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Abstract. A sequential quadratic optimization algorithm is proposed for solving smooth 
nonlinear-equality-constrained optimization problems in which the objective function is 
defined by an expectation. The algorithmic structure of the proposed method is based on a 
step decomposition strategy that is known in the literature to be widely effective in prac-
tice, wherein each search direction is computed as the sum of a normal step (toward linear-
ized feasibility) and a tangential step (toward objective decrease in the null space of the 
constraint Jacobian). However, the proposed method is unique from others in the literature 
in that it both allows the use of stochastic objective gradient estimates and possesses conver-
gence guarantees even in the setting in which the constraint Jacobians may be rank-deficient. 
The results of numerical experiments demonstrate that the algorithm offers superior perfor-
mance when compared with popular alternatives.
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1. Introduction
We propose an algorithm for solving equality-constrained optimization problems in which the objective function 
is defined by an expectation. Formulations of this type arise throughout science and engineering in important 
applications such as data-fitting problems, where one aims to determine a model that minimizes the discrepancy 
between values yielded by the model and corresponding known outputs. An example application area that moti-
vates the particular features of the proposed algorithm is physics-informed machine learning; see Section 5.

Our algorithm is designed for solving problems when the decision variables are restricted to the solution set of 
a (potentially nonlinear) set of equations. We are particularly interested in such problems when the constraint 
Jacobian—that is, a matrix of first-order derivatives of the constraint function—may be (nearly) rank-deficient in 
some or even all iterations during the run of an algorithm, because this can be an unavoidable occurrence in 
practice that would ruin the convergence properties of any algorithm that is not specifically designed for this set-
ting. The structure of our algorithm follows a step decomposition strategy that is common in the constrained- 
optimization literature; in particular, our algorithm has roots in the Byrd-Omojokun approach (Omojokun [26]). 
However, our algorithm is unique from previously proposed algorithms in that it offers convergence guarantees 
while allowing for the use of stochastic objective gradient information in each iteration. We prove that our algo-
rithm converges to stationarity (in expectation) both in nice cases when the constraints are feasible and conver-
gence to the feasible region can be guaranteed (in expectation) and in more challenging cases such as when the 
constraints are infeasible and one can guarantee convergence only to an infeasible stationary point. To the best of 
our knowledge, there exist no other algorithms in the literature that have been designed specifically for this set-
ting, namely, stochastic optimization with equality constraints that may exhibit rank deficiency.

The step decomposition strategy employed by our algorithm makes it similar to the method proposed in Cur-
tis et al. [6], although that method is designed for deterministic optimization only and employs a line search, 
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whereas our approach is designed for stochastic optimization and requires no line searches. Our algorithm 
builds upon the method for solving equality-constrained optimization problems proposed in Berahas et al. [1]. 
The method proposed in that article assumes that the singular values of the constraint Jacobians are bounded 
below by a positive constant throughout the optimization process, which implies that the linear independence 
constraint qualification (LICQ) holds at all iterates. By contrast, the algorithm proposed in this paper makes no 
such assumption. Handling the potential lack of full-rank Jacobians necessitates a different algorithmic structure 
and a distinct approach to proving convergence guarantees; for example, one needs to account for the fact that 
primal-dual stationarity conditions may not be necessary and/or that the constraints may be infeasible.

Similar to the context in Berahas et al. [1], our algorithm is intended for the highly stochastic regime in which the 
stochastic gradient estimates might only be unbiased estimators of the gradients of the objective at the algorithm 
iterates that satisfy a loose variance condition. Indeed, we show that in nice cases—in particular, when the adaptive 
merit parameter employed in our algorithm eventually settles at a value that is sufficiently small—our algorithm 
has convergence properties that match those of the algorithm in Berahas et al. [1]. These results parallel those for the 
stochastic gradient method in the context of unconstrained optimization (Bottou et al. [2], Robbins and Monro [30], 
Robbins and Siegmund [31]). However, for cases not considered in Berahas et al. [1] when the merit parameter may 
vanish, we require the stronger assumption that the differences between the stochastic gradient estimators and the 
corresponding true gradients are bounded. This is appropriate because in such a scenario the algorithm aims to tran-
sition from a stochastic algorithm for solving a constrained optimization problem to one that offers guarantees on 
par with a deterministic algorithm for minimizing constraint violation. Finally, we show under reasonable assump-
tions that the probability is zero that the merit parameter settles at too large of a value.

Our algorithm has some similarities but many differences with another recently proposed algorithm, namely, 
that in Na et al. [22]. That stochastic algorithm is also designed for equality-constrained optimization, but (i) like 
for the algorithm in Berahas et al. [1], for the algorithm in Na et al. [22] the constraint Jacobians are required to 
have singular values that are bounded below by a positive constant (meaning that the LICQ holds at all algo-
rithm iterates), and (ii) the algorithm in Na et al. [22] employs an adaptive line search that may require the algo-
rithm to compute relatively accurate stochastic gradient estimates throughout the optimization process. Our 
algorithm, on the other hand, does not require the LICQ to hold and is meant for a more stochastic regime, mean-
ing that it does not require a procedure for refining the stochastic gradient estimate within an iteration. Conse-
quently, the convergence guarantees that can be proved for our method and the expectations that one should 
have about the practical performance of our method are quite distinct from those for the algorithm in Na et al. 
[22]. (See also Fang et al. [11], which also proposes an algorithm for the highly stochastic regime but again 
requires the constraint Jacobians to have singular values that are bounded below by a positive constant.)

Besides the methods in Berahas et al. [1] and Na et al. [22], there have been few proposed algorithms that 
might be used to solve problem of the form (1). Some methods have been proposed that employ stochastic (prox-
imal) gradient strategies applied to minimizing penalty functions derived from constrained problems (Chen et al. 
[4], Kumar Roy et al. [18], Nandwani et al. [23]), but these do not offer convergence guarantees to stationarity 
with respect to the original constrained problem. On the other hand, stochastic Frank-Wolfe methods have been 
proposed (Hazan and Luo [16], Locatello et al. [19], Lu and Freund [20], Ravi et al. [28], Reddi et al. [29], Zhang 
et al. [35]), but these can be applied only in the context of convex feasible regions. Our algorithm, by contrast, is 
designed for nonlinear-equality-constrained optimization.

1.1. Notation
The set of real numbers is denoted as R, the set of real numbers greater than (respectively, greater than or equal 
to) r ∈ R is denoted as R>r (respectively, R≥r), the set of n-dimensional real vectors is denoted as Rn, the set of m- 
by-n-dimensional real matrices is denoted as Rm×n, and the set of n-by-n-dimensional real symmetric matrices is 
denoted as Sn. Given J ∈ Rm×n, the range space of JT is denoted as Range(JT), and the null space of J is denoted as 
Null(J). (By the Fundamental Theorem of Linear Algebra, for any J ∈ Rm×n, the spaces Range(JT) and Null(J) are 
orthogonal and Range(JT) +Null(J) � Rn, where in this instance “+” denotes the Minkowski sum operator.) The 
set of nonnegative integers is denoted as N :� {0, 1, 2, : : : }. For any m ∈ N, let [m] denote the set of integers 
{0, 1, : : : , m}. Correspondingly, to represent a set of vectors {v0, : : : , vk}, we define v[k] :� {v0, : : : , vk}.

The algorithm that we propose is iterative in the sense that, given a starting point x0 ∈ Rn, any run generates a 
sequence of iterates {xk} with xk ∈ Rn for all k ∈ N, which is itself a realization of a stochastic process {Xk} with 
Xk ∈ Rn for all k ∈ N. (We state the algorithm in terms of a particular realization of it, although our analysis con-
siders the stochastic process generated by the algorithm, which we formalize at the beginning of Section 4.) For 
simplicity of notation, the iteration number is appended as a subscript to other quantities corresponding to each 
iteration; for example, with a function c : Rn→ R, its value at xk is denoted as ck :� c(xk) for all k ∈ N.
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1.2. Organization
Our problem of interest and basic assumptions about the problem and the behavior of our algorithm are pre-
sented in Section 2. Our algorithm is motivated and presented in Section 3. Convergence guarantees for our algo-
rithm are presented in Section 4. The results of numerical experiments are provided in Section 5, and concluding 
remarks are provided in Section 6.

2. Problem Statement
Our algorithm is designed for solving (potentially nonlinear and/or nonconvex) equality-constrained optimiza-
tion problems of the form

min
x∈Rn

f (x) s:t: c(x) � 0, with f (x) � Eι[F(x, ι)], (1) 

where the functions f : Rn→ R and c : Rn→ Rm are smooth, ι�is a random variable with associated probability 
space (Ω,F ,Pι), F : Rn ×Ω→ R, and Eι[·] denotes expectation taken with respect to Pι. We assume that values 
and first-order derivatives of the constraint functions can be computed but that the objective and its associated 
first-order derivatives are intractable to compute, and one must instead employ stochastic estimates. (We formal-
ize our assumptions about such stochastic estimates starting with Assumption 2.) Formally, we make the follow-
ing assumption with respect to (1) and the stochastic process generated by our proposed algorithm. (For further 
generality, one could relax the following assumption to say that the stated properties hold almost surely, that is, 
with probability one. However, such a relaxation would require constant reference to probability-one events 
throughout our analysis without adding substantially to the strength of our results, so for the sake of brevity we 
do not bother with such generality.)

Assumption 1. Let R ⊆ Rn be an open convex set that contains the iterate sequence {Xk}. The objective function f : Rn→
R is continuously differentiable and bounded over R, and its gradient function ∇f : Rn→ Rn is Lipschitz continuous with 
constant L ∈ R>0 (with respect to ‖ · ‖2) and bounded over R. The constraint function c : Rn→ Rm (with m ≤ n) is continu-
ously differentiable and bounded over R, and its Jacobian function J :� ∇cT : Rn→ Rm×n is Lipschitz continuous with con-
stant Γ ∈ R>0 (with respect to ‖ · ‖2) and bounded over R.

The aspects of Assumption 1 that pertain to the objective function f and constraint function c are typical for the 
equality-constrained-optimization literature. Notice that we do not assume that the iterate sequence itself is 
bounded. Under Assumption 1, it follows that there exist positive real numbers (finf, fsup,κ∇f ,κc,κJ) ∈ R>0 × R>0 ×
R>0 × R>0 × R>0 such that

finf ≤ f (x) ≤ fsup, ‖∇f (x)‖2 ≤ κ∇f , ‖c(x)‖2 ≤ κc, and ‖J(x)‖2 ≤ κJ for all x ∈R: (2) 

Given that our proposed algorithm is stochastic, it is admittedly not ideal to have to assume that the objective 
value, objective gradient, constraint value, and constraint Jacobian are bounded over the set R containing the 
iterates. This is a common assumption in the deterministic optimization literature, where it may be justified in 
the context of an algorithm that is guaranteed to make progress in each iteration, say, with respect to a merit 
function. However, for a stochastic algorithm such as ours, such a claim may be seen as less than ideal because a 
stochastic algorithm may be guaranteed to make progress only in expectation in each iteration, meaning that it is 
possible for the iterates to drift far from desirable regions of the search space during the optimization process.

Our justification for Assumption 1 is twofold. First, any reader who is familiar with analyses of stochastic algo-
rithms for unconstrained optimization—in particular, those analyses that do not require that the objective gradi-
ent is bounded over a set containing the iterates—should appreciate that additional challenges present 
themselves in the context of constrained optimization. For example, whereas in unconstrained optimization one 
naturally considers the objective f as a measure of progress, in (nonconvex) constrained optimization one needs 
to employ a merit function for measuring progress, and for practical purposes such a function typically needs to 
involve a parameter (or parameters) that must be adjusted dynamically by the algorithm. One finds that it is the 
adaptivity of our merit parameter (see (9) later on) that necessitates the aforementioned boundedness assump-
tions that we use in our analysis. (Certain exact merit functions, such as that employed in Na et al. [22], might 
not lead to the same issues as the merit function that we employ. However, we remark that the merit function 
employed in Na et al. [22] is not a viable option unless the constraint Jacobians have singular values that are 
bounded below by a positive constant throughout any run of the algorithm.) Our second justification is that we 
know of no other algorithm that offers convergence guarantees that are as comprehensive as ours (in terms of 
handling feasible, degenerate, and infeasible settings) under an assumption that is at least as loose as Assump-
tion 1.
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Let the Lagrangian ℓ : Rn × Rm→ R corresponding to (1) be given by ℓ(x, y) � f (x) + c(x)Ty, where y ∈ Rm repre-
sents a vector of Lagrange multipliers. Under a constraint qualification (such as the LICQ), necessary conditions 
for first-order stationarity with respect to (1) are given by

0 �
∇xℓ(x, y)
∇yℓ(x, y)

" #

� ∇f (x) + J(x)Ty

c(x)

" #

; (3) 

see, for example, Nocedal and Wright [25]. However, under only Assumption 1, it is possible for (1) to be degen-
erate, in which case (3) might not be necessary at a solution of (1), or (1) may be infeasible. In the latter case, one 
aims to design an algorithm that transitions automatically from seeking stationarity with respect to (1) to seeking 
stationarity with respect to a measure of infeasibility of the constraints. For our purposes, we employ the infeasi-
bility measure φ : Rn→ R defined by φ(x) � ‖c(x)‖2. A point x ∈ Rn is stationary with respect to φ if and only if 
either c(x) � 0 or both c(x)≠ 0 and

0 � ∇φ(x) � J(x)Tc(x)
‖c(x)‖2

: (4) 

3. Algorithm Description
Our algorithm can be characterized as a sequential quadratic optimization (commonly known as SQP) method 
that employs a step decomposition strategy and chooses step sizes that attempt to ensure sufficient decrease in a 
merit function in each iteration. We present our complete algorithm in this section, which builds upon this basic 
characterization to involve various unique aspects that are designed for handling the combination of (i) stochas-
tic gradient estimates and (ii) potential rank deficiency of the constraint Jacobians.

In each iteration k ∈ N, the algorithm first computes the normal component of the search direction toward reduc-
ing linearized constraint violation. Conditioned on the event that xk is reached as the kth iterate, the problem 
defining this computation, namely,

min
v∈Rn

1

2
‖ck + Jkv‖22 s:t: ‖v‖2 ≤ ω‖JT

k ck‖2 (5) 

where ω ∈ R>0 is a user-defined parameter, is determined because the constraint function value ck and constraint 
Jacobian Jk are determined by xk. If Jk has full row rank, ω�is sufficiently large, and (5) is solved to optimality, 
then one obtains vk such that ck + Jkvk � 0. However, an exact solution of (5) may be expensive to obtain, and—as 
has been shown for various step decomposition strategies, such as the Byrd-Omojokun approach (Omojokun 
[26])—the consideration of (5) is viable when Jk might not have full row rank. Fortunately, our algorithm merely 
requires that the normal component vk ∈ Rn is feasible for problem (5), lies in Range(JT

k ), and satisfies the Cauchy 
decrease condition

‖ck‖2 � ‖ck + Jkvk‖2 ≥ ɛv(‖ck‖2 � ‖ck + αC
k JkvC

k ‖2) (6) 

for some user-defined parameter ɛv ∈ (0, 1]. Here, vC
k :��JT

k ck is the steepest descent direction for the objective of 
problem (5) at v � 0, and the step size αC

k ∈ R is the unique solution to the problem to minimize 12 ‖ck + αCJkvC
k ‖

2
2 

over αC ∈ R≥0 subject to αC ≤ ω�(see, e.g., Nocedal and Wright [25], equations (4.11)–(4.12)). Because this allows 
one to choose vk← vC

k , the normal component can be computed at low computational cost. For a more accurate 
solution to (5), one can employ a so-called matrix-free iterative algorithm such as the linear conjugate gradient 
(CG) method with Steihaug stopping conditions (Steihaug [32]) or GLTR (Gould et al. [13]), each of which is 
guaranteed to yield a solution satisfying the aforementioned conditions no matter how many iterations (greater 
than or equal to one) are performed.

After the computation of the normal component, our algorithm computes the tangential component of the search 
direction by minimizing a model of the objective function subject to remaining in the null space of the constraint 
Jacobian. This ensures that the progress toward linearized feasibility offered by the normal component is not 
undone by the tangential component when the components are added together. The problem defining the com-
putation of the tangential component is

min
u∈Rn
(gk +Hkvk)Tu + 1

2
uTHku s:t: Jku � 0, (7) 

where gk ∈ Rn is a stochastic gradient estimate and Hk ∈ Sn yields uTHku > 0 for all nonzero u ∈Null(Jk). (Specific 
additional requirements for {gk} and {Hk} that are needed for our convergence guarantees are stated formally 
throughout our analysis in Section 4.)
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Because Hk ∈ Sn yields uTHku > 0 for all nonzero u ∈Null(Jk), the tangential component uk that is defined as the 
unique solution of (7) can be obtained by solving

Hk JT
k

Jk 0

" #

uk

yk

" #

��

gk +Hkvk

0

" #

: (8) 

Even if the constraint Jacobian Jk does not have full row rank, the linear system (8) is consistent because it repre-
sents sufficient optimality conditions of the linearly constrained quadratic optimization problem in (7). (Factori-
zation methods that are popular in the context of solving symmetric indefinite linear systems of equations, such 
as the Bunch-Kaufman factorization, can fail when the matrix in (8) is singular. However, Krylov subspace meth-
ods provide a viable alternative, because for such methods singularity is benign as long as the system is known 
to be consistent, as is the case for (8).) Under the aforementioned conditions on Hk, the solution component uk is 
unique, although yk might not be unique (if Jk does not have full row rank).

Upon computation of the search direction, our algorithm proceeds toward determining a positive step size. 
For this purpose, we employ the merit function φ : Rn × R≥0→ R defined by

φ(x,τ) � τf (x) + ‖c(x)‖2, (9) 

where τ�is a merit parameter whose value is set dynamically. The function φ�is an exact penalty function that is 
common in the literature (Han [14], Han and Mangasarian [15], Powell [27]). For setting the merit parameter 
value in each iteration, we employ a local model of φ�denoted as l : Rn × R≥0 × Rn × Rn→ R and defined by

l(x,τ, g, d) � τ(f (x) + gTd) + ‖c(x) + J(x)d‖2:
Given the search direction vectors vk, uk, and dk← vk + uk, the algorithm sets

τtrial
k ←

∞ if gT
k dk + uT

k Hkuk ≤ 0

(1� σ)(‖ck‖2 � ‖ck + Jkdk‖2)
gT

k dk + uT
k Hkuk

otherwise,

8

>

<

>

:

(10) 

where σ ∈ (0, 1) is user-defined. The merit parameter value is then set as

τk←
τk�1 if τk�1 ≤ τtrial

k

min{(1� ɛτ)τk�1,τtrial
k } otherwise,

(

(11) 

where ɛτ ∈ (0, 1) is user-defined. This rule ensures that {τk} is monotonically nonincreasing, τk ≤ τtrial
k for all k ∈ N, 

and, with the reduction function ∆l : Rn × R≥0 × Rn × Rn→ R defined by

∆l(x,τ, g, d) � l(x,τ, g, 0)� l(x,τ, g, d) ��τgTd+ ‖c(x)‖2 � ‖c(x) + J(x)d‖2 (12) 

and the aforementioned conditions on Hk, it ensures the following critical fact:

∆l(xk,τk, gk, dk) ≥ τkuT
k Hkuk + σ(‖ck‖2 � ‖ck + Jkvk‖2): (13) 

Similar to the algorithm in Berahas et al. [1], our algorithm also adaptively sets other parameters that are used 
for determining an allowable range for the step size in each iteration. (There exist constants that, if known in 
advance, could be used by the algorithm for determining the allowable range for each step size; see Lemma 2 in 
our analysis later on. However, to avoid the need to know these problem-dependent constants in advance, our 
algorithm generates these parameter sequences adaptively, which our analysis shows is sufficient to ensure con-
vergence guarantees.) For distinguishing between search directions that are dominated by the tangential compo-
nent and others that are dominated by the normal component, the algorithm adaptively defines sequences {χk}
and {ζk}. (These sequences were not present in the algorithm in Berahas et al. [1]; they are newly introduced for 
the needs of our proposed algorithm.) In particular, in iteration k ∈ N, the algorithm employs the conditions

‖uk‖22 ≥ χk�1‖vk‖22 and
1

2
dT

k Hkdk <
1

4
ζk�1‖uk‖22 (14) 

in order to set

(χk,ζk) ←
((1+ ɛχ)χk�1, (1� ɛζ)ζk�1) if (14) holds

(χk�1,ζk�1) otherwise,

(

(15) 

where ɛχ ∈ R>0 and ɛζ ∈ (0, 1) are user-defined. It follows from (15) that {χk} is monotonically nondecreasing and 
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{ζk} is monotonically nonincreasing. It will be shown in our analysis that {χk} is always bounded above uni-
formly by a positive real number and {ζk} is always bounded below uniformly by a positive real number. This 
means that despite the stochasticity of the algorithm iterates, these sequences have (χk,ζk) � (χk�1,ζk�1) for all 
sufficiently large k ∈ N.

Whether ‖uk‖22 ≥ χk‖vk‖22 (i.e., the search direction is tangentially dominated) or ‖uk‖22 < χk‖vk‖22 (i.e., the search 
direction is normally dominated) influences two aspects of iteration k ∈ N. First, it influences a value that the algo-
rithm employs to determine the range of allowable step sizes that represents a lower bound for the ratio between 
the reduction in the model l of the merit function and a quantity involving the squared norm of the search direc-
tion. (A similar, but slightly different sequence was employed for the algorithm in Berahas et al. [1].) In iteration 
k ∈ N of our algorithm, the estimated lower bound is set adaptively by first setting

ξtrial
k ←

∆l(xk,τk, gk, dk)
τk‖dk‖22

if ‖uk‖22 ≥ χk‖vk‖22

∆l(xk,τk, gk, dk)
‖dk‖22

otherwise,

8

>

>

>

>

<

>

>

>

>

:

(16) 

then setting

ξk←
ξk�1 if ξk�1 ≤ ξtrial

k

min{(1� ɛξ)ξk�1,ξtrial
k } otherwise,

(

(17) 

for some user-defined ɛξ ∈ (0, 1). The procedure in (17) ensures that {ξk} is monotonically nonincreasing and ξk ≤
ξtrial

k for all k ∈ N. It will be shown in our analysis that {ξk} is always bounded below uniformly by a positive real 
number, even though in each iteration it depends on stochastic quantities. (Like for {χk} and {ζk}, there exists a 
constant that, if known in advance, could be used in place of ξk for all k ∈ N—see Lemma 3—but for ease of 
employment our algorithm generates {ξk}.) To achieve this property, it is critical that the denominator in (16) is 
different, depending on whether the search direction is tangentially or normally dominated; see Lemma 3. The 
second aspect of the algorithm that is affected by whether a search direction is tangentially or normally domi-
nated is a rule for setting the step size; this will be seen in (21) later on.

We are now prepared to present the mechanism by which a positive step size is selected in each iteration k ∈ N 
of our algorithm. We present a strategy that allows for our convergence analysis in Section 4 to be as straightfor-
ward as possible. In Section 5, we remark on extensions of this strategy that are included in our software imple-
mentation for which our convergence guarantees also hold (as long as some additional cases are considered in 
one key lemma).

We motivate our strategy by considering an upper bound for the change in the merit function corresponding 
to the computed search direction, namely, dk← vk + uk. In particular, under Assumption 1, in iteration k ∈ N, one 
has for any nonnegative step size α ∈ R≥0 that

φ(xk + αdk,τk)�φ(xk,τk)
�τkf (xk +αdk)� τkf (xk) + ‖c(xk + αdk)‖2 � ‖ck‖2

≤ατk∇f (xk)Tdk + ‖ck +αJkdk‖2 � ‖ck‖2 +
1

2
(τkL+ Γ)α2‖dk‖22

≤ατk∇f (xk)Tdk + |1� α | ‖ck‖2 � ‖ck‖2 + α‖ck + Jkdk‖2 +
1

2
(τkL+ Γ)α2‖dk‖22:

(18) 

This upper bound is a convex, piecewise quadratic function in α. In a deterministic algorithm in which the gradi-
ent ∇f (xk) is available, it is common to require that the step size α�yields

φ(xk +αdk,τk)�φ(xk,τk) ≤�ηα∆l(xk,τk,∇f (xk), dk), (19) 

where η ∈ (0, 1) is user-defined. However, in our setting, (19) cannot be enforced because our algorithm avoids 
the evaluation of ∇f (xk) and in lieu of it only computes a stochastic gradient gk. The first main idea of our step 
size strategy is to determine a step size such that the upper bound in (18) is less than or equal to the right-hand 
side of (19) when the true gradient ∇f (xk) is replaced by its estimate gk. Because (13), the orthogonality of vk ∈
Range(JT

k ) and uk ∈Null(Jk), and the properties of the normal step (which, as shown in Lemma 1 later on, include 
that the left-hand side of (6) is positive whenever vk ≠ 0) ensure that ∆l(xk,τk, gk, dk) > 0 whenever dk ≠ 0, it 
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follows that a step size satisfying this aforementioned property is given, for any βk ∈ (0, 1], by

αsuff
k ←min

2(1� η)βk∆l(xk,τk, gk, dk)
(τkL+ Γ)‖dk‖22

, 1

( )

∈ R>0: (20) 

The sequence {βk} referenced in (20) is chosen with different properties—namely, constant or diminishing— 
depending on the desired type of convergence guarantee. We discuss details of the possible choices for {βk} and 
the consequences of these choices along with our convergence analysis.

Given that the step size αsuff
k in (20) has been set based on a stochastic gradient estimate, a safeguard is needed 

for our convergence guarantees. For this purpose, the second main idea of our step size selection strategy is to 
project the trial step size onto an interval that is appropriate, depending on whether the search direction is tan-
gentially dominated or normally dominated. In particular, the step size is chosen as αk← Projk(αsuff

k ), where

Projk(·) :�

Proj ·
�

�

�

�

2(1� η)βkξkτk

τkL+ Γ ,
2(1� η)βkξkτk

τkL+ Γ +θβ2
k

� �� �

if ‖uk‖22 ≥ χk‖vk‖22

Proj ·
�

�

�

�

2(1� η)βkξk

τkL+ Γ ,
2(1� η)βkξk

τkL+ Γ +θβ2
k

� �� �

otherwise:

8

>

>

>

>

<

>

>

>

>

:

(21) 

Here, Proj(· |I) denotes the projection onto the interval I ⊂ R. In our analysis, the rules for {βk} (see Lemma 6) 
ensure that this projection only ever decreases the step size; hence, the overall motivation for the projection is to 
ensure that the step size is not too large compared with a conservative choice, namely, the lower end of the pro-
jection interval. Motivation for the difference in the interval, depending on whether the search direction is tan-
gentially or normally dominated, can be seen Lemma 12 later on, where it is critical that the step size for a 
normally dominated search direction does not necessarily vanish if/when the merit parameter vanishes, that is, 
{τk}↘ 0.

Overall, our step size selection mechanism can be understood as follows. First, the algorithm adaptively sets 
the sequences {χk}, {ζk}, and {ξk} in order to estimate bounds that are needed for the step size selection and are 
known to exist theoretically but cannot be computed directly. By the manner in which these sequences are set, 
our analysis shows that they remain constant for sufficiently large k ∈ N. With these values, our step size selec-
tion strategy aims to achieve a reduction in the merit function in expectation with safeguards because the com-
puted values are based on stochastic quantities. One finds by the definition of the projection interval in (21) that 
the step size for a tangentially dominated search direction may decrease to zero if {τk}↘ 0; this is needed in cases 
when the problem is degenerate or infeasible and the algorithm wants to avoid long steps in the tangential com-
ponent that may ruin progress toward minimizing constraint violation. Otherwise, for a normally dominated search 
direction, the step size would remain bounded away from zero if βk � β ∈ (0, 1] for all k ∈ N; that is, it can only 
decrease to zero if {βk} is diminishing. If our algorithm did not make this distinction between the projection inter-
vals for tangentially versus normally dominated search directions, then the algorithm would fail to have desir-
able convergence guarantees even in the deterministic setting. (In particular, our proof in Appendix A of 
Theorem 1, which is upcoming in Section 4, would break down.)

Our complete algorithm is stated as Algorithm 1. For the computation of the stochastic gradient estimate gk 

and matrix Hk in each iteration, the algorithm statement refers to Assumptions 2 and 3, which are introduced for-
mally for our analysis in the subsequent section.

Algorithm 1 (Stochastic SQP Algorithm)
Require L ∈ R>0, a Lipschitz constant for ∇f ; Γ ∈ R>0, a Lipschitz constant for c; {βk} ⊂ (0, 1]; x0 ∈ Rn; τ

�1 ∈ R>0; 
χ
�1 ∈ R>0; ζ

�1 ∈ R>0; ξ
�1 ∈ R>0; ω ∈ R>0; ɛv ∈ (0, 1]; σ ∈ (0, 1); ɛτ ∈ (0, 1); ɛχ ∈ R>0; ɛζ ∈ (0, 1); ɛξ ∈ (0, 1); η ∈ (0, 1); 

θ ∈ R≥0 

1: for k ∈ N do
2: if ‖JT

k ck‖2 � 0 and ‖ck‖2 > 0 then
3: terminate and return xk (infeasible stationary point)
4: end if
5: Compute a stochastic gradient gk satisfying Assumption 2
6: Compute vk ∈ Range(JT

k ) that is feasible for problem (5) and satisfies (6)
7: Compute Hk satisfying Assumption 3
8: Compute (uk, yk) as a solution of (8), and then set dk← vk + uk

9: if dk � 0 then
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10: Set τtrial
k ←∞ and τk← τk�1

11: Set (χk,ζk) ← (χk�1,ζk�1)
12: Set ξtrial

k ←∞ and ξk← ξk�1

13: Set αsuff
k ← 1 and αk← 1

14: else
15: Set τtrial

k by (10) and τk by (11)
16: Set (χk,ζk) by (14)–(15)
17: Set ξtrial

k by (16) and ξk by (17)
18: Set αsuff

k by (20) and αk← Projk(αsuff
k ) using (21)

19: end if
20: Set xk+1← xk + αkdk

21: end for

4. Convergence Analysis
In this section, we prove convergence guarantees for Algorithm 1. To understand the results that can be expected 
given our setting and the type of algorithm that we employ, let us first present a set of guarantees that can be 
proved if Algorithm 1 were to be run with gk � ∇f (xk) and βk � β�for all k ∈ N, where β ∈ R>0 is sufficiently small. 
For such an algorithm, we prove the following theorem in Appendix A. The theorem is consistent with what can 
be proved for other deterministic algorithms in our context; for example, see theorem 3.3 in Curtis et al. [6]. 
Given Jk ∈ Rm×n, we use Zk to denote a matrix whose columns form an orthonormal basis for Null(Jk).
Theorem 1. Suppose Algorithm 1 is employed to solve (1) such that Assumption 1 holds, gk � ∇f (xk) for all k ∈ N, there 
exists κH ∈ R>0 such that ‖Hk‖2 ≤ κH for all k ∈ N, there exists ρ ∈ R>0 such that uTHku ≥ ρ‖u‖22 for all u ∈Null(Jk) for all 
k ∈ N, and βk � β�for all k ∈ N, where

β ∈ (0, 1] and
2(1� η)βξ

�1max{τ
�1, 1}

Γ
∈ (0, 1]: (22) 

If there exists kJ ∈ N and σJ ∈ R>0 such that the singular values of Jk are bounded below by σJ for all k ≥ kJ, then the merit 
parameter sequence {τk} is bounded below by a positive real number and

0 � lim
k→∞

�

�

�

�

�

�

�

�

�

�

∇f (xk) + JT
k yk

ck

� �

�

�

�

�

�

�

�

�

�

�

2

� lim
k→∞

�

�

�

�

�

�

�

�

�

�

ZT
k∇f (xk)

ck

� �

�

�

�

�

�

�

�

�

�

�

2

: (23) 

Otherwise, if such kJ and σJ do not exist, then it still follows that

0 � lim
k→∞
‖JT

k ck‖2, (24) 

and if {τk} is bounded below by a positive real number, then

0 � lim
k→∞
‖∇f (xk) + JT

k yk‖2 � lim
k→∞
‖ZT

k∇f (xk)‖2: (25) 

Based on Theorem 1, the following aims—which are all achieved in certain forms in our analyses in Sections 4.1
and 4.2—can be set for Algorithm 1 in the stochastic setting. First, if Algorithm 1 is run and the singular values 
of the constraint Jacobians happen to remain bounded away from zero beyond some iteration, then (following 
(23)) one should aim to prove that a primal-dual stationarity measure (recall (3)) vanishes in expectation. This is 
shown under certain conditions in Corollary 1 (and the subsequent discussion). Otherwise, a (sub)sequence of 
{Jk} tends to singularity, in which case (following (24)) one should at least aim to prove that {‖JT

k ck‖2} vanishes in 
expectation, which would mean that a (sub)sequence of iterates converges in expectation to feasibility or at least 
stationarity with respect to the constraint infeasibility measure φ (recall (4)). Such a conclusion is offered under 
certain conditions by combining Corollary 1 and Theorem 3. The remaining aim (paralleling (25)) is that one 
should aim to prove that even if a (sub)sequence of {Jk} tends to singularity, if the merit parameter sequence {τk}
happens to remain bounded below by a positive real number, then {‖ZT

k∇f (xk)‖2} vanishes in expectation. This 
can also be seen to occur under certain conditions in Corollary 1.

In addition, because of its stochastic nature, there are events that one should consider in which the algorithm 
may exhibit behavior that cannot be exhibited by the deterministic one. One such event is when the merit param-
eter eventually remains fixed at a value that is not sufficiently small. We show in Section 4.3—with formal results 
stated and proved in Appendix C—that, under reasonable assumptions, the probability of this event is zero. We 
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complete the picture of the possible behaviors of our algorithm by discussing remaining possible (practically 
irrelevant) events in Section 4.4.

Let us now commence our analysis of Algorithm 1. For this analysis, we formalize the quantities defined by 
Algorithm 1 as a stochastic process. This includes quantities that are actually computed by the algorithm as well 
as others that, for the purposes of our analysis, we refer to as “true” ones. For all k ∈ N, a “true” quantity is one 
that would have been computed if the true gradient were used in place of a stochastic gradient in that iteration. 
Overall, the stochastic process is

{(Xk, Gk, Vk, Hk, Uk, Utrue
k , Dk, Dtrue

k , Yk, Ytrue
k ,T trial

k ,T k,T trial, true
k ,X k,Zk,Ξtrial

k ,Ξk,Asuff
k ,Ak)}, 

where, for all k ∈ N, we denote the primal iterate as Xk, the stochastic gradient estimator as Gk, the normal search 
direction as Vk, the quadratic-form matrix in (7) as Hk, the tangential search direction as Uk, the “true” tangential 
search direction as Utrue

k , the search direction as Dk, the “true” search direction as Dtrue
k , the Lagrange multiplier 

estimate as Yk, the “true” Lagrange multiplier estimate as Ytrue
k , the trial merit parameter as T trial

k , the merit 
parameter as T k, the “true” trial merit parameter as T trial, true

k , the curvature parameter as X k, the curvature 
threshold parameter as Zk, the trial ratio parameter as Ξtrial

k , the ratio parameter as Ξk, the sufficient step size 
value as defined in (20) as Asuff

k , and the step size as Ak. A realization of the kth element of this process, namely, 
(xk, gk, vk, Hk, uk, utrue

k , dk, dtrue
k , yk, ytrue

k ,τtrial
k ,τk,τtrial, true

k ,χk,ζk,ξtrial
k ,ξk,αsuff

k ,αk), includes the algorithmic quantities 
that have appeared in the prior section.

We remark that we have introduced an abuse of notation with respect to Hk, which now represents the (sto-
chastic) quadratic-form matrix in (7), whereas previously it was a realization of it. However, this should not lead 
to confusion, because for our purposes of analysis it can be viewed as an element of the stochastic process, not a 
realization. Similarly, we continue to use Jk to refer to the Jacobian in the kth iteration as well as Zk to refer to a 
matrix whose columns form an orthonormal basis for Null(Jk); these are also now stochastic quantities whose 
values/properties are defined by Xk. We use Ck to denote the constraint function value in iteration k.

Algorithm 1’s behavior is dictated entirely by the initial conditions (i.e., initial point and parameter values) as 
well as the stochastic gradient estimators; that is, assuming for simplicity that the initial conditions are predeter-
mined, a realization of {G0, : : : , Gk�1} determines a realization of

{Xj}kj�1 and {Vk, Hk, Uk, Utrue
k , Dk, Dtrue

k , Yk, Ytrue
k ,T trial

k ,T k,T trial, true
k ,X k,Zk,Ξtrial

k ,Ξk,Asuff
k ,Ak)}k�1

j�0 :

Let G0 be the σ-algebra defined by the initial conditions, and for all k ∈ N, let Gk be the σ-algebra generated by the 
initial conditions and {G0, : : : , Gk�1}. Thus, {Gk} is a filtration.

For the initial results in our analysis, make the following basic assumptions, where for the sake of brevity we 
define Ek[·] :� Eι[· |Gk]. In subsequent subsections, we make similar assumptions conditioned on different scenar-
ios of the behavior of the algorithm. (In certain cases, we impose stronger conditions on {Gk}, as needed; see Sec-
tions 4.2 and 4.3 and Appendix C.) As will be explained, our initial results—based on Assumptions 2 and 3—will 
carry over to each subsection.

Assumption 2. For all k ∈ N, the stochastic gradient estimator Gk ∈ Rn is unbiased in the sense that Ek[Gk] � ∇f (Xk). In 
addition, there exists a positive real number ν ∈ R>0 such that, for all k ∈ N, one has Ek[‖Gk �∇f (Xk)‖22] ≤ ν.
Assumption 3. For all k ∈ N, the matrix Hk ∈ Sn is Gk-measurable. In addition, there exist positive real numbers κH ∈ R>0 

and ρ ∈ R>0 such that the sequence {Hk} is bounded in norm by κH and, for all k ∈ N, one has uTHku ≥ ρ‖u‖22 for all 
u ∈Null(Jk).

Note that one can generate a realization gk in iteration k ∈ N by independently drawing bk realizations of the 
random variable ι, denoting the mini-batch as Bk :� {ιk, 1, : : : , ιk, bk

}, and setting

gk←
1

bk

X

ι∈Bk

∇f (xk, ι): (26) 

It is a modest assumption about the function f and the sample sizes {bk} to say that a realized sequence {gk} gen-
erated in this manner is a realization of {Gk} satisfying Assumption 2. As for Assumption 3, the assumptions that 
the elements of {Hk} are bounded in norm and that Hk is sufficiently positive definite in Null(Jk) for all k ∈ N are 
typical for the constrained optimization literature. In practice, one may choose Hk to be (an approximation of) the 
Hessian of the Lagrangian at (Xk, Yk�1) if such a matrix can be computed with reasonable effort. A simpler alter-
native is that Hk can be set to some positive definite diagonal matrix, such as the identity.
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If a run terminates finitely, then an infeasible stationary point has been found, and there is nothing else to 
prove about the behavior of the algorithm. Hence, without loss of generality throughout the remainder of our 
analysis and discussions, we assume that the algorithm does not terminate finitely; for example, an infinite num-
ber of iterates are generated. This is implied by the following.

Assumption 4. For all k ∈ N, one finds ‖JT
k Ck‖2 > 0 or ‖Ck‖2 � 0.

We build to our main results through a series of lemmas. Our first lemma has appeared for various determinis-
tic algorithms in the literature. It extends easily to our setting because the normal component computation is 
determined completely by Xk.

Lemma 1. There exists (κv,ω) ∈ R>0 × R>0 (uniform over all runs) such that

‖Ck‖2(‖Ck‖2 � ‖Ck + JkVk‖2) ≥ κv‖JT
k Ck‖22

and ω‖JT
k Ck‖22 ≤ ‖Vk‖2 ≤ ω‖JT

k Ck‖2 for all k ∈ N with ‖Ck‖2 > 0:

Proof. The proof follows the same logic as for lemmas 3.5 and 3.6 in Curtis et al. [6]. w

Our second lemma shows that the procedure for setting {X k} and {Zk} guarantees that these sequences are 
constant for sufficiently large k ∈ N. The index at which these sequences become constant is a random quantity, 
but the pair of constants (χmax,ζmin) ∈ R>0 × R>0 that is introduced in the lemma is a pair of bounds that are uni-
form over all runs.

Lemma 2. There exists (χmax,ζmin) ∈ R>0 × R>0 (uniform over all runs) such that for some Kχ,ζ ∈ N one finds (X k,Zk) �
(XKχ,ζ ,ZKχ,ζ) for all k ∈ N with k ≥ Kχ,ζ, where (XKχ,ζ ,ZKχ,ζ) ∈ (0,χmax] × [ζmin,∞).
Proof. Consider arbitrary k ∈ N. If Dk � 0, then the algorithm sets (X k,Zk) � (X k�1,Zk�1). Otherwise, under 
Assumption 3, it follows for any χ ∈ R>0 that ‖Uk‖22 ≥ χ‖Vk‖22 implies

1

2
DT

k HkDk �
1

2
UT

k HkUk +UT
k HkVk +

1

2
VT

k HkVk

≥ 1

2
ρ‖Uk‖22 � ‖Uk‖2‖Hk‖2‖Vk‖2 �

1

2
‖Hk‖2‖Vk‖22 ≥

ρ

2
�

κH
ffiffiffi

χ
√ �

κH

2χ

� �

‖Uk‖22:

Hence, for sufficiently large χ ∈ R>0, one finds that ‖Uk‖22 ≥ χ‖Vk‖22 implies 12 DT
k HkDk ≥ 1

4 ρ‖Uk‖22. The conclusion 
follows from this fact and the procedure for setting (X k,Zk) in (14) and (15). w

We now prove that the sequence {Ξk} is constant for sufficiently large k ∈ N. As in the previous lemma, the 
index at which this sequence becomes constant is a random quantity, but the constant ξmin ∈ R>0 represents a 
uniform bound that holds over all runs.

Lemma 3. There exists ξmin ∈ R>0 (uniform over all runs) such that for some Kξ ∈ N one finds Ξk � ΞKξ�for all k ∈ N with 
k ≥ Kξ, where ξKξ ∈ [ξmin,∞).
Proof. Consider arbitrary k ∈ N. If Dk � 0, then the algorithm sets Ξk � Ξk�1. If Dk ≠ 0 and ‖Uk‖22 ≥ X k‖Vk‖22, then it 
follows from (12)–(13) and (16)–(17) that either Ξk � Ξk�1 or

Ξk ≥ (1� ɛξ)Ξtrial
k � (1� ɛξ)

∆l(Xk,T k, Gk, Dk)
T k‖Dk‖22

 !

≥ (1� ɛξ)
T kρ‖Uk‖22

T k(1+X�1
k )‖Uk‖22

≥ (1� ɛξ)
ρ

(1+χ�1
�1)

:

If Dk ≠ 0 and ‖Uk‖22 < X k‖Vk‖22, then (12)–(13), (16)–(17), and Lemmas 1 and 2 imply Ξk � Ξk�1 or

Ξk ≥ (1� ɛξ)Ξtrial
k � (1� ɛξ)

∆l(Xk,T k, Gk, Dk)
‖Dk‖22

 !

≥ (1� ɛξ)
σκvκ

�1
c ‖JT

k Ck‖22
(X k + 1)ω2‖JT

k Ck‖22
≥ (1� ɛξ)

σκvκ
�1
c

(χmax + 1)ω2
:

Combining these results, the desired conclusion follows. w
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Our next two lemmas provide useful relationships between true and stochastic quantities. The first result is 
similar to lemma 3.6 in Berahas et al. [1], although the proof presented here is different in order to handle poten-
tial rank deficiency of the constraint Jacobians.

Lemma 4. For all k ∈ N, Ek[Uk] �Utrue
k and Ek[‖Dk �Dtrue

k ‖2] ≤ ρ�1
ffiffiffi

ν
√

.

Proof. Consider arbitrary k ∈ N. Under Assumption 3, it follows from (8) that there exist Wk and Wtrue
k such that 

Uk � ZkWk and Utrue
k � ZkWtrue

k , where Wk ��(ZT
k HkZk)�1ZT

k (Gk +HkVk) and Wtrue
k ��(ZT

k HkZk)�1ZT
k (∇f (Xk) +HkVk). 

Because (ZT
k HkZk)�1ZT

k and Zk are linear operators, it follows that Ek[Wk] �Wtrue
k , and hence, Ek[Uk] �Utrue

k , as 

desired. Then, it follows from consistency and sub-multiplicity of the spectral norm, orthonormality of Zk, Jen-
sen’s inequality, concavity of the square root operator, and Assumptions 2 and 3 that

Ek[‖Dk �Dtrue
k ‖2] � Ek[‖Uk �Utrue

k ‖2] � Ek[‖Zk(Wk �Wtrue
k )‖2]

� Ek[‖Zk(ZT
k HkZk)�1ZT

k (Gk �∇f (Xk))‖2]
≤ Ek[‖Zk(ZT

k HkZk)�1ZT
k ‖2‖Gk �∇f (Xk)‖2]

� ‖(ZT
k HkZk)�1‖2Ek[‖Gk �∇f (Xk)‖2]

≤ ρ�1Ek[‖Gk �∇f (Xk)‖2]

≤ ρ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ek[‖Gk �∇f (Xk)‖22]
q

≤ ρ�1
ffiffiffi

ν
√

, 

which is the final desired conclusion. w

Our next result is part of lemma 3.9 in Berahas et al. [1]; we provide a proof for completeness.

Lemma 5. For all k ∈ N, ∇f (Xk)TDtrue
k ≥ Ek[GT

k Dk] ≥ ∇f (Xk)TDtrue
k � ρ�1ν.

Proof. Consider arbitrary k ∈ N. The arguments in the proof of Lemma 4 give

GT
k Uk ��GT

k Zk(ZT
k HkZk)�1ZT

k (Gk +HkVk)
and ∇f (Xk)TUtrue

k ��∇f (Xk)TZk(ZT
k HkZk)�1ZT

k (∇f (Xk) +HkVk):

On the other hand, under Assumptions 2 and 3, it follows that

ρ�1ν ≥ Ek[‖ZT
k (Gk � ∇f (Xk))‖2(ZT

k
HkZk)�1] ≥ 0, 

where

Ek[‖ZT
k (Gk � ∇f (Xk))‖2(ZT

k
HkZk)�1]

�Ek[‖ZT
k Gk‖2(ZT

k
HkZk)�1]� 2Ek[GT

k Zk(ZT
k HkZk)�1ZT

k∇f (Xk)] + ‖ZT
k∇f (Xk)‖2(ZT

k
HkZk)�1

�Ek[‖ZT
k Gk‖2(ZT

k
HkZk)�1]� ‖ZT

k∇f (Xk)‖2(ZT
k

HkZk)�1 :

Combining the facts above and again using Assumption 2, it follows that

∇f (Xk)TDtrue
k � Ek[GT

k Dk] � ∇f (Xk)TVk + ∇f (Xk)TUtrue
k � Ek[GT

k Vk + GT
k Uk]

� ∇f (Xk)TUtrue
k � Ek[GT

k Uk]

� �∇f (Xk)TZk(ZT
k HkZk)�1ZT

k (∇f (Xk) +HkVk)

+ Ek[GT
k Zk(ZT

k HkZk)�1ZT
k (Gk +HkVk)]

� �‖ZT
k∇f (Xk)‖2(ZT

k
HkZk)�1 + Ek[‖ZT

k Gk‖2(ZT
k

HkZk)�1] ∈ [0,ρ�1ν], 

which gives the desired conclusion. w

In the subsequent subsections, our analysis turns to offering guarantees conditioned on each of a few possible 
events that can occur, a few of which involve that the merit parameter sequence eventually remains constant. To 
motivate the fact that such behavior of the merit parameter sequence is indeed possible, we show in Appendix B
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a set of conditions that guarantee that the merit parameter sequence eventually remains constant. We put this 
material in an appendix because our analyses in the following sections do not rely on it.

4.1. Constant, Sufficiently Small Merit Parameter
Our goal in this subsection is to prove a convergence guarantee for our algorithm under the following event, 
defined with respect to given constants kmin ∈ N, χmax ∈ R>0, ζmin ∈ R>0, τmin ∈ R>0, and ξmin ∈ R>0:

Eτ, low(kmin,χmax,ζmin,τmin,ξmin) :� {there exist K′ ∈ Nwith K′ ≤ kmin,

X ′ ∈ R>0 with X ′ ≤ χmax,

Z′ ∈ R>0 with Z′ ≥ ζmin,

T ′ ∈ R>0 with T ′ ≥ τmin, and

Ξ
′ ∈ R>0 with Ξ′ ≥ ξmin such that

X k � X ′, Zk � Z′, T k � T ′ ≤ T
trial, true
k ,

and Ξk � Ξ′ for all k ∈ N with k ≥ K′}:

The following assumption is made throughout this subsection. One could generalize the assumption to allow dif-
ferent constants in the prior assumptions because they are now assumed to hold conditioned on a particular 
event, but for the sake of simplicity we assume that the prior assumptions hold with the same constants as previ-
ously introduced.

Assumption 5. For some (kmin,χmax,ζmin,τmin,ξmin) ∈ N × R>0 × R>0 × R>0 × R>0, the event Eτ, low :� Eτ, low(kmin, 
χmax,ζmin,τmin,ξmin) occurs, and, conditioned on the occurrence of Eτ, low, Assumptions 1–4 hold (with the same 
constants).

Recall from Lemmas 2 and 3 that, even without considering Eτ, low, the sequences {X k}, {Zk}, and {Ξk} are 
bounded uniformly with respect to the constants χmax, ζmin, and ξmin, respectively. Therefore, it is not a stretch in 
our analysis in this section that the event Eτ, low includes that these sequences are eventually constant with the 
stated bounds. All that the event adds with respect to these sequences is that they are constant by iteration kmin. 
Hence, the critical distinction in Assumption 5 is that the merit parameter also becomes constant at a value that 
is sufficiently small such that T k ≤ T

trial, true
k for all sufficiently large k ∈ N. This is the key distinction between the 

event Eτ, low and the other events that we consider in upcoming subsections.
With respect to Eτ, low, let us denote the trace σ-algebra of Eτ, low on Gk as F k :� Gk ∩ Eτ, low for all k ∈ N. It follows 

that {F k} is a filtration, and under Assumption 5, the results of Lemmas 1, 4, and 5 all carry over from the previ-
ous section, where in the cases of the latter two lemmas one redefines Ek[·] :� Eι[· |F k]. We redefine Ek in this 
manner for this subsection and also let Pk[·] :� Pι[· |F k].

Our next lemma provides a key result that drives our analysis for this subsection. It shows that as long as βk is 
sufficiently small for all k ∈ N with k ≥ kmin (in a manner similar to (22)), the reduction in the merit function in 
each iteration is at least the sum of two terms: (i) the reduction in the model of the merit function corresponding 
to the true gradient and its associated search direction and (ii) a pair of quantities that can be attributed to the 
error in the stochastic gradient estimate. For practical purposes, it is important to recognize here that even 
though the bound stated in (28) depends on stochastic quantities, these are quantities that are known in a run of 
the algorithm; after all, under Assumption 5, the values Ξ′ and T ′ are F k-measurable. Therefore, even prior to 
iteration kmin, the bound can be enforced by ensuring that βk is chosen sufficiently small such that 2(1�
η)βkΞkmax{T k, 1}=(T kL+ Γ) ∈ (0, 1] for all k ∈ N.

Lemma 6. Suppose that {βk}
∞
k�kmin 

is chosen such that

βk ∈ (0, 1] and
2(1� η)βkΞ

′max{T ′, 1}
T ′L+ Γ ∈ (0, 1] for all k ∈ N with k ≥ kmin: (28) 

Then, for all such k, it follows that

φ(Xk, T ′)� φ(Xk +AkDk, T ′)
≥Ak∆l(Xk, T ′,∇f (Xk), Dtrue

k )� (1 � η)Akβk∆l(Xk, T ′, Gk, Dk)� AkT
′∇f (Xk)T(Dk � Dtrue

k ):
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Proof. Consider arbitrary k ∈ N with k ≥ kmin. From (20)–(21) and the conditions on {βk}, one finds Ak ∈ (0, 1]. 
Hence, with (18) and JkDk � JkDtrue

k (because JkUk � JkUtrue
k � 0 by (8)), one has

φ(Xk,T ′)�φ(Xk +AkDk,T ′)

≥ �Ak(T ′∇f (Xk)TDk � ‖Ck‖2 + ‖Ck + JkDk‖2)�
1

2
(T ′L+ Γ)A2

k‖Dk‖22
� �Ak(T ′∇f (Xk)TDtrue

k � ‖Ck‖2 + ‖Ck + JkDtrue
k ‖2)

�

1

2
(T ′L+ Γ)A2

k‖Dk‖22 �AkT
′∇f (Xk)T(Dk �Dtrue

k )

� Ak∆l(Xk,T ′,∇f (Xk), Dtrue
k )�

1

2
(T ′L+ Γ)A2

k‖Dk‖22 �AkT
′∇f (Xk)T(Dk �Dtrue

k ): (29) 

By (20), it follows that Asuff
k ≤ 2(1�η)βk∆l(Xk,T ′,Gk,Dk)

(T ′L+Γ)‖Dk‖22
. If ‖Uk‖22 ≥ X k‖Vk‖22, then (16)–(17) shows Ξk ≤ Ξtrial

k � ∆l(Xk,T ′,Gk,Dk)
T ′‖Dk‖22 

and 
2(1�η)βk∆l(Xk,T ′,Gk,Dk)

(T ′L+Γ)‖Dk‖22
≥ 2(1�η)βkΞkT

′

T ′L+Γ . On the other hand, if ‖Uk‖22 < X k‖Vk‖22, then (16)–(17) shows Ξk ≤ Ξtrial
k �

∆l(Xk,T ′,Gk,Dk)
‖Dk‖22 

and 
2(1�η)βk∆l(Xk,T ′,Gk,Dk)

(T ′L+Γ)‖Dk‖22
≥ 2(1�η)βkΞk

T ′L+Γ . It follows from these facts and the supposition about {βk} that the 

projection in (21) never sets Ak > A
suff
k . Thus, Ak ≤A

suff
k ≤ 2(1�η)βk∆l(Xk,T ′,Gk,Dk)

(T ′L+Γ)‖Dk‖22
. Hence, by (29),

φ(Xk,T ′)�φ(Xk +AkDk,T ′)
≥Ak∆l(Xk,T ′,∇f (Xk), Dtrue

k )

�

1

2
Ak(T ′L+ Γ)

2(1� η)βk∆l(Xk,T ′, Gk, Dk)
(T ′L+ Γ)‖Dk‖22

 !

‖Dk‖22 �AkT
′∇f (Xk)T(Dk �Dtrue

k )

�Ak∆l(Xk,T ′,∇f (Xk), Dtrue
k )� (1� η)Akβk∆l(Xk,T ′, Gk, Dk)�AkT

′∇f (Xk)T(Dk �Dtrue
k ), 

which completes the proof. w

Our second result in this case offers a critical upper bound on the final term in the conclusion of Lemma 6. The 
result follows in a similar manner as lemma 3.11 in Berahas et al. [1].

Lemma 7. It follows for any k ∈ N with k ≥ kmin that

Ek[AkT
′∇f (Xk)T(Dk �Dtrue

k )] ≤ β2
kθT

′κ∇fρ
�1

ffiffiffi

ν
√

:

Proof. Consider arbitrary k ∈ N with k ≥ kmin. We prove the desired conclusion under the assumption that the 
search direction in iteration k is tangentially dominated and then argue that it also holds by a similar argument 
when this search direction is normally dominated. Let Ik be the event that ∇f (Xk)T(Dk �Dtrue

k ) ≥ 0, and let Ic
k be 

the complementary event. By the law of total expectation, Assumption 5, and (21), one finds that

Ek[AkT
′∇f (Xk)T(Dk �Dtrue

k )]
� Ek[AkT

′∇f (Xk)T(Dk �Dtrue
k ) |Ik]Pk[Ik] +Ek[AkT

′∇f (Xk)T(Dk �Dtrue
k ) | Ic

k]Pk[Ic
k]

≤ Ak, maxT
′Ek[∇f (Xk)T(Dk �Dtrue

k ) |Ik]Pk[Ik] +Ak, minT
′Ek[∇f (Xk)T(Dk �Dtrue

k ) | Ic
k]Pk[Ic

k], 

where Ak, min :� 2(1�η)βkΞ
′T ′

T ′L+Γ� and Ak, max :� 2(1�η)βkΞ
′T ′

T ′L+Γ +θβ2
k are, respectively, the lower and upper bounds for the 

step size for the tangentially dominated search direction from (21). Thus, because Ek[Dk] �Dtrue
k by Lemma 4, the 

law of total expectation yields

Ek[AkT
′∇f (Xk)T(Dk �Dtrue

k )]
≤ Ak, minT ′Ek[∇f (Xk)T(Dk �Dtrue

k ) |Ik]Pk[Ik] +Ak, minT ′Ek[∇f (Xk)T(Dk �Dtrue
k ) |Ic

k]Pk[Ic
k]

+ (Ak, max �Ak, min)T ′Ek[∇f (Xk)T(Dk �Dtrue
k ) |Ik]Pk[Ik]

� (Ak, max �Ak, min)T ′Ek[∇f (Xk)T(Dk �Dtrue
k ) |Ik]Pk[Ik]:
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Moreover, by the Cauchy-Schwarz inequality and law of total expectation, one finds

Ek[∇f (Xk)T(Dk � Dtrue
k ) | Ik]Pk[Ik]

≤Ek[‖∇f (Xk)‖2‖Dk � Dtrue
k ‖2 |Ik]Pk[Ik]

�Ek[‖∇f (Xk)‖2‖Dk � Dtrue
k ‖2]� Ek[‖∇f (Xk)‖2‖Dk � Dtrue

k ‖2 |Ic
k]Pk[Ic

k]
≤ ‖∇f (Xk)‖2Ek[‖Dk � Dtrue

k ‖2]:

Combining the above results, (2), Lemma 4, and the fact that Ak, max �Ak, min � θβ2
k , the desired conclusion fol-

lows for tangentially dominated search directions. Finally, using the same arguments, except with Ak, min :�
2(1�η)βkΞ

′

T ′L+Γ� and Ak, max :� 2(1�η)βkΞ
′

T ′L+Γ +θβ
2
k , where again Ak, max �Ak, min � θβ2

k , the desired conclusion follows for nor-

mally dominated search directions as well. w

Our next result in this case bounds the middle term in the conclusion of Lemma 6.

Lemma 8. It follows for any k ∈ N with k ≥ kmin that

Ek[∆l(Xk,T ′, Gk, Dk)] ≤ ∆l(Xk,T ′,∇f (Xk), Dtrue
k ) + T ′ρ�1ν:

Proof. Consider arbitrary k ∈ N with k ≥ kmin. By Assumption 5, it follows from the model reduction definition 
(12), Lemma 5, and (8) that

Ek[∆l(Xk,T k, Gk, Dk)] �Ek[�T ′GT
k Dk + ‖Ck‖2 � ‖Ck + JkDk‖2]

≤�T ′∇f (Xk)TDtrue
k + T ′ρ�1ν+ ‖Ck‖2 � ‖Ck + JkDtrue

k ‖2
� ∆l(Xk,T ′,∇f (Xk), Dtrue

k ) + T ′ρ�1ν, 

as desired. w

We now prove our main theorem of this subsection, where one should read

E[·] :� E[· |Assumption 5 holds]:
Again, it should be noted that even though the rules for choosing {βk} in the theorem are based on stochastic 
quantities, the rules are implementable; see our discussion at the end of this subsection.

Theorem 2. Suppose Assumption 5 holds and {βk}
∞
k�kmin 

is chosen such that (28) holds. Define

A :�min
2(1� η)Ξ′T ′

T ′L+ Γ ,
2(1� η)Ξ′
T ′L+ Γ

� �

, A :�max
2(1� η)Ξ′T ′

T ′L+ Γ ,
2(1� η)Ξ′
T ′L+ Γ

� �

,

and N̄ :� T ′ρ�1((1� η)(A +θ)ν+θκ∇f

ffiffiffi

ν
√
)

along with

α :�min
2(1� η)ξminτmin

τminL+ Γ ,
2(1� η)ξmin

τ
�1L+ Γ

� �

, α :�max
2(1� η)ξ

�1τ�1

τ
�1L+ Γ ,

2(1� η)ξ
�1

τminL+ Γ

� �

,

and ν :� τ
�1ρ

�1((1� η)(α +θ)ν+θκ∇f

ffiffiffi

ν
√
):

If βk � β � ɛβA=((1� η)(A +θ)) for some ɛβ ∈ (0, 1) for all k ≥ kmin, then for all k ≥ kmin one finds

E
1

k� kmin + 1

X

k

j�kmin

∆l(Xj,T
′,∇f (Xj), Dtrue

j )

2

4

3

5

≤
ɛβα

(1�η)(α+θ)

� �2
ν

ɛβα
(1�η)(α+θ)

� �

α

+ E[φ(Xkmin
,T ′)]�φmin

(k� kmin + 1) ɛβα
(1�η)(α+θ)

� �

α

→k→∞
ɛβα

(1�η)(α+θ)

� �2
ν

ɛβα
(1�η)(α+θ)

� �

α

,

(30) 

where φmin ∈ R>0 is a lower bound for φ(·,T ′) over R, whose existence follows under Assumption 5. On the other hand, if 
{βk}

∞
k�kmin 

is determined by iteration kmin such that 
P∞

k�kmin
βk �∞,

P∞
k�kmin

β2
k <∞, and βk ≤ ɛβA=((1� η)(A +θ)) for 
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some ɛβ ∈ (0, 1) for all k ≥ kmin, then

lim
k≥kmin,k→∞

E
1

(Pk
j�kmin

βj)
X

k

j�kmin

βj∆l(Xj,T
′,∇f (Xj), Dtrue

j )

2

4

3

5 � 0: (31) 

Proof. Consider arbitrary k ∈ N with k ≥ kmin. From the definitions of A and A, the manner in which the step sizes 
are set by (21), and the fact that βk ∈ (0, 1], it follows that Aβk ≤Ak ≤ (A +θ)βk. Hence, it follows from Lemmas 
6–8 and the conditions of the theorem that

φ(Xk,T ′)�Ek[φ(Xk +AkDk,T ′)]
≥Ek[Ak∆l(Xk,T ′,∇f (Xk), Dtrue

k )� (1� η)Akβk∆l(Xk,T ′, Gk, Dk)�AkT
′∇f (Xk)T(Dk �Dtrue

k )]
≥βk(A� (1� η)(A +θ)βk)∆l(Xk,T ′,∇f (Xk), Dtrue

k )� β2
kN :

If βk � β � ɛβA=((1� η)(A +θ)) for some ɛβ ∈ (0, 1) for all k ≥ kmin, then

φ(Xk,T ′)�Ek[φ(Xk +AkDk,T ′)] ≥ β(1� ɛβ)A∆l(Xk,T ′,∇f (Xk), Dtrue
k )� β2N :

In addition, because for such {βk}
∞
k�kmin 

one finds that ɛβα=((1� η)(α+θ)) ≤ β ≤ ɛβα=((1� η)(α +θ)) for all k ≥ kmin, 
one finds taking total expectation under Assumption 5 that

E[φ(Xk,T ′)�φ(Xk +AkDk,T )]

≥ ɛβα

(1� η)(α+θ)

� �

αE[∆l(Xk,T ′,∇f (Xk), Dtrue
k )]�

ɛβα

(1� η)(α +θ)

� �2

ν for all k ≥ kτ:

Summing this inequality for j ∈ {kmin, : : : , k}, it follows under Assumption 5 that

E[φ(Xkmin
,T ′)]�φmin

≥ E[φ(Xkmin
,T ′)�φ(Xk+1,T ′)]

≥ ɛβα

(1� η)(α+θ)

� �

αE
X

k

j�kmin

∆l(Xj,T
′,∇f (Xj), Dtrue

j )

2

4

3

5

� (k� kmin + 1) ɛβα

(1� η)(α +θ)

� �2

ν, 

from which (30) follows. On the other hand, if {βk}
∞
k�kmin 

satisfies the latter set of conditions in the theorem, then 
in a similar manner as above one finds for all k ≥ kmin that

E[φ(Xk,T ′)�φ(Xk +AkDk,T ′)] ≥ E[βk(A� (1� η)(A +θ)βk)∆l(Xk,T ′,∇f (Xk), Dtrue
k )� β2

kN ]:
Summing this inequality for j ∈ {kmin, : : : , k}, rearranging terms, and taking limits as k→∞ yields the desired con-
clusion under Assumption 5. w

We end this subsection with a corollary in which we connect the result of Theorem 2 to first-order stationarity 
measures (recall (3)). For this corollary, we require the following lemma.

Lemma 9. For all k ∈ N, it holds that ‖Utrue
k ‖2 ≥ κ�1

H ‖ZT
k (∇f (Xk) +HkVk)‖2.

Proof. Consider arbitrary k ∈ N. As in the proof of Lemma 4, ZT
k HkZkWtrue

k ��ZT
k (∇f (Xk) +HkVk), so Assumption 

5 (namely, Assumption 3) gives ‖Utrue
k ‖2 ≥ κ�1

H ‖ZT
k (∇f (Xk) +HkVk)‖2. w

Corollary 1. Under the conditions of Theorem 2, the following holds true. 
(a) If βk � β � ɛβA=((1� η)(A +θ)) for some ɛβ ∈ (0, 1) for all k ≥ kmin, and then for all k ≥ kmin, one finds that (30) holds 

with the left-hand side replaced by

E
1

k� kmin + 1

X

k

j�kmin

T ′ρ‖ZT
j (∇f (Xj) +HjVj)‖22
κ2

H

+
κvσ‖JT

j Cj‖22
κc

 !

2

4

3

5:

(b) If {βk}
∞
k�kmin 

is determined by iteration kmin such that 
P∞

k�kmin
βk �∞,

P∞
k�kmin

β2
k <∞, and βk ≤ ɛβA=((1� η)(A +θ))

for some ɛβ ∈ (0, 1) for all k ≥ kmin, then

lim
k≥kmin, k→∞

E
1

(Pk
j�kmin

βj)
X

k

j�kmin

βj

T ′ρ‖ZT
j (∇f (Xj) +HjVj)‖22
κ2

H

+
κvσ‖JT

j Cj‖22
κc

 !

2

4

3

5 � 0, 
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from which it follows that

lim inf
k≥kmin, k→∞

E
T ′ρ‖ZT

k (∇f (Xk) +HkVk)‖22
κ2

H

+ κvσ‖JT
k Ck‖22
κc

" #

� 0:

Proof. For all k ∈ N, it follows under Assumption 5 that (13) holds with ∇f (Xk) in place of Gk and Utrue
k in place of 

Uk. The result follows from this fact, Theorem 2, and Lemmas 1 and 9. w

Observe that if the singular values of Jk are bounded below by σJ ∈ R>0 for all k ∈ N, then (as in the proof of 
Lemma B.1 in Appendix B) it follows that ‖JT

k Ck‖2 ≥ σJ‖Ck‖2 for all k ∈ N. In this case, the results of Corollary 1
hold with σJ‖Ck‖2 in place of ‖JT

k Ck‖2. Overall, Corollary 1 offers results for the stochastic setting that parallel the 
limits (23) and (25) for the deterministic setting. The only difference is the presence of ZT

k HkVk in the term involv-
ing the reduced gradient ZT

k∇f (Xk) for all k ∈ N. However, this does not significantly weaken the conclusion. 
After all, it follows from (5) (see also Lemma 1) that ‖Vk‖2 ≤ ω‖JT

k Ck‖2 for all k ∈ N. Hence, since Corollary 1 shows 
that at least a subsequence of {‖JT

k Ck‖2} tends to vanish in expectation, it follows that {‖Vk‖2} vanishes in expecta-
tion along the same subsequence of iterations. This, along with Assumption 3 and the orthonormality of Zk, 
shows that {‖ZT

k HkVk‖2} exhibits this same behavior, which means that from the corollary one finds that a subse-
quence of {‖ZT

k∇f (Xk)‖2} vanishes in expectation.
Let us conclude this subsection with a few additional remarks on how one can set {βk} to ensure our theoretical 

conclusions. One learns from the requirements on {βk} in Lemma 6, Theorem 2, and Corollary 1 that, rather than 
employ a prescribed sequence {βk}, one should instead prescribe {β̂j}

∞
j�0 ⊂ (0, 1] and for each k ∈ N set βk based on 

whether an adaptive parameter changes its value. In particular, anytime k ∈ N sees either T k < T k�1, X k > X k�1, 
Zk < Zk�1, or Ξk < Ξk�1, the algorithm should set βk+j← λβ̂j for j � 0, 1, 2, : : : (continuing indefinitely or until k̂ ∈
N with k̂ > k sees T k̂ < T k̂�1, X k̂ > X k̂�1, Zk̂ < Zk̂�1, or Ξk̂ < Ξk̂�1), where λ ∈ (0, 1) is a prescribed value that is cho-
sen sufficiently small such that (28) holds along with either of the conditions in (a) or (b) of Corollary 1. Because 
such a “reset” of j← 0 will occur only a finite number of times under event Eτ, low, one of the desirable results in 
Theorem 2/Corollary 1 can be attained if {β̂j} is chosen as an appropriate constant or diminishing sequence.

4.2. Vanishing Merit Parameter
Let us now consider the behavior of the algorithm when the merit parameter vanishes. Because in such a sce-
nario we are interested in the algorithm’s ability to transition to an algorithm with guarantees similar to a deter-
ministic method for minimizing constraint violation, we also assume that the noise in the stochastic gradient 
estimators is bounded. Specifically, for our purposes in this section, we introduce for a given bound ν ∈ R>0 the 
event

Eτ, zero(ν) :� {{T k}↘ 0 and ‖Gk �∇f (Xk)‖22 ≤ ν for all k ∈ N}
and make the following assumption.

Assumption 6. For some ν ∈ R>0, the event Eτ, zero :� Eτ, zero(ν) occurs, and, conditioned on the occurrence of Eτ, zero, 
Assumptions 1, 3, and 4 hold (with the same constants).

Recalling Theorem 1 and Theorem B.1 (in Appendix B), one may conclude in general that the merit parameter 
sequence may vanish for one of two reasons; a (sub)sequence of constraint Jacobians tends toward rank- 
deficiency or a (sub)sequence of stochastic gradient estimates diverges. Assumption 6 has that the latter event 
does not occur. (In our remarks in Section 4.4, we discuss the obstacles that arise in proving convergence guaran-
tees when the merit parameter vanishes and the stochastic gradient estimates diverge.) Given our setting of con-
strained optimization, it is reasonable and consistent with Theorem 1 to have convergence toward stationarity 
with respect to the constraint violation measure as the primary goal in these circumstances.

As in the prior subsection, with respect to Eτ, zero, we can introduce the trace σ-algebra of Eτ, zero on Gk as F k :�
Gk ∩ Eτ, zero for all k ∈ N. Thus, in the same manner as in the previous subsection, we can proceed here by redefin-
ing Ek[·] :� Eι[· |F k] and Pk[·] :� Pι[· |F k] for this filtration {F k}.

Our first result in this subsection is an alternative of Lemma 6.

Lemma 10. Under Assumption 6 and assuming that {βk} is chosen such that (28) holds for all k ∈ N, it follows for all k ∈ N that

‖Ck‖2 � ‖c(Xk +AkDk)‖2
≥Ak(1� (1� η)βk)∆l(Xk,T k, Gk, Dk)� T k(f (Xk)� f (Xk +AkDk))�AkT k(∇f (Xk)�Gk)TDk:
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Proof. Consider arbitrary k ∈ N. As in the proof of Lemma 6, from (20)–(21) and the supposition about {βk}, one 
finds αk ∈ (0, 1]. Hence, with (18), one has

φ(Xk,T k)�φ(Xk +AkDk,T k)

≥ �Ak(T k∇f (Xk)TDk � ‖Ck‖2 + ‖Ck + JkDk‖2)�
1

2
(T kL+ Γ)A2

k‖Dk‖22

�Ak∆l(Xk,T k, Gk, Dk)�
1

2
(T kL+ Γ)A2

k‖Dk‖22 �AkT k(∇f (Xk)�Gk)TDk:

Following the same arguments as in the proof of Lemma 6, it follows that �1
2 (T kL+ Γ)A2

k‖Dk‖22 ≥�(1� η)Akβk 
∆l(Xk,T k, Gk, Dk), which combined with the above yields the desired conclusion. w

Our next result yields a bound on the final term in the conclusion of Lemma 10.

Lemma 11. There exists κβ ∈ R>0 (uniform over all runs) such that

AkT k(∇f (Xk)�Gk)TDk ≤
βkT kκβ for all k ∈ N such that ‖Uk‖22 < X k‖Vk‖22
βkT kmax{βk,T k}κβ for all k ∈ N such that ‖Uk‖22 ≥ X k‖Vk‖22:

(

Proof. The existence of κd ∈ R>0 (uniform over all runs) such that ‖Dk‖2 ≤ κd for all k ∈ N follows from Assumption 

6, the fact that ‖Dk‖22 � ‖Vk‖22 + ‖Uk‖22 for all k ∈ N, Lemma B.2, Lemma 1, and Assumption 1. Now consider arbitrary 

k ∈ N. If (∇f (Xk)�Gk)TDk < 0, and then the desired conclusion follows trivially (for any κβ ∈ R>0). Hence, let us pro-

ceed under the assumption that (∇f (Xk)�Gk)TDk ≥ 0. If ‖Uk‖ < X k‖Vk‖22, then it follows from (21), the fact that 
0 ≤ T k, Ξk ≤ Ξ�1, and βk ≤ 1 for all k ∈ N, the Cauchy-Schwarz inequality, and Assumption 6 that

AkT k(∇f (Xk)�Gk)TDk ≤
2(1� η)βkΞk

T kL+ Γ +θβ2
k

� �

T k‖∇f (Xk)�Gk‖2‖Dk‖2

≤ 2(1� η)ξ
�1

Γ
+θ

� �

βkT k

ffiffiffi

ν
√
κd:

On the other hand, if ‖Uk‖22 ≥ X k‖Vk‖22, then it follows under the same reasoning that

AkT k(∇f (Xk)�Gk)TDk ≤
2(1� η)βkΞkT k

T kL+ Γ +θβ2
k

� �

T k‖∇f (Xk)�Gk‖2‖Dk‖2

≤ 2(1� η)ξ
�1

Γ
+θ

� �

βkT kmax βk,T k

� � ffiffiffi

ν
√
κd:

Overall, the desired conclusion follows with κβ :� 2(1�η)ξ
�1

Γ
+θ

� �

ffiffiffi

ν
√
κd. w

Our third result in this subsection offers a formula for a positive lower bound on the step size that is applicable 
at points that are not stationary for the constraint infeasibility measure. For this lemma and its subsequent conse-
quences, we define for arbitrary γ ∈ R>0 the subset

Rγ :� {x ∈ Rn : ‖J(x)Tc(x)‖2 ≥ γ}: (32) 

Lemma 12. There exists α ∈ R>0 such that Ak ≥ αβk for each k ∈ N such that ‖Uk‖22 < X k‖Vk‖22. On the other hand, for 

each γ ∈ R>0, there exists ɛγ ∈ R>0 (proportional to γ2) such that

Xk ∈Rγ implies Ak ≥min{ɛγβk,ɛγβkT k +θβ2
k} whenever ‖Uk‖22 ≥ X k‖Vk‖22:

Proof. Define Kγ :� {k ∈ N : Xk ∈Rγ}. By Lemma 1, it follows that ‖Vk‖2 ≥ ω‖JT
k Ck‖22 ≥ ωγ2 for all k ∈Kγ. Conse-

quently, by Lemma B.2, it follows that

‖Uk‖2 ≤
κu

ωγ2
‖Vk‖2 for all k ∈Kγ: (33) 

It follows from (21) that Ak ≥ 2(1� η)βkΞk=(T kL+ Γ) whenever ‖Uk‖22 < X k‖Vk‖22. Otherwise, whenever ‖Uk‖22 ≥
X k‖Vk‖22, it follows using the arguments in Lemma 6 and (21) that

Ak �min
2(1� η)βk∆l(Xk,T k, Gk, Dk)

(T kL+ Γ)‖Dk‖22
,

2(1� η)βkΞkT k

T kL+ Γ +θβ2
k , 1

( )

, 
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which along with (13), Lemma 1, (2), and (33) imply that

Ak ≥min
2(1� η)βkσ(‖Ck‖2 � ‖Ck + JkVk‖2)
(T kL+ Γ)(‖Uk‖22 + ‖Vk‖22)

,
2(1� η)βkΞkT k

T kL+ Γ +θβ2
k , 1

( )

≥min
2(1� η)βkσκv‖JT

k Ck‖2

(T kL+ Γ) κ2
u

ω2
γ4
+ 1

� �

ω2‖Ck‖‖JT
k Ck‖2

,
2(1� η)βkΞkT k

T kL+ Γ +θβ2
k , 1

8

>

>

<

>

>

:

9

>

>

=

>

>

;

≥min
2(1� η)βkσκvω

2γ4

(T kL+ Γ)κcω2(κ2
u +ω2γ4)

,
2(1� η)βkΞkT k

T kL+ Γ +θβ2
k , 1

( )

:

Combining the cases above with Lemma 3 yields the desired conclusion. w

We now prove our main theorem of this subsection, followed by a discussion of its consequences.

Theorem 3. Suppose that Assumption 6 holds, the sequence {βk} is chosen such that (28) holds for all k ∈ N, and either 

(a) βk � β ∈ (0, 1) for all k ∈ N or

(b) 
P∞

k�0 βk �∞,
P∞

k�0 β
2
k <∞, and either | {k ∈ N : ‖Uk‖22 < X k‖Vk‖22} | � ∞ or 

P∞
k�0 βkT k �∞.

Then, lim infk→∞‖JT
k Ck‖2 � 0.

Proof. To derive a contradiction, consider the event that there exists (potentially run-dependent) γ ∈ R>0 and 
Kγ ∈ N such that Xk ∈Rγ�for all k ∈ N with k ≥ Kγ. Our aim is to show that, under (a) or (b), a contradiction is 

reached, which will prove the result.
First, suppose that condition (a) holds. By Lemmas 10–12, (2), (13), the fact that β ∈ (0, 1), Lemma 1, and 

Assumption 6 (namely, Assumption 1), there exists (uniform) ɛγ ∈ R>0 such that

‖Ck‖2 � ‖Ck+1‖2

≥ Ak(1� (1� η)β)∆l(Xk,T k, Gk, Dk)� T k(f (Xk)� f (Xk+1))�AkT k(∇f (Xk)�Gk)TDk

≥ ɛγβησ(‖Ck‖2 � ‖Ck + JkVk‖2)� T k(fsup � finf)� βT kmax{1,T k}κβ

≥ ɛγβησκvκ
�1
c ‖JT

k Ck‖22 � T k(fsup � finf + βmax{1,T k}κβ) for all k ≥ Kγ:

(34) 

Because ‖JT
k Ck‖2 ≥ γ�for all k ≥ Kγ�and {T k} ↘ 0 under Assumption 6, it follows that there exists (run-dependent) 

Kτ ≥ Kγ�such that T k(fsup � finf + βmax{1,T k}κβ) ≤ 1
2 ɛγβησκvκ

�1
c ‖JT

k Ck‖22 for all k ≥ Kτ. Hence, summing (34) for 

j ∈ {Kτ, : : : , k}, it follows with (2) that

κc ≥ ‖Ckτ‖2 � ‖Ck+1‖2 ≥
1

2
ɛγ βησκvκ

�1
c

X

k

j�Kτ

‖JT
j Cj‖22:

It follows from this fact that {JT
k Kk}k≥kτ, k→∞→ 0, yielding the desired contradiction.

Second, suppose that condition (b) holds. Because 
P∞

k�0 β
2
k <∞, it follows that there exists kβ ∈ N with kβ ≥ kγ�

such that (1� (1� η)βk) ≥ η�for all k ≥ kβ. Hence, for all k ≥ kβ�with ‖Uk‖22 < X k‖Vk‖22, one finds from Lemmas 

10–12, (2), (13), Lemma 1, and Assumption 1 that

‖Ck‖2 � ‖Ck+1‖2
≥ Ak(1� (1� η)βk)∆l(Xk,T k, Gk, Dk)� T k(f (Xk)� f (Xk+1))�AkT k(∇f (Xk)�Gk)TDk

≥ βkαησκvκ
�1
c ‖JT

k Ck‖22 � T k(f (Xk)� finf) + T k(f (Xk+1)� finf)� βkT kκβ

≥ βkαησκvκ
�1
c ‖JT

k Ck‖22 � T k�1(f (Xk)� finf) + T k(f (Xk+1)� finf)� βkT kκβ:
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Also, for all sufficiently large k ≥ kβ�with ‖Uk‖22 ≥ X k‖Vk‖22, that is, k ≥ Kβ, where (run-dependent) Kβ ∈ N is suffi-

ciently large such that Kβ ≥ kβ�and ɛγ ≥ ɛγT k +θβk, similar reasoning yields

‖Ck‖2 � ‖Ck+1‖2
≥Ak(1� (1� η)βk)∆l(Xk,T k, Gk, Dk)� T k(f (Xk)� f (Xk+1))�AkT k(∇f (Xk)�Gk)TDk

≥βkmax{βk,T k}min{ɛγ,θ}ησκvκ
�1
c ‖JT

k Ck‖22
� T k�1(f (Xk)� finf) + T k(f (Xk+1)� finf)� βkmax{βk,T k}T kκβ:

Because ‖JT
k Ck‖2 ≥ γ�for all k ≥ Kβ ≥ kβ ≥ kγ�and {T k}↘ 0 under Assumption 6, there exists (run-dependent) Kτ ≥ Kβ�

such that T kκβ ≤ 1
2 αησκvκ

�1
c ‖JT

k Ck‖22 and T kκβ ≤ 1
2 min{ɛγ,θ}ησκvκ

�1
c ‖JT

k Ck‖22 for all k ≥ Kτ. Hence, with (random) 

Ku :� {k ∈ N : ‖Uk‖22 ≥ X k‖Vk‖22} and Kv :� {k ∈ N : ‖Uk‖22 < X k‖Vk‖22}, summing the above for j ∈ {Kτ, : : : , k} gives

κc ≥ ‖CKτ‖2 � ‖Ck+1‖2 ≥ �T kτ�1(f (XKτ)� finf) + T k(f (Xk+1)� finf)

+
X

k

j�Kτ, j∈Kv

βj(αησκvκ
�1
c ‖JT

j Cj‖22 � T jκβ)

+
X

k

j�Kτ, j∈Ku

βjmax{βj,T j}(min{ɛγ,θ}ησκvκ
�1
c ‖JT

j Cj‖22 � T kκβ)

≥ �T Kτ�1(f (XKτ )� finf)

+
X

k

j�Kτ, j∈Kv

βj

1

2
αησκvκ

�1
c ‖JT

j Cj‖22

+
X

k

j�Kτ, j∈Ku

βjmax{βj,T j}
1

2
min ɛγ,θ

� �

ησκvκ
�1
c ‖JT

j Cj‖22: (35) 

It follows from this fact and the fact that either |Kv | � ∞ or at least 
P

j�Kτ , j∈Ku
βjT j �∞ that {JT

k Ck}k≥Kτ→ 0, yield-

ing the desired contradiction. w

There is one unfortunate case not covered by Theorem 3, namely, the case when {βk} diminishes (as in condi-

tion (b)), the search direction is tangentially dominated for all sufficiently large k ∈ N, and 
P∞

k�0 βkT k <∞. One 

can see in the proof of the theorem why the desired conclusion, namely, that the limit inferior of {‖JT
k Ck‖2} is 

zero, does not necessarily follow in this setting. If, after some iteration, all search directions are tangentially dom-

inated and 
P∞

k�0 βkT k <∞, then the coefficients on ‖JT
k Ck‖22 in (35) are summable, which means that there might 

not be a subsequence of {‖JT
k Ck‖22} that vanishes. Fortunately, however, this situation is detectable in practice, in 

the sense that one can detect it using computed quantities. In particular, in a given realization of a run of the 

algorithm, if βk is below a user-prescribed small threshold, ‖JT
k ck‖2 has remained above a user-prescribed thresh-

old in all recent iterations, τk ≤ cτ,ββk for some user-prescribed cτ,β ∈ R>0 in recent iterations, and the algorithm 

has computed tangentially dominated search directions in all recent iterations, then the algorithm may benefit by 
triggering a switch to a setting in which {βk} is kept constant in future iterations, in which case the desired con-

clusion follows under condition (a). Such a trigger would be reasonable in a practical implementation in any case 
when the algorithm is having difficulty minimizing constraint violation, say, because of numerical errors. Also, 
such a trigger arguably does not conflict much with Section 4.1, because the analysis in that section presumes 
that {τk} remains bounded away from zero, whereas here one has confirmed that τk ≈ 0.

4.3. Constant, Insufficiently Small Merit Parameter
Our goal now is to consider the event that the algorithm generates a merit parameter sequence that eventually 

remains constant, but at a value that is too large in the sense that one does not find that T k ≤ T
trial, true
k for all suf-

ficiently large k ∈ N. (Recall that such an inequality holding for all sufficiently large k ∈ N was the distinguishing 
feature of the event Eτ, low considered in Assumption 5.) Such an event for the algorithm in Berahas et al. [1] is 
addressed in the proof of proposition 3.16 in that article, where under a reasonable assumption (paralleling (37a) 
below) it is essentially shown that, conditioned on a certain index set (denoted as Kgd in that paper) having infi-

nite cardinality, the probability is zero of the merit parameter settling on too large of a value. However, 
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unfortunately, such an argument does not address what might be the probability over all possible runs of the 
algorithm that the merit parameter eventually remains constant at too large of a value in the manner described 
above. We discuss in this subsection that, under reasonable assumptions, this probability is zero, where a formal 
theorem and proof are provided in Appendix C. (The distinction being made here is that one cannot prove prob-
ability of the event over all runs by conditioning on Kgd in Berahas et al. [1] being infinite.)

For our purposes in this section, we make some mild simplifications. First, as shown in Lemmas 2 and 3, each 
of the sequences {X k}, {Zk}, and {Ξk} has a uniform bound that holds over any run of the algorithm. Hence, for 
simplicity, we shall assume that the initial values of these sequences are chosen such that they are constant over 
k ∈ N. (Our discussions in this subsection can be generalized to situations when this is not the case; the conversa-
tion merely becomes more cumbersome, which we have chosen to avoid.) Second, it follows as in our analysis of 

the deterministic instance of our algorithm (recall Theorem 1) that if a subsequence of {T trial, true
k } converges to 

zero, then a subsequence of minimum singular values of the constraint Jacobians {Jk} vanishes as well. Hence, 

we shall consider here the event, given τtrial, true
min ∈ R>0, defined as

Eτ(τtrial, true
min ) :� {X k � χ�1, Zk � ζ�1, Ξk � ξ�1, and T

trial, true
k ≥ τtrial, true

min for all k ∈ N}:
Given this definition, we assume the following throughout this subsection. (We will remark on the consequences 
of this assumption further in Section 4.4.)

Assumption 7. For some τtrial, true
min ∈ R>0, the event Eτ :� Eτ(τtrial, true

min ) occurs, and, conditioned on the occurrence of Eτ, 
Assumptions 1–4 hold (with the same constants).

It follows from the definition of Eτ�and (11) that if the cardinality of the (random) set of iteration indices {k ∈
N : T k < T k�1} ever exceeds

s(τtrial, true
min ) :�

�

log(τtrial, true
min =τ

�1)
log(1� ɛτ)

�

∈ N, (36) 

then, for all subsequent k ∈ N, T k�1 ≤ τtrial, true
min ≤ T

trial, true
k ; that is, the merit parameter is not decreased.

As in the prior subsections, with respect to Eτ, we can introduce the trace σ-algebra of Eτ�on Gk as F k :� Gk ∩ Eτ�
for all k ∈ N. Thus, in the same manner as in the previous subsections, we can proceed here by redefining Ek[·] :�
Eι[· |F k] and Pk[·] :� Pι[· |F k] for this filtration {F k}.

For our analysis of this setting, we prove the following lemma, which parallels proposition 3.16 in Berahas et al. 
[1]. We remark that this lemma is only the first step toward our main result for this setting, in contrast to Berahas 
et al. [1], where proposition 3.16 was the end of the discussion.

Lemma 13. For any k ∈ N, it follows for any p ∈ (0, 1] that

Pk[GT
k Dk +UT

k HkUk ≥ ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k ] ≥ p (37a) 

implies Pk[T k < T k�1 |T trial, true
k < T k�1] ≥ p: (37b) 

Proof. Suppose that T trial, true
k < T k�1 and

GT
k Dk +UT

k HkUk ≥ ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k : (38) 

Then, T trial, true
k < T k�1 and (10) imply that T trial, true

k <∞, ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k > 0, and

T
trial, true
k � (1� σ)(‖Ck‖2 � ‖Ck + JkDtrue

k ‖2)
∇f (Xk)TDtrue

k + (Utrue
k )

THkUtrue
k

< T k�1, 

from which it follows that

(1� σ)(‖Ck‖2 � ‖Ck + JkDtrue
k ‖2) < (∇f (Xk)TDtrue

k + (Utrue
k )

THkUtrue
k )T k�1: (39) 

Therefore, (38), (39), and the fact that JkDtrue
k � JkDk show that

(1� σ)(‖Ck‖2 � ‖Ck + JkDk‖2) < (GT
k Dk +UT

k HkUk)T k�1:

It follows from this inequality and Lemma 1 that GT
k Dk +UT

k HkUk > 0, and with (11) it holds that

T k ≤ T trial
k � (1� σ)(‖Ck‖2 � ‖Ck + JkDk‖2)

GT
k Dk +UT

k HkUk

< T k�1:
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Hence, T trial, true
k < T k�1 and (38) together imply that T k < T k�1. Therefore, because the quantities T trial, true

k and 

T k�1 are F k-measurable, it follows that

Pk[T k < T k�1 |T trial, true
k < T k�1]

≥ Pk[GT
k Dk +UT

k HkUk ≥ ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k |T trial, true
k < T k�1]

� Pk[GT
k Dk +UT

k HkUk ≥ ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k ] ≥ p, 

as desired. w

Using Lemma 13, we prove in Appendix C a formal version of the following informally written theorem. (We 
remark that example 3.17 in Berahas et al. [1] shows an example in which (37a) holds for all k ∈ N.)

Theorem 4 (Informal Version of Theorem C.1 in Appendix C). If Assumption 7 holds and there exists p ∈ (0, 1] such that 
a condition akin to (37a) holds for all k ∈ N, then the probability is zero that there exists K ⊆ N with |K | � ∞ and 

T
trial, true
k < T k�1 for all k ∈K, so the probability is zero that the merit parameter sequence eventually remains constant at 

too large of a value.

The key to our proof of Theorem C.1 is the construction of a tree to characterize the stochastic process gener-
ated by the algorithm in a manner that one can employ the multiplicative form of Chernoff’s bound to capture 
the probability of having repeated missed opportunities to decrease the merit parameter when it would have 
been reduced if the true gradients were computed.

4.4. Complementary Events
Our analyses in Sections 4.1, 4.2, and 4.3 do not cover all possible events. Ignoring events in which the stochastic 
gradients are biased and/or have unbounded variance, the events that complement those discussed in the prior 
subsections are the following: 
• Eunsettled: there exists an infinite sequence of realizations, say, indexed by j ∈ N, such that for realization j there 

exists some smallest index kj such that {χk}∞k�kj
, {ζk}∞k�kj

, {τk}∞k�kj
, and {ξk}∞k�kj 

are constant and τk ≤ τtrial, true
k for all k ∈

N with k ≥ kj, but {kj}→∞;

• Eτ, zero, bad: {T k}↘ 0, and for all ν ∈ R>0 there exists K ∈ N such that ‖GK �∇f (XK)‖22 > ν;
• Eτ, big, bad: {T trial, true

k }↘ 0 and there exists T big
′ ∈ R>0 such that T k � T big for all large k ∈ N.

The event Eunsettled represents cases when the algorithm is essentially behaving nicely, but there does not exist 
a uniform iteration number by which the parameter values have settled. With respect to this event, we emphasize 
for many algorithms in the deterministic setting that it is not part of standard analysis to prove an upper bound 
on the number of iterations by which, say, the merit parameter value remains constant. Therefore, it is not a 
major shortcoming of our analysis that such a bound is not proved for our stochastic method whose behavior is 
not completely determined by the initial conditions. That said, we direct the reader to Curtis et al. [7], which 
under reasonable assumptions (similar to those made in this paper) shows that within a fixed budget of iterations 
the probability is high that the merit parameter sequences exhibit desirable properties. That analysis at least par-
tially shows that unsettled behavior of the algorithm is not a major practical concern.

The event Eτ, zero, bad represents cases in which the merit parameter vanishes, whereas the stochastic gradient 
estimates do not remain in a bounded set. The difficulty of proving a guarantee for this setting can be seen as fol-
lows. If the merit parameter vanishes, then this is an indication that less emphasis should be placed on the objec-
tive over the course of the optimization process, which may indicate that the constraints are infeasible or 
degenerate. However, if a subsequence of stochastic gradient estimates diverges at the same time, then each large 
(in norm) stochastic gradient estimate may suggest that a significant amount of progress can be made in reducing 
the objective function despite the merit parameter having reached a small value (because it is vanishing). This 
disrupts the balance that the merit parameter attempts to negotiate between the objective and the constraint vio-
lation terms in the merit function. Our analysis of the event Eτ, zero in Section 4.2 shows that if the stochastic gra-
dient estimates remain bounded, then the algorithm can effectively transition to solving the deterministic 
problem of minimizing constraint violation. However, it remains an open question whether it is possible to 
obtain a similar guarantee if/when a subsequence of stochastic gradient estimates diverges. Ultimately, one can 
argue that scenarios of unbounded noise, such as described here, might be of only theoretical interest rather than 
real, practical interest. For instance, if f is defined by a (large) finite sum of component functions whose gradients 
(evaluated at points in a set containing the iterates) are always contained in a ball of uniform radius about the 
gradient of f, a common scenario in practice, then Eτ, zero, bad cannot occur.
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Now consider the event Eτ, big, bad. We have shown in Section 4.3 that under certain conditions, including if 

{τtrial, true
k } is bounded below by τtrial, true

min ∈ R>0, then the probability is zero that the merit parameter remains too 

large. However, this does not account for situations in which {T trial, true
k } vanishes, whereas {T k} does not. None-

theless, we contend that Eτ, big, bad can be ignored for practical purposes because the adverse effect that it may 

have on the algorithm is observable. In particular, if the merit parameter remains fixed at a value that is too large, 

then the worst that may occur in a realization of a run of the algorithm is that {‖JT
k ck‖2} does not vanish. A practi-

cal implementation of the algorithm would monitor this quantity in any case (because, by Corollary 1, even in 

Eτ, low one only knows that the limit inferior of the expectation of {‖JT
k ck‖2} vanishes) and reduce the merit param-

eter if progress toward reducing constraint violation is inadequate. Hence, Eτ, big, bad (and in general the event of 

the merit parameter remaining too large) is an event that at most suggests practical measures of the algorithm 
that should be employed for Eτ, low in any case.

5. Numerical Experiments
The goal of our numerical experiments is to compare the empirical performance of our proposed stochastic SQP 
method (Algorithm 1) on problems from a couple of test set collections, for which we compare against some alterna-
tive approaches, and a modern data-fitting problem that exhibits rank deficiency. We implemented our algorithm in 
Matlab. Our code is publicly available; see https://github.com/frankecurtis/StochasticSQP. We first consider 
equality-constrained problems from the CUTEst collection (Gould et al. [12]), then consider two types of constrained 
logistic regression problems with data sets from the LIBSVM collection (Chang and Lin [3]), and finally consider an 
example in physics-informed machine learning. For the former two sets of experiments, we compare the performance 
of our method versus a stochastic sub-gradient algorithm (Davis et al. [10]) employed to minimize the exact penalty 
function (9) and, in one set of our logistic regression experiments where it is applicable, versus a stochastic projected 
gradient method. These algorithms were chosen because, like our method, they operate in the highly stochastic 
regime. We do not compare against the aforementioned method from Na et al. [22] because, as previously mentioned, 
that approach may refine stochastic gradient estimates during each iteration as needed by a line search. Hence, that 
method offers different types of convergence guarantees and is not applicable in our regime of interest.

In all of our experiments, results are given in terms of feasibility and stationarity errors at the best iterate, 
which is determined as follows. If, for a given problem instance, an algorithm produced an iterate that was suffi-

ciently feasible in the sense that ‖ck‖∞ ≤ 10�6 max{1, ‖c0‖∞} for some k ∈ N, then, with the largest k ∈ N satisfying 
this condition, the feasibility error was reported as ‖ck‖∞, and the stationarity error was reported as ‖∇f (xk)+
JT
k yk‖∞, where yk was computed as a least-squares multiplier using the true gradient ∇f (xk) and Jk. (The multiplier 

yk and corresponding stationarity error are not needed by our algorithm; they are computed merely so that we 
could record the error for our experimental results.) If, for a given problem instance, an algorithm did not pro-
duce a sufficiently feasible iterate, then the feasibility and stationarity errors were computed in the same manner 
at the least infeasible iterate (with respect to the measure of infeasibility ‖ · ‖∞).

5.1. Implementation Details
For all methods, Lipschitz constant estimates for the objective gradient and constraint Jacobian—playing the 
roles of L and Γ, respectively—were computed using differences of gradients near the initial point. Once these 
values were computed, they were kept constant for all subsequent iterations. This procedure was performed in 
such a way that, for each problem instance, all algorithms used the same values for these estimates.

As mentioned in Section 3, there are various extensions of our step size selection scheme with which one can 
prove, with appropriate modifications to our analysis, comparable convergence guarantees as are offered by our 
algorithm. We included one such extension in our software implementation for our experiments. In particular, in 

addition to αsuff
k in (20), one can directly consider the upper bound in (18) with the gradient ∇f (xk) replaced by its 

estimate gk, that is,

ατkgT
k dk + |1� α | ‖ck‖2 � ‖ck‖2 + α‖ck + Jkdk‖2 +

1

2
(τkL+ Γ)α2‖dk‖22

� � α∆l(xk,τk, gk, dk) + |1� α | ‖ck‖2 � (1� α)‖ck‖2 +
1

2
(τkL+ Γ)α2‖dk‖22, 

and consider the step size that minimizes this as a function of α�(with scale factor βk), namely,

αmin
k :�max min

βk∆l(xk,τk, gk, dk)
(τkL+ Γ)‖dk‖22

, 1

( )

,
βk∆l(xk,τk, gk, dk)� 2‖ck‖2

(τkL+ Γ)‖dk‖22

( )

: (40) 
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(Such a value is used in Berahas et al. [1].) The algorithm can then set a trial step size as any satisfying

αtrial
k ∈ [min{αsuff

k ,αmin
k }, max{αsuff

k ,αmin
k }] (41) 

and set αk as the projection of this value, rather than αsuff
k , for all k ∈ N. (The projection interval in (21) should be 

modified, specifically with each instance of 2(1� η) replaced by min{2(1� η), 1}, to account for the fact that the 

lower value in (41) may be smaller than αsuff
k . A similar modification is needed in the analysis, specifically in the 

requirements for {βk} in Lemma 6.)

One can also consider rules that allow even larger step sizes to be taken. For example, rather than consider the 
upper bound offered by the last expression in (18), one can consider any step size that ensures that the penulti-
mate expression in (18) is less than or equal to the right-hand side of (19) with ∇f (xk) replaced by gk. Such a value 
can be found with a one-dimensional search over α�with negligible computational cost. Our analysis can be 
extended to account for this option as well. However, for our experimental purposes here, we do not consider 
such an approach.

For our stochastic SQP method, we set Hk← I and αtrial
k ←max{αsuff

k ,αmin
k } for all k ∈ N. Other parameters were 

set as τ
�1← 1, χ

�1← 10�3, ζ
�1← 103, ξ

�1← 1, ω← 102, ɛv← 1, σ← 1=2, ɛτ← 10�2, ɛχ← 10�2, ɛζ← 10�2, ɛξ←
10�2, η← 1=2, and θ← 104. For the stochastic sub-gradient method, the merit parameter value and step size 
were tuned for each problem instance, and for the stochastic projected gradient method, the step size was tuned 
for each problem instance; details are given in the following subsections. In all experiments, both the stochastic 
sub-gradient and stochastic projected gradient method were given many more iterations to find each of their 
best iterates for a problem instance; this is reasonable because the search direction computation for our method 
is more expensive than for the other methods. Again, further details are given below.

5.2. CUTEst Problems
In our first set of experiments, we consider equality-constrained problems from the CUTEst collection. Specifi-
cally, of the 136 such problems in the collection, we selected those for which (i) f is not a constant function and 
(ii) n+m+ 1 ≤ 1000. This selection resulted in a set of 67 problems. In order to consider the context in which the 
LICQ does not hold, for each problem we duplicated the last constraint. (This does not affect the feasible region 
nor the set of stationary points but ensures that the problem instances are degenerate.) Each problem comes with 
an initial point, which we used in our experiments. To make each problem stochastic, we added noise to each 

gradient computation. Specifically, for each run of an algorithm, we fixed a noise level as ɛN ∈ {10�8, 10�4, 10�2, 

10�1} and in each iteration set the stochastic gradient estimate as gk←N (∇f (xk),ɛNI). For each problem and noise 
level, we ran 10 instances with different random seeds. This led to a total of 670 runs of each algorithm for each 
noise level.

We set a budget of 1,000 iterations for our stochastic SQP algorithm and a more generous budget of 10,000 
iterations for the stochastic sub-gradient method. We followed the same strategy as in Berahas et al. [1] to tune 
the merit parameter τ�for the stochastic sub-gradient method but also tuned the step sizes through the sequence 
{βk}. Specifically, for each problem instance, we ran the stochastic sub-gradient method for 11 different values of 

τ�and four different values of β, namely, τ ∈ {10�10, 10�9, : : : , 100} and β ∈ {10�3, 10�2, 10�1, 100}, set the step size 

as 
βτ
τL+Γ, and selected the combination of τ�and β�for that problem instance that led to the best iterate overall. (We 

found through this process that the selected (τ,β) pairs were relatively evenly distributed over their ranges, 
meaning that this extensive tuning effort was useful to obtain better results for the stochastic sub-gradient 
method.) For our stochastic SQP method, we set βk← 1 for all k ∈ N. Overall, between the additional iterations 

allowed in each run of the stochastic sub-gradient method, the different merit parameter values tested, and the 
different step sizes tested, the stochastic sub-gradient method was given 440 times the number of iterations that 
were given to our stochastic SQP method for each problem.

The results of this experiment are reported in the form of box plots in Figure 1. One finds that the best iterates 
from our stochastic SQP algorithm generally correspond to much lower feasibility and stationarity errors for all 
noise levels. The stationarity errors for our method degrade as the noise level increases, but this is not surprising 
because these experiments are run with {βk} being a constant sequence. It is interesting, however, that our algo-

rithm typically finds iterates that are sufficiently feasible, even for relatively high noise levels. This shows that 
our approach handles the deterministic constraints well despite the stochasticity of the objective gradient esti-

mates. Finally, we remark that for these experiments our algorithm found τk�1 ≤ τtrial, true
k to hold in roughly 98% 

of all iterations for all runs (across all noise levels), and it found this inequality to hold in the last 50 iterations in 
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100% of all runs. This provides evidence for our claim that the merit parameter not reaching a sufficiently small 
value is not an issue of practical concern.

5.3. Constrained Logistic Regression
In our next sets of experiments, we consider equality-constrained logistic regression problems of the form

min
x∈Rn

f (x) � 1

N

X

N

i�1

log
�

1 + e�yi(XT
i x)
�

s:t: Ax � b, ‖x‖22 � 1, (42) 

where X ∈ Rn×N contains feature data for N data points (with Xi representing the ith column of X), y ∈ {�1, 1}N 

contains corresponding label data, A ∈ R(m+1)×n, and b ∈ Rm+1. For instances of (X, y), we consider 11 binary classi-
fication data sets from the LIBSVM collection (Chang and Lin [3]); specifically, we consider all of the data sets for 
which 12 ≤ n ≤ 1000 and 256 ≤N ≤ 100000. (For datasets with multiple versions, e.g., the {a1a, : : : ,a9a} data sets, 
we consider only the largest version.) The names of the data sets that we used and their sizes are given in Table 
1. For the linear constraints, we generated random A and b for each problem. Specifically, the first m � 10 rows of 
A and the first m entries in b were set as random values, with each entry being drawn from a standard normal 
distribution. Then, to ensure that the LICQ was not satisfied (at any algorithm iterate), we duplicated the last 
constraint, making m + 1 linear constraints overall. For all problems and algorithms, the initial iterate was set to 
the vector of all ones of appropriate dimension.

For one set of experiments, we consider problems of the form (42), except without the norm constraint. For this set 
of experiments, the performance of all three algorithms—stochastic SQP, sub-gradient, and projected gradient—are 
compared. For each data set, we considered two noise levels, where the level is dictated by the mini-batch size of 

Figure 1. (Color online) Box plots for feasibility errors (left) and stationarity errors (right) when our stochastic SQP method and 
a stochastic sub-gradient method are employed to solve equality-constrained problems from the CUTEst collection. 

Table 1. Names and sizes of data sets.

Data set Dimension (n) Data points (N)

a9a 123 32,561
australian 14 690
heart 13 270
ijcnn1 22 49,990
ionosphere 34 351
madelon 500 2,000
mushrooms 112 8,124
phising 68 11,055
sonar 60 208
splice 60 1,000
w8a 300 49,749

Source. Chang and Lin [3].
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each stochastic gradient estimate (recall (26)). For the mini-batch sizes, we employed bk ∈ {16, 128} for all problems. 
For each data set and mini-batch size, we ran five instances with different random seeds.

A budget of five epochs (i.e., number of effective passes over the data set) was used for all methods. For our stochas-

tic SQP method, we used βk � 10�1 for all k ∈ N. For the stochastic sub-gradient method, the merit parameter and step 

size were tuned like in Section 5.2 over the sets β ∈ {10�3, 10�2, 10�1, 100} and τ ∈ {10�3, 10�2, 10�1, 100}. For the sto-

chastic projected gradient method, the step size was tuned using the formula 
β
L over β ∈ {10�8, 10�7, : : : , 101, 102}. 

Overall, this meant that the stochastic sub-gradient and stochastic projected gradient methods were effectively run for 
16 and 11 times the number of epochs, respectively, that were allowed for our method.

The results for this experiment are reported in Table 2. For every data set and mini-batch size, we report the aver-
age feasibility and stationarity errors for the best iterates of each run along with a 95% confidence interval. The 
results show that our method consistently outperforms the two alternative approaches despite the fact that each of 
the other methods was tuned with various choices of the merit and/or step size parameter. For a second set of 
experiments, we consider problems of the form (42) with the norm constraint. The settings for the experiment were 
the same as above, except that the stochastic projected gradient method is not considered. The results are stated in 
Table 3. Again, our method regularly outperforms the stochastic sub-gradient method in terms of the best iterates 

found. For the experiments without the norm constraint, our algorithm found τk�1 ≤ τtrial, true
k to hold in roughly 

98% of all iterations for all runs, and it found this inequality to hold in all iterations in the last epoch in 100% of all 

runs. With the norm constraint, our algorithm found τk�1 ≤ τtrial, true
k to hold in roughly 97% of all iterations for all 

runs, and it found this inequality to hold in all iterations in the last epoch in 99% of all runs.

5.4. Physics-Informed Machine Learning
In our final set of experiments, we employ our stochastic SQP method to solve an example problem in physics- 
informed machine learning; see, for example, Lu et al. [21] and Négiar et al. [24] for other uses of “hard” con-
straints in this application area. Motivated by a problem in chemical engineering, we consider the problem to 

train a neural network to learn the solution of the following ODE, where p : R→ R4, and r ∈ R5 is a given vector 
of rate constants:

ṗ1 ��(r1 + r2 + r4)p1 + r3p3 + r5p4, ṗ2 � 2r1p1, ṗ3 � r2p1 � r3p3, and ṗ4 � r4p1 � r5p4:

Table 2. Average feasibility and stationarity errors, along with 95% confidence intervals, when our stochastic SQP method, 
a stochastic subgradient method, and a stochastic projected gradient method are employed to solve logistic regression 
problems with linear constraints (only).

Data set Batch

Stochastic subgradient Stochastic projected 
gradient

Stochastic SQP

Feasibility Stationarity Stationarity Feasibility Stationarity

a9a 16 8:30e� 0362:32e� 03 1:64e� 0163:55e� 03 3:64e� 0262:95e� 03 1:22e� 1562:18e� 16 9:99e20366:92e203
a9a 128 1:16e� 0264:60e� 05 1:69e� 0162:51e� 02 1:69e� 0262:79e� 03 1:64e21564:00e216 7:33e20364:68e205
australian 16 7:94e� 0261:60e� 05 7:94e� 0261:60e� 05 9:17e� 0264:32e� 04 5:72e20661:56e206 2:67e20266:43e� 04
australian 128 5:02e� 0167:04e� 05 5:02e� 0167:04e� 05 1:11e� 0267:19e� 05 6:58e� 0567:90e� 07 5:50e� 0261:08e� 03
heart 16 3:66e� 0164:37e� 03 3:28e+ 0167:02e+ 00 3:17e10166:72e100 8:83e� 0362:77e� 03 3:39e+ 0169:85e+ 00
heart 128 1:52e+ 0064:96e� 02 1:23e10161:40e101 3:29e+ 0163:21e+ 00 1:26e� 0167:86e� 04 3:24e+ 0161:76e+ 00
ijccn1 16 3:58e� 0362:00e� 05 4:70e� 0266:45e� 07 7:41e� 0263:33e� 07 3:03e� 1566:20e� 16 1:93e� 0364:07e� 06
ijccn1 128 3:90e� 0264:01e� 06 5:17e� 0261:65e� 07 3:88e� 0266:15e� 07 2:16e� 0962:62e� 09 1:70e� 0265:19e� 05
ionosphere 16 5:41e� 0168:80e� 05 5:41e� 0168:80e� 05 9:77e� 0168:55e� 03 9:61e� 0762:77e� 09 4:17e� 0261:08e� 03
ionosphere 128 5:76e+ 0063:76e� 05 5:76e+ 0063:76e� 05 5:98e+ 0063:21e� 03 1:31e� 0561:14e� 09 1:55e� 0162:61e� 03
madelon 16 3:06e� 0261:85e� 02 5:46e+ 0161:25e+ 01 2:11e+ 0162:72e+ 00 2:88e� 0865:51e� 08 1:09e10163:00e100
madelon 128 1:87e+ 0067:62e� 01 2:21e+ 0161:55e+ 01 2:16e10164:17e100 5:81e� 0161:63e� 02 4:81e+ 0164:75e+ 00
mushrooms 16 2:19e� 0166:55e� 04 2:19e� 0166:55e� 04 7:31e� 0363:21e� 06 2:08e� 1563:28e� 16 5:95e� 0363:21e� 05
mushrooms 128 4:73e� 0164:37e� 05 4:73e� 0164:37e� 05 3:31e� 0267:13e� 05 1:66e� 0966:20e� 14 3:28e� 0269:15e� 04
phishing 16 2:67e� 0262:76e� 07 3:47e� 0261:39e� 09 2:20e� 0569:29e� 06 4:26e� 1561:27e� 15 3:37e� 0361:27e� 06
phishing 128 3:06e� 0161:13e� 06 3:06e� 0161:13e� 06 2:29e� 0168:88e� 03 1:83e� 1564:99e� 16 2:20e� 0267:29e� 03
sonar 16 1:33e+ 0061:08e� 04 1:33e+ 0061:08e� 04 6:13e� 0162:22e� 03 7:02e� 0761:60e� 07 2:34e� 0262:03e� 04
sonar 128 1:33e+ 0161:48e� 04 1:33e+ 0161:48e� 04 6:46e� 0264:73e� 03 2:07e� 0666:70e� 10 2:98e� 0261:71e� 03
splice 16 2:56e� 0363:39e� 04 4:56e� 0163:55e� 02 9:65e� 0163:19e� 03 7:49e� 1461:03e� 13 2:19e� 0264:33e� 03
splice 128 3:14e� 0161:09e� 04 4:83e� 0164:65e� 05 1:23e+ 0069:44e� 05 3:54e� 0865:74e� 09 1:07e� 0263:16e� 04
w8a 16 2:38e� 0261:75e� 03 1:47e� 0161:89e� 06 9:85e� 0463:31e� 05 7:35e� 1566:98e� 16 6:07e� 0566:46e� 05
w8a 128 1:79e� 0261:25e� 03 1:49e� 0164:64e� 03 3:41e� 0267:43e� 03 5:96e� 1565:67e� 16 1:20e� 0361:85e� 03

Note. The results for the best-performing algorithm are shown in bold.
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In our test problem, we employed r � (4:283, 1:191, 5:743, 10:219, 1:535) and the initial condition p(0) � q0 :�
(14:546, 16:335, 25:947, 23:525). We designed our experiment with a neural network with an input layer of dimension 
1 (time), a fully connected hidden layer with 2,048 nodes and tanh activation, and an output layer of dimension 4 
(i.e., the dimension of the codomain of p). In the standard fashion of training a PINN (Cuomo et al. [5], Karniadakis 
et al. [17]), this neural network is appended with an additional layer encoding the known ODE. Before running our 
experiment, we pretrained the neural network to moderate accuracy using a stochastic gradient method to minimize 

the combined mean squared error of the residual of the ODE system over t ∈ {0, 10�3, 2 × 10�3, : : : , 10} (namely, 1,001 
terms corresponding to input times to the neural network) and residual of the initial condition.

Our experiment involved training the network further to achieve higher accuracy, that is, a lower residual of 
the ODE system over the input times. For this, we ran two stochastic optimization methods starting with the 
parameters of the pretrained network. In one run, we continued using an unconstrained training paradigm 
(namely, the stochastic gradient method) to minimize mean squared error, as in the pretraining. In a second run, 
we ran StochasticSQP, where rather than including the initial conditions in the objective function, we imposed 
them as an explicit constraint, namely, that given the input t � 0 a forward pass over the network should yield 
p(0) � q0. In addition, corresponding to the 20 input times in {0, 0:5, 1, : : : , 9, 9:5}, we included a mass-balance con-

straint 
P4

i�1 wiṗi � 0, where the weights w � (1, 0:5, 1, 1) come from the application. (Our StochasticSQP code was 

used in both cases so that algorithmic quantities such as step sizes would be comparable for both the uncon-
strained and constrained optimization runs.) We observed that because of the structure of the problem, the con-
straint Jacobians were nearly rank-deficient throughout the optimization, as evidenced by the trust-region 

constraint in the normal component subproblem (5) regularly being active (with ω � 104 for this experiment 
only). That said, by imposing the initial and mass-balance conditions as constraints, training more than 60,000 
iterations improved the accuracy by 95.2% (i.e., the result of the second run), as opposed to improving the accu-
racy by 83.5%, which was achieved by running an additional 60,000 iterations of the unconstrained method (i.e., 
the result of the first run); see Figure 2. Much remains to be explored in the use of hard constraints for physics- 
informed machine learning and in particular the use of our proposed stochastic SQP method in such a context. 
However, this experiment both illustrates a type of real-world application for which methods such as ours might 

Table 3. Average feasibility and stationarity errors, along with 95% confidence intervals, when our stochastic SQP method 
and a stochastic sub-gradient method are employed to solve logistic regression problems with linear constraints and a 
squared ℓ2-norm constraint.

Data set Batch

Stochastic sub-gradient Stochastic SQP

Feasibility Stationarity Feasibility Stationarity

a9a 16 4:62e� 0363:27e� 04 1:24e� 0167:52e� 02 5:52e� 0565:04e� 09 6:07e� 0362:32e� 05
a9a 128 4:27e� 0363:92e� 04 1:90e� 0163:03e� 03 6:38e� 0561:12e� 08 4:40e� 0361:41e� 05
australian 16 1:51e� 0161:07e� 05 1:51e� 0161:07e� 05 1:52e� 0465:58e� 06 5:65e� 0363:73e� 05
australian 128 3:96e� 0161:87e� 04 3:96e� 0161:87e� 04 3:83e� 0465:45e� 05 1:68e� 0263:29e� 03
heart 16 1:57e+ 0065:76e� 01 2:86e+ 0161:00e+ 01 9:29e� 0163:47e� 02 2:65e10161:81e101
heart 128 1:33e10066:69e� 01 1:69e10162:23e100 1:88e+ 0061:42e� 01 2:93e+ 0061:26e+ 00
ijcnn1 16 5:36e� 0269:37e� 07 5:36e� 0269:37e� 07 3:70e� 0269:24e� 05 4:60e� 0268:32e� 03
ijcnn1 128 5:41e� 0261:04e� 06 5:41e� 0261:04e� 06 3:64e� 0261:06e� 04 3:64e� 0261:06e� 04
ionosphere 16 3:35e� 0161:06e� 03 3:35e� 0161:06e� 03 5:79e� 0361:44e� 04 1:21e� 0264:96e� 03
ionosphere 128 8:70e� 0161:43e� 03 8:70e� 0161:43e� 03 5:92e� 0362:18e� 05 4:31e� 0263:52e� 04
madelon 16 2:66e+ 0066:84e� 01 3:86e+ 0163:28e+ 01 3:74e� 0168:55e� 02 4:70e� 0163:27e� 02
madelon 128 2:21e10164:90e� 01 4:77e10164:84e100 7:21e+ 0165:28e+ 00 7:21e+ 0165:28e+ 00
mushrooms 16 1:01e� 0165:79e� 05 1:55e� 0168:22e� 06 4:06e� 0468:76e� 09 4:65e� 0363:65e� 05
mushrooms 128 9:72e� 0169:94e� 06 9:72e� 0169:94e� 06 6:96e� 0461:52e� 09 3:34e� 0362:35e� 07
phishing 16 1:30e� 0161:61e� 06 1:30e� 0161:61e� 06 3:65e� 0562:44e� 08 8:17e� 0362:43e� 05
phishing 128 1:53e� 0163:37e� 08 1:53e� 0163:37e� 08 1:26e� 0463:30e� 09 8:45e� 0462:73e� 07
sonar 16 6:45e� 0165:62e� 04 6:45e� 0165:62e� 04 3:38e� 0368:81e� 06 1:48e� 0262:58e� 04
sonar 128 5:04e+ 0064:44e� 03 5:04e+ 0064:44e� 03 5:71e� 0368:61e� 06 2:16e� 0268:48e� 05
splice 16 1:96e� 0361:78e� 04 4:94e� 0167:35e� 03 3:96e� 0367:12e� 07 1:03e� 0261:14e� 05
splice 128 1:40e+ 0067:90e� 05 1:40e+ 0067:90e� 05 5:52e� 0363:72e� 06 1:04e� 0261:06e� 04
w8a 16 1:32e� 0266:83e� 04 1:15e� 0161:33e� 02 2:15e� 0462:24e� 09 1:83e� 0368:90e� 07
w8a 128 5:35e� 0267:79e� 02 1:33e� 0161:74e� 07 1:67e� 0466:01e� 09 1:00e� 0361:01e� 06

Note. The results for the best-performing algorithm are shown in bold.
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be useful and motivates further investigations along these lines, such as in situations when the ODE itself is 
unknown, and one aims to train a neural network to discover the solution of a differential-equation system based 
on empirical observations, say, subject to constraints defined in terms of boundary conditions and/or known 
conservation laws.

6. Conclusion
We have proposed, analyzed, and tested a stochastic SQP method for solving equality-constrained optimization 
problems in which the objective function is defined by an expectation. Our algorithm is specifically designed for 
cases when the LICQ does not necessarily hold in every iteration. The convergence guarantees that we have 
proved for our method consider situations when the merit parameter sequence eventually remains fixed at a 
value that is sufficiently small (in which case the algorithm drives expected stationarity measures for the con-
strained optimization problem to zero), situations when the merit parameter vanishes (in which case the algo-
rithm can drive a stationarity measure for minimizing constraint violation to zero, which might be all that is 
possible because the original optimization problem may be degenerate and/or infeasible), and situations when 
the merit parameter remains fixed at a value that is too large (which we show under modest assumptions is a 
probability-zero event). Numerical experiments demonstrate that our algorithm consistently outperforms alter-
native approaches in the highly stochastic regime.

We close by remarking on how our algorithm and analysis may be useful for the context of inequality- 
constrained optimization as well. An SQP algorithm with features similar to ours for solving inequality- 
constrained problems has been proposed and analyzed in Curtis et al. [8]. The analysis in that paper assumed 
that the constraint Jacobians have full row rank, but that work might be extendable to the rank-deficient setting 
with tools from our paper. Our step-decomposition technique is also of interest in the context of interior-point 
methods as well, even when rank deficiency of the constraint Jacobians (of nonlinear constraint functions) is 
not necessarily an issue. After all, as is well known, interior-point methods that compute search directions to 
satisfy a local linear model of the constraints can fail to converge (Wächter and Biegler [34]), and one manner 
in which this failure can be avoided is through the use of a step-decomposition technique. Therefore, our tools 
may be useful for the context of a stochastic interior-point method, say, in combination with the ideas in Curtis 
et al. [9].

Acknowledgments
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Figure 2. True ODE solution (left) and predicted ODE solutions (right) yielded by the pretrained network (solid lines), by the 
network trained with additional iterations of the stochastic gradient method (dashed lines), and by the network trained with Sto-
chasticSQP iterations (dashed-dotted lines). 

Notes. Most importantly, StochasticSQP employed to solve a constrained optimization problem outperforms the stochastic gradient method 
employed to solve an unconstrained problem in the prediction of p2, which dominates the residual errors. The better performance of Stochas-
ticSQP continues if additional iterations of both solvers are performed.
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Appendix A: Deterministic Analysis
In this Appendix, we prove that Theorem 1 holds, where in particular we consider the context when gk � ∇f (xk) and βk �
β�satisfy (22) for all k ∈ N. For this purpose, we introduce a second termination condition in Algorithm 1. In particular, 

after line 8, we terminate the algorithm if both ‖gk + JT
k yk‖2 � 0 and ‖ck‖2 � 0. In this manner, if the algorithm terminates 

finitely, then it returns an infeasible stationary point (recall (4)) or primal-dual stationary point for problem (1), and there 
is nothing left to prove. Hence, without loss of generality, we proceed under the assumption that the algorithm runs for 
all k ∈ N. For our purposes in this section, let us refer to this as Assumption 4’.

Throughout our analysis in this Appendix, we simply refer to the tangential direction as uk, the full search direction as 
dk � vk + uk, etc., even though it is assumed throughout this Appendix that these are the true quantities computed using 
the true gradient ∇f (xk) for all k ∈ N.

It follows in this context that both Lemmas 1 and 2 hold. In addition, Lemma 3 holds, where, in the proof, the case 
that dk � 0 can be ignored because of the following lemma.

Lemma A.1. For all k ∈ N, one finds that dk � vk + uk ≠ 0.

Proof. For all k ∈ N, vk ∈ Range(JT
k ) and uk ∈Null(Jk) imply that dk � vk + uk � 0 if and only if vk � 0 and uk � 0. Under 

Assumption 4’, it follows for all k ∈ N that ‖JT
k ck‖2 > 0 or ‖ck‖2 � 0. If ‖JT

k ck‖2 > 0, then Lemma 1 implies that vk ≠ 0, and the 

desired conclusion follows. Hence, we may proceed under the assumption that ‖ck‖2 � 0. In this case, it follows under 

Assumption 3 that gk + JT
k yk � 0 if and only if uk � 0, which by Assumption 4’ means that uk ≠ 0. w

We now prove a lower bound on the reduction in the merit function that occurs in each iteration. This is a special case 
of Lemmas 6 and 10 for the deterministic setting.

Lemma A.2. For all k ∈ N, it holds that φ(xk,τk)�φ(xk +αkdk,τk) ≥ ηαk∆l(xk,τk, gk, dk).

Proof. For all k ∈ N, it follows by the definition of αsuff
k that (recall (19))

φ(xk +αdk,τk)�φ(xk,τk) ≤�ηα∆l(xk,τk, gk, dk) for all α ∈ [0,αsuff
k ]:

If ‖uk‖22 ≥ χk‖vk‖22, then the only way that αk > α
suff
k is if

2(1� η)βξkτk

τkL+ Γ > min
2(1� η)β∆l(xk,τk, gk, dk)

(τkL+ Γ)‖dk‖22
, 1

( )

:

By (22), the left-hand side of this inequality is less than 1, meaning that αk > α
suff
k only if

2(1� η)βξkτk

τkL+ Γ >
2(1� η)β∆l(xk,τk, gk, dk)

(τkL+ Γ)‖dk‖22
�ξkτk >

∆l(xk,τk, gk, dk)
‖dk‖22

:

However, this is not true because ξk ≤ ξtrial
k for all k ∈ N. Following a similar argument for the case when ‖uk‖22 < χk‖vk‖22, 

the desired conclusion follows. w

For our purposes going forward, let us define the shifted merit function φ̃ : Rn × R≥0→ R by

φ̃(x,τ) � τ(f (x)� finf) + ‖c(x)‖2:

Lemma A.3. For all k ∈ N, it holds that φ̃(xk,τk)� φ̃(xk+1,τk+1) ≥ ηαk∆l(xk,τk, gk, dk).

Proof. For arbitrary k ∈ N, it follows from Lemma A.2 that

τk+1(f (xk +αkdk)� finf) + ‖c(xk + αkdk)‖2 ≤ τk(f (xk +αkdk)� finf) + ‖c(xk + αkdk)‖2
≤ τk(f (xk)� finf) + ‖ck‖2 � ηαk∆l(xk,τk, gk, dk), 

from which the desired conclusion follows. w

We now prove our first main result of this Appendix.

Lemma A.4. The sequence {‖JT
k ck‖2} vanishes. Moreover, if there exist kJ ∈ N and σJ ∈ R>0 such that the singular values of Jk are 

bounded below by σJ for all k ≥ kJ, then {‖ck‖2} vanishes.

Proof. Let γ ∈ R>0 be arbitrary. Our aim is to prove that the number of iterations with xk ∈ Xγ�(recall (32)) is finite. 

Because γ�has been chosen arbitrarily in R>0, the conclusion will follow. By Lemma 12 and the fact that {βk} is chosen as 

a constant sequence, it follows that there exists α ∈ R>0 such that αk ≥ α�for all k ∈Kγ�(regardless of whether the search 

direction is tangentially or normally dominated). Hence, using Lemmas 1 and A.3, it follows that

φ̃(xk,τk)� φ̃(xk+1,τk+1) ≥ ηα∆l(xk,τk, gk, dk) ≥ ηασ(‖ck‖2 � ‖ck + Jkvk‖2) ≥ ηασκvκ
�1
c γ

2:
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Hence, the desired conclusion follows because {φ̃(xk,τk)} is monotonically nonincreasing by Lemma A.3 and is bounded 

below under Assumption 1. w

We now show a consequence of the merit parameter eventually remaining constant.

Lemma A.5. If there exists kτ ∈ N and τmin ∈ R>0 such that τk � τmin for all k ≥ kτ, then

0 � lim
k→∞
‖uk‖2 � lim

k→∞
‖dk‖2 � lim

k→∞
‖gk + JT

k yk‖2 � lim
k→∞
‖ZT

k gk‖2:

Proof. Under Assumption 1 and the conditions of the lemma, Lemmas 12 and A.3 imply that ∆l(xk,τk, gk, dk)} → 0, which 

with (13) and Lemma 1 implies that {‖uk‖2}→ 0, {‖vk‖2}→ 0, and {‖JT
k ck‖2}→ 0. The remainder of the conclusion follows 

from Assumption 3 and (8). w

The proof of Theorem 1 can now be completed.

Proof of Theorem 1. The result follows from Lemmas A.4 and A.5 along with Theorem B.1 (considered in the determin-
istic setting, namely, in the case that κg � 0 in that theorem).

Appendix B: Bounded Merit Parameter
Our goal in this section is to prove that there exist conditions under which the merit parameter sequence remains 
bounded below by a positive constant, which by the manner that the merit parameter sequence is determined means 
that there are conditions under which the sequence eventually remains constant. As seen in Theorem 1, it is worthwhile 
to consider such an occurrence regardless of the properties of the sequence of constraint Jacobians. That said, one might 
be able to prove only that it occurs when the constraint Jacobians are (eventually) bounded away from singularity over a 
run of the algorithm.

Our first lemma for these purposes proves that if the constraint Jacobians are bounded away from singularity by a uni-
form constant, then the normal components of the search directions satisfy a useful upper bound. (One could prove such 
a property for all sufficiently large iteration indices if the Jacobians are eventually bounded away from singularity, but 
for simplicity we consider the case when they are bounded away for all k ∈ N.) The proof is essentially the same as that 
of lemma 3.15 in Curtis et al. [6], but we provide it for completeness. In the lemma, the constant σJ ∈ R>0 is presumed to 

be uniform over all realizations of a run of the algorithm.

Lemma B.1. Consider σJ ∈ R>0. If the singular values of Jk are bounded below by σJ for all k ∈ N, then there exists κω ∈ R>0 (uni-

form over all runs) such that

‖Vk‖2 ≤ κω(‖Ck‖2 � ‖Ck + JkVk‖2) for all k ∈ N:

Proof. Under the conditions of the lemma, ‖JT
k Ck‖2 ≥ σJ‖Ck‖2 for all k ∈ N. Hence, along with Lemma 1, it follows that 

‖Ck‖2(‖Ck‖2 � ‖Ck + JkVk‖2) ≥ κv‖JT
k Ck‖22 ≥ κvσ

2
J ‖Ck‖22 for all k ∈ N. Combining this again with Lemma 1, it follows with the 

Cauchy-Schwarz inequality and (2) that

‖Vk‖2 ≤ ω‖JT
k ‖2‖Ck‖2 ≤

ωκJ

κvσ2
J

(‖Ck‖2 � ‖Ck + JkVk‖2) for all k ∈ N, 

from which the desired conclusion follows. w

We now prove that if the differences between the stochastic gradient estimators and the true gradients are bounded, 
then the sequence of tangential components is bounded. As in the previous lemma, the constant κg ∈ R>0 is presumed to 

be a uniform bound.

Lemma B.2. Consider κg ∈ R>0. If the sequence {‖Gk �∇f (Xk)‖2} is bounded by κg, then there exists κu ∈ R>0 (uniform over all 

runs) such that ‖Uk‖2 ≤ κu for all k ∈ N.

Proof. Under Assumption 1, {‖∇f (Xk)‖2} is bounded; recall (2). Hence, under the conditions of the lemma, {‖Gk‖2} is 

bounded. The first block of (8) yields UT
k HkUk ��UT

k (Gk +HkVk), which under Assumption 3 yields ρ‖Uk‖22 ≤�UT
k Gk�

UT
k HkVk ≤ (‖Gk‖2 + ‖Hk‖2‖Vk‖2)‖Uk‖2. Hence, the conclusion follows from these facts, Assumption 1, Assumption 3, and 

Lemma 1. w

By combining the preceding two lemmas, the following theorem indicates certain circumstances under which the 
sequence of merit parameters will eventually remain constant. We remark that it is possible in a run of the algorithm for 
the merit parameter sequence to remain constant (eventually) even if the conditions of the theorem do not hold, which is 
why our analyses in the main body of the paper do not presume that these conditions hold. That said, to prove that there 
exist settings in which the merit parameter is guaranteed to remain constant eventually, we offer the theorem. In the the-
orem, it is important to note that the constant τmin ∈ R>0 is uniform over all runs despite the fact that the iteration in 
which the merit parameter experiences its last decrease and the final value at which it settles might be run-dependent.
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Theorem B.1. Consider σJ ∈ R>0 and κg ∈ R>0. If the singular values of Jk are bounded below by σJ for all k ∈ N and {‖Gk �∇f (Xk)‖2}
is bounded by κg, then there exists τmin ∈ R>0 (uniform over all runs) such that for some Kτ ∈ N and T ′ ∈ R>0, one finds

T k � T ′ ≥ τmin for all k ∈ N with k ≥ Kτ:

Proof. The algorithm terminates if ‖JT
k Ck‖2 � 0 while ‖Ck‖2 > 0. Let us show that if ‖Ck‖2 � 0, then the algorithm sets 

T k← T k�1. Indeed, ‖Ck‖2 � 0 implies Vk � 0 by Lemma 1. If Uk � 0 as well, then Dk � 0, and the algorithm explicitly sets 

T k← T k�1. Otherwise, if Vk � 0 and Uk ≠ 0, then (8) yields 0 � GT
k Uk +UT

k HkUk � GT
k Dk +UT

k HkUk, in which case (10)–(11) 

again yield T k← T k�1. Overall, it follows that T k < T k�1 if and only if one finds ‖JT
k Ck‖2 > 0, GT

k Dk +UT
k HkUk > 0, and 

T k�1(GT
k Dk +UT

k HkUk) > (1� σ)(‖Ck‖2 � ‖Ck + JkVk‖2). On the other hand, from the first equation in (8), the Cauchy- 

Schwarz inequality, (2), and Lemmas B.1 and B.2, it holds that

GT
k Dk +UT

k HkUk � (Gk �HkUk)TVk � (Gk �∇f (Xk) +∇f (Xk)�HkUk)TVk

≤ (κg + κ∇f + κHκu)‖Vk‖2
≤ (κg + κ∇f + κHκu)κω(‖Ck‖2 � ‖Ck + JkVk‖2):

Combining these facts, the desired conclusion follows. w

Appendix C: Insufficiently Small Merit Parameter
In this Appendix, we prove a formal version of Theorem 4, which is stated at the end of this Appendix as Theorem C.1. In 
the process of proving this main result (Theorem C.1), we prove a set of lemmas about the behavior of the merit parameter 
sequence after a finite number of iterations. Specifically, we consider the behavior of Algorithm 1 when it is terminated at 
iteration kmax ∈ N. With this consideration, we define a tree with a depth bounded by kmax, which will be integral to our argu-
ments in this section. The proof of Theorem C.1 ultimately considers the behavior of the algorithm as kmax→∞.

Let I[·] denote the indicator function of an event, and for all k ∈ [kmax], define

Qk :� I[T trial, true
k < T k�1] and Wk :�

X

k�1

i�0

I[T i < T i�1]:

Accordingly, for any realization of a run of Algorithm 1 and any k ∈ [kmax], the realization (qk, wk) of (Qk, Wk) is deter-
mined at the beginning of iteration k. The signature of a realization up to iteration k is (q0, : : : , qk, w0, : : : , wk), which 
encodes all of the pertinent information regarding the behavior of the merit parameter sequence and these indicators up 
to the start of iteration k.

We use the set of all signatures to define a tree whereby each node contains a subset of all realizations of the algorithm. To 

construct the tree, we denote the root node by N(q0, w0), where q0 is the indicator of the event τtrial, true
0 < τ

�1, which is deter-

mined based on the initial conditions of the algorithm, and w0 � 0. All realizations of the algorithm follow the same initializa-
tion, so q0 and w0 are in the signature of every realization. Next, we define a node N(q[k], w[k]) at depth k ∈ [kmax] (where the 

root node has a depth of 0) in the tree as the set of all realizations of the algorithm for which the signature of the realization 
up to iteration k is (q0, : : : , qk, w0, : : : , wk). We define the edges in the tree by connecting nodes at neighboring levels, where 
node N(q[k], w[k]) is connected to node N(q[k], qk+1, w[k], wk+1) for any qk+1 ∈ {0, 1} and wk+1 ∈ {wk, wk + 1}.

Because the behavior of a realization of the algorithm up to iteration k ∈ N is determined by the initial conditions and 
the realization of G[k�1], we say that a realization described by G[k�1] belongs in node N(q[k], w[k]) by writing that 

G[k�1] ∈N(q[k], w[k]). The initial condition, denoted for consistency as G[�1] ∈N(q0, w0), occurs surely. Based on the descrip-

tion above, the nodes of our tree satisfy the property that for any k ≥ 2, the event G[k�1] ∈N(q[k], w[k]) occurs if and only if

Qk � qk, Wk � wk, and G[k�2] ∈N(q[k�1], w[k�1]): (C.1) 

Under event Eτ(τtrial, true
min ) for τtrial, true

min ∈ R>0, one has that W
k
�Pk�1

i�0 I[T i < T i�1] ≥ s(τtrial, true
min ) (see (36)) implies that for all 

subsequent k one finds that T k�1 ≤ τtrial, true
min ≤ T

trial, true
k .

We are now prepared to state the assumption under which Theorem C.1 is proved. It is similar to Assumption 7 com-

bined with the assumption that (37a) holds for some fixed probability conditioned on the event that T trial, true
k < T k�1.

Assumption C.1. For some τtrial, true
min ∈ R>0, the event Eτ(τtrial, true

min ) occurs. In addition, there exists pτ ∈ (0, 1] such that, for all 
k ∈ [kmax], one finds

P[T k < T k�1 |Eτ(τtrial, true
min ), G[k�1] ∈N(q[k], w[k]),T trial, true

k < T k�1] ≥ pτ: (C.2) 

Intuitively, equation (C.2) states that conditioned on Eτ(τtrial, true
min ), the behavior of the algorithm up to the beginning of iteration 

k, and Qk � 1, the probability that the merit parameter is decreased in iteration k, is at least pτ. For simplicity of notation, 

henceforth we define E as the event that Assumption C.1 holds, and smax :� s(τtrial, true
min ). We remark in passing that Lemma 13

is relevant here. In particular, one could apply the same arguments as in the proof of Lemma 13 to show that if

P[GT
k Dk +UT

k HkUk ≥ ∇f (Xk)TDtrue
k + (Utrue

k )
THkUtrue

k |Eτ(τ
trial, true
min ), G[k�1] ∈N(q[k], w[k]),T trial, true

k < T k�1] ≥ pτ, (C.3) 
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then (C.2) holds. Hence, (8) could have been written with respect to (C.3), which is an inequality that holds when the dis-
tribution of the stochastic gradients satisfies a mild form of symmetry; see example 3.17 in Berahas et al. [1] for a simple 
example. However, because (C.2) is the inequality that is used in our analysis below, we include this inequality directly in 
the assumption.

Our main result, Theorem C.1, essentially shows that the probability that T trial, true
k < T k occurs infinitely often is zero. 

Toward proving this result, we first prove a bound on the probability that T trial, true
k < T k occurs at least J times for any 

J ∈ N such that J > smax

pτ
+ 1. Given such a J, we can define a number of important sets of nodes in the tree. First, let

Lgood :�
(

N(q[k], w[k]) :
 

X

k

i�0

qi < J

!

∧ (wk � smax ∨ k � kmax)
)

be the set of nodes at which the sum of the elements of q[k] is sufficiently small (less than J), and either wk has reached 

smax or k has reached kmax. Second, let

Lbad :�
(

N(p[k], w[k]) :
X

k

i�0

qi ≥ J

)

be the nodes in the complement of Lgood at which the sum of the elements of q[k] is at least J. Going forward, we restrict 

attention to the tree defined by the root node and all paths from the root node that terminate at a node contained in 
Lgood ∪ Lbad. From this restriction and the definitions of Lgood and Lbad, the tree has finite depth, with the elements of 

Lgood ∪ Lbad being leaves.

Let us now define relationships between nodes. The parent of a node is defined as

P(N(q[k], w[k])) � N(q[k�1], w[k�1]):
On the other hand, the children of node N(q[k], w[k]) are defined as

C(N(q[k], w[k])) �
{N(q[k], qk+1, w[k], wk+1)} if N(q[k], w[k]) ∉ Lgood ∪ Lbad

∅ otherwise:

(

Under these definitions, the paths down the tree terminate at nodes in Lgood ∪ Lbad, reaffirming that these nodes are the 

leaves of the tree. For convenience in the rest of our discussions, let C(∅) � ∅.
We define the height of node N(q[k], w[k]) as the length of the longest path from N(q[k], w[k]) to a leaf node; that is, the 

height is denoted as

h(N(q[k], w[k])) :� (min{j ∈ N \ {0} : Cj(N(q[k], w[k])) � ∅})� 1, 

where Cj(N(q[k], w[k])) is shorthand for applying the mapping C(·) consecutively j times. From this definition, h(N(q[k], w[k])) �
0 for all N(q[k], w[k]) ∈ Lgood ∪ Lbad.

Finally, let us define the event Ebad, kmax , J as the event that for some j ∈ [kmax] one finds

X

j

i�0

Qi �
X

j

i�0

I[T trial, true
i < T i�1] ≥ J: (C.4) 

Our first goal in this section is to find a bound on the probability of this event occurring. We will then utilize this bound 
to prove Theorem C.1. As a first step toward bounding the probability of Ebad, kmax , J, we prove the following result about 

the leaf nodes of the tree.

Lemma C.1. For any k ∈ [kmax], J ∈ N, and (q[k], w[k]) with N(q[k], w[k]) ∈ Lgood, one finds

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E] � 0:

On the other hand, for any k ∈ [kmax], J ∈ N, and (q[k], w[k]) with N(q[k], w[k]) ∈ Lbad, one finds

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])]):

Proof. Consider arbitrary k ∈ [kmax] and J ∈ N as well as an arbitrary pair (q[k], w[k]) such that N(q[k], w[k]) ∈ Lgood. By the 

definition of Lgood, it follows that 
Pk

i�0 qi < J. Then, by (C.1),

P
X

k

i�0

Qi ≥ J |E, G[k�1] ∈N(q[k], w[k])
" #

� P
X

k

i�0

qi ≥ J

�

�

�

�

�

E, G[k�1] ∈N(q[k], w[k])
" #

� 0:

Therefore, for any j ∈ {1, : : : , k}, one finds from conditional probability that

P[G[j�1] ∈N(q[j], w[j]) ∧ (C:4) holds |E] � P[(C:4) holds |E, G[j�1] ∈N(q[j], w[j])]
·P[G[j�1] ∈N(q[j], w[j]) |E] � 0:
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In addition, (C.4) cannot hold for j � 0 because I[τtrial, true
0 < τ

�1] � q0 < J by the definition of Lgood. Hence, along with the 

conclusion above, it follows that Ebad, kmax , J does not occur in any realization whose signature up to iteration j ∈ {1, : : : , k}
falls into a node along any path from the root to N(q[k], w[k]). Now, by the definition of Lgood, at least one of wk � smax or 

k � kmax holds. Let us consider each case in turn. If k � kmax, then it follows by the preceding arguments that

P
X

kmax

i�0

Qi < J

�

�

�

�

�

E, G[k�1] ∈N(p[k], w[k])
" #

� 1:

Otherwise, if wk � smax, then it follows by the definition of smax that T k�1 ≤ τtrial, true
min so that Qi � I[T trial, true

i < T i�1] � 0 holds 

for all i ∈ {k, : : : , kmax}, and therefore, the equation above again follows. Overall, it follows that P[G[k�1] ∈N(q[k], w[k])
∧ Ebad, kmax , J |E] � 0, as desired.

Now consider arbitrary k ∈ [kmax] and J ∈ N as well as an arbitrary pair (q[k], w[k]) with N(q[k], w[k]) ∈ Lbad. One finds that

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤P[G[k�1] ∈N(q[k], w[k]) |E] � P[(C:1) holds |E]

�P[Qk � qk |E, Wk � wk, G[k�2] ∈N(q[k�1], w[k�1])] ·P[Wk � wk ∧ G[k�2] ∈N(p[k�1], w[k�1]) |E]

�P[Qk � qk |E, Wk � wk, G[k�2] ∈N(q[k�1], w[k�1])]

·P[Wk � wk |E, G[k�2] ∈N(p[k�1], w[k�1])] ·P[G[k�2] ∈N(p[k�1], w[k�1]) |E]

�P[G
�1 ∈N(q0, w0)]

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])]), 

which, because P[G[�1] ∈N(q0, w0)] � 1, proves the remainder of the result. w

Next, we show that the probability of the occurrence of Ebad, kmax , J at any node in the tree can be bounded in terms of 

the probability of the sum of a set of independent Bernoulli random variables being less than a threshold defined by 
smax.

Lemma C.2. For any k ∈ [kmax], J ∈ N, and (q[k], w[k]) with N(q[k], w[k]) ∉ Lgood, let

ψJ(q[k]) � J � 1�
X

k

i�0

qi: (C.5) 

One finds that

P[G[k�1] ∈ N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈ N(q[i�1], w[i�1])]

· P[Wi � wi |E, G[i�2] ∈ N(q[i�1], w[i�1])]) · P
X

ψJ(q[k�1])

j�1

Zj ≤ smax � wk

2

4

3

5,

(C.6) 

where {Zj} are independent Bernoulli random variables with P[Zj � 1] � pτ�for all j ∈ N.

Proof. Consider any (q[k], w[k]) with h(N(q[k], w[k])) � 0. Because N(q[k], w[k]) ∉ Lgood, it follows that N(q[k], w[k]) ∈ Lbad. Then, 

by the definition of Lbad, it follows that 
Pk

i�0 qi ≥ J. In addition, because C(N(q[k], w[k])) � ∅ for any node in Lbad, it follows 

that P(N(q[k], w[k])) ∉ Lbad, which implies that 
Pk�1

i�0 qi < J. Thus, 
Pk

i�0 qi � J and 
Pk�1

i�0 qi � J � 1, which implies that 

ψJ(q[k�1]) � 0. Therefore, overall, the result holds for any (q[k], w[k]) with h(N(q[k], w[k])) � 0 by Lemma C.1.

We prove the rest of the result by induction on the height of the node. We note that the base case, that is, when 
h(N(q[k], w[k])) � 0, holds by the above argument. Now, assume that (C.6) holds for any (q[k], w[k]) with N(q[k], w[k]) ∉ Lgood 

such that h(N(q[k], w[k])) ≤ ĥ. Consider arbitrary (q[k], w[k]) such that N(q[k], w[k]) ∉ Lgood and h(N(q[k], w[k])) � ĥ + 1. By the 

definition of C, one finds

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]
�

X

{(qk+1,wk+1):N(q[k+1],w[k+1])∈C(N(q[k],w[k]))}
P[G[k] ∈N(q[k+1], w[k+1]) ∧ Ebad, kmax , J |E]:
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Then, by the definition of q[k] and w[k], we can enumerate the children of N(q[k], w[k]) as

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

� P[G[k] ∈N(q[k], 0, w[k], wk) ∧ Ebad, kmax , J |E] +P[G[k] ∈N(q[k], 0, w[k], wk + 1) ∧ Ebad, kmax , J |E]

+P[G[k] ∈N(q[k], 1, w[k], wk) ∧ Ebad, kmax, J |E] +P[G[k] ∈N(q[k], 1, w[k], wk + 1) ∧ Ebad, kmax , J |E]:

Now, noting that all children of N(q[k], w[k]) have a height that is at most ĥ, we apply the induction hypothesis four times to obtain

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤
 

P[Qk+1 � 0 |E, Wk+1 � wk, G[k�1] ∈N(q[k], w[k])]

·P[Wk+1 � wk |E, G[k�1] ∈N(q[k], w[k])] ·P
"

X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk

#

+P[Qk+1 � 0 |E, Wk+1 � wk + 1, G[k�1] ∈N(q[k], w[k])]

·P[Wk+1 � wk + 1 |E, G[k�1] ∈N(q[k], w[k])] ·P
"

X

ψJ(q[k])

j�1

Zj, 2 ≤ smax �wk � 1

#

+P[Qk+1 � 1 |E, Wk+1 � wk, G[k�1] ∈N(q[k], w[k])]

·P[Wk+1 � wk |E, G[k�1] ∈N(q[k], w[k])] ·P
"

X

ψJ(q[k])

j�1

Zj, 3 ≤ smax �wk

#

+P[Qk+1 � 1 |E, Wk+1 � wk + 1, G[k�1] ∈N(q[k], w[k])]

·P[Wk+1 � wk + 1 |E, G[k�1] ∈N(q[k], w[k])] ·P
"

X

ψJ(q[k])

j�1

Zj, 4 ≤ smax �wk � 1

#!

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])])

where Zj, p for all p ∈ {1, : : : , 4} and j ∈ {1, : : : ,ψ(q[k])} are four sets of independent Bernoulli random variables with 

P[Zj, p � 1] � pτ. Now, by the definitions of Zj, 1, Zj, 2, Zj, 3, and Zj, 4, it follows that

P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk

2

4

3

5 � P
X

ψJ(q[k])

j�1

Zj, 3 ≤ smax �wk

2

4

3

5, 

and

P
X

ψJ(q[k])

j�1

Zj, 2 ≤ smax �wk � 1

2

4

3

5 � P
X

ψJ(q[k])

j�1

Zj, 4 ≤ smax �wk � 1

2

4

3

5:

Therefore, it follows that

P[G[k�1] ∈ N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤
 

(P[Qk+1 � 0 |E, Wk+1 � wk, G[k�1] ∈ N(q[k], w[k])]

+P[Qk+1 � 1 |E, Wk+1 � wk, G[k�1] ∈ N(q[k], w[k])])

·P[Wk+1 � wk |E, G[k�1] ∈ N(q[k], w[k])] · P
"

X

ψJ(q[k])

j�1

Zj, 1 ≤ smax � wk

#

+(P[Qk+1 � 0 |E, Wk+1 � wk + 1, G[k�1] ∈ N(q[k], w[k])]
+P[Qk+1 � 1 |E, Wk+1 � wk + 1, G[k�1] ∈ N(q[k], w[k])])

·P[Wk+1 � wk + 1 |E, G[k�1] ∈ N(q[k], w[k])] · P
"

X

ψJ(q[k])

j�1

Zj, 2 ≤ smax � wk � 1

#!

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈ N(q[i�1], w[i�1])] · P[Wi � wi |E, G[i�2] ∈ N(q[i�1], w[i�1])]):
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Now, by the law of total probability, it follows that

1 � P[Qk+1 � 0 |E, Wk+1 � wk, G[k�1] ∈ N(q[k], w[k])]
+ P[Qk+1 � 1 |E, Wk+1 � wk, G[k�1] ∈ N(q[k], w[k])], 

and

1 � P[Qk+1 � 0 |E, Wk+1 � wk + 1, G[k�1] ∈ N(q[k], w[k])]
+ P[Qk+1 � 1 |E, Wk+1 � wk + 1, G[k�1] ∈ N(q[k], w[k])]:

Thus,

P[G[k�1] ∈ N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤
 

P[Wk+1 � wk |E, G[k�1] ∈ N(q[k], w[k])] · P
"

X

ψJ(q[k])

j�1

Zj, 1 ≤ smax � wk

#

+ P[Wk+1 � wk + 1 |E, G[k�1] ∈ N(q[k], w[k])] · P
"

X

ψJ(q[k])

j�1

Zj, 2 ≤ smax � wk � 1

#!

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈ N(q[i�1], w[i�1])] · P[Wi � wi |E, G[i�2] ∈ N(q[i�1], w[i�1])]):

(C.7) 

We proceed by considering two cases. First, suppose qk � 1. By Assumption C.1, it follows that

P[Wk+1 � wk + 1 |E, G[k�1] ∈ N(q[k], w[k])]
� P[T k < T k�1 |E, G[k�1] ∈ N(q[k], w[k]), T trial, true

k < T k�1] ≥ pτ:

Additionally, using the law of total probability, we have

1 � P[Wk+1 � wk |E, G[k�1] ∈ N(q[k], w[k])] + P[Wk+1 � wk + 1 |E, G[k�1] ∈ N(q[k], w[k])]:
Therefore, it follows that

P[G[k�1] ∈ N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤ max
p∈[pτ, 1]

(1 � p)P
"

X

ψJ(q[k])

j�1

Zj, 1 ≤ smax � wk

#

+ pP

"

X

ψJ(q[k])

j�1

Zj, 2 ≤ smax � wk � 1

#

0

@

1

A

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈ N(q[i�1], w[i�1])] · P[Wi � wi |E, G[i�2] ∈ N(q[i�1], w[i�1])]):

(C.8) 

In addition, by the definition of Zj, 1 and Zj, 2, one finds that

P
X

ψJ(q[k])

j�1

Zj, 2 ≤ smax �wk � 1

2

4

3

5 ≤ P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk

2

4

3

5:

Therefore, it follows that the max in (C.8) is given by p � pτ. Thus,

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤ (1� pτ)P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk

2

4

3

5+ pτP
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk � 1

2

4

3

5

0

@

1

A

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])]), 

where, by the definitions of Zj, 1 and Zj, 2, we have used the fact that

P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax �wk � 1

2

4

3

5 � P
X

ψJ(q[k])

j�1

Zj, 2 ≤ smax �wk � 1

2

4

3

5:
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Now, for all j ∈ {1, : : : ,ψJ(q[k])}, define Zj � Zj, 1, and let ZψJ(q[k])+1 be a Bernoulli random variable with P[ZψJ(q[k])+1 � 1] � pτ. 

Then, it follows that

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax
|E]

≤ P
X

ψJ(q[k])+1

j�1

Zj ≤ smax �wk

2

4

3

5

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])]):

This proves the result in this case by noting that qk � 1 implies

ψJ(q[k]) + 1 � J � 1 �

X

k

i�0

qi + 1 � J � 1 �

X

k�1

i�0

qi � ψJ(q[k�1]):

Next, consider the case where qk � 0. Recalling that

1 � P[Wk+1 � wk |E, G[k�1] ∈ N(q[k], w[k])] + P[Wk+1 � wk + 1 |E, G[k�1] ∈ N(q[k], w[k])], 

it follows from (C.7) that

P[G[k�1] ∈ N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤ max
p∈[0, 1]

(1 � p)P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax � wk

2

4

3

5 + pP
X

ψJ(q[k])

j�1

Zj, 2 ≤ smax � wk � 1

2

4

3

5

0

@

1

A

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈ N(q[i�1], w[i�1])] · P[Wi � wi |E, G[i�2] ∈ N(q[i�1], w[i�1])]):

(C.9) 

Similar to before, noting that

P
X

ψJ(q[k])

j�1

Zj, 2 ≤ smax � wk � 1

2

4

3

5 ≤ P
X

ψJ(q[k])

j�1

Zj, 1 ≤ smax � wk

2

4

3

5, 

it follows that the max in (C.9) is given by p � 0, so with Zj � Zj, 1 for all j ∈ {1, : : : ,ψJ(q[k])},

P[G[k�1] ∈N(q[k], w[k]) ∧ Ebad, kmax , J |E]

≤ P
X

ψJ(q[k])

j�1

Zj ≤ smax �wk

2

4

3

5

·
Y

k

i�1

(P[Qi � qi |E, Wi � wi, G[i�2] ∈N(q[i�1], w[i�1])] ·P[Wi � wi |E, G[i�2] ∈N(q[i�1], w[i�1])]):

The result follows from this inequality and the fact that ψJ(q[k]) � ψJ(q[k�1]) because qk � 0. w

We now apply Lemma C.2 to obtain a high-probability bound.

Lemma C.3. For any J > smax

pτ
+ 1, one finds that

P
X

kmax

k�0

I[T trial, true
k < T k] ≥ J

" #

≤ e�
pτ (J�1)

2 (1� smax
pτ (J�1))

2

: (C.10) 

Proof. Recalling that the initial condition for the tree, G[�1] ∈N(q0, w0), occurs with probability one, by Lemma C.2, it fol-

lows that there exist J � 1 independent Bernoulli random variables Zj with P[Zj � 1] � pτ�for all j ∈ {1, : : : , J � 1} such that

P[Ebad, kmax , J |E] � P[G[�1] ∈N(q0, w0) ∧ Ebad, kmax
|E] ≤ P

X

J�1

j�1

Zj ≤ smax

2

4

3

5:
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Let

µ :�
X

J�1

j�1

P[Zj � 1] � pτ(J � 1) and ρ :� 1 � smax=µ:

Noting that ρ ∈ (0, 1) by the definition of J, by the multiplicative form of Chernoff’s bound,

P
X

J�1

j�1

Zj ≤ smax

2

4

3

5 ≤ e�
1
2 µρ2 � e�

1
2 µ(1� smax=µ)2 � e

�

pτ (J�1)
2 (1� smax

pτ (J�1))
2

:

For all k ∈ [kmax], we have T k ≤ T k�1. Thus, by the definition of Ebad, kmax , J, it follows that

P
X

kmax

k�0

I[T trial, true
k < T k] ≥ J |E

" #

≤ P
X

kmax

k�0

Qk ≥ J |E
" #

≤ P[Ebad, kmax , J |E] ≤ e
�

pτ(J�1)
2 (1� smax

pτ (J�1))
2

, 

as desired. w

We now prove the main result of this Appendix.

Theorem C.1. Under Assumption C.1, it follows that

P
X

∞

k�0

I[T trial, true
k < T k] < ∞

�

�

�

�

�

E

" #

� 1: (C.11) 

Proof. By Lemma C.3, for any kmax ∈ N \ {0} and J > smax

pτ
+ 1, it follows that

P
X

kmax

k�0

I[T trial, true
k < T k] ≥ J

�

�

�

�

�

E

" #

≤ e
�

pτ (J�1)
2 (1� smax

pτ (J�1))
2

:

Let Akmax 
denote the event that

X

kmax

k�0

I[T trial, true
k < T k] ≥ J:

It follows from this definition that Akmax
⊆ Akmax+1 for any kmax ∈ N \ {0}. Therefore, by the properties of an increasing 

sequence of events (see, for example, section 1.5 in Stirzaker [33]), it follows that

P
X

∞

k�0

I[T trial, true
k < T k] ≥ J

�

�

�

�

�

E

" #

� P lim
kmax→∞

X

kmax

k�0

I[T trial, true
k < T k] ≥ J

�

�

�

�

�

E

" #

� lim
kmax→∞

P
X

kmax

k�0

I[T trial, true
k < T k] ≥ J

�

�

�

�

�

E

" #

≤ e
�

pτ (J�1)
2 (1� smax

pτ (J�1))
2

:

Next, let AJ denote the event that

X

∞

k�0

I[T trial, true
k < T k] < J:

From the definition of AJ, it follows that AJ ⊆ AJ+1 for any J > smax

pτ
+ 1. Thus, as above,

P
X

∞

k�0

I[T trial, true
k < T k] <∞

�

�

�

�

�

E

" #

� P lim
J→∞

X

∞

k�0

I[T trial, true
k < T k] < J

�

�

�

�

�

E

" #

� lim
J→∞

P
X

∞

k�0

I[T trial, true
k < T k] < J

�

�

�

�

�

E

" #

≥ lim
J→∞

1� e
�

pτ (J�1)
2 (1� smax

pτ(J�1))
2

� 1, 

which is the desired conclusion. w
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