
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 2191--2221

WORST-CASE COMPLEXITY OF TRACE WITH INEXACT
SUBPROBLEM SOLUTIONS FOR NONCONVEX SMOOTH

OPTIMIZATION\ast

FRANK E. CURTIS\dagger AND QI WANG\dagger

Abstract. An algorithm for solving nonconvex smooth optimization problems is proposed,
analyzed, and tested. The algorithm is an extension of the trust-region algorithm with contractions
and expansions (TRACE) [F. E. Curtis, D. P. Robinson, and M. Samadi, Math. Program., 162
(2017), pp. 1--32]. In particular, the extension allows the algorithm to use inexact solutions of the
arising subproblems, which is an important feature for solving large-scale problems. Inexactness
is allowed in a manner such that the optimal iteration complexity of \scrO (\epsilon - 3/2) for attaining an
\epsilon -approximate first-order stationary point is maintained, while the worst-case complexity in terms
of Hessian-vector products may be significantly improved as compared to the original TRACE.
Numerical experiments show the benefits of allowing inexact subproblem solutions and that the
algorithm compares favorably to state-of-the-art techniques.

Key words. nonlinear optimization, nonconvex optimization, worst-case iteration complexity,
worst-case evaluation complexity, trust-region methods

MSC codes. 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C60

DOI. 10.1137/22M1492428

1. Introduction. There are a variety of algorithmic methodologies for solving
nonconvex smooth optimization problems that offer state-of-the-art performance when
solving broad subclasses of such problems. Among these, a few offer a worst-case per-
formance guarantee for achieving approximate first-order stationarity that is optimal
with respect to a class of second-order-derivative-based methods for minimizing suf-
ficiently smooth objective functions [7]. These include certain cubic-regularization,
quadratic-regularization, line-search, and trust-region methods; see section 1.2.

In this paper, we propose, analyze, and provide the results of numerical exper-
iments with an extended version of the trust-region algorithm with contractions and
expansions (trace) from [14], which was the first trust-region method to attain the
aforementioned optimal iteration complexity guarantees. In particular, the algorithm
that we propose overcomes the main deficiency of trace, namely, that trace re-
quires exact solutions of the arising trust-region subproblems, which is impractical in
large-scale settings. Our algorithm overcomes this deficiency by employing an itera-
tive linear algebra technique---namely, a Krylov subspace method inspired by [20]---for
solving the arising subproblems and allowing the ``outer"" algorithm for solving the
original problem to use inexact solutions from the ``inner"" algorithm for solving the
trust-region subproblems. This represents a response to the following conjecture from
[14]: ``We expect that such variations of our algorithm can be designed that main-
tain our global convergence guarantees. . . our worst-case complexity bounds and local
convergence guarantees."" In fact, our proposed algorithm goes beyond this conjec-
ture. We not only show that our approach maintains the convergence and worst-case

\ast Received by the editors April 25, 2022; accepted for publication (in revised form) March 23,
2023; published electronically August 18, 2023.

https://doi.org/10.1137/22M1492428
Funding: The work of the authors was supported by the U.S. National Science Foundation

under awards CCF-2008484 and CCF-2139735.
\dagger Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015

USA (frank.e.curtis@gmail.com, qiw420@lehigh.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2191

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1492428
mailto:frank.e.curtis@gmail.com
mailto:qiw420@lehigh.edu

2192 FRANK E. CURTIS AND QI WANG

complexity guarantees of trace but also show that our proposed enhancement of
trace achieves strong worst-case complexity properties in terms of the overall re-
quired number of Hessian-vector products, which are the most expensive operations
required when solving many large-scale problems. We also show that our proposed
enhancement achieves the same local convergence rate as trace if appropriate re-
strictions, stated explicitly in our analysis, are imposed on the inexactness.

Our numerical experiments show that our algorithm offers practical benefits over
other optimal-worst-case-complexity methods for solving nonconvex smooth optimiza-
tion problems. We also demonstrate that our approach offers the computational flex-
ibility in terms of the trade-offs between derivative evaluations and Hessian-vector
products that should be expected of any such method that allows inexact subproblem
solutions. In particular, with more exact subproblem solutions, our algorithm often
requires fewer derivative evaluations at the expense of more Hessian-vector products,
whereas with more inexact subproblem solutions, it often requires fewer Hessian-
vector products at the expense of more derivative evaluations. This allows any user
of our algorithm to tailor its use depending on the relative costs of these operations.

1.1. Notation, problem formulation, and assumptions. We use \BbbR to de-
note the set of real numbers, \BbbR \geq 0 (resp., \BbbR >0) to denote the set of nonnegative (resp.,
positive) real numbers, \BbbR n to denote the set of n-dimensional real vectors, \BbbR m\times n to
denote the set of m-by-n-dimensional real matrices, \BbbS n \subset \BbbR n\times n to denote the set of
n-by-n-dimensional real symmetric matrices, and \BbbN to denote the set of nonnegative
integers. We use I to denote the identity matrix and use ej for j \in \BbbN \setminus \{ 0\} to denote
the jth column of the identity matrix, where in each case the dimension of the object
is determined by the context in which it appears. We use the function | \cdot | to take the
absolute value of a real number and use the function \| \cdot \| to take the 2-norm of a real
vector or to take the induced 2-norm of a real matrix. Given real numbers a and b,
we use a \bot b to mean that ab = 0. Given H \in \BbbS n, we use H \succ 0 (resp., H \succeq 0) to
indicate that H is positive definite (resp., semidefinite).

Given functions \phi : \BbbR \rightarrow \BbbR \geq 0 and \varphi : \BbbR \rightarrow \BbbR \geq 0, the expression \phi (\cdot) = \scrO (\varphi (\cdot))
means that there exists c \in \BbbR >0 such that \phi (\cdot)\leq c\varphi (\cdot). Similarly, given positive real
number sequences \{ \phi k\} and \{ \varphi k\} , the expression \phi k =\scrO (\varphi k) means that there exists
c \in \BbbR >0 such that \phi k \leq c\varphi k for all k \in \BbbN . If, in addition, the sequences have the
property that \{ \phi k/\varphi k\} \rightarrow 0, then one writes \phi k = o(\varphi k).

Our problem of interest is the minimization problem

(1.1) min
x\in \BbbR n

f(x),

where f : \BbbR n \rightarrow \BbbR satisfies Assumption 1.1, stated below. The gradient and Hessian
functions for f are denoted by g := \nabla f : \BbbR n \rightarrow \BbbR and H := \nabla 2f : \BbbR n \rightarrow \BbbS n, respec-
tively. Given the kth iterate in an algorithm for solving (1.1)---call it xk \in \BbbR n--- we
define fk := f(xk), gk := g(xk) \equiv \nabla f(xk), and Hk := H(xk) \equiv \nabla 2f(xk). We also
apply a subscript to refer to other quantities corresponding to the kth iteration; e.g.,
the iterate displacement (i.e., step) is denoted as sk \in \BbbR n. Our algorithm involves
subroutines that have their own iteration indices, and we use additional subscripts to
keep track of quantities associated with the inner iterations of these subroutines.

Assumption 1.1 is made throughout the paper. For trace in [14], a guarantee of
convergence from remote starting points is first proved under a weaker assumption---
namely, without the assumption of Lipschitz continuity of the Hessian function---
prior to worst-case iteration complexity guarantees being proved under an assump-
tion on par with Assumption 1.1. We claim that the same could be done for the
algorithm proposed in this paper, but for the sake of brevity we jump immediately to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2193

Assumption 1.1 in order to prove worst-case complexity properties. As stated later,
these properties, in turn, ensure convergence from remote starting points.

Assumption 1.1 refers, for each index tuple (k, j, l)\in \BbbN \times \BbbN \times \BbbN generated by our
algorithm, to the iterate xk \in \BbbR n and trial step Qk,jtk,j,l \in \BbbR n. The fact that the
assumption refers to these algorithmic quantities should not be seen as a deficiency
of our analysis. After all, our algorithm guarantees monotonic nonincrease of the
objective values, meaning that \{ xk\} is contained in the sublevel set for f with respect
to the initial value f(x0), i.e., \scrL f,0 := \{ x\in \BbbR n : f(x)\leq f(x0)\} . In addition, with each
accepted step, the algorithm requires a decrease in the objective that is proportional to
the cubed norm of the step, so with an objective that is bounded below, it is reasonable
to assume that the accepted steps are bounded in norm, which, in turn, means that
it is reasonable to assume (by construction of our algorithm) that all trial steps are
bounded in norm. Assuming that is the case, the open convex set mentioned in the
assumption would itself be contained in the Minkowski sum of \scrL f,0 and a bounded
set, in light of which the assumption is standard for smooth optimization.

Assumption 1.1. The function f :\BbbR n\rightarrow \BbbR is twice-continuously differentiable and
bounded below by a real number finf \in \BbbR over \BbbR n. In addition, both the gradient
function g :\BbbR n\rightarrow \BbbR n and Hessian function H :\BbbR n\rightarrow \BbbS n are Lipschitz continuous with
Lipschitz constants denoted by gLip \in \BbbR >0 and HLip \in \BbbR >0, respectively, in an open
convex set containing xk and xk +Qk,jtk,j,l for all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN .

A consequence of the Lipschitz continuity of the gradient in Assumption 1.1 is
that the Hessian matrix Hk is bounded in norm for all k \in \BbbN in the sense that there
exists Hmax \in \BbbR >0 such that \| Hk\| \leq Hmax for all k \in \BbbN .

1.2. Literature review. Our focus in this paper is on worst-case complexity
bounds for a second-order-derivative-based algorithm to reach an iterate xk that is
\epsilon -approximate first-order stationary (we call this property \epsilon -stationary throughout
the paper) with respect to (1.1) in the sense that

(1.2) \| \nabla f(xk)\| \leq \epsilon .

Some research articles have also considered worst-case complexity bounds for achiev-
ing second- or even higher-order stationarity, but since our focus in this paper is on
large-scale settings in which requiring such guarantees is impractical, we consider such
complexity bounds outside the scope of our study.

Trust-region methods that employ a traditional updating scheme for the trust-
region radius based on actual-to-quadratic-model-predicted-reduction ratios (see,
e.g., [10, 31]) are known to have a worst-case iteration complexity (and, corre-
spondingly, function- and derivative-evaluation complexities) of \scrO (\epsilon - 2) for achieving
\epsilon -stationarity [6, 12, 24]. Importantly, this complexity is known to be tight for both
first- and second-order variants of such methods [6]. It was first shown by Nesterov
and Polyak that cubic-regularization of a second-order method---an idea that has ap-
peared as far back as Griewank [25]---can achieve an improved iteration complexity
of \scrO (\epsilon - 3/2); see [30]. This complexity for achieving \epsilon -stationarity is now known to
be optimal with respect to a class of second-order-derivative-based methods for min-
imizing sufficiently smooth objectives [6]. After [30], practical variants of the idea
subsequently appeared in papers by Cartis, Gould, and Toint [8, 9] in the form of
the adaptive-regularization-using-cubics (arc) method. Since that time, a few other
schemes have been developed that build upon cubic- or even quadratic-regularization
techniques; see, e.g., [3, 15, 18, 19, 22]. These ideas have also been extended to high-
order regularization of higher-order methods in order to achieve improved complexity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2194 FRANK E. CURTIS AND QI WANG

bounds; see, e.g., the work by Birgin et al. in [2], where it is shown that a pth-order
method with (p + 1)th-order regularization can achieve an iteration complexity of
\scrO (\epsilon - (p+1)/p).

Our work in this paper is motivated by the fact that trust-region methods have
proved to be effective algorithms in practice for solving (large-scale) nonconvex smooth
optimization problems. Indeed, certain trust-region methods that have been designed
without worst-case complexity properties are often found to be some of the most
reliable and efficient methods in practical situations. Therefore, we contend that it
is of interest to explore trust-region methods that do not deviate too much from
contemporary schemes yet offer optimal worst-case complexity properties. The first
such trust-region method to achieve \scrO (\epsilon - 3/2) iteration complexity with respect to
\epsilon -stationarity was trace [14]. Another approach, which tries to adhere closely to
the popular combination of a trust-region method that employs the linear conjugate
gradient (CG) method to solve the arising subproblems, is that in [13]; see also the
prior line-search method proposed by Royer and Wright in [33].

As previously mentioned, our work in this paper is motivated by the goal to im-
prove the computational complexity of trace in large-scale settings where matrix fac-
torizations and/or Hessian-vector products can dominate the computational expense.
The use of iterative linear algebra techniques to exploit potentially inexact subprob-
lem solutions has been a topic of research for decades. Traditional line-search and
trust-region methods that use CG to solve the arising subproblems (approximately)
have been studied and implemented widely [34, 35]. It is well known that with suf-
ficiently exact subproblem solutions, such algorithms can attain the superlinear or
quadratic rates of local convergence of Newton's method [16]. Similar guarantees
have also been shown for arc [8, 9]---see also [2] for the use of inexact subproblem
solutions in higher-order regularization schemes---although the analysis in [8, 9] does
not delve into the computational (i.e., Hessian-vector-product) complexity of the pro-
posed scheme that allows inexact subproblem solutions. Particularly in the case of
trust-region methods when one aims to solve the subproblems to arbitrary accuracy,
the use of the Lanczos method has been well studied [20], for which it is known that
if the solution of a trust-region subproblem in n variables lies on the boundary of
the trust-region radius, then the subproblem is equivalent to an extremal eigenvalue
problem of a matrix of size 2n [1]. Convergence of the Lanczos method for estimat-
ing eigenvalues has been analyzed in [27, 28], the results of which have been used in
the analysis of various optimization algorithms; see, e.g., [5, 13, 32, 33]. Complexity
guarantees for the Lanczos method specifically for trust-region methods have been
studied in [4, 23, 26, 36]. Among these works, an upper bound on the (subproblem)
objective function error at every Lanczos iteration is proved in [4], and a bound on the
objective difference between any two iterations is derived in [23]. An upper bound on
the residual at every iteration is proved in [23]; this result is used directly in this paper
to derive a complexity bound in terms of Hessian-vector products of our algorithm.
Finally, we remark that the algorithm proposed in [15] can be viewed as one possible
extension of trace that employs inexact subproblem solutions. In fact, it is more
appropriately referred to as a generalization of trace since other algorithms, such as
arc, can be viewed as special cases of it. However, as in [8, 9], the analysis in [15]
does not prove computational complexity guarantees for the generalized framework,
which is a primary motivation of the work in this paper.

Along with our concluding remarks in section 5, we provide some additional dis-
cussion about the worst-case complexity properties of our algorithm and how they
compare with those of other algorithms in the literature.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2195

1.3. Contributions. The work in this paper builds on the ideas and analyses
provided in the aforementioned literature but offers a unique contribution since we
provide the first inexact variant of trace, a method that we call i-trace, that offers
iteration and gradient evaluation complexity bounds that match those of trace. We
also use results about the complexity of the Lanczos algorithm to show that i-trace
offers state-of-the-art complexity in terms of Hessian-vector products when solving
large-scale problem instances. Our theoretical analyses are backed by empirical ev-
idence showing that our proposed i-trace method offers computational flexibility
beyond that offered by trace and compares favorably against implementations of
two other optimal-worst-case-complexity methods that also allow inexact subproblem
solutions. We attribute this behavior to the fact that i-trace adheres closely to a
traditional trust-region strategy in that to achieve optimal iteration complexity, it
adaptively uses a combination of explicit and implicit regularizations of the Hessian
matrices in the arising subproblems.

1.4. Organization. Section 2 contains a description of our algorithm and its
associated subroutines. (Our description includes well-known characterizations and
properties of Krylov subspace, specifically Lanczos-based, iterative methods for solv-
ing subproblems arising in optimization algorithms, for which we refer the reader to
[11, 20, 36]). Section 3 contains our convergence and worst-case complexity analyses
of the algorithm. The results of numerical experiments are provided in section 4, and
concluding remarks are provided in section 5.

2. Algorithm description. Each iteration of i-trace involves the minimiza-
tion of a second-order Taylor series model of f at the current iterate within a trust
region; specifically, in iteration k \in \BbbN , the model mk :\BbbR n\rightarrow \BbbR is defined by

mk(s) = fk + gTk s+
1
2s

THks.

Building on trace, the trust region is defined either explicitly through a trust-region
radius \delta \in \BbbR >0 and a trust-region constraint of the form \| s\| \leq \delta or implicitly through
a regularization parameter \lambda \in \BbbR >0 and a regularization term 1

2\lambda \| s\|
2, where \lambda is

sufficiently large such that Hk + \lambda I \succ 0, which, in turn, means that the regularized
model mk(\cdot) + 1

2\lambda \| \cdot \|
2 = fk + gTk (\cdot) + 1

2 (\cdot)
T (Hk + \lambda I)(\cdot) is strongly convex.

However, unlike trace, the main idea behind i-trace is to allow an approximate
subproblem solution to be considered acceptable. Specifically, in each iteration k \in \BbbN ,
the algorithm might only consider, for some j \in \{ 0, . . . , n - 1\} , the solution of a
subproblem over the jth-order Krylov subspace defined by gk and Hk, namely,

\scrK k,j := span\{ gk,Hkgk, . . . ,H
j
kgk\} .

Using the Lanczos process, i-trace iteratively constructs orthonormal bases for such
subspaces for increasing j as needed. Let such a basis be given by

Qk,j :=
\bigl[
qk,0 qk,1 \cdot \cdot \cdot qk,j

\bigr]
\in \BbbR n\times (j+1).

With this basis constructed using Lanczos, one finds for any (k, j)\in \BbbN \times \{ 0, . . . , n - 1\}
that there exists tridiagonal Tk,j \in \BbbR (j+1)\times (j+1) such that with \gamma k,0\leftarrow \| gk\| one has

Tk,j =QT
k,jHkQk,j and \gamma k,0e1 =QT

k,jgk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2196 FRANK E. CURTIS AND QI WANG

Overall, for generated (k, j) \in \BbbN \times \{ 0, . . . , n - 1\} , the algorithm considers the trust-
region subproblem for a given trust-region radius \delta \in \BbbR >0 defined as

\scrS k,j(\delta) :
\biggl[
min

t\in \BbbR j+1
\gamma k,0e

T
1 t+

1

2
tTTk,jt s.t. \| t\| \leq \delta

\biggr]
and/or the regularized subproblem for a given regularization parameter \lambda \in \BbbR >0

(sufficiently large such that Tk,j + \lambda I \succ 0) defined as

\scrR k,j(\lambda) :

\biggl[
min

t\in \BbbR j+1
\gamma k,0e

T
1 t+

1
2 t

T (Tk,j + \lambda I)t

\biggr]
.

(We drop the constant objective term fk in both subproblems since it does not affect
the solution sets.) The key feature of these subproblems is the fact that the matrix
Tk,j is tridiagonal, meaning that both can be solved to high accuracy (i.e., exactly for
the purposes of our theoretical analysis) in an efficient manner. In particular, \scrS k,j(\delta)
can be solved using the Mor\'e--Sorensen method [29], while \scrR k,j(\lambda) can be solved
by solving the (nonsingular) tridiagonal system (Tk,j + \lambda I)t = - \gamma k,0e1. For future
reference, we note that necessary and sufficient conditions for global optimality with
respect to \scrS k,j(\delta) are that (tk,j , \lambda k,j)\in \BbbR j+1 \times \BbbR is globally optimal if and only if

\gamma k,0e1 + (Tk,j + \lambda k,jI)tk,j = 0,(2.1a)

(Tk,j + \lambda k,jI)\succeq 0,(2.1b)

and 0\leq \lambda k,j \bot (\delta - \| tk,j\|)\geq 0.(2.1c)

Each iteration k \in \BbbN of i-trace begins by computing a solution of \scrS k,j(\delta k) for
some \delta k \in \BbbR >0 and sufficiently large j \in \BbbN . In particular, i-trace employs the trun-
cated Lanczos trust-region (tltr) algorithm (see [11, Algorithm 5.2.1]) that solves
trust-region subproblems over Krylov subspaces of increasing size (i.e., increasing j)
until a termination condition holds. We state our variant of the algorithm in de-
tail as Algorithm 2.1, which generates the aforementioned quantities \{ Qk,j\} j\in \BbbN and
\{ Tk,j\} j\in \BbbN as well as some auxiliary values required for Lanczos. For our purposes
with i-trace, the termination conditions that we use are written in the full space as

gk + (Hk + \lambda k,jI)sk,j = rk,j ,(2.2a)

rTk,jsk,j \leq 0,(2.2b)

sTk,j(Hk + \lambda k,jI)sk,j \geq 0,(2.2c)

and 0\leq \lambda k,j \bot (\delta k - \| sk,j\|)\geq 0(2.2d)

along with

either \| rk,j\| \leq \xi 1\| sk,j\| 2(2.3a)

or both \| rk,j\| \leq \xi 2min\{ 1,\| sk,j\| \} \| gk\| (2.3b)

and 1\leq \xi 3min\{ 1,\| sk,j\| \} \| Tk,j + \lambda k,jI\| ,(2.3c)

where (\xi 1, \xi 2, \xi 3)\in \BbbR >0\times (0,1)\times \BbbR >0 are user-prescribed parameters. (For simplicity of
software implementation, i-trace can always require (2.3a) and simply ignore (2.3b)--
(2.3c), but for the sake of generality in our analysis and computational flexibility,
we show that imposing (2.3) leads to the same complexity guarantees. This is of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2197

interest since, in some situations in practice, the conditions in (2.3b)--(2.3c) may be
less restrictive than (2.3a).) The algorithm may also impose tighter residual conditions
that are similar to ones imposed in inexact Newton methods [16] to achieve a fast rate
of local convergence; these are specified along with our analysis in section 3.3.

Generally speaking, smaller values of \xi 1 and \xi 2 imply that more accurate subprob-
lem solutions must be computed, which, in turn, may mean that fewer iterations are
required to satisfy (1.2) for a given \epsilon . However, this likely comes at the cost of more
computational effort in each iteration. On the other hand, a larger value of \xi 1 and a
value of \xi 2 near 1 imply that less accurate subproblem solutions must be computed.
This may reduce the per-iteration computational cost, although it may also mean that
more iterations need to be performed to satisfy (1.2). As for other inexact algorithms,
this presents a trade-off that we explore in our numerical experiments in section 4,
specifically with the values (\xi 1, \xi 2) \in \{ (0.1,0.01), (1,0.1), (9,0.9)\} , which represent a
wide range of possible choices in practice. As for \xi 3 and condition (2.3c), these are
needed for theoretical reasons (see Lemma 3.18 and the discussion after that lemma
to understand the role that (2.3c) plays), but we suspect that it may be beneficial in
practice to set \xi 3 to a large value so that (2.3c) is satisfied easily.

Algorithm 2.1 generates, for each generated value of j \in \{ 0, . . . , n - 1\} , the primal-
dual solution (tk,j , \lambda k,j) of \scrS k,j(\delta k), the primal solution of which defines the full-space
trial step sk,j \in \BbbR n, which, in turn, defines the residual vector rk,j \in \BbbR n by (2.2a). If
rk,j = 0, then (2.2) is essentially the set of necessary and sufficient conditions for the
global minimization of mk(s) over s\in \BbbR n such that \| s\| \leq \delta k, with the only difference
being the relaxed condition that sTk,j(Hk +\lambda k,jI)sk,j \geq 0 rather than (Hk +\lambda k,j)\succeq 0.
We show in our theoretical analysis that, by the construction of Algorithm 2.1, the
conditions in (2.2) are satisfied for all generated values of j, meaning that the only
conditions that need to be checked explicitly are those in (2.3), the first of which is
guaranteed to hold at iteration n - 1 if it is not satisfied earlier. Our analysis shows
that, in the reduced space, (2.3) is equivalent (since \mu k,j = \| rk,j\| , \| tk,j\| = \| sk,j\| , and
\gamma k,0 = \| gk\|) to

either \mu k,j \leq \xi 1\| tk,j\| 2(2.4a)

or both \mu k,j \leq \xi 2min\{ 1,\| tk,j\| \} \gamma k,0(2.4b)

and 1\leq \xi 3min\{ 1,\| tk,j\| \} \| Tk,j + \lambda k,jI\| ,(2.4c)

which are the conditions that are actually checked in the algorithm. (As previously
mentioned for (2.3a), for simplicity, i-trace can always require (2.4a) and simply
ignore (2.4b)--(2.4c), but for the sake of generality in our analysis and computational
flexibility, we show that imposing (2.4) as it is stated leads to the same complexity
guarantees.)

Upon completion of the call to Algorithm 2.1 in iteration k \in \BbbN , i-trace turns
to determine whether the current trial solution should be accepted, whether an al-
ternative trial solution should be computed over the current Krylov subspace after
an expansion and/or contraction(s) of the trust-region radius, or whether the Krylov
subspace should be increased in dimension. This is done by first calling a subroutine
that we call ``find decrease step"" (fds), stated as Algorithm 2.2. This method checks
conditions derived from those in trace and ultimately produces a step---potentially
after expansion and/or contraction(s) of the trust-region radius---that offers sufficient
decrease in the objective and a ratio between the subproblem's dual solution and the
norm of the subproblem's primal solution that is sufficiently small, all while keeping

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2198 FRANK E. CURTIS AND QI WANG

Algorithm 2.1 tltr (an adaptation of [11, Algorithm 5.2.1]).

Parameters: (\xi 1, \xi 2, \xi 3)\in \BbbR >0 \times (0,1)\times \BbbR >0 from i-trace (Algorithm 2.3)
Input: yk,0 (= gk), \gamma k,0 (= \| gk\|), Hk, \delta k
1: qk, - 1\leftarrow 0, Qk, - 1\leftarrow []
2: for j = 0,1, . . . do
3: qk,j\leftarrow 1

\gamma k,j
yk,j

4: Qk,j\leftarrow
\bigl[
Qk,j - 1 qk,j

\bigr]
5: \theta k,j\leftarrow qTk,jHkqk,j
6: if j = 0 then
7: Tk,j\leftarrow

\bigl[
\theta k,0

\bigr]
8: else

9: Tk,j\leftarrow

\left[Tk,j - 1

0
...

\gamma k,j
0 \cdot \cdot \cdot \gamma k,j \theta k,j

\right]
10: end if
11: yk,j+1\leftarrow Hkqk,j - \theta k,jqk,j - \gamma k,jqk,j - 1

12: \gamma k,j+1\leftarrow \| yk,j+1\|
13: compute (tk,j , \lambda k,j) by solving \scrS k,j(\delta k) (which gives sk,j =Qk,jtk,j)
14: \mu k,j\leftarrow \gamma k,j+1| eTj+1tk,j | (= \| rk,j\| where rk,j = gk + (Hk + \lambda k,jI)sk,j)
15: if (2.4) (meaning (2.3)) holds then since (2.2) also holds (see Lemma 3.2)
16: break
17: end if
18: end for
19: return (j, tk,j , \lambda k,j ,Qk,j , Tk,j , yk,j+1, \gamma k,j+1, \mu k,j)

the Krylov subspace fixed. The notion of sufficient decrease in the objective, as in
trace, uses a function-decrease-to-step-norm ratio of the form

(2.5) \rho k(s) :=
fk - f(xk + s)

\| s\| 3
.

See [14, section 2.4] for motivation for the use of this ratio for this purpose; in short,
using a step acceptance ratio of this form ensures that accepted steps yield a reduction
in the objective on the order that is needed to achieve optimal complexity.

As previously mentioned, the matrix Tk,j in any call to fds is tridiagonal, mean-
ing that the arising subproblems (i.e., instances of \scrS k,j and/or \scrR k,j) can be solved
accurately in an efficient manner. The only aspect of the algorithm that might raise
suspicion is the computation requested in lines 15--16. However, as for trace (see
[14, Appendix]), this computation is always well posed (see Lemma 3.3 in the next
subsection) and is no more expensive than solving an instance of \scrS k,j or \scrR k,j .

If the full-space solution corresponding to the output from fds maintains the
desired level of accuracy in the full space (recall (2.4)), then---since it has already
been shown to yield sufficient decrease and a sufficiently small ratio between the
subproblem's dual solution and the norm of the step---i-trace accepts the step and
proceeds to the next iteration. Otherwise, the dimension of the Krylov subspace is
increased---again using the Lanczos process---and fds is called again to produce a
new trial step. These details can be seen in i-trace; see Algorithm 2.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2199

Algorithm 2.2 Find decrease step (fds).

Parameters: \eta \in (0,1), \sigma \in (0,\infty), \sigma \in (\sigma ,\infty), \gamma C \in (0,1), and \gamma \lambda \in (1,\infty) from
i-trace (Algorithm 2.3)

Input: tk,j,0, \lambda k,j,0, Qk,j , Tk,j , \gamma k,0, \gamma k,j+1, \mu k,j,0, \delta k,j,0, \sigma k,j,0
1: for l= 0,1, . . . do

2: if \rho k(Qk,jtk,j,l)\geq \eta and
\lambda k,j,l

\| tk,j,l\| \leq \sigma k,j,l then [decrease step found]

3: return (tk,j,l, \lambda k,j,l, \mu k,j,l, \delta k,j,t, \sigma k,j,l)

4: else if \rho k(Qk,jtk,j,l)\geq \eta and
\lambda k,j,l

\| tk,j,l\| >\sigma k,j,l then [expand trust region]

5: \delta k,j,l+1\leftarrow \lambda k,j,l

\sigma k,j,l

6: compute (tk,j,l+1, \lambda k,j,l+1) by solving \scrS k,j(\delta k,j,l+1)
7: \sigma k,j,l+1\leftarrow \sigma k,j,l
8: else (i.e., \rho k(Qk,jtk,j,l)< \eta) [contract trust region]
9: if \lambda k,j,l <\sigma \| tk,j,l\| then
10: \^\lambda k,j,l+1\leftarrow \lambda k,j,l + (\sigma \gamma k,0)

1/2

11: compute \^tk,j,l+1 by solving \scrR k,j(\^\lambda k,j,l+1)

12: if
\^\lambda k,j,l+1

\| \^tk,j,l+1\|
\leq \sigma then

13: (tk,j,l+1, \lambda k,j,l+1, \delta k,j,l+1)\leftarrow (\^tk,j,l+1, \^\lambda k,j,l+1,\| \^tk,j,l+1\|)
14: else (i.e.,

\^\lambda k,j,l+1

\| \^tk,j,l+1\|
>\sigma)

15: compute \=\lambda k,j,l+1 \in (\lambda k,j,l, \^\lambda k,j,l+1) so that the solution

16: tk,j,l+1 of \scrR k,j(\=\lambda k,j,l+1) yields \sigma <
\=\lambda k,j,l+1

\| tk,j,l+1\|
<\sigma

17: (tk,j,l+1, \lambda k,j,l+1, \delta k,j,l+1)\leftarrow (tk,j,l+1, \=\lambda k,j,l+1,\| tk,j,l+1\|)
18: end if
19: else (i.e., \lambda k,j,l \geq \sigma \| tk,j,l\|)
20: \^\lambda k,j,l+1\leftarrow \gamma \lambda \lambda k,j,l
21: compute \^tk,j,l+1 by solving \scrR k,j(\^\lambda k,j,l+1)
22: if \| \^tk,j,l+1\| \geq \gamma C\delta k,j,l then
23: (tk,j,l+1, \lambda k,j,l+1, \delta k,j,l+1)\leftarrow (\^tk,j,l+1, \^\lambda k,j,l+1,\| \^tk,j,l+1\|)
24: else (i.e., \| \^tk,j,l+1\| <\gamma C\delta k,j,l)
25: \delta k,j,l+1\leftarrow \gamma C\delta k,j,l
26: compute (tk,j,l+1, \lambda k,j,l+1) by solving \scrS k,j(\delta k,j,l+1)
27: end if
28: end if

29: \sigma k,j,l+1\leftarrow max
\Bigl\{
\sigma k,j,l,

\lambda k,j,l+1

\| tk,j,l+1\|

\Bigr\}
30: end if
31: \mu k,j,l+1\leftarrow \gamma k,j+1| eTj+1tk,j,l+1|
32: end for

We close this section by noting that trace also generates an auxiliary sequence
(denoted as \{ \Delta k\} \subset \BbbR >0 in [14]) that influences the step acceptance mechanism,
which in the context of i-trace are the conditions in fds for determining whether a
decrease step has been found or whether the trust-region radius should be expanded or
contracted. The role played by this sequence is to ensure that the algorithm converges
from remote starting points even if one does not assume that the Hessian function is
Lipschitz continuous over the path generated by the algorithm iterates. One could
introduce such an auxiliary sequence for i-trace that would play this same role.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2200 FRANK E. CURTIS AND QI WANG

Algorithm 2.3 i-trace.

Parameters: (\xi 1, \xi 2, \xi 3)\in \BbbR >0 \times (0,1)\times \BbbR >0, \eta \in (0,1), \sigma \in (0,\infty), \sigma \in (\sigma ,\infty),
\gamma C \in (0,1), \gamma E \in (1,\infty), and \gamma \lambda \in (1,\infty)

Input: x0 \in \BbbR n, \delta 0 \in (0,\infty), \sigma 0 \in [\sigma ,\sigma]
1: for k= 0,1, . . . do
2: \gamma k,0\leftarrow \| gk\|
3: (j, tk,j , \lambda k,j ,Qk,j , Tk,j , yk,j+1, \gamma k,j+1, \mu k,j)\leftarrow TLTR(gk, \gamma k,0,Hk, \delta k)
4: loop
5: (tk,j , \lambda k,j , \mu k,j , \=\delta k, \=\sigma k)\leftarrow FDS(tk,j , \lambda k,j ,Qk,j , Tk,j , \gamma k,0, \gamma k,j+1, \mu k,j , \delta k, \sigma k)
6: if (2.4) (equivalently, (2.3)) holds then
7: set sk\leftarrow Qk,jtk,j
8: break
9: else
10: j\leftarrow j + 1
11: qk,j\leftarrow 1

\gamma k,j
yk,j

12: Qk,j\leftarrow
\bigl[
Qk,j - 1 qk,j

\bigr]
13: \theta k,j\leftarrow qTk,jHkqk,j

14: Tk,j\leftarrow

\left[Tk,j - 1

0
...

\gamma k,j
0 \cdot \cdot \cdot \gamma k,j \theta k,j

\right]
15: compute (tk,j , \lambda k,j) by solving \scrS k,j(\delta k) (which gives sk,j =Qk,jtk,j)
16: yk,j+1\leftarrow Hkqk,j - \theta k,jqk,j - \gamma k,jqk,j - 1

17: \gamma k,j+1\leftarrow \| yk,j+1\|
18: \mu k,j\leftarrow \gamma k,j+1| eTj+1tk,j | (= \| rk,j\| where rk,j = gk + (Hk + \lambda k,jI)sk,j)
19: end if
20: end loop
21: set xk+1\leftarrow xk + sk
22: set \delta k+1\leftarrow max\{ \=\delta k, \gamma E\| sk\| \}
23: set \sigma k+1\leftarrow \=\sigma k
24: end for

However, as mentioned, for the sake of brevity in this paper, we do not analyze the
global convergence properties of the algorithm under this more general setting but
instead have chosen to include upfront (in Assumption 1.1) a Lipschitz continuity
assumption for the Hessian function. In this setting, the auxiliary sequence is not
needed to prove the results in this paper, so we have not included it.

3. Convergence and complexity analyses. In this section, we prove con-
vergence and worst-case complexity results for i-trace (Algorithm 2.3) under
Assumption 1.1. We also add the following assumption, which is reasonable for the
purposes of our analysis because if the algorithm reaches an iteration in which the
gradient is zero, then (in a finite number of iterations) it satisfies (1.2) for any \epsilon \in \BbbR >0.

Assumption 3.1. For all generated k \in \BbbN , one finds that gk \not = 0.

We begin by proving preliminary results that show that the algorithm is well
posed in the sense that it will generate an infinite sequence of iterates. These results
rely heavily on the algorithm's use of the Lanczos process for generating the basis

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2201

matrices that define the reduced-space subproblems. We then prove our first main set
of results on the algorithm's worst-case complexity properties to approximate first-
order stationarity (recall (1.2)). A consequence of these results is that the algorithm
converges from remote starting points. Finally, we prove that, as an (inexact) second-
order method, i-trace can achieve a rate of local convergence comparable to trace.

In various parts of our analysis, we refer to results in ``standard trust-region
theory,"" such as on the relationship between primal and dual trust-region subproblem
solutions. For the sake of brevity, we do not cite particular lemmas for all such results;
the reader may refer to textbooks such as [11, 31] for the results that we use.

3.1. Preliminary results. In this subsection, we show that i-trace is well
posed in the sense that, for all generated k \in \BbbN , the for loop in tltr terminates
finitely, each call to fds terminates finitely, and the inner loop in i-trace terminates
finitely, which together show that i-trace reaches iteration k + 1. Inductively, this
means that the algorithm generates iterates ad infinitum.

Supposing that i-trace has reached iteration k \in \BbbN , our first results in this
subsection show that the call to tltr terminates finitely. Our presentation of this
subroutine is based on the claim that \mu k,j = \| rk,j\| for all generated j, where for each
such j the vector rk,j is the residual corresponding to sk,j = Qk,jtk,j as defined in
(2.2a). The following lemma, proved as [20, Theorem 5.1], formalizes this claim.

Lemma 3.1 ([20, Theorem 5.1]). For all generated k \in \BbbN , the call to tltr yields

rk,j = (Hk + \lambda k,jI)Qk,jtk,j + gk = \gamma k,j+1e
T
j+1tk,jqk,j+1 for all generated j \in \BbbN ,

from which it follows that \mu k,j\leftarrow \gamma k,j+1| eTj+1tk,j | = \| rk,j\| for all such j.

We now show that any call to tltr by i-trace terminates finitely.

Lemma 3.2. For all generated k \in \BbbN , the call to tltr yields (sk,j , \lambda k,j) satisfy-
ing (2.2) for all generated j \in \BbbN and terminates finitely; more precisely, the call to
tltr terminates in iteration j for some j \in \{ 0, . . . , n - 1\} .

Proof. Consider arbitrary k \in \BbbN generated by i-trace. Since it is based on the
Lanczos process, it is well known (see, e.g., [36]) that if tltr were to continue to
iterate, then the dimension of the Krylov subspace \scrK k,j would increase by 1 whenever
j increases by 1 until it reaches some j \in \{ 0, . . . , n - 1\} corresponding to which one
finds that

(3.1)

\gamma k,j > 0 for all j \in \{ 0, . . . , j\} ,
\gamma k,j+1 = 0, and

dim(\scrK k,j) = dim(\scrK k,j+1) = j + 1.

Our goal is to show that (sk,j , \lambda k,j) satisfies (2.2) for all generated j \in \{ 0, . . . , j\} and
that tltr terminates by iteration j at the latest.

Consider arbitrary generated j \in \{ 0, . . . , j\} . It follows by Lemma 3.1 that (2.2a)
holds. In addition, by Lemma 3.1 and the fact that QT

k,jqk,j+1 = 0, one finds that

rTk,jsk,j =
\bigl(
\gamma k,j+1e

T
j+1tk,jqk,j+1

\bigr) T
Qk,jtk,j = 0,

meaning that (2.2b) holds. Moreover, since (tk,j , \lambda k,j) is a globally optimal solution
of \scrS k,j(\delta k), it satisfies (2.1b), which, in turn, means that sk,j \equiv Qk,jtk,j and \lambda k,j yield

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2202 FRANK E. CURTIS AND QI WANG

sTk,j(Hk + \lambda k,jI)sk,j = tTk,j
\bigl(
QT

k,jHkQk,j + \lambda k,jQ
T
k,jQk,j

\bigr)
tk,j

= tTk,j(Tk,j + \lambda k,jI)tk,j \geq 0,

meaning that (2.2c) holds. Finally, the fact that (tk,j , \lambda k,j) satisfies (2.1c) means that
(sk,j , \lambda k,j) (satisfying \| sk,j\| = \| Qk,jtk,j\| = \| tk,j\|) satisfies (2.2d). Overall, it has
been shown that (2.2a)--(2.2d) hold for all j \in \{ 0, . . . , j\} .

To complete the proof, all that remains is to observe that for j = j, one finds from
Lemma 3.1 and (3.1) that \mu k,j = \| rk,j\| = 0 \leq \xi \| tk,j\| 2, meaning that (2.4a) holds.

Hence, tltr would terminate in iteration j if it does not terminate earlier.

Our next set of results show that any call to fds terminates finitely. First, it is
clear that each line of fds is well posed---since each line involves either a straightfor-
ward computation or the computation of a solution of a well-defined subproblem---
with the only possible exception being the computation requested in lines 15--16 of
fds. The fact that this computation is well posed is proved in the following lemma.

Lemma 3.3. For all generated (k, j, l) \in \BbbN \times \BbbN \times \BbbN such that lines 15--16 of fds
are reached, the required computation is well posed.

Proof. Consider arbitrary (k, j, l) \in \BbbN \times \BbbN \times \BbbN such that lines 15--16 of fds
are reached. By construction, one must have \lambda k,j,l < \sigma \| tk,j,l\| , \lambda k,j,l < \^\lambda k,j,l+1,
and \sigma \| \^tk,j,l+1\| < \^\lambda k,j,l+1, where (tk,j,l, \lambda k,j,l) solves \scrS k,j(\delta k,j,l), and \^tk,j,l+1 solves
\scrR k,j(\^\lambda k,j,l+1). It follows by standard trust-region theory that the ratio function
\phi : [\lambda k,j,l,\infty] \rightarrow \BbbR defined by \phi (\lambda) = \lambda /\| tk,j(\lambda)\| with tk,j(\lambda) defined as the so-
lution of \scrR k,j(\lambda) is monotonically increasing. Therefore, along with the aforemen-
tioned inequalities, it follows that there exists \=\lambda k,j,l+1 such that the solution tk,j,l+1

of \scrR k,j(\=\lambda k,j,l+1) yields \sigma <
\=\lambda k,j,l+1

\| tk,j,l+1\|
<\sigma , as claimed.

Now, having shown that each line of fds is well posed, we proceed to show that
the for loop of the subroutine terminates finitely. We next show that, as is comparable
in trace, for all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN the pair (tk,j,l, \lambda k,j,l) is a primal-dual
globally optimal solution of \scrS k,j(\delta k,j,l). We also show that each such pair corresponds
to a pair satisfying (2.2), although (2.4) might not hold.

Lemma 3.4. For all generated (k, j, l) \in \BbbN \times \BbbN \times \BbbN , one finds that the pair
(tk,j,l, \lambda k,j,l) satisfies (2.1), and the pair (Qk,jtk,j,l, \lambda k,j,l) (with Qk,jtk,j,l in place of
sk,j and \lambda k,j,l in place of \lambda k,j) satisfies (2.2).

Proof. Consider arbitrary generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN . The desired conclusion
about (tk,j,l, \lambda k,j,l) follows since it is obtained either directly by solving \scrS k,j(\delta k,j,l) or
by solving \scrR k,j(\lambda k,j,l) to obtain tk,j,l and then subsequently setting \delta k,j,l \leftarrow \| tk,j,l\| ,
which again means that (tk,j,l, \lambda k,j,l) solves \scrS k,j(\delta k,j,l). As for the second desired
conclusion, first note from Lemma 3.2 that it holds for l = 0. Then, using the same
logic as in the proof of the first desired conclusion, observe for the index l of interest
that the pair (tk,j,l, \lambda k,j,l) satisfies (2.1) with the same (Qk,j , Tk,j , \gamma k,0, \gamma k,j+1) as for
l = 0; all that has changed between l = 0 and the value of l of interest is the trust-
region radius. Hence, the desired conclusion follows using the same logic as in the
proof of Lemma 3.2, except that (2.4a) (hence, (2.4)) might no longer be satisfied.

Our next lemma shows that each trial step is nonzero, the proof of which is merely
an adaptation of [14, Lemma 3.2] to the setting of i-trace.

Lemma 3.5. For all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN , one finds \| tk,j,l\| > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2203

Proof. Consider arbitrary generated (k, j, l) \in \BbbN \times \BbbN \times \BbbN . By Lemma 3.4,
(tk,j,l, \lambda k,j,l) is a primal-dual globally optimal solution of \scrS k,j(\delta k,j,l). If Tk,j = 0,
then (2.1a) implies \gamma k,0e1 + \lambda k,j,ltk,j,l = 0, which, since \gamma k,0 = \| gk\| \not = 0 (under
Assumption 3.1), means that \lambda k,j,l \not = 0 and tk,j,l \not = 0, from which the desired conclu-
sion holds. On the other hand, if Tk,j \not = 0, then there are two cases. If \| tk,j,l\| = \delta k,j,l,
then since \delta k,j,l > 0 by construction of the algorithm the desired conclusion holds;
otherwise, \| tk,j,l\| < \delta k,j,l, in which case (2.1a) and (2.1c) imply \gamma k,0e1+Tk,jtk,j,l = 0,
from which it follows (under Assumption 3.1) that \| tk,j,l\| \geq \gamma k,0/\| Tk,j\| > 0.

We now show that if a computed dual subproblem solution is sufficiently large
relative to the norm of the corresponding primal subproblem solution, then the trust-
region constraint must be active, and sufficient decrease is offered.

Lemma 3.6. For all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN , if (tk,j,l, \lambda k,j,l) yields

(3.2) \lambda k,j,l \geq (HLip + 2\eta)\| tk,j,l\| ,

then \| tk,j,l\| = \delta k,j,l and \rho k(Qk,jtk,j,l)\geq \eta .
Proof. Consider arbitrary generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN . By Lemma 3.5, one finds

that \| tk,j,l\| > 0, implying that \lambda k,j,l \geq (HLip + 2\eta)\| tk,j,l\| > 0. Hence, by Lemma 3.4
and (2.1c), one finds that \| tk,j,l\| = \delta k,j,l, which is the first desired conclusion. Now
observe that Assumption 1.1 and Taylor's theorem imply that there exists a point xk
on the line segment [xk, xk +Qk,jtk,j,l] such that

mk(Qk,jtk,j,l) - f(xk +Qk,jtk,j,l)

= fk + gTk Qk,jtk,j,l +
1
2 t

T
k,j,lQ

T
k,jHkQk,jtk,j,l - f(xk +Qk,jtk,j,l)

= 1
2 t

T
k,j,lQ

T
k,j(Hk - H(xk))Qk,jtk,j,l \geq - 1

2HLip\| tk,j,l\| 3.

On the other hand, since (Qk,jtk,j,l, \lambda k,j,l) satisfies (2.2a)--(2.2c) by Lemma 3.4, it
follows that for some rk,j,l \in \BbbR n such that tTk,j,lQ

T
k,jrk,j,l \leq 0 one finds

fk - mk(Qk,jtk,j,l)

= - gTk Qk,jtk,j,l - tTk,j,lQT
k,jHkQk,jtk,j,l +

1
2 t

T
k,j,lQ

T
k,jHkQk,jtk,j,l

= - tTk,j,lQT
k,j(gk +HkQk,jtk,j,l) +

1
2 t

T
k,j,lQ

T
k,jHkQk,jtk,j,l

= - tTk,j,lQT
k,j(rk,j,l - \lambda k,j,lQk,jtk,j,l) +

1
2 t

T
k,j,lQ

T
k,jHkQk,jtk,j,l

= - tTk,j,lQT
k,jrk,j,l +

1
2 t

T
k,j,lQ

T
k,j(Hk + \lambda k,j,lI)Qk,jtk,j,l +

1
2\lambda k,j,l\| tk,j,l\|

2

\geq 1
2\lambda k,j,l\| tk,j,l\|

2.

Therefore, if (3.2) holds, then one finds that

\rho k(Qk,jtk,j,l) =
fk - f(xk +Qk,jtk,j,l)

\| Qk,jtk,j,l\| 3

=
fk - mk(Qk,jtk,j,l)

\| tk,j,l\| 3
+
mk(Qk,jtk,j,l) - f(xk +Qk,jtk,j,l)

\| tk,j,l\| 3

\geq
 - 1

2HLip\| tk,j,l\| 3 + 1
2\lambda k,j,l\| tk,j,l\|

2

\| tk,j,l\| 3
\geq - 1

2HLip +
1
2 (HLip + 2\eta) = \eta ,

as desired.

We now partition the set of indices generated within any call to fds and proceed
to show that the number of each type of iteration is finite. In particular, let us define,
for all generated (k, j)\in \BbbN \times \BbbN such that fds is called, the index sets

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2204 FRANK E. CURTIS AND QI WANG

\scrA k,j :=

\biggl\{
l \in \BbbN : index l is reached and \rho k(Qk,jtk,j,l)\geq \eta and

\lambda k,j,l
\| tk,j,l\|

\leq \sigma k,j,l
\biggr\}
,

\scrE k,j :=
\biggl\{
l \in \BbbN : index l is reached and \rho k(Qk,jtk,j,l)\geq \eta and

\lambda k,j,l
\| tk,j,l\|

>\sigma k,j,l

\biggr\}
,

and \scrC k,j := \{ l \in \BbbN : index l is reached and \rho k(Qk,jtk,j,l)< \eta \} ,

which, respectively, represent the indices corresponding to accepted, expansion, and
contraction steps in the call to fds corresponding to (k, j). It follows trivially by
construction of fds that | \scrA k,j | \leq 1. Our next lemma shows that if an expansion or
contraction step occurs, then the subsequent step cannot be an expansion step. This
is a critical feature of trace as well; see [14, Lemma 3.7].

Lemma 3.7. For all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN , if l \in \scrE k,j\cup \scrC k,j, then (k, j, l+1)
is generated, and (l+ 1) /\in \scrE k,j.

Proof. Consider arbitrary generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN such that l \in \scrE k,j \cup \scrC k,j .
It follows by construction of fds that iteration l+ 1 will be reached.
Case 1: \lambda k,j,l+1 = 0. Since \sigma k,j,0 > 0 by construction of i-trace, it follows by lines 7

and 29 in fds that \sigma k,j,l+1 > 0. Hence, one finds that \sigma k,j,l+1 > 0 =
\lambda k,j,l+1

\| tk,j,l\| ,

from which it follows that (t+ 1) /\in \scrE k,j .
Case 2: \lambda k,j,l+1 > 0. By Lemma 3.4 and (2.1c), it follows that \| tk,j,l+1\| = \delta k,j,l+1. If

l \in \scrE k,j , then one finds that \| tk,j,l+1\| = \delta k,j,l+1 =
\lambda k,j,l

\sigma k,j,l
> \| tk,j,l\| = \delta k,j,l, so

by standard trust-region theory one finds \lambda k,j,l+1 <\lambda k,j,l. Hence,

\lambda k,j,l+1

\| tk,j,l+1\|
\leq \lambda k,j,l\sigma k,j,l

\lambda k,j,l
= \sigma k,j,l = \sigma k,j,l+1,

from which it follows that (t+ 1) /\in \scrE k,j . On the other hand, if l \in \scrC k,j , then
line 29 ensures that \sigma k,j,l+1 \geq \lambda k,j,l+1

\| tk,j,l+1\| , so (l+ 1) /\in \scrE k,j .
The conclusion follows by combining the results of the two cases.

An immediate consequence of the previous lemma is that the number of expansion
steps in any call to fds is limited by one.

Lemma 3.8. For all generated (k, j)\in \BbbN \times \BbbN such that fds is called, | \scrE k,j | \leq 1.

Proof. Consider arbitrary generated (k, j) \in \BbbN \times \BbbN such that fds is called. If
| \scrE k,j | = 0, then there is nothing left to prove. Otherwise, for some smallest generated
l \in \BbbN one finds that l \in \scrE k,j . It then follows by induction that | \scrE k,j | = 1. This
can be seen to follow from the fact that, since l \in \scrE k,j , Lemma 3.7 implies that
(l + 1) \in \scrA k,j \cup \scrC k,j . If (l + 1) \in \scrA k,j , then fds terminates and | \scrE k,j | = 1, while if
(l+1)\in \scrC k,j , then Lemma 3.7 implies that (l+2)\in \scrA k,j \cup \scrC k,j . This argument shows
inductively that | \scrE k,j | = 1, as claimed.

All that remains in order to prove that any call to fds terminates finitely is to
prove that the number of contraction steps is finite. Toward this end, we now prove
that as the result of any contraction step, the trust-region radius is decreased, and
the dual subproblem solution does not decrease. The proof of the following lemma is
essentially the same as that for [14, Lemma 3.4], but we provide it for completeness.

Lemma 3.9. For all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN , if l \in \scrC k,j, then (k, j, l+1) is
generated, \delta k,j,l+1 < \delta k,j,l, and \lambda k,j,l+1 \geq \lambda k,j,l.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2205

Proof. Consider arbitrary generated (k, j, l) \in \BbbN \times \BbbN \times \BbbN such that l \in \scrC k,j . If
line 13, 17, or 23 is reached, then \delta k,j,l+1\leftarrow \| tk,j,l+1\| where tk,j,l+1 solves \scrR k,j(\lambda) for
\lambda > \lambda k,j,l. Since \lambda > \lambda k,j,l, it follows by standard trust-region theory that

\delta k,j,l+1\leftarrow \| tk,j,l+1\| < \| tk,j,l\| \leq \delta k,j,l and \lambda k,j,l+1 = \lambda > \lambda k,j,l.

The only other possibility is that line 25 is reached, in which case one finds \delta k,j,l+1\leftarrow
\gamma C\| tk,j,l\| < \delta k,j,l, which by standard trust-region theory implies \lambda k,j,l+1 \geq \lambda k,j,l.

We are now prepared to prove that, in any call to fds, the number of contraction
steps is finite, which, along with previous results, shows that fds terminates finitely.

Lemma 3.10. For all generated (k, j)\in \BbbN \times \BbbN such that fds is called, the call to
fds terminates finitely.

Proof. Consider arbitrary generated (k, j) \in \BbbN \times \BbbN such that fds is called. As
already observed, by construction of fds, it follows that | \scrA k,j | \leq 1. Moreover, by
Lemma 3.8, it follows that | \scrE k,j | \leq 1. Hence, it remains to prove that | \scrC k,j | <\infty .

In order to derive a contradiction, suppose that | \scrC k,j | = \infty , which, along with
Lemma 3.8, means that l \in \scrC k,j for all sufficiently large l \in \BbbN . Indeed, we may assume,
without loss of generality, that \scrC k,j = \BbbN . Our goal now is to show---using the argu-
ments of [14, Lemma 3.9]---that \{ \delta k,j,l\} l\in \BbbN \rightarrow 0 and \{ \lambda k,j,l\} l\in \BbbN \rightarrow \infty . By Lemma 3.9
and the fact that \{ \delta k,j,l\} l\in \BbbN \subset \BbbR >0 by construction, it follows that \{ \delta k,j,l\} l\in \BbbN con-
verges. If line 25 is reached infinitely often, then \{ \delta k,j,l\} l\in \BbbN \rightarrow 0 and, by standard
trust-region theory, \{ \lambda k,j,l\} l\in \BbbN \rightarrow \infty , as desired. Hence, we may assume that line 25
is reached only a finite number of times. Let us now prove that we may also proceed
under the assumption that line 17 is only reached a finite number of times. Suppose
that for some l \in \BbbN one finds that line 17 is reached, in which case the algorithm sets
(tk,j,l+1, \lambda k,j,l+1) such that during iteration (l+ 1) \in \scrC k,j the condition in line 9 will
test false, meaning that the algorithm will proceed to line 20 in iteration l+1. Since,
by Lemma 3.9, \{ \delta k,j,l\} l\in \BbbN is monotonically decreasing and \{ \lambda k,j,l\} l\in \BbbN is monotonically
nondecreasing, it follows that \{ \lambda k,j,l/\| tk,j,l\| \} l\in \BbbN is monotonically increasing, which
means that the condition in line 9 will test false in all subsequent iterations, meaning
that line 17 is only reached a finite number of times, as claimed. All that remains in
order to prove \{ \delta k,j,l\} l\in \BbbN \rightarrow 0 and \{ \lambda k,j,l\} l\in \BbbN \rightarrow \infty is to show that these limits hold
under the assumption that line 13 or 23 is reached for all l\geq l for some l \in \BbbN . Under
this assumption, one finds that

\lambda k,j,l+1 \geq min\{ \lambda k,j,l + (\sigma \gamma k,0)
1/2, \gamma \lambda \lambda k\} for all l\geq l+ 1,

which implies that, in fact, \{ \lambda k,j,l\} l\in \BbbN \rightarrow \infty . According to standard trust-region
theory, this shows that \{ \delta k,j,l\} l\in \BbbN \rightarrow 0, as desired.

Since it has been shown that \scrC k,j = \BbbN implies that one has \{ \delta k,j,l\} l\in \BbbN \rightarrow 0 and
\{ \lambda k,j,l\} l\in \BbbN \rightarrow \infty , one may now conclude from Lemma 3.6 that l /\in \scrC k,j for some
sufficiently large l \in \BbbN , which is a contradiction to the fact that \scrC k,j =\BbbN .

We may now prove our concluding result of this subsection.

Lemma 3.11. i-trace generates an infinite sequence of iterates, where for all
generated (k, j)\in \BbbN \times \BbbN one finds that j \in \{ 0, . . . , n - 1\} .

Proof. The result follows by induction. Supposing that i-trace reaches it-
eration k \in \BbbN , it follows from Lemma 3.2 that the call to tltr terminates fi-
nitely with j \leq n - 1, and it follows from Lemma 3.10 that any call to fds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2206 FRANK E. CURTIS AND QI WANG

terminates finitely. Hence, all that remains it to prove that the loop in i-trace
terminates finitely, since this means that i-trace reaches iteration k + 1. This fol-
lows using the same argument as in the proof of Lemma 3.2, because if j reaches
j \in \{ 0, . . . , n - 1\} such that (3.1) holds, the output from fds yields \mu k,j = 0, in which
case the loop will terminate.

3.2. Worst-case complexity. Our purpose in this subsection is to prove worst-
case complexity bounds pertaining to i-trace's pursuit of \epsilon -stationarity. In fact, in
this subsection we show upper bounds on the total numbers of iterations, function
evaluations, derivative evaluations, and Hessian-vector products that i-trace may
perform at iterates at which, for arbitrary \epsilon \in (0,1), the bound (1.2) does not hold.
Since this iteration bound holds for arbitrary \epsilon \in (0,1), it follows immediately that
i-trace converges toward first-order stationarity in the limit, i.e., \{ \| gk\| \} \rightarrow 0.

Our first lemma of this subsection shows that, as in trace, a contraction step
causes the ratio of the dual subproblem solution to the norm of the primal subproblem
solution to obey certain iteration-dependent and uniform bounds.

Lemma 3.12. For all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN , if l \in \scrC k,j, then

\sigma \leq \lambda k,j,l+1

\| tk,j,l+1\|
\leq max

\biggl\{
\sigma ,

\biggl(
\gamma \lambda
\gamma C

\biggr)
\lambda k,j,l
\| tk,j,l\|

\biggr\}
\leq max

\biggl\{
\sigma ,

\biggl(
\gamma \lambda
\gamma C

\biggr)
(HLip + 2\eta)

\biggr\}
.

If, in addition, \lambda k,j,l \geq \sigma \| tk,j,l\| , then

\lambda k,j,l+1

\| tk,j,l+1\|
\geq min

\biggl\{
\gamma \lambda ,

1

\gamma C

\biggr\}
\lambda k,j,l
\| tk,j,l\|

.

Proof. The proof of the first two desired inequalities follows using the same rea-
soning as in the proof of [14, Lemma 3.17], the details of which we omit for the sake
of brevity. The next desired inequality follows from Lemma 3.6 and the fact that
l \in \scrC k,j only if \lambda k,j,l < (HLip+2\eta)\| tk,j,l\| . Finally, under the additional condition that
\lambda k,j,l \geq \sigma \| tk,j,l\| , the final desired conclusion follows using the same reasoning as in
the proof of [14, Lemma 3.23], where again we omit the details for brevity.

We now use the previous lemma to prove a critical upper bound.

Lemma 3.13. Defining

\sigma max :=max

\biggl\{
\sigma 0, \sigma ,

\biggl(
\gamma \lambda
\gamma C

\biggr)
(HLip + 2\eta)

\biggr\}
> 0,

it follows for all generated (k, j, l)\in \BbbN \times \BbbN \times \BbbN that \sigma k,j,l \leq \sigma max.

Proof. We prove the result by induction. As a base case, consider k = 0 and
the corresponding smallest j \in \BbbN such that fds is called. Given k = 0 and such a
j \in \BbbN , the call to fds initializes \sigma 0,j,0 = \sigma 0 \leq \sigma max. Now suppose that for arbitrary
generated k \in \BbbN and the corresponding smallest j \in \BbbN such that fds is called, one
finds for generated l \in \BbbN that \sigma k,j,l \leq \sigma max. If l \in \scrE k,j , then by line 7 of fds one finds
that \sigma k,j,l+1 = \sigma k,j,l \leq \sigma max. If l \in \scrC k,j , then by Lemma 3.12 and line 29 one finds
that

\sigma k,j,l+1\leftarrow max

\biggl\{
\sigma k,j,l,

\lambda k,j,l+1

\| tk,j,l+1\|

\biggr\}
\leq max

\biggl\{
\sigma k,j,l, \sigma ,

\biggl(
\gamma \lambda
\gamma C

\biggr)
(HLip + 2\eta)

\biggr\}
\leq \sigma max.

Finally, if l \in \scrA k,j , then either (i) (2.4) is satisfied, i-trace proceeds to (outer)
iteration k+1, and for some smallest corresponding j \in \BbbN such that fds is called, one

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2207

finds \sigma k+1,j,0 = \sigma k,j,l \leq \sigma max; or (ii) (2.4) is not satisfied, i-trace proceeds to (inner)
iteration j + 1, and \sigma k,j+1,0 = \sigma k,j,0 \leq \sigma max. Overall, in all cases, the procedures of
i-trace and fds ensure that the desired conclusion holds.

We have proved in Lemma 3.11 that i-trace generates an infinite sequence of
iterates, meaning that it generates an infinite sequence of steps \{ sk\} . For our next
result, we prove a critical relationship between the norm of each step and the norm of
the gradient of the objective function at the subsequent iterate. Such a relationship
is critical for all of the optimal-complexity methods mentioned in section 1.2.

Lemma 3.14. For all k \in \BbbN , the step sk satisfies

\| sk\| \geq
\biggl(

1 - \xi 2
1
2HLip + \sigma max +max\{ \xi 1, \xi 2gLip\}

\biggr) 1/2

\| gk+1\| 1/2.

Proof. Consider arbitrary k \in \BbbN . By construction of fds and i-trace and by
Lemma 3.13, one has at line 8 of i-trace (with \lambda k\leftarrow \lambda k,j) that \lambda k \leq \sigma max\| sk\| and

either \| gk + (Hk + \lambda kI)sk\| \leq \xi 1\| sk\| 2

or \| gk + (Hk + \lambda kI)sk\| \leq \xi 2min\{ 1,\| sk\| \} \| gk\| .

Under Assumption 1.1, one finds that

\| gk\| \leq \| gk+1\| + \| gk+1 - gk\| \leq \| gk+1\| + gLip\| sk\| ;

hence, either \| gk + (Hk + \lambda kI)sk\| \leq \xi 1\| sk\| 2 \leq \xi 1\| sk\| 2 + \xi 2\| gk+1\| or

\| gk + (Hk + \lambda kI)sk\| \leq \xi 2min\{ 1,\| sk\| \} (\| gk+1\| + gLip\| sk\|)
\leq \xi 2(\| gk+1\| + gLip\| sk\| 2).

Overall, since

\| gk+1\| = \| g(xk + sk) - (gk + (Hk + \lambda kI)sk) + (gk + (Hk + \lambda kI)sk)\|
\leq \| g(xk + sk) - gk - Hksk\| + \lambda k\| sk\| + \| gk + (Hk + \lambda kI)sk\| ,

it follows from above that under Assumption 1.1 one has

(1 - \xi 2)\| gk+1\|

\leq
\bigm\| \bigm\| \bigm\| \bigm\| \int 1

0

(H(xk + \tau sk) - Hk)skd\tau

\bigm\| \bigm\| \bigm\| \bigm\| + \sigma max\| sk\| 2 +max\{ \xi 1, \xi 2gLip\} \| sk\| 2

\leq
\biggl(\int 1

0

\| (H(xk + \tau sk) - Hk\| d\tau
\biggr)
\| sk\| + \sigma max\| sk\| 2 +max\{ \xi 1, \xi 2gLip\} \| sk\| 2

\leq
\biggl(\int 1

0

\tau d\tau

\biggr)
HLip\| sk\| 2 + \sigma max\| sk\| 2 +max\{ \xi 1, \xi 2gLip\} \| sk\| 2

= 1
2HLip\| sk\| 2 + \sigma max\| sk\| 2 +max\{ \xi 1, \xi 2gLip\} \| sk\| 2

=
\bigl(
1
2HLip + \sigma max +max\{ \xi 1, \xi 2gLip\}

\bigr)
\| sk\| 2,

which after rearrangement leads to the desired conclusion.

It follows from the preceding lemma that the total number of outer iterations
that can be performed by i-trace at iterates at which the norm of the gradient is
above \epsilon \in (0,1) is \scrO (\epsilon - 3/2), which, in turn, means that the total number of gradient
evaluations at such iterates is also \scrO (\epsilon - 3/2). This is formalized in our first theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2208 FRANK E. CURTIS AND QI WANG

Theorem 3.15. For arbitrary \epsilon \in (0,1), define for i-trace the index set

\scrK (\epsilon) := \{ k \in \BbbN : \| gk\| > \epsilon \} .

The total number of elements of \scrK (\epsilon) is at most

K(\epsilon) := 1+

\Biggl\lfloor \Biggl(
(f0 - finf)(12HLip + \sigma max +max\{ \xi 1, \xi 2gLip\})3/2

\eta (1 - \xi 2)3/2

\Biggr)
\epsilon - 3/2

\Biggr\rfloor
.

Hence, the total number of ``outer"" iterations and gradient evaluations performed at
iterates that are not \epsilon -stationary are each \scrO (\epsilon - 3/2) for both.

Proof. By the design of i-trace and by Lemma 3.14, it follows for all k \in \BbbN \setminus \{ 0\}
that

fk - 1 - fk \geq \eta \| sk - 1\| 3 \geq \eta
\biggl(

1 - \xi 2
1
2HLip + \sigma max +max\{ \xi 1, \xi 2gLip\}

\biggr) 3/2

\| gk\| 3/2.

Since f is bounded below under Assumption 1.1 and, by construction, i-trace ensures
that \{ fk\} is monotonically nonincreasing, it follows from this string of inequalities that
| \scrK (\epsilon)| <\infty . Therefore, letting K\epsilon \in \BbbN denote the largest index in \scrK (\epsilon) and summing
the prior inequality through iteration K\epsilon under Assumption 1.1 yields

f0 - finf \geq f0 - fK\epsilon
=

K\epsilon \sum
k=1

(fk - 1 - fk)

\geq
\sum

k\in \scrK (\epsilon)

\eta

\biggl(
1 - \xi 2

1
2HLip + \sigma max +max\{ \xi 1, \xi 2gLip\}

\biggr) 3/2

\| gk\| 3/2

\geq | \scrK (\epsilon)| \eta
\biggl(

1 - \xi 2
1
2HLip + \sigma max +max\{ \xi 1, \xi 2gLip\}

\biggr) 3/2

\epsilon 3/2.

After rearrangement and accounting for iteration k= 0, the conclusion follows.

Our goal now is to account first for Hessian-vector products and then for function
evaluations. The former occur by line 5 of tltr and line 13 of i-trace, and the latter
occur by line 2 in fds. (Hessian-vector products also appear in line 11 of tltr and
line 16 of i-trace, but since these involve the same products as needed in lines 5
and 13, respectively, one does not need to account for these products as well. The
products can be stored when first computed and reused as needed.) Our analysis here
borrows from the residual analysis from [23]. Importantly, in our analysis of i-trace
and its pursuit of (first-order) \epsilon -stationarity, we are able to make use of the analysis
from [23] without having to deal with the so-called hard case when solving trust-region
subproblems. This follows from the fact that the worst-case complexity properties for
which i-trace has been designed are of the type described in [23], namely, that do
not necessitate approximately globally optimal solutions of the arising subproblems.
Indeed, as can be seen in the proof of Lemma 3.14 above, finding subproblem solutions
with residuals that are sufficiently small is all that is needed for our purposes.

Following [23, section 3.2], we note the following.

Lemma 3.16. For all generated (k, j)\in \BbbN \times \BbbN , one finds Tk,j + \lambda k,jI \succ 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2209

Proof. For arbitrary generated (k, j) \in \BbbN \times \BbbN , the conclusion is well known as
described in [23, section 3.2], where it is important to note that, by construction and
Lemma 3.4, the real number \lambda k,j \in \BbbR \geq 0 corresponds to a globally optimal solution of
\scrS k,j(\delta) for some \delta \in \BbbR \geq 0 (either \delta \equiv \delta k or \delta \equiv \=\delta k from fds).

For each generated (k, j)\in \BbbN \times \BbbN , let us write the spectral decomposition Tk,j =

Vk,j\Omega k,jV
T
k,j , where Vk,j \in \BbbR

(j+1)\times (j+1) is an orthonormal matrix of eigenvectors, and

\Omega k,j \in \BbbR (j+1)\times (j+1) is a diagonal matrix of eigenvalues, denoted by \{ \omega (0)
k,j , . . . , \omega

(j)
k,j)

and ordered such that \omega
(0)
k,j \leq \cdot \cdot \cdot \leq \omega

(j)
k,j . For all generated (k, j)\in \BbbN \times \BbbN , let us denote

the spectral condition number of Tk,j + \lambda k,jI \succ 0 (recall Lemma 3.16) as

\kappa k,j :=
\omega
(j)
k,j + \lambda k,j

\omega
(0)
k,j + \lambda k,j

\in \BbbR >0.

Our next result provides an upper bound on the residual defined in (2.2).

Lemma 3.17. For all generated (k, j)\in \BbbN \times \BbbN , one has that

\| rk,j\| \leq

\Biggl(
2\| gk\| Hmax\kappa k,j

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(\surd
\kappa k,j - 1
\surd
\kappa k,j + 1

\biggr) j

.

Proof. Consider arbitrary generated (k, j)\in \BbbN \times \BbbN . By construction of tltr and
by Lemma 3.4, it follows that (tk,j , \lambda k,j) satisfies (2.1), and (sk,j , \lambda k,j) with sk,j =
Qk,jtk,j satisfies (2.2). Hence, by [23, Theorem 3.4], it follows that

\| rk,j\| \leq

\Biggl(
2\| gk\| \gamma k,j+1\kappa k,j

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(\surd
\kappa k,j - 1
\surd
\kappa k,j + 1

\biggr) j

,

and from [23, eq. (34)] and Assumption 1.1 one finds \gamma k,j+1 \leq \| Hk\| \leq Hmax. Com-
bining these bounds yields the desired conclusion.

We now prove upper bounds on the total number of inner iterations (over j \in \BbbN)
that are performed during any outer iteration of i-trace that corresponds to an
iterate that is not \epsilon -stationary. For one thing, these bounds serve as upper bounds
on the number of Hessian-vector products required during such outer iterations of
i-trace. They are also part of upper bounds that we prove for the number of function
evaluations during each such outer iteration of i-trace. The first bound that we
prove corresponds to the number of iterations that can be performed until (2.4a)
holds, whereas the second bound corresponds---assuming (2.4c) holds---to the number
of iterations that can be performed until (2.4b) holds. (As has already been seen
in the proof of Lemma 3.2, the condition in (2.4a) is always satisfiable if enough
inner iterations are performed, whereas satisfaction of (2.4b)--(2.4c) is not always
guaranteed. That said, the algorithm considers (2.4b)--(2.4c) as termination criteria
since satisfaction of these inequalities might allow the algorithm to proceed after fewer
inner iterations than would be required for (2.4a).)

To state and prove the aforementioned desired bounds, we define two sets. Specif-
ically, for arbitrary (\=\kappa , \=\lambda)\in \BbbR >0 \times \BbbR >0, let us define the sets of index pairs

\scrI 1(\=\kappa , \=\lambda) := \{ (k, j)\in \BbbN \times \BbbN : (k, j) is generated, \kappa k,j \leq \=\kappa , and \omega
(j)
k,j + \lambda k,j \leq \=\lambda \}

and \scrI 2(\=\kappa) := \{ (k, j)\in \BbbN \times \BbbN : (k, j) is generated and \kappa k,j \leq \=\kappa \} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2210 FRANK E. CURTIS AND QI WANG

The next lemma shows, at any iterate that is not \epsilon -stationary, that if there exists
a pair (\=\kappa , \=\lambda) such that (k, j) \in \scrI 1(\=\kappa , \=\lambda) for sufficiently large j, then tltr and the
loop of i-trace terminate before or at inner iteration number j. It also shows the
same conclusion under similar conditions when (k, j) \in \scrI 2(\=\kappa) and (2.4c) holds. As
shown after the lemma, a consequence of this result is that under nice circumstances,
including well-conditioning of the (explicitly or implicitly) regularized reduced-space
Hessian, the number of iterations performed by tltr plus the number of iterations
of the loop in i-trace is \scrO (log(\epsilon - 1)). Otherwise, this sum is at most \scrO (n).

Lemma 3.18. For arbitrary \epsilon \in (0,1) and k \in \BbbN such that \| gk\| > \epsilon , consider the
following possible scenarios:

(i) There exists (\=\kappa , \=\lambda)\in \BbbR >0 \times \BbbR >0 such that with

\scrJ 1(\=\kappa , \=\lambda) :=min

\biggl\{
n - 1,

\biggl\lceil
log

\biggl(
2Hmax\=\kappa \=\lambda

\xi 1\epsilon

\biggr) \Big/
log

\biggl(\surd
\=\kappa + 1\surd
\=\kappa - 1

\biggr) \biggr\rceil \biggr\}
,

one finds that if (k, j) with j =\scrJ 1(\=\kappa , \=\lambda) is generated, then (k, j)\in \scrI 1(\=\kappa , \=\lambda).
(ii) There exists \=\kappa \in \BbbR >0 such that with

\scrJ 2(\=\kappa) :=min

\biggl\{
n - 1,

\biggl\lceil
log

\biggl(
2Hmax\=\kappa \xi 3

\xi 2\epsilon

\biggr) \Big/
log

\biggl(\surd
\=\kappa + 1\surd
\=\kappa - 1

\biggr) \biggr\rceil \biggr\}
,

one finds that if (k, j) with j = \scrJ 2(\=\kappa) is generated, then (k, j) \in \scrI 2(\=\kappa) and

1\leq \xi 3min\{ 1,\| tk,j\| \} (\omega (j)
k,j + \lambda k,j).

If scenario (i) (resp., (ii)) occurs, then each of tltr and the loop of i-trace termi-
nates before or at inner iteration j =\scrJ 1(\=\kappa , \=\lambda) (resp., j =\scrJ 2(\=\kappa)).

Proof. Consider arbitrary k \in \BbbN with \| gk\| > \epsilon . That each generated (k, j) has
j \leq n - 1 follows from Lemma 3.11. Hence, all that remains is to prove that under the
conditions of (i), each generated (k, j) has j \leq \scrJ 1(\=\kappa , \=\lambda), and that under the conditions
of (ii), each generated (k, j) has j \leq \scrJ 2(\=\kappa).

First, suppose the conditions of (i) hold in the sense that (i) either each generated
(k, j) has j <\scrJ 1(\=\kappa , \=\lambda) or (ii) both of the following occur: (k,\scrJ 1(\=\kappa , \=\lambda)) is generated and
(k,\scrJ 1(\=\kappa , \=\lambda))\in \scrI 1(\=\kappa , \=\lambda). Observe that (

\surd
\kappa - 1)/(

\surd
\kappa +1) is a monotonically increasing

function of \kappa \in \BbbR >0, so by Lemma 3.17 one finds that, for all generated (k, j), one has

(3.3) \| rk,j\| \leq

\Biggl(
2\| gk\| Hmax\=\kappa

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

.

Consider the case when \scrJ 1(\=\kappa , \=\lambda)<n - 1 and j =\scrJ 1(\=\kappa , \=\lambda), where one finds that

j \geq log

\biggl(
2Hmax\=\kappa \=\lambda

\xi 1\epsilon

\biggr) \Big/
log

\biggl(\surd
\=\kappa + 1\surd
\=\kappa - 1

\biggr)
\Leftarrow \Rightarrow j log

\biggl(\surd
\=\kappa + 1\surd
\=\kappa - 1

\biggr)
\geq log

\biggl(
2Hmax\=\kappa \=\lambda

\xi 1\epsilon

\biggr)
\Leftarrow \Rightarrow j log

\biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr)
\leq log

\biggl(
\xi 1\epsilon

2Hmax\=\kappa \=\lambda

\biggr)
\Leftarrow \Rightarrow

\biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

\leq \xi 1\epsilon

2Hmax\=\kappa \=\lambda
.(3.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2211

Now observe that, by (2.1a), the Cauchy--Schwarz inequality, and the fact that the
2-norm of a real symmetric matrix is its largest eigenvalue, one finds that

(3.5)
\| gk\| 2 = \| \gamma k,0e1\| 2 = \| (Tk,j + \lambda k,jI)tk,j\| 2

\leq \| Tk,j + \lambda k,jI\| 2\| tk,j\| 2 = (\omega
(j)
k,j + \lambda k,j)

2\| tk,j\| 2.

Hence, under the conditions of (i), one finds that (3.4) implies\Biggl(
2\| gk\| Hmax\=\kappa

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

\leq

\Biggl(
\| gk\|

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(
\xi 1\epsilon
\=\lambda

\biggr)

\leq \xi 1

\Biggl(
\| gk\| 2

(\omega
(j)
k,j + \lambda k,j)2

\Biggr) \Biggl(
\omega
(j)
k,j + \lambda k,j

\=\lambda

\Biggr)
\leq \xi 1\| tk,j\| 2.

Along with (3.3), this bound shows that such a j is sufficiently large such that (2.4a)
holds. Therefore, by the construction of i-trace, the desired conclusion follows.

Now suppose the conditions of (ii) hold in the sense that either (i) each gener-
ated (k, j) has j < \scrJ 2(\=\kappa) or (ii) all of the following occur: (k,\scrJ 2(\=\kappa)) is generated,

(k,\scrJ 2(\=\kappa))\in \scrI 2(\=\kappa), and (since \omega
(j)
k,j+\lambda k,j = \| Tk,j+\lambda k,j\|) with j =\scrJ 2(\=\kappa) the inequality

in (2.4c) holds. A proof similar to that in the previous paragraph applies here as
well. First, with \scrJ 2(\=\kappa) in place of \scrJ 1(\=\kappa , \=\lambda), one finds in the present setting that (3.4)
becomes

(3.6)

\biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

\leq \xi 2\epsilon

2Hmax\=\kappa \xi 3
.

Now, under the conditions of (ii), one finds that (3.6) implies\Biggl(
2\| gk\| Hmax\=\kappa

\omega
(j)
k,j + \lambda k,j

\Biggr) \biggl(\surd
\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

\leq \xi 2\epsilon \| gk\|
\xi 3(\omega

(j)
k,j + \lambda k,j)

\leq \xi 2min\{ 1,\| tk,j\| \} \| gk\| .

Along with (3.3) (which applies here as well) and \| gk\| = \gamma k,0, this bound shows
that such a j is sufficiently large such that (2.4b) and (2.4c) hold. Therefore, by the
construction of i-trace, the desired conclusion follows.

One finds in the proof of Lemma 3.18 the reason why the algorithm pairs condi-
tions (2.3b) and (2.3c) or, equivalently, (2.4b) and (2.4c). Using the bound (3.3) from
Lemma 3.17 and the fact that for sufficiently large j one obtains (see (3.4)) that\biggl(\surd

\=\kappa - 1\surd
\=\kappa + 1

\biggr) j

=\scrO (\epsilon),

it follows under nice subproblem conditions that for sufficiently large j, one obtains

\| rk,j\| =\scrO

\Biggl(
\| gk\| \epsilon

\omega
(j)
k,j + \lambda k,j

\Biggr)
.

Hence, an upper bound for \mu k,j = \| rk,j\| (call it rhs) that could be used in a residual
condition in order to prove a good worst-case complexity bound for Hessian-vector
products is one for which it can be shown that for sufficiently large j, one finds

(3.7)
\| gk\| \epsilon

\omega
(j)
k,j + \lambda k,j

=\scrO (rhs).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2212 FRANK E. CURTIS AND QI WANG

If \omega
(j)
k,j + \lambda k,j \leq \=\lambda , then one can show with (3.5) that rhs on the order of \| tk,j\| 2 is

sufficient; this is the conclusion of part (i) of the lemma. However, such a residual
condition might be stronger than needed, which can be seen by the fact that the proof
under the conditions of (i) uses the facts that \epsilon \leq \| gk\| and the residual condition is
based on the larger quantity, namely, \| gk\| . Hence, it is reasonable to wonder whether
one can instead impose a residual condition on the order of min\{ 1,\| tk,j\| \} \| gk\| , which,
as we have already seen in Lemma 3.14 and Theorem 3.15, can lead to desirable
complexity properties in terms of iterations and gradient evaluations. The conclusion
is that such a residual condition can be employed but only if \omega

(j)
k,j + \lambda k,j (namely,

the denominator in (3.7)) is not too small relative to other quantities. Hence, the
algorithm pairs the residual condition (2.3b) (resp., (2.4b)) with (2.3c) (resp., (2.4c)),

the latter of which ensures that \omega
(j)
k,j +\lambda k,j is not too small relative to the appropriate

quantities, all of which are computable (at modest cost) within the algorithm.
We can now prove a worst-case complexity bound for Hessian-vector products.

Theorem 3.19. For arbitrary \epsilon \in (0,1), define the index set \scrK (\epsilon) and positive
integer K(\epsilon) as in Theorem 3.15. If there exists uniform (\=\kappa , \=\lambda) \in \BbbR >0 \times \BbbR >0 such
that the conditions in (i) and/or (ii) of Lemma 3.18 hold for all k \in \scrK (\epsilon), then the
total number of Hessian-vector products performed by i-trace (and its subroutines) at
iterates that are not \epsilon -stationary is at most

KH(\epsilon) :=K(\epsilon) \cdot min\{ \scrJ 1(\=\kappa , \=\lambda),\scrJ 2(\=\kappa)\} =\scrO (\epsilon - 3/2 \cdot min\{ n, log(\epsilon - 1)\}).

Otherwise, if such a (\=\kappa , \=\lambda) does not exist, then the number of products is \scrO (\epsilon - 3/2 \cdot n).
Proof. The result follows by Theorem 3.15 and Lemmas 3.11 and 3.18.

All that remains for our worst-case analysis is to account for function evaluations
that occur through line 2 in fds. Beyond the results that we have proved already,
accounting for function evaluations requires proving an upper bound on the number of
iterations that can be performed within fds. As is proved in the previous subsection,
one finds for all generated (k, j) \in \BbbN \times \BbbN that | \scrA k,j | = 1 and | \scrE k,j | \leq 1 (recall
Lemma 3.8); hence, what is needed for our purposes here is an upper bound on | \scrC k,j | .
A uniform bound over all generated (k, j)\in \BbbN \times \BbbN is proved in the next lemma.

Lemma 3.20. For all generated (k, j)\in \BbbN \times \BbbN , one finds that

| \scrC k,j | \leq 1 +

 log
\Bigl(

\sigma \mathrm{m}\mathrm{a}\mathrm{x}

\sigma

\Bigr)
log
\Bigl(
min

\Bigl\{
\gamma \lambda ,

1
\gamma C

\Bigr\} \Bigr)
 =:K\scrC .

Proof. Consider arbitrary generated (k, j) \in \BbbN \times \BbbN such that fds is called. If
| \scrC k,j | = 0, then the desired conclusion follows trivially. Hence, we may proceed under
the assumption that | \scrC k,j | \geq 1. It follows by Lemma 3.10 that | \scrC k,j | < \infty . One
may also conclude by Lemma 3.7 that | \scrC k,j | \geq 1 means that \scrC k,j consists of a set of
consecutive positive integers. Overall, we may proceed knowing that \scrC k,j = \{ l, . . . , l\}
for some (l, l) \in \BbbN \times \BbbN . Since it follows by this definition of l and Lemma 3.7 that

(l + 1) \in \scrA k,j , it follows with Lemma 3.13 that
\lambda k,j,l+1

\| tk,j,l+1\|
\leq \sigma k,j,l+1 \leq \sigma max. On the

other hand, by applying Lemma 3.12 iteratively, one finds that

\lambda k,j,l+1

\| tk,j,l+1\|
\geq \sigma

\biggl(
min

\biggl\{
\gamma \lambda ,

1

\gamma C

\biggr\} \biggr) l - l

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2213

Combining these upper and lower bounds shows that

(l - l) log
\biggl(
min

\biggl\{
\gamma \lambda ,

1

\gamma C

\biggr\} \biggr)
\leq log

\biggl(
\sigma max

\sigma

\biggr)
\Leftarrow \Rightarrow l - l\leq

log
\Bigl(

\sigma \mathrm{m}\mathrm{a}\mathrm{x}

\sigma

\Bigr)
log
\Bigl(
min

\Bigl\{
\gamma \lambda ,

1
\gamma C

\Bigr\} \Bigr) .
Hence, the desired uniform bound holds since | \scrC k,j | = l - l+ 1.

Since, with the previous lemma, there exists a uniform upper bound---independent
of the norm of the gradient of the objective---on the number of function evaluations
that occur within any inner iteration of i-trace, it follows that the worst-case number
of function evaluations performed by i-trace is of the same order as the number of
Hessian-vector products. This is formalized in the following theorem.

Theorem 3.21. For arbitrary \epsilon \in (0,1), define the index set \scrK (\epsilon) and positive
integer K(\epsilon) as in Theorem 3.15. If there exists uniform (\=\kappa , \=\lambda) \in \BbbR >0 \times \BbbR >0 such
that the conditions in (i) and/or (ii) of Lemma 3.18 hold for all k \in \scrK (\epsilon), then the
total number of function evaluations performed by i-trace (and its subroutines) at
iterates that are not \epsilon -stationary is at most

Kf (\epsilon) :=K\scrC \cdot K(\epsilon) \cdot min\{ \scrJ 1(\=\kappa , \=\lambda),\scrJ 2(\=\kappa)\} =\scrO (\epsilon - 3/2 \cdot min\{ n, log(\epsilon - 1)\}).

Otherwise, if such a (\=\kappa , \=\lambda) does not exist, then the number of evaluations is \scrO (\epsilon - 3/2\cdot n).
Proof. The result follows by Theorem 3.15 and Lemmas 3.11, 3.18, and 3.20.

3.3. Local convergence. i-trace can attain the same local convergence rate to
a strict local minimizer that is attained by trace. This property of i-trace follows
using well-known results from analyses of inexact Newton methods; nonetheless, it is
important to state the results for the sake of completeness.

Our presentation here borrows from that in [14, section 3.4]. We consider the
local convergence rate attainable by i-trace under the following assumption.

Assumption 3.2. With respect to an infinite index set \scrS \subseteq \BbbN , the iterate subse-
quence \{ xk\} k\in \scrS converges to x\ast \in \BbbR n at which H(x\ast)\succ 0. In addition, there exists a
nonempty neighborhood of x\ast over which the Hessian function H is locally Lipschitz
continuous with Lipschitz constant HLoc \in \BbbR >0.

The following lemma captures a property of trace inherited by i-trace.

Lemma 3.22. Under Assumption 3.2, the entire sequence \{ xk\} converges to x\ast .

Proof. As previously mentioned at the beginning of subsection 3.2, the analysis
there shows that \{ \| gk\| \} \rightarrow 0, which under Assumption 3.2 implies g(x\ast) = 0. As in
the context of [14, Lemma 3.30], the remainder of the proof follows similarly to that
of [11, Theorem 6.5.2].

Our next lemma is similar to [14, Lemma 3.31] insofar as it shows that, eventually,
all computed steps are (potentially inexact) Newton steps that are accepted by the
algorithm. Our proof follows closely that of [14, Lemma 3.31] but with modifications
to account for the potential inexactness of the computed subproblem solutions.

Lemma 3.23. There exists k\ast \in \BbbN such that, for all k \in \BbbN with k \geq k\ast , line 8 of
i-trace is reached with \lambda k,j = 0 and | \scrC k,j | = | \scrE k,j | = 0.

Proof. By Lemma 3.22, the iterate sequence \{ xk\} converges to x\ast , at which it fol-
lows under Assumption 3.2 that H\ast :=H(x\ast)\succ 0. Let the smallest and largest eigen-
values of H\ast be denoted by \omega min and \omega max, respectively. By continuity of H, it follows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2214 FRANK E. CURTIS AND QI WANG

that the eigenvalues of Hk are contained within the positive interval [12\omega min,2\omega max]
for all sufficiently large k \in \BbbN . Consider an arbitrary such k and consider arbitrary
j \in \BbbN such that the index pair (k, j) is generated and fds is called. Due to the afore-
mentioned property of the eigenvalues of Hk, it follows (see [23, section 3.2]) that the
eigenvalues of Tk,j are contained in [12\omega min,2\omega max] as well. Consider now arbitrary
generated l \in \BbbN . Either \| tk,j,l\| = \delta k,j,l or tk,j,l = - T - 1

k,j (\gamma k,0e1); either way,

(3.8) \| tk,j,l\| \leq \| T - 1
k,j (\gamma k,0e1)\| \leq \| T

 - 1
k,j \| \| gk\| =\Rightarrow \| gk\| \geq \| tk,j,l\| /\| T - 1

k,j \| .

By standard trust-region theory pertaining to Cauchy decrease, it now follows that

f(xk) - mk(Qk,jtk,j,l)\geq
1

2
\| gk\| min

\biggl\{
\delta k,j,l,

\| gk\|
\| Tk,j\|

\biggr\}
\geq 1

2

\Biggl(
\| tk,j,l\|
\| T - 1

k,j \|

\Biggr)
min

\Biggl\{
\| tk,j,l\| ,

\| tk,j,l\|
\| Tk,j\| \| T - 1

k,j \|

\Biggr\}

\geq 1

2

\Biggl(
\| tk,j,l\| 2

\| Tk,j\| \| T - 1
k,j \| 2

\Biggr)
\geq 1

16
\omega - 1
max\omega

2
min\| tk,j,l\| 2 =: \eta \ast \| tk,j,l\| 2.

One also finds from (3.8), the fact that \{ \| gk\| \} \rightarrow 0, and the aforementioned properties
of the eigenvalues of Tk,j that for any \varepsilon \in (0,1) there exists sufficiently large k\varepsilon \in \BbbN
such that \| tk,j,l\| \leq \varepsilon for all generated (k, j, l) with k \geq k\varepsilon . Combining these facts
shows, using an argument similar to the proof of Lemma 3.6, that for sufficiently
large k \in \BbbN one finds for any generated (k, j, l) that

fk - f(xk +Qk,jtk,j,l)\geq fk - mk(Qk,jtk,j,l) +mk(Qk,jtk,j,l) - f(xk +Qk,jtk,j,l)

\geq \eta \ast \| tk,j,l\| 2 - 1
2HLoc\| tk,j,l\| 3 \geq \eta \| Qk,jtk,j,l\| 3.

It follows from this fact that, for any such generated (k, j, l), one has l \in \scrA k,j \cup \scrE k,j .
By the results of the previous paragraph, there exists \delta min \in \BbbR >0 such that \delta k,j,l \geq

\delta min for all generated (k, j, l) with sufficiently large k. In addition, continuity of g and
the aforementioned properties of the eigenvalues of Tk,j imply that the trial step tk,j,l
lies in the interior of the trust region for all generated (k, j, l) with sufficiently large
k. Since this means that \lambda k,j,l = 0 for all such generated (k, j, l), it follows that, in
fact, for all generated (k, j, l) for sufficiently large k one has l \in \scrA k,j .

We now use the standard theory of inexact Newton methods to show that i-trace
can, e.g., attain the same rate of local convergence as trace (see [14, Theorem 3.32]).

Theorem 3.24. If, in addition to (2.4), the if condition in line 6 of i-trace
requires \mu k,j = o(\| gk\|), then \{ xk\} \rightarrow x\ast Q-superlinearly. In particular, if the condition
requires \mu k,j =\scrO (\| gk\| 2), then \{ xk\} \rightarrow x\ast Q-quadratically.

Proof. With Lemmas 3.22 and 3.23, the conclusion follows using the standard
theory of inexact Newton methods; see [16, Theorem 3.3].

4. Numerical results. In this section, we provide the results of numerical ex-
periments of a prototype implementation of i-trace, as well as implementations of
trace [14], arc [8, 9], and newton-cg [13] for the sake of comparison. The purposes
of presenting these experimental results are twofold. First, we show that, by allowing
inexact subproblem solutions, i-trace offers computational flexibility beyond that
offered by trace. Second, we show that, in terms of key performance measures,
i-trace performs at least as well as arc, which is a state-of-the-art second-order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2215

method that offers optimal worst-case iteration, function-evaluation and derivative-
evaluation complexities to \epsilon -stationarity, and at least as well as newton-cg, which
offers state-of-the-art complexity to first- and second-order stationarity (although our
implementation ignores the minimum-eigenvalue oracle as described in [13] and only
focuses on attaining (first-order) \epsilon -stationarity). For these experiments, all of the al-
gorithms were implemented in a single software package in MATLAB. All experiments
were run using the polyps cluster at Lehigh University's COR@L Laboratory. Each
job was run with a wall-clock-time limit of 90 minutes and a memory limit of 8GB.

4.1. Implementation details. The implementations of i-trace and trace
share many commonalities. For a fair comparison, both implementations involve the
auxiliary sequence \{ \Delta k\} , the values of which are set and used as in [14, Algorithm 1].
As explained in the last paragraph of section 2, the theoretical guarantees that have
been proved in this paper are maintained with the inclusion of this auxiliary se-
quence and, in fact, allow one to prove guarantees under weaker assumptions. For our
experiments, the common parameters for i-trace and trace were set as \eta = 10 - 4,
\sigma = 0.01, \sigma = 100, \gamma C = 0.5, \gamma E = 1.1, \gamma \lambda = 2, \delta 0 = 1, \sigma 0 = 1, and \Delta 0 = 100.
Specifically for i-trace, we ran experiments for (\xi 1, \xi 2)\in \{ (0.1,0.01), (1,0.1), (9,0.9)\}
and \xi 3 = 106. (This choice of \xi 3 is intended to ensure that (2.4c) is often satisfied so
that the inexactness condition essentially requires that either (2.4a) or (2.4b) holds,
which, in turn, means that performance depends on the setting for (\xi 1, \xi 2).) For the
implementation of trace, all trust-region subproblems are solved using an implemen-
tation of the Mor\'e--Sorensen approach [29]. For the implementation of i-trace, each
\scrR k,j subproblem is solved by solving a tridiagonal system, each \scrS k,j(\delta) subproblem is
solved using the aforementioned implementation of the Mor\'e--Sorensen approach, and
each instance of the subproblem in line 16 of fds is solved using an implementation
of [8, Algorithm 6.1], where, as described in [14], the algorithm is terminated as soon

as the ratio
\=\lambda k,j,l+1

\| tk,j,l+1\|
lies in the interval [\sigma ,\sigma].

For the implementation of arc, the parameters were set as \eta 1 = 10 - 4, \eta 2 =
0.9, and \sigma 0 = 1. In arc, \{ \sigma k\} is the sequence of cubic regularization values that
is updated dynamically by the algorithm. In our implementation, this sequence is
updated as for the experiments in [8], namely, \sigma k+1\leftarrow max\{ min\{ \sigma k,\| gk\| ,10 - 16\} \} if
k is a very successful iteration; \sigma k+1\leftarrow \sigma k if k is successful (but not very successful)
iteration; and \sigma k+1 \leftarrow 2\sigma k if k is an unsuccessful iteration. As for i-trace, the
subproblems are solved using an iterative method that employs the Lanczos approach,
where for a termination condition our implementation employs TC.s (stated as [8, eq.
(3.28)]), which involves the user-defined parameter \kappa \theta . Note that TC.s is the same
as (2.4b) with \kappa \theta \equiv \xi 2. Experiments comparable to those for i-trace, were run with
\kappa \theta \in \{ 0.01,0.1,0.9\} .

For the implementation of newton-cg, we set \epsilon g = 10 - 5, \epsilon H =
\surd
10 - 5, \gamma 1 = 0.5,

\gamma 2 = 2, \psi = 0.75, \delta 0 = 1, \delta max = 108, \eta = 0.1, and capCG = false, while for \zeta , which
controls the residual tolerance for CG, we ran experiments with \zeta \in \{ 0.01,0.1,0.9\} . It
is important to note that our implementation of newton-cg does not call a minimum
eigenvalue oracle (MEO) as described in [13], since for consistency with the other
algorithms our implementation focuses only on first-order stationarity. In this manner,
in our implementation of newton-cg, if the CG iteration limit (of n) is reached, then
the search direction is set as the last CG iterate.

All implemented algorithms respect the same termination condition, namely,

(4.1) \| gk\| \leq 10 - 5max\{ 1,\| g0\| \} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2216 FRANK E. CURTIS AND QI WANG

4.2. Computational flexibility offered by inexactness. Our first set of ex-
periments demonstrates the computational flexibility that i-trace allows over trace
due to the fact that i-trace can employ inexact subproblem solutions. For this ex-
periment, we ran i-trace with all parameter settings (see the choices of (\xi 1, \xi 2) in
the previous subsection, respectively referred to as ``setting 1,"" ``setting 2,"" and ``set-
ting 3"") and trace to solve all of the unconstrained instances in the CUTEst [21]
collection (with their original parameter settings). This originally includes 238 prob-
lems. To give a sense of the dimensions of these problems, we note that 103 have less
than or equal to 10 variables, 32 have between 11 and 100 variables, 13 have between
101 and 1000 variables, and 90 have more than 1000 variables. Defining success as
encountering an iterate satisfying (4.1), i-trace with setting 1 successfully solved 214
problems, i-trace with setting 2 solved 218 problems, i-trace with setting 3 solved
219 problems, and trace solved only 188 problems due to hitting the time or memory
limit much more often than i-trace. (For future reference, we note that arc---run
with the three aforementioned values of \kappa \theta respectively referred to as settings 1, 2, and
3---solved 210 problems with setting 1, 214 problems with setting 2, and 216 problems
with setting 3, whereas newton-cg---run with the three aforementioned values of \zeta
respectively referred to as settings 1, 2, and 3---solved 225 problems with settings 1
and 2 and solved 226 problems with setting 3.) In the experimental results provided
in this section, unless otherwise stated, the results are provided for all problems that
were successfully solved by at least one algorithm for one of its settings (including
i-trace, trace, arc, and newton-cg), which includes 227 problems.

To compare the relative performance of i-trace and trace, we provide in
Figure 1 sets of Dolan--Mor\'e performance profiles [17] for function evaluations, gradi-
ent evaluations, and Hessian-vector products. (We limit the horizontal axis to \tau = 20
so that the differences between the graphs can be seen more clearly.) In the top row
of Figure 1, the profiles are constructed to include the results of our entire set of 227
problems. These profiles show that trace is less reliable, which is due to the fact
that it hit our time or memory limit much more often. In the bottom row of Figure 1,
the profiles are constructed to include only those problems for which i-trace with
all settings and trace were all successful, which is a set of 188 problems.

The bottom row of profiles in Figure 1 shows that, despite allowing inexact sub-
problem solutions, i-trace performs comparably to trace in terms of function and
gradient evaluations, which also means that the algorithms/settings perform compa-
rably in terms of iterations required. In terms of Hessian-vector products, i-trace
with setting 1 falls a bit behind the other settings, which we contend is due to the algo-
rithm requiring more accurate subproblem solutions. That said, i-trace with setting
1 performs better in terms of gradient evaluations. These results demonstrate, as
mentioned in section 1, that i-trace offers flexibility between derivative evaluations
and Hessian-vector products. A user can choose the parameters that are preferable
depending on the relative costs of these operations for a given problem.

For completeness, we provide in Figures 2 and 3 similar sets of performance pro-
files for arc and newton-cg that show differences due to parameter settings.

4.3. Comparison with state-of-the-art optimal-complexity algorithms.
In this section, we compare the performance of i-trace, arc, and newton-cg. We
provide in Figures 4, 5, and 6 performance profiles comparing i-trace, arc, and
newton-cg with their settings 1, 2, and 3, respectively. While the settings for the
algorithms are not directly comparable due to the variations of the methods (e.g.,
``setting 1"" for i-trace is not directly comparable to that for arc or newton-cg),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2217

Fig. 1. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for i-trace (with three parameter settings) and trace when solving 227 (top row) and 188
(bottom row) CUTEst problems. (trace is not included in the profile for Hessian-vector products
since it does not employ Krylov subspace techniques for solving the arising subproblems.)

Fig. 2. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for arc (with three parameter settings) when solving 227 CUTEst problems.

Fig. 3. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for newton-cg (with three parameter settings) when solving 227 CUTEst problems.

we compare the algorithms in this manner in order to provide, in a straightforward
manner, a broad spectrum of comparisons across different inexactness levels. In prac-
tice, any user of such algorithms should decide which performance measure is most
important for their application, tune each algorithm with respect to that measure,
and compare tuned versions of each algorithm for their own purpose.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2218 FRANK E. CURTIS AND QI WANG

Fig. 4. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for i-trace, arc, and newton-cg (all with setting 1) for 227 CUTEst problems.

Fig. 5. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for i-trace, arc, and newton-cg (all with setting 2) for 227 CUTEst problems.

Fig. 6. Performance profiles for function evaluations, gradient evaluations, and Hessian-vector
products for i-trace, arc, and newton-cg (all with setting 3) for 227 CUTEst problems.

The profiles in Figures 4, 5, and 6 show that i-trace performs at least as well as
arc and newton-cg across a range of parameter settings and a broad spectrum of
problems. In all comparisons, the differences in terms of function and gradient eval-
uations are relatively minor and are essentially due to the differences in the numbers
of problems that each solves successfully. On the other hand, the differences in terms
of Hessian-vector products is more noticeable. newton-cg, in particular, does not
perform as well as the other algorithms in terms of this measure. We attribute this
to the fact that, in our experiments, the CG residual condition in newton-cg (see
Algorithm 3.1 in [13]) ends up being difficult to satisfy within relatively few CG iter-
ations, regardless of the value of \zeta . This is perhaps due to the CG residual condition
in newton-cg depending on the value of \epsilon H .

5. Conclusion. We presented, analyzed, and tested a new algorithm for solv-
ing smooth unconstrained optimization problems. The algorithm is an extension of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2219

trace [14], specifically one that allows the use of inexact subproblem solutions that
are computed using an iterative linear algebra technique (the Lanczos algorithm, a
Krylov subspace method). The algorithm, referred to as i-trace, maintains the
worst-case iteration complexity guarantees (to \epsilon -stationarity, as defined in (1.2)) and
local convergence rate guarantees of trace but offers worst-case guarantees in terms
of Hessian-vector products that can be significantly better than those offered by
trace. Numerical experiments show that i-trace can offer better computational
trade-offs than trace and show that i-trace is competitive with a state-of-the-art
second-order method with optimal complexity guarantees to \epsilon -stationarity.

The worst-case complexity guarantee to \epsilon -stationarity offered by i-trace is dif-
ferent from that proved for some other algorithms in the literature. To understand
why, one should observe that i-trace has been designed with first-order guarantees
in mind to maintain the \scrO (\epsilon - 3/2) iteration complexity of trace but to improve
upon the computational complexity of trace by (potentially) requiring fewer than n
``inner"" iterations per ``outer"" iteration. This leads to i-trace's proved (under certain
conditions) Hessian-vector-product complexity of \scrO (\epsilon - 3/2 \cdot min\{ n, log(\epsilon - 1)\}) rather
than the more pessimistic \scrO (\epsilon - 3/2 \cdot n) complexity that follows when exact subproblem
solutions are always required. Other algorithms offer a different complexity bound,
such as the \scrO (\epsilon - 3/2 \cdot log(\epsilon - 1) \cdot min\{ n, \epsilon - 1/4\}) bound offered by algorithms such as
those in [5, 13, 32]. An explanation for the differences is that, in certain circum-
stances, these other algorithms either employ so-called negative-curvature steps or
call minimum-eigenvalue oracles for computing search directions, and the correspond-
ing subroutines affect the computational complexity in alternative ways. On the other
hand, these algorithms also offer complexity guarantees to approximate second-order
stationarity, which is not something that is offered for i-trace. One could equip
i-trace with a procedure that would, e.g., call a minimum-eigenvalue oracle when
\| gk\| \leq \epsilon to either (i) verify that the current iterate is approximately second-order sta-
tionary or (ii) compute a negative-curvature step otherwise. We have not considered
such an extension in this paper since (approximate) second-order guarantees are not
regularly required in practical implementations, and because we believe it is worth-
while to contribute to the literature with this work that shows the theoretical and
practical advantages of i-trace that are motivated purely by first-order guarantees.

REFERENCES

[1] S. Adachi, S. Iwata, Y. Nakatsukasa, and A. Takeda, Solving the trust-region sub-
problem by a generalized eigenvalue problem, SIAM J. Optim., 27 (2017), pp. 269--291,
https://doi.org/10.1137/16M1058200.

[2] E. G. Birgin, J. L. Gardenghi, J. M. Mart\'{\i}nez, S. A. Santos, and PH. L. Toint, Worst-
case evaluation complexity for unconstrained nonlinear optimization using high-order reg-
ularized models, Math. Program., 163 (2017), pp. 359--368.

[3] E. G. Birgin and J. M. Mart\'{\i}nez, The use of quadratic regularization with a cubic descent
condition for unconstrained optimization, SIAM J. Optim., 27 (2017), pp. 1049--1074,
https://doi.org/10.1137/16M110280X.

[4] Y. Carmon and J. C. Duchi, Analysis of Krylov subspace solutions of regularized noncon-
vex quadratic problems, in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, 2018, pp. 10728--10738.

[5] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, Accelerated methods for noncon-
vex optimization, SIAM J. Optim., 28 (2018), pp. 1751--1772, https://doi.org/10.1137/
17M1114296.

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the complexity of steepest descent, Newton's
and regularized Newton's methods for nonconvex unconstrained optimization problems,
SIAM J. Optim., 20 (2010), pp. 2833--2852, https://doi.org/10.1137/090774100.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/16M1058200
https://doi.org/10.1137/16M110280X
https://doi.org/10.1137/17M1114296
https://doi.org/10.1137/17M1114296
https://doi.org/10.1137/090774100

2220 FRANK E. CURTIS AND QI WANG

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint, Evaluation Complexity of Algorithms for
Nonconvex Optimization: Theory, Computation and Perspectives, MOS-SIAM Ser. Optim.
30, SIAM, Philadelphia, 2022, https://doi.org/10.1137/1.9781611976991.

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint, Adaptive cubic regularisation methods for
unconstrained optimization. Part I: Motivation, convergence and numerical results, Math.
Program., 127 (2011), pp. 245--295.

[9] C. Cartis, N. I. M. Gould, and Ph. L. Toint, Adaptive cubic regularisation methods for
unconstrained optimization. Part II: Worst-case function- and derivative-evaluation com-
plexity, Math. Program., 130 (2011), pp. 295--319.

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A primal-dual algorithm for minimizing a
non-convex function subject to bound and linear equality constraints, in Nonlinear Opti-
mization and Related Topics (Erice, 1998), Appl. Optim. 36, Kluwer Academic Publishers,
Dordrecht, 2000, pp. 15--49.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MOS-SIAM Ser.
Optim. 1, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719857.

[12] F. E. Curtis, Z. Lubberts, and D. P. Robinson, Concise complexity analyses for trust region
methods, Optim. Lett., 12 (2018), pp. 1713--1724, //doi.org/10.1007/s11590-018-1286-2.

[13] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright, Trust-region Newton-
CG with strong second-order complexity guarantees for nonconvex optimization, SIAM J.
Optim., 31 (2021), pp. 518--544, //https://doi.org/10.1137/19M130563X.

[14] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust region algorithm with a worst-case
iteration complexity of \scrO (\epsilon - 3/2) for nonconvex optimization, Math. Program., 162 (2017),
pp. 1--32, https://doi.org/10.1007/s10107-016-1026-2.

[15] F. E. Curtis, D. P. Robinson, and M. Samadi, An inexact regularized Newton framework
with a worst-case iteration complexity of \scrO (\epsilon - 3/2) for nonconvex optimization, IMA J.
Numer. Anal., 39 (2018), pp. 1296--1327, https://doi.org/doi:10.1093/imanum/dry022.

[16] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400--408, https://doi.org/10.1137/0719025.

[17] E. D. Dolan and J. J. Mor\'e, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201--213.

[18] J.-P. Dussault, ARCq: A new adaptive regularization by cubics, Optim. Methods Softw., 33
(2018), pp. 322--335, https://doi.org/10.1080/10556788.2017.1322080.

[19] J.-P. Dussault and D. Orban, Scalable Adaptive Cubic Regularization Methods, Technical
report G-2015-109, GERAD, 2015.

[20] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint, Solving the trust-region subprob-
lem using the Lanczos method , SIAM J. Optim., 9 (1999), pp. 504--525, https://doi.org/
10.1137/S1052623497322735.

[21] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEst: A Constrained and Unconstrained
Testing Environment with Safe Threads, Technical report, Rutherford Appleton Labora-
tory, Chilton, England, 2013, https://doi.org/10.1007/s10589-014-9687-3.

[22] N. I. M. Gould, M. Porcelli, and Ph. L. Toint, Updating the regularization parameter in
the adaptive cubic regularization algorithm, Comput. Optim. Appl., 53 (2012), pp. 1--22.

[23] N. I. M. Gould and V. Simoncini, Error estimates for iterative algorithms for minimizing
regularized quadratic subproblems, Optim. Methods Softw., 35 (2020), pp. 304--328.

[24] G. N. Grapiglia, J. Yuan, and Y. Yuan, On the convergence and worst-case complexity of
trust-region and regularization methods for unconstrained optimization, Math. Program.,
152 (2015), pp. 491--520.

[25] A. Griewank, The Modification of Newton's Method for Unconstrained Optimization by
Bounding Cubic Terms, Technical report NA/12, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, 1981.

[26] Z. Jia and F. Wang, The convergence of the generalized Lanczos trust-region method for
the trust-region subproblem, SIAM J. Optim., 31 (2021), pp. 887--914, https://doi.org/
10.1137/19M1279691.

[27] J. Kuczy\'nski and H. Wo\'zniakowski, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start , SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1094--1122, https://doi.org/10.1137/0613066.

[28] J. Kuczy\'nski and H. Wo\'zniakowski, Probabilistic bounds on the extremal eigenvalues and
condition number by the Lanczos algorithm, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 672--691, https://doi.org/10.1137/S0895479892230456.

[29] J. J. Mor\'e and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553--572, https://doi.org/10.1137/0904038.

[30] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton's method and its global
performance, Math. Program., 108 (2006), pp. 117--205.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/1.9781611976991
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/19M130563X
https://doi.org/10.1007/s10107-016-1026-2
https://doi.org/doi:10.1093/imanum/dry022
https://doi.org/10.1137/0719025
https://doi.org/10.1080/10556788.2017.1322080
https://doi.org/10.1137/S1052623497322735
https://doi.org/10.1137/S1052623497322735
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1137/19M1279691
https://doi.org/10.1137/19M1279691
https://doi.org/10.1137/0613066
https://doi.org/10.1137/S0895479892230456
https://doi.org/10.1137/0904038

COMPLEXITY OF TRACE WITH INEXACT SUBPROBLEM SOLVES 2221

[31] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res.
Financ. Eng., Springer, New York, 2006.

[32] C. W. Royer, M. O'Neill, and S. J. Wright, A Newton-CG algorithm with complexity
guarantees for smooth unconstrained optimization, Math. Program., 180 (2020), pp. 451--
488.

[33] C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algo-
rithms for smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448--1477,
https://doi.org/10.1137/17M1134329.

[34] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626--637, https://doi.org/10.1137/0720042.

[35] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, New York, 1981,
pp. 57--88.

[36] L.-H. Zhang, C. Shen, and R.-C. Li, On the generalized Lanczos trust-region method , SIAM
J. Optim., 27 (2017), pp. 2110--2142, https://doi.org/10.1137/16M1095056.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

7/
23

 to
 1

28
.1

80
.2

15
.1

79
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/17M1134329
https://doi.org/10.1137/0720042
https://doi.org/10.1137/16M1095056

	Introduction
	Notation, problem formulation, and assumptions
	Literature review
	Contributions
	Organization

	Algorithm description
	Convergence and complexity analyses
	Preliminary results
	Worst-case complexity
	Local convergence

	Numerical results
	Implementation details
	Computational flexibility offered by inexactness
	Comparison with state-of-the-art optimal-complexity algorithms

	Conclusion
	References

