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We explore the mechanics and damage of slide-ring gels by developing a discrete model for the
mechanics of chain-ring polymer systems that accounts for both crosslink motion and internal chain
sliding. The proposed framework utilizes an extendable Langevin chain model to describe the con-
stitutive behavior of polymer chains undergoing large deformation and includes a rupture criterion
to innately capture damage. Similarly, crosslinked rings are described as large molecules that also
store enthalpic energy during deformation and thus have their own rupture criterion. Using this
formalism, we show that the realized mode of damage in a slide-ring unit is a function of the loading
rate, distribution of segments, and inclusion ratio (number of rings per chain). After analyzing an
ensemble of representative units under different loading conditions, we find that failure is driven by
damage to crosslinked rings at slow loading rates, but polymer chain scission at fast loading rates.
Our results indicate that increasing the strength of the crosslinked rings may improve the toughness

of the material.

I. INTRODUCTION

In recent years, hydrogels have been of particular in-
terest to the field of polymer science as many of their
designs exhibit biocompatibility [I], controllable stiffness
[2], and the ability to self-heal [3]. This makes them
desirable for many applications ranging from tissue en-
gineering [4] to adhesives [5]. However, many potential
applications of conventional gels are limited by their frag-
ile nature. In order to overcome this key limitation, a
variety of novel gels have been proposed [6]. These gels
use specialized network structures to improve their me-
chanical strength and include double-network gels [7] 8],
nanocomposite gels [9, [10], and slide-ring gels [B, I1].
Slide-ring gels are comprised of polymer chains threaded
by ring-like molecules that are crosslinked together to
form sliding junction points. Such gels exhibit many ex-
ceptional properties such as the ability to recover from
extreme deformations [I2], a low elastic modulus [I3],
and a high fracture toughness [I4]. Despite these re-
markable features, slide-ring gels have a low mechanical
strength that must be improved before they can be used
for structural applications [I5].

A conventional chemical gel is composed of polymer
chains that are crosslinked with strong bonds at various
junctions, thereby forming a network of subchains that
meet at crosslinking junctions. Due to the crosslinking
process as well as natural polydispersity in chain length
after polymerization, there may be a wide variance in
subchain length distribution [16]. This inhomogeneity
in chain length is largely cited as the driving factor for a
conventional gel’s fragility, as stress is thought to become
concentrated on shorter segments [I7, [I8]. In turn, this
leads to localization and void nucleation, which begins
the brittle fracture process [I9]. By contrast, the archi-
tecture of slide-ring gels offers an intrinsic mechanism for
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avoiding these inhomogeneities and their resulting vul-
nerability to localization. In these systems, the crosslink-
ing junctions are replaced by ring-like molecules through
which the underlying polymer network may freely slide
[20]. This allows the polymer chains to equalize the ten-
sion held in its various sub-sections, thus increasing the
stress a network may sustain before rupturing. As a re-
sult, it is believed that the mechanical strength of a slide-
ring gel is not limited by network inhomogeneities, but
rather the strength of the weakest network component
[13, 2T]. While the distribution of forces in a slide-ring
network are more uniform, it is still not trivial to deter-
mine the network component (chains, crosslinkers, etc.)
that is the most vulnerable to breaking. This is not only
a function of the dissociative bond energies of the net-
work components, but also network topology as well as
loading conditions. Damage initiation in these gels must
therefore be studied at the level of a network, rather than
that of a single chain.

Many classical constitutive models estimate the behav-
ior of a polymer network by considering the mechanical
response of a representative unit cell. For instance, the
classical 3-chain model considers a unit cell composed
of three chains that are each aligned with the loading’s
principal directions [22]. Such models typically assume
that chains follow an affine deformation, where the mo-
tion of a single chain is governed exactly by the macro-
scopic deformation. Furthermore, the length of a chain
is considered to be uniform and unchanging. In con-
trast, the chains forming a slide-ring network are con-
stantly changing their length, which is expected to re-
sult in largely non-affine motion. A model by Ito [20]
aimed at reconciling this particular shortcoming by al-
lowing for the redistribution of chain segments within a
3-chain formulation. While this was found to explain
some of the behavior of slide-ring systems, it was not
until five years later that a key missing ingredient was
added in the form of a novel ring entropy thought to
arise from the rings that remained uncrosslinked after
the gelation process [23]. These so-called “mobile” rings
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FIG. 1: Slide-ring network and its components. a) Depiction of a slide-ring network with chains (black lines), rings

(red), and stoppers (black dots). b) The coarse grained model separates each chain into a collection of crosslinked

rings and subchains. Crosslinked rings on a chain are numbered from left to right starting from 1 to N. Similarly,
subchains are numbered from 0 to IV starting from a dangling end.

are currently thought to source an osmotic force that ul-
timately drives, or hinders, the motion of chains within
the network [24,[25]. Recently, this idea was formalized in
a continuum model using the Transient Network Theory
[26], which could explain key features of the viscoelastic
response of slide-ring gels. This formalism has also been
used to investigate damage in shear thinning polymers
[27] and dynamic polymer networks [28].

While continuum models have been able to capture
many of the complex behaviors of slide-ring systems, they
are ill-suited to study network-level dynamics. On the
other hand, molecular dynamics simulations have pro-
vided valuable insights into the smaller-scale physics that
govern the system. For example, coarse grained simu-
lations have been employed to show that chain sliding
reduces tension in a network [29], to link chain sliding
to a network’s elastic response [30], and to explore the
damage mechanisms within a slide-ring gel [31]. How-
ever, molecular dynamics are often computationally ex-
pensive and are unable to model the long-term behavior
of large slide-ring networks. Alternatively, mesoscale (or
network) models consider a more heavily coarse-grained
system and have a relatively low computational cost.
A variety of network-level physics may be investigated
within this framework; for instance, dynamic crosslinking
events in star-shaped polymers [32, B3] as well as topo-
logical rearrangement due to reptation and chain sliding
[34]. The advantage of studying systems at this length-
scale is a compromise between incorporating small-scale
physics and computational simplicity

In this study, we extend the concept of a single chain
model to study the mechanical behavior of a slide-ring
unit (a single chain) connected to the surrounding net-
work via sliding connections (or rings). This unit is
assumed to interact with an effective medium, where
crosslinking points (but not the chains) deform affinely.
To describe the mechanical response of the unit, together

with the development of internal forces within its ele-
ments (subchains and rings), we develop a thermodynam-
ically consistent model that accounts for the combined
entropic and enthalpic contributions of flexible chains
and mobile rings and their limit stretch. This enables
us to investigate the force-response and damage initia-
tion in the slide-ring unit as a function of its orientation
in the network and macroscopic loading conditions. We
identify various damage mechanisms, which depend on
loading rates and the relative strengths of the chains and
the rings.

II. PHYSICAL LAWS OF A SLIDE-RING
SYSTEM

We begin by deriving the basic physical laws that gov-
ern a slide-ring system. Slide-ring gels are comprised of
flexible polymer chains threaded by ring-like molecules
(Fig. [th) and stopped by a bulky end-group. Historically,
the backbone molecule is polyethylene glycol (PEG) and
the rings are a-cyclodextrin (CD) molecules, but other
systems have been synthesized [35], [36]. For this study,
we consider the most common PEG-CD system. Fur-
thermore, we assume that each ring can freely move
along its respective chain up to the stopper. To form
a network, two rings are crosslinked together, forming a
figure-eight structure that connects neighboring chains.
After the crosslinking process, there exist a number of
uncrosslinked rings (mobile rings) that remain unteth-
ered to the network, but are still restricted to slide along
their respective chain.

Conceptually, a slide-ring gel can be described as a
connected network of subchains and crosslinked rings
illustrated in Fig. [[b. With this description, a sub-
chain is denoted as the portion of the polymer chain
(including any threaded mobile rings) that is between



two crosslinked rings or a stopper. Thus, a ring-chain
unit with IV crosslinked rings is comprised of N + 1 sub-
chains. Furthermore, the 7" subchain of the unit may be
discretized into a collection of n; freely joint Kuhn seg-
ments of length b;, such that its contour length is n;b;.
We also define the end-to-end vector r;, which spans the
distance between the two crosslinked rings adjacent to
the i*® subchain. Subchains i = 0 and i = N are re-
ferred to as dangling ends as they are capped by a stop-
per; while they may contain a reserve of Kuhn segments,
their end-to-end vector is not constrained in space and is
thus treated as zero.

A. DMotion and damage

We now discuss the physical processes that occur when
the system is perturbed from equilibrium. As discussed
previously, every subchain is threaded by mobile rings
that are assumed to be in constant motion due to ther-
mal fluctuations. As a result, the i*" subchain experi-
ences a one-dimensional osmotic force m; directed along
the contour of the chain (Fig. [2h) [26]. Differences in this
osmotic force drive chain sliding between subchains as
Kuhn segments move from subchains with a high osmotic
force to subchains with a low osmotic force. This process
is not instantaneous, but rather a time-dependent process
that is subject to frictional forces between the polymer
chain and the crosslinked rings. Let 9; represent the ve-
locity of a chain sliding through its i*" crosslinked ring
and ¢ be a time-dependent frictional parameter. This
relationship can be represented as

i = [rls, (1)

where [r]; = w41 — m; is the osmotic force differential
across the i*" ring. The total change in segment number
within a subchain depends on the chain’s velocity at both
adjacent crosslinked rings. Thus, the number of segments
in the i*® subchain is changing at a rate of n; = ;11 —v;.

Next, we turn to the absolute motion of a crosslink-
ing junction. For this, we first note that a figure-eight
junction may be described as two individual rings that
are connected via a covalent junction. For simplicity, we
assume here that the bond only carries tensile forces such
that each ring within the i*" figure-eight applies an equal
and opposite force f; onto one-another. Besides, a ring is
also subjected to the forces from a threaded chains, that
takes the form of the vector [t]; = t;41 — t;. Now con-
sidering that a ring (at current position @) is immersed
in a solvent characterized by viscosity u, its velocity is
determined by the over-damped equation:

pi; = fi — [t];. (2)

This equation of motion is schematically represented in
Fig. 2p. Finally, we discuss the concept of damage as
occurring at the extreme limits of these processes. The
formalism used here is similar to the extendable chain
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FIG. 2: Motion and damage in a slide-ring system. a)
Chain sliding is driven by an osmotic force differential
[]; between subchains, whose source is mobile rings
threaded along the chain. b) Translational motion of a
crosslink is driven by a force differential between
adjacent subchains, [t]; = ;11 — ¢; and the force
exerted by the adjoined ring, f;. ¢) Kuhn segments are
modeled as springs with resting length &’. Each Kuhn
segment in a subchain 7 is assumed have the same
length b;. d) crosslinked rings are modeled as two
springs of length ¢; in series. The crosslinked rings are
joined at the point x; and the chain is attached on the
opposite side of the ring &;.

model presented by Mao et al. [I9] and its expansion
to crosslinking junctions [37]. In brief, we model the
components of each subchain as storing their own elastic
energy. Thus, each crosslinked ring acts as a spring of
length ¢; and each Kuhn segment acts as a spring of
length b; (Fig. and Fig. ). To maintain a simple
damage criterion, we assume that these components may
break after being stretched past a specified limit. Thus,
we track the motion of not only the end-to-end vectors
of the polymer chain, but also the stretch of the Kuhn
segments and crosslinked rings. For this, we require a
framework for describing the positions and orientation of
the rings. Let x; be the position vector of the junction
point of a set of crosslinked rings and &; be the position
vector of the diametrically opposite position on the ring.
We assume that the junction of the polymer chain and
the ring exists at &, and define the unit vector u; = (&; —
x;)/|&; —x;| to describe the orientation of the crosslinked

ring (Fig. ).

B. Free energy of a single chain

The behavior described in the previous question
prompts three key questions regarding our system: (i)
what is the osmotic pressure that drives relative chain



motion, (ii) what is the chain-force that drives crosslink
motion, and (iii) under what conditions do Kuhn seg-
ments or crosslinked rings fail. To answer these ques-
tions, we here follow the general approach described in
[38] to develop a Helmholtz free energy functional for a
single slide-ring chain. The free energy is constructed
by considering entropic constributions, which scale with
temperature T, and enthalpic contributions, which are
purely elastic. In a polyrotaxane chain, contributions
from both the polymer chain and the ring molecules are
present. For the remainder of the manuscript, we reserve
a suerscript m for quantities relating to the mobile rings
along the chain and a superscript x for quantities relating
to the crosslinked rings. Then, our model accounts for
the entropic contribution .S; of each subchain’s polymer
chain, the enthalpic contribution U; of each subchain’s
Kuhn segments, the enthalpic contribution U} of each set
of crosslinked rings, and the entropic contribution S7" of
the mobile rings within each subchain. The free energy
functional thus takes the general form

7oy

0<i<N
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1<i<N

Recall, N is the number of crosslinked rings on a chain
and subchains are numbered from 0 to N. Hence, the
first summation is performed over subchains while the
second summation is performed over crosslinked rings.
The following paragraphs define the explicit form of each
term in this equation. For brevity, we omit the subscript
1 in the following derivations.

Beginning with the entropic energy of mobile rings
threaded on the chain, we follow the definitions presented
in our previous work [26], which are similar in form to
the original mobile ring entropy proposed by Mayumi
et al. [23]. We consider a subchain is composed of n
Kuhn segments threaded by p mobile rings. By defini-
tion, the entropy generated by the mobile rings is of the
form S™ = k;log(2) where Q is the total number of
possible ring configurations on the subchain. Assuming
that each mobile ring occupies one Kuhn segment and
each Kuhn segment has an equal probability of being oc-
cupied, this takes the form of the binomial (Z) After
taking the logarithm and simplifying the following ex-
pression using Stirling’s approximation [39], we obtain
the required expression:

™ & ky(nlog(n) — (n—p)log(n —p)).  (4)

Note that we have neglected all timescales and energy
dissipation arriving from mobile ring diffusion. This as-
sumes that mobile rings remain in equilibrium and are
able to move along the chain at a timescale much faster
than the relaxation time of the unit. As we are eventu-
ally interested in the initiation of damage in a slide-ring
system, we require a description of chain entropy that is
valid for extensions up to the contour length of the chain.
The most commonly used formulation was proposed by
Kuhn and is referred to as the Langevin model [40]. In
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our system, note that the contour length of a chain may
change due to varying the number of Kuhn segments n or
their length b. Furthermore, the Langevin function may
be explicitly approximated by the Padé approximation
proposed by Cohen [1], £L71(x) ~ x(3 — 2?)/(1 — 2?),
which is valid for the required domain of 0<z<1. The
resulting chain entropy functional takes the form:

S ~ —nk, B (%)2 —In (1 - (7;)2)] . )

Moving on to enthalpic considerations, when a subchain’s
end-to-end vector approaches its contour length, the
Kuhn segments may be physically strained before reach-
ing their rupture point [42]. To capture this enthalpic
stretch, we extend the Langevin model following the ap-
proach presented in [19], which treats Kuhn segments as
elastic springs that may store their own enthalpic energy.
The simplest form of this enthalpic energy is a harmonic
potential, which approximates each segment as a linear
spring. Assuming that each Kuhn segment in one sub-
chain is stretched equally, the enthalpic contribution of
all n Kuhn segments in a subchain is the product

U:n§<§—1>2, (6)

where F, with units of energy, is the elastic stiffness of
bonds in the chain’s backbone and b’ is the resting length
of a Kuhn segment [19].

Finally, we consider the enthalpic energy of crosslinked
rings. The movement of these rings is constrained by the
tension in its adjacent subchains. If the tension in the
surrounding subchains is sufficiently large, crosslinked
rings may begin to stretch and eventually rupture. To
account for this, we model a set of crosslinked rings as
two springs in series with stiffness E* and resting length
¢ [37]. Once again, we use a harmonic potential as a
simple energetic penalty for stretching the rings. The
enthalpic contribution of a crosslinked ring thus becomes

ceEEY o

C. Driving thermodynamic quantities

We may now answer the questions introduced in the
previous section using the formalised free energy of Eq.
(3). Notice that each subchain has three quantities that
may vary to minimize its free energy: the end-to-end
vector r with length r, the number n of Kuhn segments,
and the length b of each Kuhn segment. Furthermore,
the length ¢ of each crosslinked ring must be treated
as their own independently varying quantities. Each of
these quantities will evolve to minimize the free energy
of the full chain, which ultimately gives rise to the forces
that drive the motion outlined in section [[TA] Beginning



with the osmotic force 7, we take the derivative of the
free energy with respect to n to yield

7= A(r,n,b) — )

8)

kyTr? (12 — 3n%b?
22 ( RIS + kyTlog(1 —

r

~ 33

where the factor A is:

E /(b 2 1 /7 \2 r\2
A= (b’ 1) +ka{2 (nb) log <1 (nb) ﬂ
9)
It is worth noting that as r approaches 0, Eq. con-
verges to the energy functional based on Gaussian chain
physics (provided n is sufficiently large). Next, we take

the derivative with respect to r to yield the tension t held
in a flexible subchain,

T /12 — 3022
g o (r 3"b)r7 (10)

nb? \ r2 — n2ph?

where b is determined by minimizing the free energy, i.e.
finding b such that %, = 0 [28]. Note that we consider
b to remain in equilibrium, i.e., that the timescale as-
sociated with stretching the Kuhn segment is very fast.
As defined in Eq. , the opposing force of this tension
is provided by the crosslinked rings. As the only term
involving c is the enthalpic energy U, we may take the
derivative directly to yield

=2 ()

f

where c is determined by minimizing the free energy with
respect to ¢. To consider a damage criterion for our sys-
tem, we follow the approach of Mao et al. [19, [37] and
postulate that a component (here, either a Kuhn segment
or a crosslinked ring) fails once a critical rupture energy is
exceeded (i.e. in Eq. @ or Eq. ) Physically, this cor-
responds to the bond storing more energy than required
for dissociation. In practice, this requires determining
the current Kuhn segment length b or ring length ¢ and
determining if a critical stretch has been exceeded. Once
the critical energy has been exceeded, the component is
considered to rupture [19]. This is discussed further in
the following section.

III. TRANSIENT MECHANICS OF AN
ALIGNED CHAIN

To gain insight into the transient mechanics of a slide-
ring system, we here consider the response of a single
slide-ring chain composed of two crosslinked rings (Fig.
I1p). Such a chain contains only one internal subchain,
ensuring both crosslinked rings are adjacent to a tension-
free dangling end. We refer to this system as an aligned
chain as all forces are aligned in the direction of the end-
to-end vector r. For this study, we assume that each
subchain is initially composed of n = 50 Kuhn segments,

yielding n; = 3n = 150 total segments in the full chain.
Additionally, we assign p = 10 mobile rings to thread
each subchain. The stiffness of both a Kuhn segment and
crosslinked ring is taken to be that of a carbon to carbon
bond, the weakest bond in the polyethylene glycol chain,
which was previously estimated to be Ec_c = 2300k,T
[19]. For the remainder of this manuscript, we present
bond stiffnesses in units of Fc_¢, thus, F = 2 means
E = 2Ec_¢c = 4600k, T. Finally, we take the length
of a Kuhn segment to be twice the length of a dimer of
the backbone polyethylene glycol chain, yielding b’ = 22
Angstroms [43].

To set a reference point for the chain-level quantities,
we consider the equilibrium state of the chain when the
end-to-end vector is 7 = 0. In this condition, there is
no tension in the subchains and the Kuhn segments are
evenly distributed throughout the chain. Thus, each sub-
chain has n’ = n;/(N + 1) segments and a residual os-
motic force of 7' = —kT'log(1 — L), Furthermore, the
minimum number of segments in a chain is equal to the
number of mobile rings, thus, the maximum number of
segments in the center of the chain is ne, = n; — 2p.
As the time-dependent behavior of the chain is governed
by the timescale of sliding, we define the following non-
dimensional loading parameter:

A¢
W = T’ (12)
where A is the rate at which the endpoints are separated.
This parameter thus governs the competition between
sliding, which tends to dissipate energy, and stretching,
which stores elastic energy. When W is low, chain slid-
ing occurs at a much faster timescale than the loading
rate and energy is dissipated immediately. Alternatively,
the chain behaves elastically for large values of W. Fig.
plots the chain tension ¢, number of segments in the
middle subchain n, and Kuhn segment and ring stretch
b’ /b and ¢’ /c, respectively, for different values of W. Note
that the tension is plotted on a logarithmic axis to better
visualize the response at high stretches and all quantities
have been normalized by their reference values. In par-
ticular, we normalize n such that it vanishes at equilib-
rium (n = n') and approaches 1 after the dangling ends
have been depleted (n = ne). We begin the analysis
by discussing the limiting cases of fast and slow loading
(W — 0o and W — 0, respectively).

A. Rate-dependent chain response

Fast loading. A chain that is deformed at a suffi-
ciently fast rate does not have time to slide through its
crosslinked rings. In this case, the effects of chain sliding
are negligible and the crosslinked rings can be treated as
permanent bonds. As a result, the governing equations
(Egs. and (2)) become f = [t] and ¥ = 0, which dic-
tates that n remains constant. This regime is illustrated



il
sy
~
~
\\
9
-
N/
o0
=
C) il
z 1 s
I S o
| SlOW -: o "'
0. 0. 4
8 K Y .,'
~— & R
* *
= 05
< o Ko
| & o
& RS
. *
0 S Fast
d) 103
RS
2 102
¥
R
w)

2
r/n'b’'

FIG. 3: The mechanical response of a single chain being
separated at different rates. The limiting regimes of fast
and slow loading are illustrated with fine black lines,
while intermediate loading rates are shown as colored
dashed lines. Note that all quantities have been
normalized by their reference quantities.

by the black lines in Fig. [3p-d labeled “fast.” Note the
two force regimes characteristic of this scenario (Fig. ),
separated by the point at which chain components begin
to stretch (Fig. [BJd), which occurs close to the contour
length of the reference chain (i.e., r &~ n’b’). Before this
point, the tensile force of the internal subchain follows
the Langevin chain model for a chain with contour length
b'n’. However, as the chain is stretched further, it stiff-
ens to the point that the Kuhn segments and crosslinked
rings start to stretch. As a result, the tension does not
diverge with further increase in r. Note that this follows
the behavior of the extendable chain model proposed by
Mao et al. [19]. Clearly, sliding is not possible in this
regime, which ensures that n = n’ for all r (Fig. )

Slow loading. The slow loading limiting case is ob-
tained when the rate of deformation is much less than
the rate of chain sliding. Thus, the chain is permanently
in a stable configuration, with no differential of osmotic
force across the chain. The governing equations for the

vi

slow loading response are f = [t] and [r] = 0. The solu-
tions to these equations are illustrated by the black lines
in Fig. [3p-d labeled “slow.” For this case, there are three
regimes of response during the loading history. When
loading begins, the segments in the dangling end move
into the internal subchain due to the increase in osmotic
force (Fig. [3k). The chain tension thus softens as the
contour length of the middle subchain grows. However,
there is a limited number of Kuhn segments in the dan-
gling ends. Indeed, as n approaches its maximum value
of ny, (implying that all Kuhn segments have moved into
the middle subchain), the force response of the internal
subchains briefly converges to the Langevin model for a
chain with n., segments. Similar to the fast loading case,
the point at which segment and ring stretch becomes sig-
nificant may be defined as another transition point. Note
that this occurs around the point r &~ 3n’b’ because there
are three total subchains (Fig. [3l). Consequently, when
the chain is stretched past this point, the force response
of the inner subchain diverges from the corresponding
Langevin model in a similar manner as before.

Intermediate loading rates. Finally, we may dis-
cuss the behavior of the chain at intermediate loading
rates. In this scenario, there exists a competition be-
tween storing elastic energy by stretching and dissipat-
ing energy by sliding. In Fig. Bp-d, we illustrate the re-
sponse of three loading rates defined by W =1, W = 10,
and W = 100. Notice that all three of these curves lie
within the boundaries of our fast and slow limiting cases
discussed previously. For these loading rates, we again
notice three distinct regimes. Similar to the slow and
fast loading cases, the initial tensile response is dictated
by the elastic behavior of a chain with contour length
n't’ (Fig. [Bb). Eventually, a regime of sliding occurs,
which represents a smooth transition from the elastic re-
sponse to the equilibrium response. The boundaries of
this regime are indicated by n > n/ and n — ny (re-
flected by the transition from 0 to 1 in Fig. ) Notice
that the width of these boundaries indicates the rate at
which energy is dissipated with respect to the increase of
r. This is also reflected in the force response, which be-
comes more horizontal as the dissipation rate increases,
indicating that the applied energy is primarily being used
to drive sliding. Furthermore, we note that all three
quantities (force, segment count, and component stretch)
transition from the fast response to the slow response
during the sliding regime. Once the dangling ends have
been depleted, sliding halts and all curves converge back
to the slow loading case.

B. Damage behavior

The damage behavior of the aligned chain is governed
by the relative loading rate W and the strength of the
weakest component. As discussed previously, the damage
criterion considered in this study is ultimately based on
a critical bond dissociation energy; when the enthalpic
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loading rate for different component stiffnesses.

energy of a component (rings or Kuhn segments) has ex-
ceed this critical energy, it breaks. With the harmonic
potentials defined in Egs. @ and , this may also be
considered as a critical stretch \. after which the respec-
tive component has stored its critical energy. As a result,
two parameters directly govern component-wise failure:
the stiffness EX or EF and the critical stretch A, which
may be varied for rings or Kuhn segments as well.

Let us consider the damage behavior of the aligned
chain with varying stiffnesses but a constant critical
stretch (Fig. . If the stiffness of a component, E* or
E for crosslinked rings or Kuhn segments, respectively, is
less than F¢_¢, the component begins stretching at an
earlier separation distance. Thus, the component reaches
its critical stretch A. at a smaller critical separation dis-
tance r.. Alternatively, increasing the stiffness of the
component results in higher resistance to stretching and,
thus, a larger critical separation distance. Let us first
use E* = FE to illustrate the trends of our model. In
this case, the stretch b/b" of the Kuhn segments and the
stretch ¢/c¢’ of the rings is always the same — if one com-
ponent were weaker, failure would always be dictated by
that component.

Fig. plots the component stretch b/b" (or, alter-
natively, ¢/c’) versus the normalized separation distance
r/n'b’ for three values of component stiffness: (i) E =5,
(ii) £ =1, and (iii) £ = 0.5 for the case of slow load-
ing, i.e. W — 0. The dashed grey lines indicate the
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critical stretch and corresponding critical separation dis-
tance (only illustrated on the E = 1 curve for brevity)
for the three cases. For E = 0.5, the components be-
gin to stretch almost immediately with an increase in r.
This regime thus reflects a scenario where the enthalpic
stiffness of the Kuhn segments is close to the entropic
stiffness of the polymer chain. Here, the critical stretch is
reached before the chain has stiffened significantly, which
is unlikely for a physical polymer chain. In contrast,
strengthening the components by a factor of five delays
component stretch as the entropic stiffness of the chain
is much softer than the enthalpic stiffness of the compo-
nents. Thus, the polymer chain is well into its stiffening
regime before the components stretch significantly.

To demonstrate the dependence of damage with re-
spect to relative loading rate, we plot in Fig. [b the nor-
malized critical separation distance r./n'd’ versus loading
rate for the same range of component stiffnesses. Gen-
erally, with larger F/, we observe a larger critical stretch
r.. Furthermore, we notice a transitional regime between
re & 3n'b’ (the contour length of the full chain as there
are 3 subchains) and r. = 1n'b" (the initial contour length
of one subchain) that occurs at different loading rates.
For instance, the critical stretch of E =5 and F = 0.5 is
similar for W < 10 and W > 50. However, between these
loading rates, the chain with £ = 5 is able to stretch
nearly three times as far as the chain with £ = 0.5.
Thus, it is important to consider the regime of loading
rates that a chain will be subjected to as strengthening
its components does not have a large effect at very slow
or very fast rates.

IV. DAMAGE MECHANISMS OF A
SLIDE-RING UNIT

In an isotropic network, a chain and its subchains may
have arbitrary orientation with respect to the loading di-
rection (Fig. . We therefore propose a simple study of a
well-defined volume element and report on its emergent
behavior in terms of damage initiation. The proposed
slide-ring unit is a rectangular domain of length L and
height H comprised of a chain threaded by IV crosslinked
rings equispaced along its edges (Fig. [5)). The chain
connects alternating rings from each side to produce a
“zig-zag’ pattern. The unit itself may be uniquely de-
fined by its crosslink density p = N/LH and the angle
created by the exterior subchain and the bottom of the
unit tan (¢) = (N — 1)H/L, the latter of which may be
thought of as a measure of how coiled the chain is in
space. For example, ¢ = 0 describes the perfectly aligned
chain described in the previous section. Alternatively, as
¢ approaches 7, we observe a perfectly coiled chain that
minimizes its occupied volume. Note that this study is
performed in 2D to illustrate the basic predictions of the
model.

To predict the response of differently oriented units,
we consider applying a purely deviatoric deformation in
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FIG. 5: The simple 2D unit studied in this section is
defined by its crosslink density p = N/LH and its coil
angle ¢. We consider deviatoric deformations of the
unit in an arbitrary direction 6.

an arbitrary direction. For instance, we may consider a
global deformation of the form F = diag{1/A, A}, where
A is the macroscopic stretch ratio. While F' is defined in
a global coordinate system e;, the deformation observed
by an arbitrary oriented unit may be considered as the
equivalent deformation in its local frame e}. Defining 6
as the angle between e; and e}, we, therefore, consider a
general deformation of the form

F'(\60) = R(OOFINR(H)T, (13)

where the orthogonal matrix R defines the orientation of
the chain with respect to the principal stretch directions.
For convenience, we normalize all lengths in the unit
volume by that of an undeformed Kuhn segment ¥'.
To restrict the parameter space, we considered an
experimental system of low-inclusion polyrotaxane with
low crosslinking density as these systems have been the
most highly characterized [44, [45]. According to the
experimentally measured crosslinked ring densities on
the order of 10 m~2 [45], we consider chains with N =5
crosslinked rings, an angle of ¢ = 7, and a density of
p = 0.050'72, where V' is considered as 22 angstroms
[43]. As the percentage of crosslinked rings on a single
chain was measured to range from 5 — 36% [45], we
choose the number of mobile rings per segment to be
p = 8, which corresponds to 10% of the rings being
crosslinked on the full chain. Additionally, we assume
the full chain contains 100 Kuhn segments, each initially
having the reference stiffness of the carbon-carbon
bond, F = E* = 1. Furthermore, the critical bond
dissociation energy is assumed to be the same for each
component, yielding a critical component stretch of
Ae = 1.01. The number of mobile rings per segment is
initially chosen to be p = 8, which reflects a relatively
low inclusion polyrotaxane. Finally, we consider the
length of a crosslinked ring to be 0.75 times that of
a Kuhn segment, which is consistent with the ratio of
the outer diameter of an a-cyclodextrin ring (about 15
angstroms [46]) to the length of a polyrotaxane Kuhn
segment. These values are summarized in Table I}

Note: The stretch-driven failure criterion implies that
stiffening an element (either ring or Kuhn segment)
will delay its rupture and therefore make it effectively
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stronger.  Conversely, a compliant element may be
thought of as weak.

Loading parameters Symbol | Values

Angle of loading 0 from 0 to 27
Macroscopic stretch A varied
Network parameters Symbol | Values
Number of crosslinked rings N 5

Coil angle 10) I
crosslinked ring density p 0.056'2
Physical parameters Symbol| Values
Number of Kuhn segments in chain|n; 100
Mobile rings per subchain p 8

Initial Kuhn length* b 1

Initial ring length* d 0.75
Component rupture stretch Ae 1.01
Kuhn segment stiffness™ E 1
Crosslinked ring stiffness™ E® 1

TABLE I: Reference parameter values (assumed in-use
unless stated otherwise) used to study the damage
mechanics of a slide-ring unit. *Note, lengths are
normalized by the length of an undeformed Kuhn

segment (approximately 22 angstroms [43]) and
stiffnesses are normalized by the stiffness of a
carbon-carbon bond (approximately 2300k,T [19]).

A. Transient behavior of a slide-ring unit

We begin by discussing the behavior of the slide-ring
unit whose deformation history x(t) is defined by Eq.
. Once again, the loading rate plays an important
role as segments rearrange within the unit to equilibrate
tension. Rheological studies of slide ring gels have de-
termined relaxation times on the order of 100 ms [47].
Furthermore, low inclusion slide ring gels display extensi-
bility of up to 1600 % strain [48]. We here consider a wide
range of loading rates parameterized by the Weissenberg
number W, which may be interpreted as the loading rate
A normalized by the relaxation time of the material. For
this study, we load each unit until one of the components
has failed, which indicates the onset of damage.

To better understand the behavior of the system, we
may define both unit-level quantities, which are a func-
tion of their orientation €, as well as ‘smoothed’ quanti-
ties, which are averaged over all orientations. These may
reflect the behavior of an ideal slide-ring network under-
going affine deformation. To begin, we define the virial
stress [49] of a unit as

o) = LIH{ Z Tt + Z E*(c; — c)e; @ u; |,
0<i<N 1<i<N

(14)

where ® denotes the dyadic (tensor) product. The left

part of this expression reflects the tension held within

each subchain while the right expression accounts for the

enthalpic force in the crosslinked rings. Note that the
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FIG. 6: Mechanical response of arbitrarily oriented units. (Left) Average principal stress on the assembly versus
stretch. (Right) Average segment growth versus stretch. (Center) Critical stress versus orientation plotted on a
logarithmic scale. All plots illustrate fast (W — oo) and slow (W — 0) loading as limiting cases. The intermediate
loading rate of W =1 is illustrated with a grey dashed line.

enthalpic contribution of the Kuhn segments is already
accounted for in the chain tension t. As we are deform-
ing units with arbitrary orientation, we may consider the
first principal stress 6(0) as reflecting the applied stress
required to deform a unit whose edges are aligned in the
direction #. Note that the direction of 6 may not align
with 6 due to the anisotropy of the unit. Furthermore,
we may define the critical stress o.(f) as the stress at
which the unit fails. The other unit-level quantity of in-
terest is the degree of sliding that has occurred during
the deformation history. A simple measure of this is the
fractional segment growth, denoted «, which is a normal-
ized quantity that describes the influx of segments into
the center subchains [26]. We formally define it here as

a(f) = (15)

Noo — 1
where 71 is the sum of Kuhn segments in the middle sub-
chains and 7’ is its value before deformation. With this
definition, o vanishes at equilibrium and asymptotes to
« = 1 once the middle subchains have accumulated n.
segments (i.e. the dangling ends have been depleted).
Thus, an increase in o means segments have moved from
the dangling ends into the middle subchains, while a de-
crease in a means that segment flux into the dangling
ends has been preferred. The latter case may occur with
the application of a volume-shrinking deformation, for
instance. Finally, to observe the collective response of an
ideal network, we may consider the network average of
the quantities in Eqgs. ((14) and . For this, we define
the operator () to denote the average over all orienta-
tions 6. Fig. |§| plots the average principal stress (5),
the average segment growth (a), and the critical stretch
o.(0) for units deformed in all directions 0 < 8 < 27 to
the point of rupture at varying loading rates.

Fast loading. Once again, we begin by analyzing
the case of fast loading (i.e. W — o0) as it is the sim-
plest to conceptualize. When loading a slide-ring network
quickly, there is not sufficient time for sliding, and the re-
sponse is that of an elastic network. This is illustrated

by the invariance of o with A in Fig. [f] As with the
aligned chain, the chain stiffens at the earliest point and
subsequently fails at the smallest strain. Note that we
have assumed the failure of any smoothed quantity to
be governed by the weakest unit — the orientation that
fails earliest dictates the critical stretch of the ensem-
ble. Looking at the response of each unit as a function
of orientation, we observe that the critical failure stress
is roughly the same for all angles. Thus, the orientation
of the unit does not play a large role in its mechanics at
high loading rates, as would be expected for an (isotropic)
elastic network.

Slow loading. In the limit of slow loading (W — 0),
we expect a large transfer of segments from the dangling
ends into the middle subchains (as before in the aligned
case). Indeed, we notice an immediate increase in the
mean fractional segment growth («), which converges to
its maxmimum value of one before breaking. We also
predict an increase in critical stress, critical stretch, and
toughness over all orientations (Fig@. Thus, the sliding
of segments from the dangling ends increases resistance
to failure as in the previous section. This time, there is
a large effect of the orientation of the unit on the critical
stress o.. In particular, units aligned orthogonal to the
principal directions of loading illustrate nearly an order
of magnitude increase of o, from the fast loading case.
Units unaligned with the direction of loading experience
a smaller increase in 0., with the smallest difference being
observed at § = w/4 and its symmetric orientations. This
is discussed further in the next section, but is ultimately
due to the redistribution of segments within the middle
subchains. Nonetheless, the increased critical stress is
observed over all angles due to sliding and the subse-
quent delay of damage initiation. Thus, we may expect
that networks with arbitrary topology would still have
improved toughness at slow loading rates, as is observed
experimentally [5].



B. Damage mechanisms of a slide-ring unit

We may now begin to consider different damage mech-
anisms that may occur in a slide-ring network. Recall, in
this study, we consider two different possibilities for dam-
age: rupture of crosslinked rings or rupture of Kuhn seg-
ments within a subchain. For the aligned chain, the dis-
tinction between these modes of damage was completely
dictated by their relative stiffnesses (Fig. [4]). For a real
network, however, local geometry, loading rate, and com-
ponent strength may play a role. For now, we maintain
the parameters outline in Table [l This will be loosened
with a parametric study in the following section.

We illustrate the damage behavior of this unit in Fig.
[7 In the center, we plot the critical macroscopic stretch
Aerit @t which a unit with orientation 6 breaks for both
fast and slow loading. We color the lines in this plot by
their damage mechanism (which component broke first)
— red for rings and blue for Kuhn segments. Once again,
we note that fast and slow loading represent boundaries
of the system’s response. This time, we may also color
the intermediate loading rate regions with the color corre-
sponding to their preferred damage mechanism. Clearly,
for this system, breaking Kuhn segments is largely pre-
ferred over a majority of orientations. We also note the
slight asymmetry between angles 0 and 7 and angles 7/2
and 37 /2, which is due to higher forces being placed on
either the ‘middle’ rings or the ‘outer’ rings, and subse-
quent preferred damage, as illustrated in the schematics.
In Fig. [7] the left and right subplots illustrate the change
in fractional segment growth a during loading for units
aligned in the direction of loading (A: # = 0), perpen-
dicular to the direction of loading (B: § = 7/2), and
offset to loading at m/4 rad. (C: § = n/4). Note that
the shaded grey regions are bordered on the right by the
critical stretch . and segment change « that occurs at
intermediate loading regimes.

Fast loading. As usual, we first consider the case of
fast loading. Here, the effect of geometry is clearly ob-
served by the ‘diamond’ shape outlined in the polar plot
of Fig. [l As this is the elastic regime, the reason for
this is the affine deformation of the two inner-most sub-
chains, which consistently break after a critical stretch in
their respective orientation is reached. When the orien-
tation of the unit 0 is exactly aligned with the coil angle
¢, i.e. at orientation C, we observe the smallest criti-
cal stretch as the local stretch on one of the inner-most
subchains is exactly equal to the macroscopic stretch. In
contrast, at orientations A and B, we observe the largest
critical stretch as the relative alignment of each subchain
with respect to the loading direction is equal. Interest-
ingly, we only predict ring failure at orientations near A
and B. When the middle subchains are evenly stretched,
the rings sustain the highest loads, making them more
vulnerable to breaking. As this regime is dominated by
elastic deformation, we observe no change in « for any
orientation, yielding a constant value of &« = 0 up to the
border of the grey region in the plots. At this point, the

unit breaks without any sliding having occurred.

Slow loading. In the slow loading regime, we again
notice an increased critical stretch over all orientations
due to the influence of segment sliding. Interestingly, in
this case, we observe the highest critical stretch at orien-
tation C, while the lowest occurs at orientations A and
B. Recall, when the unit is aligned normal to the de-
formation, all subchains are stretched uniformly. Thus,
the segments that flow from the dangling ends must be
evenly distributed to each subchain. This drains the dan-
gling ends faster, as observed by the slope of the a ver-
sus A plots, which results in a smaller critical stretch.
In contrast, for the offset orientations such as C, while
some inner subchains are extended, the others are com-
pressed. This allows the compressed subchains, as well
as the dangling ends, to distribute their segments into
the more extended subchains. Thus, the segments in the
dangling ends are depleted more slowly, and the unit is
able to withstand further extension. Note that each ori-
entation converges to its maximum value of a = 1 before
breaking, where A and B approach this value faster than

C.

C. Parametric study

We may now consider the effect of the chosen param-
eters on the response of the unit. As shown in Table
[ there are seven physical parameters that govern the
mechanical properties of the chain. We first note that
the initial length of Kuhn segments and mobile rings (b
and ¢, respectively) do not affect the stress response or
damage behavior as we are considering linear spring be-
havior. Furthermore, the number n; of Kuhn segments
in a chain primarily dictates the point at which the chain
stiffens, i.e. the applied stretch at which chains approach
their contour length. Thus, the primary parameters gov-
erning the response of the unit are the strength of the
components, ¥ and E*, and the number of mobile rings
per subchain, p.

Effect of component stiffness. As demonstrated
with the aligned chain, the component stiffnesses £ and
E7* largely influence the mode of damage preferred to the
slide-ring network. For non-aligned geometries, however,
local strains and non-affine deformations within the chain
create a large orientation-dependence as well. To study
the effect of varying the component stiffness, we consider
a numerical experiment in which we strengthen only one
of the components by a factor of five. Note that we are
neglecting the regime of F, E* < 1 for the slide-ring unit
as it is unlikely to be physical (as discussed previously
for the aligned chain). Fig. [8| presents the critical stretch
versus orientation plots for units with strong rings (i.e.
E® = 5) and strong chains (i.e. E = 5). For the first
case, we see that damage to the Kuhn segments has been
exclusively preferred. As before, the fast loading case is
driven by the geometry of the unit, while the slow loading
case delays damage. In contrast, when we strengthen the
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FIG. 7: Damage behavior of the unit studied in this section. (center) polar plot of the critical applied deformation at
which a component breaks in a given orientation for fast, slow, and intermediate loading (W = 1, dashed). Shaded
regions are colored by their preferred damage mechanism at a given orientation and loading rate (red for rings, blue
for Kuhn segments). (left) Segment change versus applied stretch at orientations A and B. (right) Segment change
versus applied stretch at orientation C. On both plots, the dashed curve is the response of W = 1. Note that the
shaded region is bordered on the right by its predicted critical stretch at other intermediate loading rates.
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FIG. 8: The effect of component stiffness on damage
behavior at fast, slow, and intermediate loading. (left)
Critical stretch versus orientation for a unit with
E? =5 and E = 1. Damage to Kuhn segments is
exclusively preferred. (right) Critical stretch versus
orientation for a unit with £ =5 and E* = 1. Damage
to rings is preferred at =~ 40% of orientations.

chains by a factor of five, damage to the rings is only pre-
ferred in roughly 40% of orientations. Nonetheless, there
is a slight increase in the critical stretch over all orienta-
tions from the previous case due to the increased chain
strength. Notice that in orientations that ring failure is
preferred, which is once again centered around units ori-
ented normal to deformation, the critical trend of A,
vs 6 remains continuous. Thus, ring damage may be
thought of as a limiting case in which rings fail just be-
fore the chain. Interestingly, for fast loading, the first
component to fail is the chains, while for slow loading,
the first component to fail is the rings.

Effect of mobile rings. The mobile rings that remain
uncrosslinked after creating a slide-ring gel are known to
largely influence the viscoelastic properties and fracture
behavior of the material [B, 23]. In general, having too

many mobile rings hinders segment sliding due to a larger
residual osmotic force. In contrast, networks with low in-
clusion ratios tend to have better viscoelastic properties
and fracture resistance. Fig. [J] illustrates the damage
behavior of units with only one mobile ring per chain up
to the limit of having the same number of mobile rings
as Kuhn segments in a subchain (denoted as py,q.) for
slow loading and intermediate loading (W = 1). Inter-
estingly, we observe very similar trends from varying the
number of mobile rings as we did from varying the load-
ing rate. Indeed, increasing the loading rate and increas-
ing the number of mobile rings both effectively prevent
chain sliding from occurring during deformation. Thus,
the curves illustrated for p = p,q.. are, in fact, exactly
the same as the curves for the fast loading rate (indepen-
dent of p). This time, we notice a large increase (nearly
double) of the critical stretch for units with sparse mobile
rings (p = 1) and units with completely full mobile rings.
This fits well with the experimentally observed effect of
varying the inclusion ratio [5] and further supports the
claim that mobile rings at low inclusion ratios increase
network toughness. Once again, it is interesting to note
that while chain damage is preferred over a majority of
orientations, ring damage occurs first (i.e. at a smaller
Acrit) in the case of slow loading.

D. Discussion

To summarize our results from the previous section, it
is important to recall that fracture or failure of a mate-
rial is determined by its weakest component. In this case,
we may consider the orientation 6 at which the critical
stretch A..;+ is the smallest. In general, as supported by
experimental evidence [5], we find that units with higher
degrees of sliding are able to sustain more deformation
and display higher toughness, which, in this context, may
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FIG. 9: The effect of mobile rings on damage behavior
for a unit with mobile rings ranging from p =1 to
p=n' (denoted pyqaz). (left) Deformation at the slow
loading limit (W — 0). (right) Deformation at an
intermediate loading rate (W = 1). In both cases,

P = Dmaz converges to the fast loading limit as sliding is
not possible. The dashed line indicates the case of p = 8
for reference.

be interpreted as the amount of energy that can be sup-
plied to a unit before failure of one of its components.
The two primary factors governing the ability of a slide-
ring network to slide efficiently are the loading rate and
the inclusion ratio, which is reflected by the number p
of mobile rings per subchain in our model. To obtain
the toughest material, one should aim to make these two
quantities as small as possible.

Uniform subchain deformation
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FIG. 10: Schematic: damage modes of a slide-ring unit
undergoing slow loading.

One aim of this study was to add a new perspective
on the potential parameters that may be adjusted to in-
crease the performance of slide-ring materials. The effect
of inclusion ratio and chain length on fracture properties
are already well-known [5], but the effect of toughening
network components is still unexplored. For each set of
parameters studied in this paper, we find that Kuhn seg-
ments within the polymer chain are more susceptible to
damage over a majority of orientations. Notably, we have
observed that this is still the case even after strength-
ening the Kuhn segments by a factor of five (Fig. .
This suggests that Kuhn segments are more susceptible
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to damage over more orientations, but does not neces-
sarily mean that failure in slide-ring networks is always
driven by damage to the polymer chain. Clearly, increas-
ing the strength of any component should positively af-
fect the toughness of the material. The question of which
component should be strengthened to best improve the
network is determined by the orientation and component
that fails at the smallest critical stretch.

When considering a slide-ring unit that can slide effec-
tively during deformation (i.e., at relatively low loading
rates and inclusion ratios), we find that the first com-
ponent to fail is always the crosslinked rings. Thus, we
predict that increasing the strength of crosslinked rings
would yield a tougher material. To extend our study to
a more physical network, one can consider two chains
being loaded in tension (Fig. . These may reflect
two different parts of an isotropic slide-ring network, for
instance. If the affine motion of the crosslinked rings
creates a uniform deformation of the underlying poly-
mer chain (i.e., each subchain is stretched evenly), then
segments from the dangling ends are shared among each
subchain, increasing their strength uniformly, and con-
centrating more force on the crosslinked rings. In con-
trast, a chain that experiences non-uniform deformation,
in which some subchains are compressed while others are
extended, the highly aligned chains are much more sus-
ceptible to damage. In this study, these two cases are
reflected by: (i) a unit being oriented orthogonal to the
direction of loading, which creates uniform subchain de-
formation, and (ii) a unit whose orientation is offset to
the direction of loading, which creates non-uniform sub-
chain deformation.

V. CONCLUSION

This paper introduced a sliding network model to de-
scribe the elasticity, relaxation, and damage evolution
in slide-ring units experiencing large deformations. The
model conceptualizes an isotropic slide-ring network as a
collection of simple units with random, yet uniform ori-
entations. This allowed us to study a slide-ring network
being deformed to the point of either chain or crosslinked
ring failure. Using this approach, we find that damage
to polymer chains is more likely over a majority of orien-
tations, but damage to crosslinked rings are ultimately
limiting the toughness of the network. Thus, improv-
ing the strength of the rings used during synthesis may
increase the toughness of a slide-ring gel.

The present study shows how chain sliding enables the
extreme extensibility of slide-ring gels. However, many
of the other remarkable properties of slide-ring systems
are thought to be the result of their dynamic network
topology. For example, it is believed that the high frac-
ture resistance of slide-ring gels is a product of local net-
work rearrangements around a fracture tip [50]. This is
largely due to non-affine motion of the sliding crosslinks,
which may be the subject of a future study. In particular,



we may consider a mesoscale network whose components
move according to local a force balance [32], B3]. This
would naturally incorporate the pulley effect of tension
redistribution, which is thought to be a predominant fea-
ture of slide ring networks [2I]. Furthermore, this study
only considers regimes prior to the onset of damage. A
full network model would be required to investigate the
propagation of damage in a slide ring material. In this
context, the model can be used to validate many of the
hypothesis proposed in experimental studies, thereby of-
fering a fundamental understanding on the role of net-
work design (topology, chemistry, etc.) on mechanical
properties such as strength and toughness.

For clarity of presentation, our analysis remained sim-
plistic and is therefore subject to several limitations. For
instance, we varied the relative stiffness of the rings and
Kuhn segment while assuming each component breaks
under the same stretch. However, the stretch required to
damage the bonds in a ring may differ from that required
to break bonds in a Kuhn segment. More accurate results
could, however, be obtained by estimating the stiffness
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and stretch required to break the weakest bond within
each component’s structural backbone. Additionally, the
purposed criteria for chain damage is exclusively the re-
sult of subchain tension. Consequently, a chain can only
fail along its internal subchains as its dangling ends are
tension free. However, a previous coarse grained molecu-
lar dynamics simulation found that slide-ring chains pri-
marily fail in regions near their dangling ends [31]. This
suggests chain failure should also be dependent on the
osmotic force along each subchain.
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