab29ae
https://doi.org/10.1177/1748006X21991038
https://doi.org/10.1177/1748006X21991038
https://doi.org/10.1007/s00168-008-0235-x
https://doi.org/10.1016/j.tra.2015.06.002
https://doi.org/10.1016/j.tra.2015.06.002
https://doi.org/10.1177/0361198120908870
https://doi.org/10.1016/j.cor.2011.09.017
https://doi.org/10.1016/j.cor.2011.09.017
https://doi.org/10.1016/S0377-2217(97)00376-7
https://doi.org/10.1016/S0377-2217(97)00376-7
https://doi.org/10.1111/1467-7717.00102
https://doi.org/10.1177/0361198118822272
https://doi.org/10.1016/j.tra.2019.11.021
https://doi.org/10.1016/j.ress.2013.06.040
https://doi.org/10.1016/j.ress.2013.10.003
https://doi.org/10.1016/j.ress.2013.10.003
https://doi.org/10.1016/j.ijdrr.2020.101548
https://doi.org/10.1080/01441647.2016.1257660
https://doi.org/10.1080/01441647.2016.1257660
https://doi.org/10.1016/j.tra.2014.12.012
https://doi.org/10.1002/sys.21642
https://doi.org/10.1016/j.jtrangeo.2014.01.008
https://doi.org/10.18757/EJTIR.2021.21.1.5363
https://doi.org/10.18757/EJTIR.2021.21.1.5363

Downloaded from ascelibrary.org by George Washington University on 01/02/24. Copyright ASCE. For personal use only; all rights reserved.

US Census Bureau. 2019. “American community survey data.” Accessed Geogr. 46 (Feb): 35-45. https://doi.org/10.1016/j.jtrangeo.2015.05

October 4, 2022. https://www.census.gov/programs-surveys/acs/data .006.
.html. Zhu, S., and D. Levinson. 2015. “Do people use the shortest path? An em-
Zhang, X., E. Miller-Hooks, and K. Denny. 2015. “Assessing the role pirical test of Wardrop’s first principle.” PLoS One 10 (8): e0134322.
of network topology in transportation network resilience.” J. Transp. https://doi.org/10.1371/journal.pone.0134322.
© ASCE 04023026-12 J. Infrastruct. Syst.

J. Infrastruct. Syst., 2023, 29(4): 04023026


https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://doi.org/10.1016/j.jtrangeo.2015.05.006
https://doi.org/10.1016/j.jtrangeo.2015.05.006
https://doi.org/10.1371/journal.pone.0134322

