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Abstract— This paper focuses on the development of a tra-
jectory planning method for connected and automated vehicles
(CAVs) that takes into account the interactive nature of the
vehicles. The proposed approach is based on Monte Carlo
Tree Search (MCTS) that traverse through possible actions
from each state of the system to identify the trajectory with
highest reward. Here, the trajectory is planned and the actions
of surrounding vehicles are predicted jointly. Planning the
trajectory and predicting the surrounding vehicles jointly in
an interactive environment can result in a large action-space,
which is not computationally tractable. Hence, we propose
an adaptive action-space, which includes pruning the action-
space so that the actions resulting in unsafe trajectories are
eliminated. The simulation studies show that the proposed
approach is capable of identifying less conservative yet safe
trajectories for CAVs in a multi-vehicle environment.

[. INTRODUCTION

Vehicle automation and connectivity is expected to address
several issues of the current transportation system. However,
full (hundred percent) market penetration of automated ve-
hicles (AVs) or connected and automated vehicles (CAVs)
cannot be expected in the near future. Hence, these AVs
and CAVs will have to share the road with human-driven
vehicles (HDVs), which are rational agents that interact with
the AVs and CAVs. CAVs or AVs are generally controlled
in a receding horizon fashion, which allow them to utilize
information of the surrounding environment. Generally, the
overall decision-making architecture involves a high-level
sampling-based trajectory planner and a low-level controller
that follows the high-level waypoints [1]. Numerous research
[2]-[7] have aimed CAV controller development considering
full market penetration. Since these works consider all the
vehicles to be AVs or CAVs, they can assume that the
positions and velocities of the vehicles surrounding the ego
AV or CAV is fully available to it, which is not a valid
assumption in the presence of HDVs.

Several previous works [8]-[10] that consider interaction
between HDVs and CAVs generally only evaluate the impact
of the HDVs on the fuel economy. Most of the CAV control
methods separate the surrounding vehicle prediction (or fu-
ture trajectory information obtained via V2V communication
from surrounding CAVs) and ego vehicle control problem.
This can lead to highly conservative solutions. Since the ac-

tion of one vehicle influences the others, surrounding vehicle
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prediction and the ego vehicle controller synthesis problem
cannot be treated in an isolated fashion. Inverse Reinforce-
ment Learning-based methods [11] take into account this
interactive nature in ego AV controller development, but they
are not scalable and can violate safety constraints. Authors
in [12] have developed a Monte Carlo Tree Search (MCTYS)-
based lane-change algorithm for heterogeneous environment,
while factoring in the interactive nature of HDVs. However,
[12] considered a fixed action-space, which can lead to
growing the tree in infeasible directions, and didn’t consider
a joint state- or action-space.

Vehicles on road constitute an interacting environment and
actions of one vehicle affect the future actions of its sur-
rounding vehicles. Hence, a trajectory generation approach
in joint state-space and joint action-space consisting the
state- and action-space of all the interacting agents might be
beneficial. In a predictive control framework, it is essential
to incorporate the reactions of the surrounding vehicles to
the future actions of the ego vehicle over the prediction
horizon. This is essential, as ignoring the reactions may
result in identifying the safe maneuvers with higher rewards
as unsafe. In this paper, we use MCTS as the trajectory
generation framework that searches through the possible
actions to identify the best action (control). However, using
a joint action-space exponentially increases the number of
possible actions as the number of agents increases. When
MCTS is implemented in real time, it may not be able
to search all the possible actions of the joint system. In
such situations, the tree may identify suboptimal solutions,
while the control actions with higher rewards can be left
unexplored. Hence, we consider an adaptive action-space,
where we prune the unsafe actions of each node, thus
reducing the size of the joint action-space. We also consider
the CAV yaw rate (one of the controls) to be a function
of its position at a node, so that infeasible yaw rates are
eliminated, thus reducing the size of the action-space. Thus,
the paper contributions include (i) developing a MCTS-
based trajectory generation framework for an interactive
heterogeneous vehicular system that aims at generating non-
conservative actions, (ii) developing a technique to adap-
tively adjust the action-space in MCTS by pruning infeasible
actions from each node, thus enabling MCTS to identify safe
solutions with higher rewards in a computationally efficient
manner, and (iii) evaluating the utility of the framework
in a heterogeneous multi-vehicle system and a multi-CAV
simultaneous lane-change problem.

This paper is organized as follows: Section II has the
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mathematical formulation of the problem considered in this
paper. Section III details the MCTS-based approach consid-
ered. Section IV and V consist of the simulation results and
conclusion of the paper.

II. PROBLEM DESCRIPTION
A. System Model

In this work, the motion of a vehicle in a multi-lane road
is defined by its four states: longitudinal position s,,, lateral
position s, velocity v and yaw angle 6. Also, we define the
control inputs for a CAV to be its acceleration a and its yaw
rate w. The states are related to the controls and the sampling
time T by

Sz(k+ 1) = s,(k) + Tsv(k) cos(6(k)) (1a)
sy(k+1) = sy (k) + Tsv(k)sin(6(k)) (1b)
vk +1) =v(k)+ Tsa(k) (1c)
O(k+1) =0(k) + Tsw(k) (1d)

B. Optimal Control Problem

Given the above system dynamics, the optimal control
problem that a CAV will need to solve is given by

M woepiring (1)
min Z % + Woep2d ((7),a(T))  (2a)
=k
subject to system dynamics in (1) (2b)
(1) € Ssare(T); Ssape(r) =8(1)© Z Si(1)  (20)
JEN
Umin S 'U(T) S VUmazy Amin S (Z(T) S Amaz (Zd)

where it tries to minimize a cost in (2a) while ensuring
satisfaction of system constraints, including the collision
avoidance constraint in (2c). The cost in (2a) includes
fuel consumption per unit distance (rivy is the rate of fuel
consumption and wyp1 18 its associated weight) and any
other cost J (such as travel time) with weight wecp2. The
rate of fuel consumption is modeled as a function of velocity
and vehicle acceleration as

1y (v, a) = 0.5826 + 0.05113v — 0.08799a — 0.00211v?
+ 0.1565va + 0.02387a2 + 7.975 x 10~ %v3
—0.001037v%a + 0.0465va? + 0.02267a®>  (3)

where the instantaneous rate of fuel consumption data (ob-
tained from CAN signals) of Cadillac CT6 test vehicle
(available at [13]), collected from on-road experiments, is
used to model 7 (v,a). In (2c), s(7) = [s,s,]" is the
position vector of the CAV, S(7) is the feasible driving
region (defined by the roads), S;(7) is the set of positions
occupied by object (vehicle/obstacle) j at 7, and N is
the set of objects (vehicles/obstacles) surrounding the ego
CAV. The set Ssqr.(7) in (2¢) describes the safe regions

where the CAV can be at 7. ¥y, and v,q, represent the
minimum and maximum allowable velocities, whereas a.,,;n
and a4, represent the minimum and maximum allowable
accelerations. To solve the above problem in (2) over a
horizon T, the CAV needs to predict the future positions
of the surrounding vehicles with any prediction algorithm.

III. TRAJECTORY PLANNING APPROACH

In this paper, we focus on developing control strategies
for CAVs. The CAV control problem in (2) is generally
split into a trajectory generation problem that generates the
reference trajectory of the vehicle, followed by a motion
control problem that tracks the reference trajectory in an
optimal manner. To this end, we present a MCTS-based
approach that considers the joint state-space and action-space
for all the interacting agents in a ego CAV’s surrounding, and
predicts the future actions of the surrounding vehicles while
taking into account the ego CAV’s actions over the horizon.

MCTS is a search algorithm that combines the classical
tree search and reinforcement learning. The classical tree
search strategy keeps exploring the current best action, which
grows the tree in depth. The reinforcement learning aspect
of the strategy explores other actions periodically, which
grows the tree in breadth. MCTS is generally characterized
by the exploration-exploitation trade-off. This helps MCTS
to not only explore the current best actions further in
time, but also the other actions that can potentially provide
better reward. This trade-off is implemented by the upper
confidence bounds for trees (UCT') [14] given by

Ta. log N

UCT = +c

“

Ngq Na,

c

where 7., is the reward associated with implementing action
ac and ng,, is the total number of times action a. is selected.
N is the total number of simulations of MCTS and c is a
constant that facilitates the trade-off between exploration and
exploitation. In MCTS, each state of the system represents
a node, and each action determine the transition from one
node to another. Growing the tree by adding nodes is a four
step process that involves selection, expansion, simulation
and backpropagation. A brief description of each process
is presented in this paper. For more details, please refer to
[15]-[17].

1) Selection: In this process, the current tree is traversed
from root node (the initial state or current state) to leaf
node (node with unexplored child nodes). Here, the
UCT value is evaluated for each node, and the node
with the largest value is chosen as the best node. This
process is continued until a leaf node is reached, which
is then expanded.

2) Expansion: An unexplored node (obtained as a result of
performing an unexplored action) is chosen randomly
and is added as a child of the node that was identified
during the selection process.
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3) Simulation: In this process, a simulation is performed
starting from the child node (added during the ex-
pansion phase) with a preassigned simulation policy.
Generally, the preassigned simulation policy includes
choosing random actions till the end of the prediction
horizon. Then, the reward is calculated for the child
node based on the simulated actions.

4) Backpropagation: The reward calculated for the child
node (in the simulation phase) is propagated backwards
through parent nodes to the root node. Also, the number
of visits for each parent node is incremented.

In this paper, the reward r,  calculated during simula-
tion process is based on (5a), where As represents the
longitudinal distance travelled over the horizon and F' =
>, Tyry(T) represents the fuel consumed to travel As.
The reward function in (5a) maximizes the distance travelled
by using unit amount of fuel (i.e., maximizes miles per
gallon). The reward for collision is expressed in (5b), which
is taken to be a large negative value, so that actions resulting
in collisions are avoided with an associated weight of w;.
(5¢) represents the reward for travelling close to the desired
velocity (v4es) with an associated weight of ws. (5a) also
includes penalty terms to avoid large accelerations or braking
with weight ws.

As

Ta, = - +wyre + Z('LUQTU(T) — w3a2(7)) (5a)

r— 1 ?f no F(?llision (5b)
—10' if collision occurs
1 if vdiff(T)gl

ro(7) = { 1= 28 if vyp6(7) > 1 and (5¢)

Vdif f (T) < Vges (T)

with vgr(7) = [0(T) — Vges (7).
A. Original action-space

The surrounding human-driven vehicles (HDVs) are mod-
eled with a car-following model, such as the Gipps’ car
following model ( [18]), for longitudinal control. HDVs are
considered to change lanes when the average velocity of its
adjacent lane is higher than its own velocity. The HDVs
perform safety checks derived from Gipps’ car following
model and Intelligent Driver Model (IDM) [19] before
initiating any lane change.

We consider the control inputs of the connected and
automated vehicle (CAV) to be its acceleration a (m/s?) and
its yaw rate w (rad/s). In [12], the action-space (acceleration
and yaw-rate) was discretized into 14 combinations. The
vehicle acceleration was discretized from —3.5 m/s? to 2.5
m/s?, while the yaw rate was discretized with a step size
of 7 rad/s from —3 rad/s to 5 rad/s. Although action-
space discretization reduces solution optimality, reducing
the discretization step size (hence increasing the action-

space) increases the computational complexity to a large

extent. In this paper, the original action-space A is taken
as 14 combinations of the two controls as shown below.
However, unlike [12], our yaw rate actions are considered

[2.5 5 0 -15 -35 -5 0 0 1 1 -1 -1 -35 -35]"
0 0 0 0 0 0 w —w w -0 0 -w w -

Fig. 1: The original action-space for the CAV perform-
ing a MCTS.

to be a function of the CAV’s lateral position and intended
lane-change action to avoid infeasible solutions. The first
row of the above matrix represents the acceleration (in
m/s?) and the second row represents the yaw rate (rad/s),
which is calculated during the pruning of action-space (in
subsection III-B). Although there are 14 possible actions
considered, a few of them can lead to infeasible solutions,
hence, growing the nodes from those actions is unnecessary.
We thus propose pruning of the action-space, so that actions
leading to infeasible nodes are eliminated early on.

B. Pruning of action-space

MCTS method randomly explores through the possible
actions to identify its best child node (next action). For
realistic scenarios, the computation time should be less than
the sampling time, and a small sampling time in vehicular
applications can result in the action-space to be explored
partially. When the action-space is large, only a small part
of the solution-space gets explored within the stipulated
time. As a result, most or even all the safe nodes (that
avoid collision) can be left unexplored, leading to infeasible
solutions. Hence, we propose to prune the action-space of the
algorithm depending on the node of the tree to remove the
unsafe/undesired actions, thus reducing the size of the action-
space. The pruning of action-space is performed in two
steps, 1) eliminating the undesired lane-change actions, and
ii) eliminating the undesired accelerations. These techniques
are described below.

1) Pruning of lane-change actions: Pruning of lane-
change actions reduces the angular rate (yaw rate) action-
space from a given node. The pruning is performed by iden-
tifying the possible ‘target lane(s)’ for the CAV. Assuming
that by the end of the decision-making horizon, the vehicle
would either stay in its lane or move to one of the adjacent
lanes, the target lanes include the vehicle’s current lane and
the lanes to its immediate left/right. We consider high-level
lane-change actions to be denoted as ¢ = {—1,0,1}, where
0, —1, and 1 refer to ‘remain in lane,” ‘change lane to the
right, and ‘change lane to the left, respectively. For each
of the high-level actions, only a subset of the action-space
(discussed in section III-A) is valid. The yaw-rate action-
space is dependent on these high-level lane-change actions
£. The possible target lanes and the corresponding pruned
lane-change actions are as follows:

1) When the ego CAV’s yaw angle 6 in a node is less than
0.002 radians and there is no object (vehicle/obstacle)
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less than 100 m ahead in the same lane, then its target
lane is the vehicle’s current lane and the only action
possible is ‘remain in lane’. In this case, the pruned
possible lane-change actions will be ¢ = {0}.

2) When the CAV’s yaw angle 6 in a node is less than
0.002 radians and there are objects (vehicle/obstacle)
less than 100 m ahead in the same lane, then its target
lanes can be either its current lane defined by the action
‘remain in lane’ or one of its adjacent lanes defined by
the action ‘change-lane’. In this case, the pruned lane-
change actions will be £ = {0,1} or {0, —1}.

3) When the CAV’s yaw angle 6 in a node is higher than
a threshold, then its target lane is the one identified
at previous instants (that initiated lane-change), and it
continues lane-change action which is defined by either

¢={1} or {—1}.

For each of the cases discussed above, the actions space A(¢)
will be a subspace of the original action-space shown in Fig.
1. For case 2 above, the target lane ¢ (immediate left/right or
same lane) is identified as the lane with maximum relative
distance dRq, i.e., ¢ = argmax, dRq, with

AR, (F) = dm, (k) = dmin + T (vgs0, () — v(k))  (6)

q € {lit,sm,rt} represents the left, same, and right lanes.
dm, and vy, represents the distance to the nearest object
and the average velocity of all vehicles travelling ahead
within 500 m in the ¢'" lane, respectively. d,.;, 1S a
predefined safety distance and v(k) is the velocity of the
CAV. T, is a parameter similar to headway time.

Calculating yaw rate: Once the high-level action-space from
a given node has been identified as a subset of {—1, 0,1}, the
corresponding feasible yaw rate(s) is then calculated. When
the pruned action-space includes ¢ = 0, then the yaw rate
(the second row in Fig. 1) is calculated as w(k) = —0(k) /T
to make the vehicle heading angle 6 zero. When the pruned
action-space includes ‘change-lane’ (¢/ = 1 or —1) the yaw
rate is calculated from the lateral distance Ay that needs to
be traversed during the next sampling time 7. Ay is taken
to be %, where L,, is the lane width and the lane-change
is assumed to be completed in 7Ty seconds. The yaw rate is
then calculated as

oo () ) o

The sign of w is positive if the target lane is the left lane
and is negative if it is the right lane. We initially assume
T, = 3 secs. We also constraint |w(7)| to ensure the vehicle
stays in the road, i.e., |w(7)| < Wmaz(sy), so that |w(T)| =
min(|w(7)], Wmaz (sy)), Where wimqz(sy) is dependent on the
lateral position of the vehicle.

2) Pruning of acceleration space: The maximum safe
velocity (vsqfe) is calculated to identify the maximum safe
acceleration, that is used to eliminate the undesired/unsafe
accelerations. The maximum safe velocity, vy fe, is defined
as the maximum velocity at which a vehicle can travel

without colliding with other vehicles/stationary obstacles,
and is calculated as

dsm(k') — dmin + nT€w4vsm(k)

Usafe(k) - nTs (8)
where the distance dg,, (k) is the distance to the nearest
object (vehicle/obstacle) ahead of the CAV in the same lane,
and vy, (k) is its velocity. wy is an adaptive weight (for this
paper, wy € [0.8,1]) added to incorporate any decrease in
Vsm that can result in collision. As vg,, (k) increases from
0 to Upmaz, ws decreases from 1 to 0.8, where v,,q, 1S
the road speed limit. Similar to headway time, n is added
as a tolerance for time. The maximum acceleration (from
the original action-space) should be less than or equal to
(vsase(k) — v(k))/Ts and hence all values greater than
(vsase(k) — v(k))/Ts are eliminated (pruned). By adaptive
pruning of the action-space in Fig. 1 based on the node of
the tree, we only grow the tree in the feasible direction that
can provide potentially higher reward.

Once the high level MCTS based motion planner identifies
the reference trajectory z,.s, the low-level MPC based
motion controller solves the problem in (2) with J = ||z —
Tref||? to identify fuel efficient control inputs.

IV. SIMULATION RESULTS

To evaluate the performance of our proposed method, we
consider two cases: (i) a single CAV surrounded with HDV's
in a congested traffic (e.g., due to road construction), and
(i) a two CAV simultaneous lane-change problem. First,
we considered a scenario consisting of four HDVs and one
CAV. The vehicles are considered to travel on a two lane
road that have a stationary obstacle (such as construction
in progress). The stationary object/obstacle, can also be
considered to capture a very slow moving traffic in a lane.
The initial positions and velocities of the vehicles, as well as
the position of the obstacle are depicted in Fig. 2. We also
consider a road speed limit of 45 mph (= 20.12 m/s).

6.8

HDV4 HDV3 HDV2 HDV1
V(0)=0m/s V(0)=22 V(0)=5m/s V(0)=6.1m/s

R R R

E
s
=34 Lane 2: :
& | CAV Obstacle
s V(0) =5.6 m/s
o}
5 - -
oo ™
0 Lane 1: | i :
478 498 507 512 520 550 600

Longitudinal Position (m)

Fig. 2: Tllustration of the scenario and initial conditions
for simulation.

In order for the CAV to evaluate a fuel efficient trajectory,
the CAV should have a prediction model for its surrounding
vehicles. In the scenario depicted in Fig. 2, all vehicles
surrounding the CAV are HDVs. For comparison purposes,
we consider longitudinal acceleration of the HDVs follow
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car-following models (e.g., Gipps’ model), and the lane-
change decisions are made based on Intelligent Driver Model
(IDM). Modeling the HDVs with car-following models is
common in the literature. Hence, the actions of a HDV is
dependent on its preceding, as well as its surrounding vehi-
cles. Since we are planning to develop a receding horizon
controller (or model predictive controller) for the CAV, the
CAV needs to predict the behaviour of the HDVs over the
prediction horizon. Hence, over the model predictive control
(MPC) horizon T, the CAV predict the HDVs’ actions on
the assumption that the HDVs consider the CAV to maintain
its action (i.e., maintain its velocity and lane). The positions
of the interacting vehicles over the MPC horizon at times
t = 1,3,5 in such a situation is shown in Fig. 3. The CAV
ends up maintaining its lane as it cannot finds a safe lane-
change maneuver that avoids the predicted HDVs, and has
to travel at a very low speed due to the obstacle in its lane.

6.8

S
0 ________
480 500 520 540 560 580
(a) Position of vehicles at ¢t = 1.
t=3
68 —5m = = ]
3.4
0 ] -
480 500 520 540 560 580
(b) Position of vehicles at t = 3.
t=5
6.8/ =] ] ] ]
3.4
ol = I
480 500 520 540 560 580

(c) Position of vehicles at ¢t = 5.

Fig. 3: Position of vehicles over horizon without con-
sidering the future reactions of surrounding vehicles to
future actions of CAV.

On the other hand, Fig. 4 shows the vehicle trajectories
based on our proposed MCTS approach (including the low-
level controller), where the ego CAV jointly predicts and
plans its trajectory over a horizon 7'. Here, the CAV takes
into account the reaction of the surrounding HDVs to its own
future positions (actions), which results into the CAV finding
maneuvers (which will be more time and fuel efficient) that
allows it to change lane (as shown in Fig. 4) and move at
an optimal velocity. In this scenario, the CAV identifies that
HDV3 will react to its initiation to change lane and slow
down (since the HDVs are rational agents), making room
for the CAV to complete its lane-change. It follows a mildly
aggressive yet safe trajectory that involves lane-change, thus
avoiding stopping at the obstacle. If the CAV had modeled
the HDVs to be unresponsive to its actions, it will not be able
to change its lane as it will detect a collision with HDV'3
at time ¢ = 5, as shown in Fig. 5. The pruning of action-
space enabled the proposed approach to find safe solutions

in a computationally efficient fashion. With a pruned action-
space, the Monte Carlo Tree was expanded over the horizon
in 2.23 seconds instead of 40.61 seconds in case of an action-
space without pruning, which is 95% more efficient.

t=1

g'z-- =
: =]

0 —_—

480 500 520 540 560 580
(a) Position of vehicles at ¢t = 1.
t=3
68— m = = =
r 4 —
0
480 500 520 540 560 580
(b) Position of vehicles at t = 3.
t=5
g'g\ [ o . =] ]
o I
480 500 520 540 560 580

(c) Position of vehicles at ¢t = 5.

Fig. 4: Position of vehicles over horizon considering
the future reactions of surrounding vehicles to future
actions of CAV.

Potential Collision

6'8 — —
3'4| —_ [= [
! E—

480 500 520 540 560 580
Fig. 5: Position of vehicles showing potential collision
if the CAV had chosen lane-change while still assuming
its surrounding HDVs to be unresponsive to its actions.

We apply our proposed approach in multi-CAV problem,
where two CAVs simultaneously change lanes. This scenario
consists of two HDVs and two CAVs travelling on a two lane
road, as shown in Fig. 6. We also consider a road speed limit
of 45 mph (= 20.12 m/s).

6.8
4 CAV1 HDVA
V(0) = 15 mis V(0) = 15 m/s
€ B '}y
c 7
S |
'g 34 Lane 2 :
= CAV2 i HDV2
g V(0) = 15 mis V(0) = 15 mis
=
5
0 lLane 1 H :
40 50 70 100

Longitudinal Position (m)

Fig. 6: Illustration of the second scenario and initial
conditions for simulation.

Here, there are two CAVs (CAV1, CAV2), and we
assume that both CAVs intend to change their respective
lanes. Rather than the CAVs sharing their future state or
position trajectory over the horizon (as done in most CAV
control problems), we only consider the CAVs to share their
lane-change intent. Each CAV assumes that the other CAV,
once it communicate its intend to change lane, will initiate
the lane-change within next 5 seconds. With this assumption,
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both the CAVs perform the proposed MCTS-based trajectory
generation approach independently in the joint state-space.

Figure 7 shows the the actions of CAV'1 and C AV2 that
are obtained by searching the Monte Carlo Trees of CAV'1
and CAV2, respectively. The figure shows that both the
CAVs can change lanes safely based on their predictions
of the actions of the other CAV. Thus, the CAVs are able to
perform safe simultaneous lane changes without sharing their
future trajectory information or needing an iterative approach
of trajectory modification.

I HDV1
ElHDV2
Il cAV1
ElcAV2
t=5
g-g - ]
4 — — =
100 120 140 160 180 200 220 240 260
(a) Position of vehicles executed by CAVs at t = 5.
&8 t=6
100 120 140 160 180 200 220 240 260
(b) Position of vehicles executed by CAVs at t = 6.
6.8 t=7
34! LT m = —
0
100 120 140 160 180 200 220 240 260
(c) Position of vehicles executed by CAVs at t = 7.
6.8 t=8
- == [ ] [ ]
3.3 = =
100 120 140 160 180 200 220 240 260

(d) Position of vehicles executed by CAVs at t = 8.

Fig. 7: Position of vehicles over time.

V. CONCLUSION

We propose a MCTS-based trajectory planning algorithm
in a system consisting of interacting agents. Here, a joint
state-space and joint action-space is considered that defines
the state-space and action-space of the interacting agents.
Since the possible actions in a joint action-space expo-
nentially grow with the number of agents, we propose a
technique to prune the action-space so that unsafe actions for
each agent is eliminated, thus reducing the size of the action-
space. Simulation studies show that the proposed approach
helps in identifying trajectories that are non-conservative.
Future works include incorporation of advanced prediction
algorithms with trajectory generation approach.
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