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AbstractÐ This paper focuses on the development of a tra-
jectory planning method for connected and automated vehicles
(CAVs) that takes into account the interactive nature of the
vehicles. The proposed approach is based on Monte Carlo
Tree Search (MCTS) that traverse through possible actions
from each state of the system to identify the trajectory with
highest reward. Here, the trajectory is planned and the actions
of surrounding vehicles are predicted jointly. Planning the
trajectory and predicting the surrounding vehicles jointly in
an interactive environment can result in a large action-space,
which is not computationally tractable. Hence, we propose
an adaptive action-space, which includes pruning the action-
space so that the actions resulting in unsafe trajectories are
eliminated. The simulation studies show that the proposed
approach is capable of identifying less conservative yet safe
trajectories for CAVs in a multi-vehicle environment.

I. INTRODUCTION

Vehicle automation and connectivity is expected to address

several issues of the current transportation system. However,

full (hundred percent) market penetration of automated ve-

hicles (AVs) or connected and automated vehicles (CAVs)

cannot be expected in the near future. Hence, these AVs

and CAVs will have to share the road with human-driven

vehicles (HDVs), which are rational agents that interact with

the AVs and CAVs. CAVs or AVs are generally controlled

in a receding horizon fashion, which allow them to utilize

information of the surrounding environment. Generally, the

overall decision-making architecture involves a high-level

sampling-based trajectory planner and a low-level controller

that follows the high-level waypoints [1]. Numerous research

[2]±[7] have aimed CAV controller development considering

full market penetration. Since these works consider all the

vehicles to be AVs or CAVs, they can assume that the

positions and velocities of the vehicles surrounding the ego

AV or CAV is fully available to it, which is not a valid

assumption in the presence of HDVs.

Several previous works [8]±[10] that consider interaction

between HDVs and CAVs generally only evaluate the impact

of the HDVs on the fuel economy. Most of the CAV control

methods separate the surrounding vehicle prediction (or fu-

ture trajectory information obtained via V2V communication

from surrounding CAVs) and ego vehicle control problem.

This can lead to highly conservative solutions. Since the ac-

tion of one vehicle influences the others, surrounding vehicle
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prediction and the ego vehicle controller synthesis problem

cannot be treated in an isolated fashion. Inverse Reinforce-

ment Learning-based methods [11] take into account this

interactive nature in ego AV controller development, but they

are not scalable and can violate safety constraints. Authors

in [12] have developed a Monte Carlo Tree Search (MCTS)-

based lane-change algorithm for heterogeneous environment,

while factoring in the interactive nature of HDVs. However,

[12] considered a fixed action-space, which can lead to

growing the tree in infeasible directions, and didn’t consider

a joint state- or action-space.

Vehicles on road constitute an interacting environment and

actions of one vehicle affect the future actions of its sur-

rounding vehicles. Hence, a trajectory generation approach

in joint state-space and joint action-space consisting the

state- and action-space of all the interacting agents might be

beneficial. In a predictive control framework, it is essential

to incorporate the reactions of the surrounding vehicles to

the future actions of the ego vehicle over the prediction

horizon. This is essential, as ignoring the reactions may

result in identifying the safe maneuvers with higher rewards

as unsafe. In this paper, we use MCTS as the trajectory

generation framework that searches through the possible

actions to identify the best action (control). However, using

a joint action-space exponentially increases the number of

possible actions as the number of agents increases. When

MCTS is implemented in real time, it may not be able

to search all the possible actions of the joint system. In

such situations, the tree may identify suboptimal solutions,

while the control actions with higher rewards can be left

unexplored. Hence, we consider an adaptive action-space,

where we prune the unsafe actions of each node, thus

reducing the size of the joint action-space. We also consider

the CAV yaw rate (one of the controls) to be a function

of its position at a node, so that infeasible yaw rates are

eliminated, thus reducing the size of the action-space. Thus,

the paper contributions include (i) developing a MCTS-

based trajectory generation framework for an interactive

heterogeneous vehicular system that aims at generating non-

conservative actions, (ii) developing a technique to adap-

tively adjust the action-space in MCTS by pruning infeasible

actions from each node, thus enabling MCTS to identify safe

solutions with higher rewards in a computationally efficient

manner, and (iii) evaluating the utility of the framework

in a heterogeneous multi-vehicle system and a multi-CAV

simultaneous lane-change problem.

This paper is organized as follows: Section II has the
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mathematical formulation of the problem considered in this

paper. Section III details the MCTS-based approach consid-

ered. Section IV and V consist of the simulation results and

conclusion of the paper.

II. PROBLEM DESCRIPTION

A. System Model

In this work, the motion of a vehicle in a multi-lane road

is defined by its four states: longitudinal position sx, lateral

position sy , velocity v and yaw angle θ. Also, we define the

control inputs for a CAV to be its acceleration a and its yaw

rate ω. The states are related to the controls and the sampling

time Ts by

sx(k + 1) = sx(k) + Tsv(k) cos(θ(k)) (1a)

sy(k + 1) = sy(k) + Tsv(k) sin(θ(k)) (1b)

v(k + 1) = v(k) + Tsa(k) (1c)

θ(k + 1) = θ(k) + Tsω(k) (1d)

B. Optimal Control Problem

Given the above system dynamics, the optimal control

problem that a CAV will need to solve is given by

min
a

k+T−1
∑

τ=k

wocp1ṁf (τ)

v(τ)
+ wocp2J(x(τ), a(τ)) (2a)

subject to system dynamics in (1) (2b)

s(τ) ∈ Ssafe(τ); Ssafe(τ) = S(τ)⊖
∑

j∈N

Sj(τ) (2c)

vmin ≤ v(τ) ≤ vmax, amin ≤ a(τ) ≤ amax (2d)

where it tries to minimize a cost in (2a) while ensuring

satisfaction of system constraints, including the collision

avoidance constraint in (2c). The cost in (2a) includes

fuel consumption per unit distance (ṁf is the rate of fuel

consumption and wocp1 is its associated weight) and any

other cost J (such as travel time) with weight wocp2. The

rate of fuel consumption is modeled as a function of velocity

and vehicle acceleration as

ṁf (v, a) = 0.5826 + 0.05113v − 0.08799a− 0.00211v2

+ 0.1565va+ 0.02387a2 + 7.975× 10−5v3

− 0.001037v2a+ 0.0465va2 + 0.02267a3 (3)

where the instantaneous rate of fuel consumption data (ob-

tained from CAN signals) of Cadillac CT6 test vehicle

(available at [13]), collected from on-road experiments, is

used to model ṁf (v, a). In (2c), s(τ) = [sx, sy]
⊤ is the

position vector of the CAV, S(τ) is the feasible driving

region (defined by the roads), Sj(τ) is the set of positions

occupied by object (vehicle/obstacle) j at τ , and N is

the set of objects (vehicles/obstacles) surrounding the ego

CAV. The set Ssafe(τ) in (2c) describes the safe regions

where the CAV can be at τ . vmin and vmax represent the

minimum and maximum allowable velocities, whereas amin

and amax represent the minimum and maximum allowable

accelerations. To solve the above problem in (2) over a

horizon T , the CAV needs to predict the future positions

of the surrounding vehicles with any prediction algorithm.

III. TRAJECTORY PLANNING APPROACH

In this paper, we focus on developing control strategies

for CAVs. The CAV control problem in (2) is generally

split into a trajectory generation problem that generates the

reference trajectory of the vehicle, followed by a motion

control problem that tracks the reference trajectory in an

optimal manner. To this end, we present a MCTS-based

approach that considers the joint state-space and action-space

for all the interacting agents in a ego CAV’s surrounding, and

predicts the future actions of the surrounding vehicles while

taking into account the ego CAV’s actions over the horizon.

MCTS is a search algorithm that combines the classical

tree search and reinforcement learning. The classical tree

search strategy keeps exploring the current best action, which

grows the tree in depth. The reinforcement learning aspect

of the strategy explores other actions periodically, which

grows the tree in breadth. MCTS is generally characterized

by the exploration-exploitation trade-off. This helps MCTS

to not only explore the current best actions further in

time, but also the other actions that can potentially provide

better reward. This trade-off is implemented by the upper

confidence bounds for trees (UCT ) [14] given by

UCT =
rac

nac

+ c

√

logN

nac

(4)

where rac
is the reward associated with implementing action

ac and nac
is the total number of times action ac is selected.

N is the total number of simulations of MCTS and c is a

constant that facilitates the trade-off between exploration and

exploitation. In MCTS, each state of the system represents

a node, and each action determine the transition from one

node to another. Growing the tree by adding nodes is a four

step process that involves selection, expansion, simulation

and backpropagation. A brief description of each process

is presented in this paper. For more details, please refer to

[15]±[17].

1) Selection: In this process, the current tree is traversed

from root node (the initial state or current state) to leaf

node (node with unexplored child nodes). Here, the

UCT value is evaluated for each node, and the node

with the largest value is chosen as the best node. This

process is continued until a leaf node is reached, which

is then expanded.

2) Expansion: An unexplored node (obtained as a result of

performing an unexplored action) is chosen randomly

and is added as a child of the node that was identified

during the selection process.
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3) Simulation: In this process, a simulation is performed

starting from the child node (added during the ex-

pansion phase) with a preassigned simulation policy.

Generally, the preassigned simulation policy includes

choosing random actions till the end of the prediction

horizon. Then, the reward is calculated for the child

node based on the simulated actions.

4) Backpropagation: The reward calculated for the child

node (in the simulation phase) is propagated backwards

through parent nodes to the root node. Also, the number

of visits for each parent node is incremented.

In this paper, the reward rac
calculated during simula-

tion process is based on (5a), where ∆s represents the

longitudinal distance travelled over the horizon and F =
∑

τ Tsṁf (τ) represents the fuel consumed to travel ∆s.

The reward function in (5a) maximizes the distance travelled

by using unit amount of fuel (i.e., maximizes miles per

gallon). The reward for collision is expressed in (5b), which

is taken to be a large negative value, so that actions resulting

in collisions are avoided with an associated weight of w1.

(5c) represents the reward for travelling close to the desired

velocity (vdes) with an associated weight of w2. (5a) also

includes penalty terms to avoid large accelerations or braking

with weight w3.

rac
=

∆s

F
+ w1rc +

∑

τ

(w2rv(τ)− w3a
2(τ)) (5a)

rc =

{

1 if no collision

−1010 if collision occurs
(5b)

rv(τ) =











1 if vdiff (τ) ≤ 1

1−
vdiff (τ)
vdes(τ)

if vdiff (τ) > 1 and

vdiff (τ) ≤ vdes(τ)

(5c)

with vdiff (τ) = |v(τ)− vdes(τ)|.

A. Original action-space

The surrounding human-driven vehicles (HDVs) are mod-

eled with a car-following model, such as the Gipps’ car

following model ( [18]), for longitudinal control. HDVs are

considered to change lanes when the average velocity of its

adjacent lane is higher than its own velocity. The HDVs

perform safety checks derived from Gipps’ car following

model and Intelligent Driver Model (IDM) [19] before

initiating any lane change.

We consider the control inputs of the connected and

automated vehicle (CAV) to be its acceleration a (m/s2) and

its yaw rate ω (rad/s). In [12], the action-space (acceleration

and yaw-rate) was discretized into 14 combinations. The

vehicle acceleration was discretized from −3.5 m/s2 to 2.5
m/s2, while the yaw rate was discretized with a step size

of π
4 rad/s from −π

2 rad/s to π
2 rad/s. Although action-

space discretization reduces solution optimality, reducing

the discretization step size (hence increasing the action-

space) increases the computational complexity to a large

extent. In this paper, the original action-space A is taken

as 14 combinations of the two controls as shown below.

However, unlike [12], our yaw rate actions are considered

Fig. 1: The original action-space for the CAV perform-

ing a MCTS.

to be a function of the CAV’s lateral position and intended

lane-change action to avoid infeasible solutions. The first

row of the above matrix represents the acceleration (in

m/s2) and the second row represents the yaw rate (rad/s),

which is calculated during the pruning of action-space (in

subsection III-B). Although there are 14 possible actions

considered, a few of them can lead to infeasible solutions,

hence, growing the nodes from those actions is unnecessary.

We thus propose pruning of the action-space, so that actions

leading to infeasible nodes are eliminated early on.

B. Pruning of action-space

MCTS method randomly explores through the possible

actions to identify its best child node (next action). For

realistic scenarios, the computation time should be less than

the sampling time, and a small sampling time in vehicular

applications can result in the action-space to be explored

partially. When the action-space is large, only a small part

of the solution-space gets explored within the stipulated

time. As a result, most or even all the safe nodes (that

avoid collision) can be left unexplored, leading to infeasible

solutions. Hence, we propose to prune the action-space of the

algorithm depending on the node of the tree to remove the

unsafe/undesired actions, thus reducing the size of the action-

space. The pruning of action-space is performed in two

steps, i) eliminating the undesired lane-change actions, and

ii) eliminating the undesired accelerations. These techniques

are described below.

1) Pruning of lane-change actions: Pruning of lane-

change actions reduces the angular rate (yaw rate) action-

space from a given node. The pruning is performed by iden-

tifying the possible ‘target lane(s)’ for the CAV. Assuming

that by the end of the decision-making horizon, the vehicle

would either stay in its lane or move to one of the adjacent

lanes, the target lanes include the vehicle’s current lane and

the lanes to its immediate left/right. We consider high-level

lane-change actions to be denoted as ℓ = {−1, 0, 1}, where

0, −1, and 1 refer to ‘remain in lane,’ ‘change lane to the

right,’ and ‘change lane to the left,’ respectively. For each

of the high-level actions, only a subset of the action-space

(discussed in section III-A) is valid. The yaw-rate action-

space is dependent on these high-level lane-change actions

ℓ. The possible target lanes and the corresponding pruned

lane-change actions are as follows:

1) When the ego CAV’s yaw angle θ in a node is less than

0.002 radians and there is no object (vehicle/obstacle)
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less than 100 m ahead in the same lane, then its target

lane is the vehicle’s current lane and the only action

possible is ‘remain in lane’. In this case, the pruned

possible lane-change actions will be ℓ = {0}.

2) When the CAV’s yaw angle θ in a node is less than

0.002 radians and there are objects (vehicle/obstacle)

less than 100 m ahead in the same lane, then its target

lanes can be either its current lane defined by the action

‘remain in lane’ or one of its adjacent lanes defined by

the action ‘change-lane’. In this case, the pruned lane-

change actions will be ℓ = {0, 1} or {0,−1}.

3) When the CAV’s yaw angle θ in a node is higher than

a threshold, then its target lane is the one identified

at previous instants (that initiated lane-change), and it

continues lane-change action which is defined by either

ℓ = {1} or {−1}.

For each of the cases discussed above, the actions space A(ℓ)
will be a subspace of the original action-space shown in Fig.

1. For case 2 above, the target lane q (immediate left/right or

same lane) is identified as the lane with maximum relative

distance dRq
, i.e., q = argmaxq dRq

, with

dRq
(k) = dmq

(k)− dmin + Tn(vq500(k)− v(k)) (6)

q ∈ {lt, sm, rt} represents the left, same, and right lanes.

dmq
and vq500 represents the distance to the nearest object

and the average velocity of all vehicles travelling ahead

within 500 m in the qth lane, respectively. dmin is a

predefined safety distance and v(k) is the velocity of the

CAV. Tn is a parameter similar to headway time.

Calculating yaw rate: Once the high-level action-space from

a given node has been identified as a subset of {−1, 0, 1}, the

corresponding feasible yaw rate(s) is then calculated. When

the pruned action-space includes ℓ = 0, then the yaw rate

(the second row in Fig. 1) is calculated as ω(k) = −θ(k)/Ts

to make the vehicle heading angle θ zero. When the pruned

action-space includes ‘change-lane’ (ℓ = 1 or −1) the yaw

rate is calculated from the lateral distance ∆y that needs to

be traversed during the next sampling time Ts. ∆y is taken

to be TsLw

Tℓ
, where Lw is the lane width and the lane-change

is assumed to be completed in Tℓ seconds. The yaw rate is

then calculated as

|ω(τ)| =
1

Ts

(

sin−1

(

∆y

Tsv(τ)

)

− θ(τ)

)

(7)

The sign of ω is positive if the target lane is the left lane

and is negative if it is the right lane. We initially assume

Tℓ = 3 secs. We also constraint |ω(τ)| to ensure the vehicle

stays in the road, i.e., |ω(τ)| ≤ ωmax(sy), so that |ω(τ)| =
min(|ω(τ)|, ωmax(sy)), where ωmax(sy) is dependent on the

lateral position of the vehicle.

2) Pruning of acceleration space: The maximum safe

velocity (vsafe) is calculated to identify the maximum safe

acceleration, that is used to eliminate the undesired/unsafe

accelerations. The maximum safe velocity, vsafe, is defined

as the maximum velocity at which a vehicle can travel

without colliding with other vehicles/stationary obstacles,

and is calculated as

vsafe(k) =
dsm(k)− dmin + ηTsw4vsm(k)

ηTs

(8)

where the distance dsm(k) is the distance to the nearest

object (vehicle/obstacle) ahead of the CAV in the same lane,

and vsm(k) is its velocity. w4 is an adaptive weight (for this

paper, w4 ∈ [0.8, 1]) added to incorporate any decrease in

vsm that can result in collision. As vsm(k) increases from

0 to vmax, w4 decreases from 1 to 0.8, where vmax is

the road speed limit. Similar to headway time, η is added

as a tolerance for time. The maximum acceleration (from

the original action-space) should be less than or equal to

(vsafe(k) − v(k))/Ts and hence all values greater than

(vsafe(k) − v(k))/Ts are eliminated (pruned). By adaptive

pruning of the action-space in Fig. 1 based on the node of

the tree, we only grow the tree in the feasible direction that

can provide potentially higher reward.

Once the high level MCTS based motion planner identifies

the reference trajectory xref , the low-level MPC based

motion controller solves the problem in (2) with J = ||x−
xref ||

2 to identify fuel efficient control inputs.

IV. SIMULATION RESULTS

To evaluate the performance of our proposed method, we

consider two cases: (i) a single CAV surrounded with HDVs

in a congested traffic (e.g., due to road construction), and

(ii) a two CAV simultaneous lane-change problem. First,

we considered a scenario consisting of four HDVs and one

CAV. The vehicles are considered to travel on a two lane

road that have a stationary obstacle (such as construction

in progress). The stationary object/obstacle, can also be

considered to capture a very slow moving traffic in a lane.

The initial positions and velocities of the vehicles, as well as

the position of the obstacle are depicted in Fig. 2. We also

consider a road speed limit of 45 mph (≈ 20.12 m/s).

Fig. 2: Illustration of the scenario and initial conditions

for simulation.

In order for the CAV to evaluate a fuel efficient trajectory,

the CAV should have a prediction model for its surrounding

vehicles. In the scenario depicted in Fig. 2, all vehicles

surrounding the CAV are HDVs. For comparison purposes,

we consider longitudinal acceleration of the HDVs follow
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car-following models (e.g., Gipps’ model), and the lane-

change decisions are made based on Intelligent Driver Model

(IDM). Modeling the HDVs with car-following models is

common in the literature. Hence, the actions of a HDV is

dependent on its preceding, as well as its surrounding vehi-

cles. Since we are planning to develop a receding horizon

controller (or model predictive controller) for the CAV, the

CAV needs to predict the behaviour of the HDVs over the

prediction horizon. Hence, over the model predictive control

(MPC) horizon T , the CAV predict the HDVs’ actions on

the assumption that the HDVs consider the CAV to maintain

its action (i.e., maintain its velocity and lane). The positions

of the interacting vehicles over the MPC horizon at times

t = 1, 3, 5 in such a situation is shown in Fig. 3. The CAV

ends up maintaining its lane as it cannot finds a safe lane-

change maneuver that avoids the predicted HDVs, and has

to travel at a very low speed due to the obstacle in its lane.

(a) Position of vehicles at t = 1.

(b) Position of vehicles at t = 3.

(c) Position of vehicles at t = 5.

Fig. 3: Position of vehicles over horizon without con-

sidering the future reactions of surrounding vehicles to

future actions of CAV.

On the other hand, Fig. 4 shows the vehicle trajectories

based on our proposed MCTS approach (including the low-

level controller), where the ego CAV jointly predicts and

plans its trajectory over a horizon T . Here, the CAV takes

into account the reaction of the surrounding HDVs to its own

future positions (actions), which results into the CAV finding

maneuvers (which will be more time and fuel efficient) that

allows it to change lane (as shown in Fig. 4) and move at

an optimal velocity. In this scenario, the CAV identifies that

HDV 3 will react to its initiation to change lane and slow

down (since the HDVs are rational agents), making room

for the CAV to complete its lane-change. It follows a mildly

aggressive yet safe trajectory that involves lane-change, thus

avoiding stopping at the obstacle. If the CAV had modeled

the HDVs to be unresponsive to its actions, it will not be able

to change its lane as it will detect a collision with HDV 3
at time t = 5, as shown in Fig. 5. The pruning of action-

space enabled the proposed approach to find safe solutions

in a computationally efficient fashion. With a pruned action-

space, the Monte Carlo Tree was expanded over the horizon

in 2.23 seconds instead of 40.61 seconds in case of an action-

space without pruning, which is 95% more efficient.

(a) Position of vehicles at t = 1.

(b) Position of vehicles at t = 3.

(c) Position of vehicles at t = 5.

Fig. 4: Position of vehicles over horizon considering

the future reactions of surrounding vehicles to future

actions of CAV.

Fig. 5: Position of vehicles showing potential collision

if the CAV had chosen lane-change while still assuming

its surrounding HDVs to be unresponsive to its actions.

We apply our proposed approach in multi-CAV problem,

where two CAVs simultaneously change lanes. This scenario

consists of two HDVs and two CAVs travelling on a two lane

road, as shown in Fig. 6. We also consider a road speed limit

of 45 mph (≈ 20.12 m/s).

Fig. 6: Illustration of the second scenario and initial

conditions for simulation.

Here, there are two CAVs (CAV 1, CAV 2), and we

assume that both CAVs intend to change their respective

lanes. Rather than the CAVs sharing their future state or

position trajectory over the horizon (as done in most CAV

control problems), we only consider the CAVs to share their

lane-change intent. Each CAV assumes that the other CAV,

once it communicate its intend to change lane, will initiate

the lane-change within next 5 seconds. With this assumption,
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both the CAVs perform the proposed MCTS-based trajectory

generation approach independently in the joint state-space.

Figure 7 shows the the actions of CAV 1 and CAV 2 that

are obtained by searching the Monte Carlo Trees of CAV 1
and CAV 2, respectively. The figure shows that both the

CAVs can change lanes safely based on their predictions

of the actions of the other CAV. Thus, the CAVs are able to

perform safe simultaneous lane changes without sharing their

future trajectory information or needing an iterative approach

of trajectory modification.

(a) Position of vehicles executed by CAVs at t = 5.

(b) Position of vehicles executed by CAVs at t = 6.

(c) Position of vehicles executed by CAVs at t = 7.

(d) Position of vehicles executed by CAVs at t = 8.

Fig. 7: Position of vehicles over time.

V. CONCLUSION

We propose a MCTS-based trajectory planning algorithm

in a system consisting of interacting agents. Here, a joint

state-space and joint action-space is considered that defines

the state-space and action-space of the interacting agents.

Since the possible actions in a joint action-space expo-

nentially grow with the number of agents, we propose a

technique to prune the action-space so that unsafe actions for

each agent is eliminated, thus reducing the size of the action-

space. Simulation studies show that the proposed approach

helps in identifying trajectories that are non-conservative.

Future works include incorporation of advanced prediction

algorithms with trajectory generation approach.
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