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1 Introduction

Due to the high number of traffic crashes and fatalities [1], as
highlighted in National Highway Traffic Safety Administration
data [2], safety is one of the major concerns of the current transpor-
tation system. This has propelled research in controller design for
the connected and automated vehicles (CAVs). Here, every CAV
needs to evaluate its own control solution, while avoiding the
“unconnected” (any vehicle that does not share information) and
the other connected vehicles. Controller synthesis for CAVs is a
challenging problem because of various uncertainties in the
system, such as process noise in ego vehicle dynamics and uncer-
tain motion of the vehicles surrounding the ego vehicle. In addition
to that, nonlinear dynamics of the ego vehicle, nonconvex collision
avoidance constraints, distributed nature of the problem, and the
requirement of real-time applicability add to the challenges. In
this article, we aim at developing a computationally tractable dis-
tributed robust MPC strategy for the CAVs, which ensures collision
avoidance in the presence of system uncertainties. The proposed
method is “distributed” because each CAV takes its own actions
with local communication and information exchange. In this
article, system uncertainty includes affine process noise in ego
vehicle dynamics and uncertain motion of the vehicles surrounding
the ego vehicle.

Connected and automated vehicles or autonomous vehicles are
generally controlled in a receding horizon fashion, which allow
them to utilize information of the surrounding environment. Gener-
ally, the overall control architecture involves a high-level sampling-
based trajectory planner and a low-level controller that follows the
high-level waypoints [3]. Among the various vehicle maneuvers,
this article focuses on the lane change problem of the CAVs,
which has gained a lot of attention in recent years. The lane
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change maneuver is challenging since it involves lateral nonlinear
vehicle dynamics. The nonlinear dynamics and the collision avoid-
ance constraints make the receding horizon control problem non-
convex. Uncertainty in the prediction of the unconnected
vehicles, process noise in the CAVs, and distributed nature of oper-
ation add to the problem challenges.

The previous work has focused on the lane change problem for
autonomous vehicles [4-15]. However, most of them consider
knowledge of a reference trajectory, only focus on identifying if a
lane change maneuver is possible [13], do not consider both
lateral and longitudinal controller design, or separately solve the
lateral and longitudinal control problem. For instance, Ref. [4]
only focuses on longitudinal control and ignores lateral trajectory
planning. On the other hand, [5] only considers lateral controller
design, while assuming constant longitudinal velocity. The
authors in Refs. [6,7] consider existence of a reference trajectory,
and Ref. [7] uses motion primitives. The authors in Refs. [8-11]
solve the lane change problem by separately developing longitudi-
nal and lateral controllers. The authors in Ref. [15] developed a cen-
tralized lane change approach, while the authors in Ref. [14]
focused on a negotiation-based approach. In a recent work, the
authors in Ref. [16] have developed a Monte Carlo Tree Search
based lane change algorithm. However, this approach relies on dis-
cretization of the control space and hence leads to suboptimal solu-
tions. The authors in Ref. [17] provided limits on lateral
acceleration that prevents vehicle roll over, which is critical for
vehicle safety. Most of the previous work in the literature do not
consider simultaneous lateral and longitudinal controller develop-
ment and ignore the multivehicle lane change problem, where mul-
tiple vehicles perform the lane change maneuver. These research
gaps are addressed in this article.

Recent works on multivehicle decision-making are available in
Refs. [18-21], where authors in Refs. [19-21] specifically consid-
ered the lane change problem. The authors in Ref. [18] introduced
the buffered input cell (BIC) to compute the inputs that ensure
reciprocal collision avoidance. Its probabilistic counterpart
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(probabilistic BIC) was introduced in Ref. [20]. The BIC and prob-
abilistic BIC concepts were extended to multivehicle lane change
problem in Refs. [19,20], respectively. However, the BIC or the
probabilistic BIC-based approaches only use the current positions
of the vehicles and not their predicted trajectory over the horizon.
This highly restricts the state and control constraints of the vehicles,
which can lead to highly conservative solutions. Also, the authors in
Ref. [19] did not consider uncertainties (process noise or uncertain
surrounding vehicle motion). The authors in Ref. [20] employed a
sampling-based approach, which can provide incomplete probabil-
ity distribution information, and thus can lead to collision. A
learning-based approach is presented in Ref. [21], where vehicles
(in simulation) learn the simultaneous lane change maneuver from
the human experts. However, this does not provide any guarantees
of collision avoidance and highly depends on the data set used for
training.

The CAV control problem, especially the lane change problem, is
a nonconvex optimal control problem, since it includes nonconvex
state constraints (collision avoidance constraints) and nonlinear
vehicle dynamics. Nonconvex problems are computationally
expensive and can lead to highly suboptimal solutions. System
uncertainty, including ego vehicle process noise and uncertain sur-
rounding vehicles, adds to the problem complexity. Furthermore,
the control solution is required to be generated in a distributed
fashion, where each CAV needs to solve its own control problem
while ensuring collision avoidance. However, distributed controller
synthesis is challenging because of the coupled collision avoidance
constraint, where action of one CAV influences the others. Recent
methods [22] that try to address this issue for a drone racing
problem uses an iterative approach at every time instant, which is
not computationally tractable, and hence hinder real-time applica-
tion. In this article, “real-time” applicability of an algorithm refers
to its ability to obtain the solution within the sampling time.

Collision avoidance in the presence of dynamic and uncertain
surrounding vehicles (obstacles) is also a challenging task. To
avoid stochastic obstacles, a popular approach is characterizing
the regions in state space that the obstacles could occupy [23-25]
and then avoiding those regions in the vehicle’s trajectory planning.
Computation of these future obstacle occupancy sets are generally
done by assuming the true probability distribution of the distur-
bances to be known or by only using the bounds on the distur-
bances. Assumption of known true probability distribution can be
a hard assumption for many real-world problems, and only using
the bounds of the disturbances can lead to highly conservative solu-
tion [24]. In this article, we consider the first and second moment of
the uncertainty associated with obstacle prediction error to lie
within a known confidence interval, and its true probability distribu-
tion is unknown. We then develop a method to obtain the future
probabilistic occupancy of these obstacles to systematically obtain
the regions in state space the CAVs should avoid and facilitate con-
vexification of their optimal control problem.

To address these challenges, in this article, an effort has been
made to develop a computationally efficient distributed control
strategy for each CAV in a multivehicle scenario in the presence
of process noise in the ego CAV and uncertainty in obstacle
motion. The proposed approach is “distributed,” since each
vehicle takes its own action with local information exchange. The
control strategy is developed in a layered framework, which
includes development of distributionally robust future occupancy
of the obstacles, development of distributed reference trajectory
generation, convexification, distributed constraint set generation,
dynamic mode decomposition (DMD)-based linear model represen-
tation, and robust tube-based MPC methods. We propose a new
sampling-based distributed reference trajectory generation method
that exploits the differential flatness property of the nonlinear
vehicle dynamics [19] and cooperation among the CAVs. The pro-
posed sampling-based approach only samples the terminal position
of the trajectory and needs to sample only once to generate the full
state trajectory (multiple such trajectories are generated). Hence, it is
more computationally efficient than the sampling-based
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approaches that sequentially grow a tree, such as rapidly exploring
random tree (RRT) [26]. This is followed by state constraint con-
vexification and distributed constraint set generation that evaluates
the nonoverlapping convex state constraint sets for each CAV. To
formulate the convex equivalent of the nonconvex optimal control
problem, this article exploits a DMD-based approach [27,28] to
develop a linear system model using the previous data on state
and control trajectories. Finally, robust tube-based MPC method
is employed to guarantee collision avoidance over the control
horizon and successful lane change maneuver. This layered
control strategy promotes computational tractability, avoids itera-
tive decision-making in each time-step [22] or sequential decision-
making (where only one system updates its solution at a particular
time [29]), and ensures robust collision avoidance.

In our previous works [30,31], we have developed control
strategies based on robust tube-based MPC method [30] and distri-
butionally robust stochastic MPC method [31] for a single autono-
mous vehicle. However, the previous works [30,31] did not
consider multiple CAV lane change problem and assumed the
mean and covariance of the prediction error to be known. Moreover,
Taylor series approximation-based linearization was used in
Refs. [30,31], which requires small deviation from the trajectory
around which the system is linearized. In this article, we extend
those works by considering a distributed control framework, the
mean and covariance of the prediction error to lie in a confidence
interval, and data-driven linear system representation that increases
the solution space for the controller.

The article contributions can be listed as follows: (i) development
of a layered control strategy that involves evaluation of a sampling-
based reference trajectory that exploits the differential flatness prop-
erty of the bicycle model to allow nonconservative simultaneous
lane change maneuvers; and robust tube-based MPC to guarantee
collision avoidance in the presence of uncertainty, (ii) development
of a distributed constraint set generation approach to facilitate dis-
tributed operation, (iii) exploitation of DMD-based linear model
representation to formulate a convex equivalent problem, and (iv)
development of method to obtain the distributionally robust future
occupancy of the obstacles.

2 Problem Description

We consider a scenario including multiple cooperative and non-
cooperative (not adversarial) CAVs. Cooperative CAVs share infor-
mation with each other (specifically, their future state and control
trajectories over the horizon) and adjust their trajectories consider-
ing the surrounding CAVs. The noncooperative vehicles, which can
be considered to share their information, are considered not to
adjust their trajectories with the information they receive from the
other CAVs. The “noncooperative” vehicles can be referred to as
obstacles. This article only focuses on the control problem of the
CAVs, and, hence, if a CAV does not receive any information
from a vehicle, the CAV needs to predict its future trajectory. We
consider the set |y includes all the vehicles in the environment
(surrounding the ego CAV), while Icyv and |yy are the sets of
cooperative and noncooperative vehicles, respectively (so that
lev Bluy = 1v).

2.1 System Model. In this article, we consider the nonlinear
vehicle dynamics with affine disturbance (the process noise)

zi(k + 1) = fi(zi(k), vi(k)) + Bwiwi(k) (1)

where zi(k) @ Z B R* is the vehicle state vector, vi(k) @ V; is the
control vector, wi(k) @ W; @R s the bounded disturbance, and By;
R¥Mw . The nominal system dynamics (the dynamicswithout
the disturbance) is given by

xitk + 1) = fi(xi(k), vi(k)) 2
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where xi(k) is the nominal state vector. Following the previous
research [32], we model the system dynamics of all the vehicles
with the kinematic bicycle model. Based on Ref. [32], this model
shows an acceptable performance in comparison with more detailed
dynamic model. The discrete-time kinematic bicycle model of a
vehicle i is described with state xi = [Six, Siy, ¥., vi]® and sampling
time At as follows '

Six(k + 1) = Six(k) + At vi(k) cos(;(k)) (3a)
Si(k+ 1) = Syy(k) + At vi(k) sin(;(k)) (3b)
Gik+ 1)= (k) + At %tan(éif(k)) (3¢)
vitk + 1) = vi(k) + At ai(k) (3d)

where S;, and S, are the coordinates of the rear axle center points of
the vehicle. The heading angle of the vehicle is given by {;, and v; is
its velocity. Lir and L;; are the distances from the center of mass of
the vehicle to the front and rear axles, respectively. The control
vector includes the acceleration a; and steering angle &, i.e.,
Vi = [ai, 6if] Vi Rz.

2.2 Optimal Control Problem. In this article, we focus on the
lateral and longitudinal control of the CAVs. The control problem
for each coordinating CAV i @I cy is given by

k+T-1
min Ji(zi(v), vi(r) (42)
vi 1=k
s.t. Xsi('t) Xs\ 1=|1|+ XS](T)I 1al Vo I#1i (4b)

0< vi(T) € Vmax;  Vi(T) B Vi (4¢c)

where x5(T) = [Sxi(t), Syi(T)]? @ R, the position vector of vehicle i,
X is the set describing the feasible driving area (defined by the
roads), and X (t) is the set of states occupied by vehicle 1 at
time T. Here, the CAV i is required to minimize its cost J; while sat-
isfying the collision avoidance constraint in Eq. (4b), and velocity
(Vmax 18 the road speed limit) and control bounds in Eq. (4c). The
cost J; in Eq. (4a) can take any form, such as deviation from a par-
ticular goal location, energy consumption, total distance traveled, or
a combination of these. For practical purposes, the constraint
Eq. (4b) needs to be satisfied considering only the set of

Surrounding Uncooperative Vehicle
Information/ Prediction

neighboring vehicles, given by N;. The collision avoidance con-
straint in Eq. (4b) is a coupled constraint, since it involves states
of multiple vehicles. The constraint in Eq. (4b) is also a nonconvex
constraint, which, along with the nonlinear system dynamics in
Eq. (3), make the problem in Eq. (4) a nonconvex optimal
control problem. Nonconvex optimal control problems cannot be
solved in a computationally tractable fashion, and they generally
lead to locally optimal solutions. The nonconvexity of the
problem, the requirement of satisfying the coupled constraint in a
distributed fashion, and the presence of uncertainty are some of
the major challenges in this problem.

3 Approach

To address the major challenges, a layered control architecture is
developed in this article (as shown in Fig. 1), which includes occu-
pancy set computation of noncooperative vehicles, reference trajec-
tory generation, distributed constraint set evaluation, data-driven
linear system modeling, and robust tube-based MPC methods.

3.1 Distributionally Robust Obstacle Occupancy. An ego
CAV will be surrounded by both cooperative and noncooperative
vehicles. If the noncooperative vehicles have communication capa-
bilities, we consider them to share their future trajectory with the
cooperative vehicles. If they do not, we consider the CAVs to be
equipped with prediction algorithms [33] that can predict the
future state trajectory of the surrounding vehicles. The prediction
methods will be prone to errors, so that the positions of the noncom-
municating noncooperative vehicles will given by

X(T+ 1) = f(x(0) + § ®)

where f; is the prediction model that predicts the position of the
obstacles in the next time-step based on its current position and §; & Z;
R? is the prediction error. For example, maneuver-based pre-
diction models [34,35] will provide the vehicle trajectory associated
with a particular predicted maneuver, while § will capture the
deviation about the trajectory. Since the true probability
distribution of this error is not fully known, we consider § to
belong to a set of probability distributions P that include all prob-
ability distributions that satisfy [36]: (E[§;] - u|) ’ z‘J(E[Ej] OERT
anld E[(§; - A& - R j)] Vi 2 i. This set of probability distri-
butions considers the true mean of the random variable & to lie in an
ellipsoid of size y i, centered at the estimated mean {1; and the cen-
tered second moment matrix to lie in a positive semidefinite cone.

Surrounding Cooperative Vehicle
Initial Solution (positions)
x5 (1), TE [k, k+T)|

Zi(1)

T v |FT v i

L ————— T —— T v T
i Occupancy Set l X
:’ Computation Reéfeiéice
| i Trajectory
i Convexification Generation
| and Constraint
i Set Generation
I
|

Robust Tube-Based - chhicle
+«— Model Predictive | l?ata-Dr ven |, Trajectory
Control | Controller Linear System ; Data
Actions \\ g

Fig. 1 The control framework
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The constants y;, and v, dictate the confidence on estimated mean
and covariance and can be obtained from the prediction algorithm.
For example, following finite bound assumption on § (will be sat-
isfied by any real-world system) and the McDiarmid’s theorem [36],
the bounds can be obtained from the error samples. In this article,
we consider (i, £;, v;,, and v, to be known (obtained from the pre-
diction algorithm).

To obtain the occupancy of the obstacles with a predefined
threshold € over the time horizon, we seek to find a tight bound
on E so that the probability with which the error stays within this
bound 8= [8j1, P is higher than e for all probability distribu-
tions belonging to the set P, i.e.,

mlnP(|£|< €)>€BP BP = min p(|g]< L)yze (6
8j,PEP

This will give the distributionally robust future occupancy of the
obstacles, since it is robust to the true distribution of the error. To
ensure safety, € should be chosen closer to 1, so that the obstacle
occupancy over the horizon is identified with high probability
(hence by avoiding those regions, the CAV will be safe with a
high probability). Exploiting techniques from robust optimization
[37], we can express the aforementioned probabilistic constraint
as follows:

min P(|§|< ¢)2 €= minmaxCVaR ,_(I§]-¢)< 0 (7a)
2,POP % POP

CVaR,(|§] - &) = mln Br - cE&I - &- BT (7b)

where B@R, CVaR__ is the conditional value at risk at level
(1-¢€) [37], and for any function g(x), (g(x)*)=max(0, g(x)).
Hence, Eq. (6) can be rewritten as follows:

min B+ max

i CElg] - & -

Bl <0 ®)
The inner maximization problem can be expressed as a semidefinite
programming problem [36], and we obtain €;, and hence the prob-
abilistic bound on the error, by solving the problem in Eq. (8).
Computation of the minimum bound €;* is done offline. Finally,
the distributionally robust occupancy sets of the obstacles is
obtained by

where Z; = {§§] < ¢; 2 The set X jshape(V;(7)) captures the shape of
the obstacle with heading ;(t) at time t, and @ is Minkowski
addition. For a noncooperative vehicle moving straight and not
changing lanes with 18 m/s velocity, Fig. 2 shows an example of
its distributionally robust probabilistic occupancy sets of different
time instants over the horizon for yj; =0.1, yj2=1.1, and €=0.9.
Figure 2 also shows the occupancy sets for a lane change maneuver
with uncertain velocity.

3.2 Reference Trajectory Generation. To solve the problem
in Eq. (4), we first generate the feasible reference trajectories for the
CAVs in a distributed fashion, which ensure avoidance of collision
from other cooperative and noncooperative vehicles in the environ-
ment (satisfaction of the constraints in Eq. (4b). Our reference tra-
jectory generation approach includes the evaluation of a trajectory
that avoids noncooperative vehicles, followed by modification of
the trajectory (if needed) based on the cooperation among the coop-
erative CAVs to make sure it also avoids the reference trajectories
of the other cooperative vehicles.

Given the set of positions occupied by the noncooperative
vehicle j B 1 yc to be Xj(t), the set '].':“f| Xsj(t) captures the posi-
tions occupied by all the noncooperative vehicles at a given time t.
|luc |, which is the cardinality of the set | yc, is the number of non-
cooperative vehicles. Then, the feasible set of states that can be
occupied by the cooperative CAVs to avoid the noncooperative
vehicles is given by

X s,cv (t) =

To ensure safety, in addition to staying in the set X, (ensuring
avoidance of noncooperative vehicles), a CAV will have to avoid
the other cooperating vehicle.

In this article, the reference trajectory of a CAV is generated by a
sampling-based approach that exploits the differential flatness prop-
erty of the bicycle model in Eq. (3) [19]. The differential flatness
property allows us to generate the entire state trajectory from a
low dimensional position trajectory. The position trajectory is
expressed as follows:

Xs\ B4 X () (10)

3
)= ot (11)

q=0

whose coefficients aq are obtained from the boundary conditions

Xsj(T+ 1) = fpi(X(D) BZj BX j,shape(¥;(T)) 9)  [xsi(k), vi(k) cos (b;(k)), vi(k) sin (0,(k))] @ R* (positions and the
(a)
n2
c
Q
=1
o
29
> | I ! | | | I | | | | J
0 10 20 30 40 50 60 70 80 90 100 110
X locations

(b) T T T \
W 20 [ — ]
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3
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- ] — ]
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(s D 1 I | -
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Fig. 2 Set of positions occupied by the stochastic obstacles with probability more than 0.9 for a lane following maneuver and a

lane change maneuver
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Fig. 3 Reference trajectory generation

velocities in the x and y directions at the initial time, respective-
ly) and [xsi(k + T), vi(k + T)cos (b;(k + T)), vi(k + T)sin (;(k +
T))] @ R* (positions and velocities in the x and y directions at the
end of the horizon).

A number of position trajectories of the form in Eq. (11) are then
obtained by sampling the center of the lanes that lie in the set
Xs,ov(k + T) and setting them as the terminal locations xg;(k+ T)
at the end of the horizon. The terminal orientation is chosen to be
zero Y;(k+T)=0, and the final velocity is randomly sampled
from its feasible bound. The trajectories generated this way are
then checked for collision avoidance from the noncooperative vehi-
cles. Figure 3 shows multiple potential reference trajectories gener-
ated in this fashion. From these potential reference trajectories, the
trajectory that maximizes the total distance travelled is chosen as the
reference trajectory of the CAV.

Each cooperative CAV computes its reference position trajec-
tory X;ef in this manner and shares it with its neighboring coop-
erative CAVs 1B N;. These position trajectories are then
checked for collision. If a potential collision among the cooper-
ative CAVs is detected (as in Fig. 4), the CAVs can choose a
different reference trajectory. Since the CAVs sample the termi-
nal location and generate multiple feasible reference trajectories,
a separate reference trajectory can be readily obtained. The new
reference trajectory will also require collision check with other
CAVs.

608 T

0

s

0604 -

. : . I .

2600 -I .

>

596 L
20 40 60 80 100 120 140

X locations

Fig. 4 Initial reference trajectories of the CAVs. Potential con-
flict is circled.
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We also pursue a separate approach of reference trajectory mod-
ification, where the position trajectories are updated by Ax™! to
obtain the new reference position trajectory x'et X<+ Axref
We adopt a heuristic approach to modify the conﬂlctmg reference
trajectories, where the CAVs with conflicting trajectories choose
their trajectory modification to have opposite signs (i.e., one
increases and the other decreases) and satisfy the constraint
|AxrEf | > Ly + Ly (to factor in the size of the vehicles). At the
pomt of conflict in the reference trajectory, the CAV that is ahead
chooses a positive Axmf, while the other chooses the negative
sign. Figure 5 shows the reference trajectory after the reference tra-
jectory modification. The CAVs can obtain their state reference tra-
jectories xref from the corrected reference position trajectories X'
by explomng the differential flatness property of the blcycle
model [19]. The reference trajectories generated this way signifi-
cantly improves computation efficiency when compared to tradi-
tional motion planning methods [38]. This is because, rather than
growing a tree, it only samples the center of the lanes and a
smooth and feasible trajectory is obtained following Eq. (11). Com-
puting multiple such reference trajectories helps the CAV, to some
extent, optimize for any cost function (as in Eq. (4a).

3.3 Constraint Set for Each Vehicle. In this section, we
present how the CAVs generate their position constraint sets
X;i(T) based on the collision free reference trajectories xrEf We

608 T T T T T T
Seos- G 4 . e . 4 &
Ssool-dl @ L a

| | | | | | 1
20 40 60 80 100 120 140
X locations

at

596

Fig. 5 Corrected reference trajectories of the CAVs
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exploit the idea of distributed dynamic tessellation methods
(Voronoi diagram) [39] to partition the set X cv(T) in a distributed
manner among the cooperative CAVs to obtain their time-
varying, nonoverlapping constraint sets Xsi(t), Xsi(t), Xsi(t) N
Xa(t) =0, B, 18 1cy, 1 2 i, T@ [k, k + T]. This way, if every
cooperative CAV i@ Icy satisfies its own position constraint
Xsi(T) B Xsi(T), the coupling constraint in Eq. (4b) will be satisfied.
Note, although the position constraint set generation method is
motivated by the dynamic tessellation methods, it is different
from it in terms of computation time and resultant constraint set.

Algorithm 1 describes this constraint set evaluation procedure for
CAV i. Here, the CAV i receives/predicts the future positions that
the noncooperative vehicles will occupy (X Sj(t)) and receives the
nonconflicting reference trajectories xrff(t) of cooperative CAV
1B 1lcy, | # i. It then uses project and linearize method [40]—at
each time instant t over the horizon—to obtain the set of collision
free positions X;;(T) from noncooperative vehicle j in its neighbor-
hood N ; uc. To avoid the neighboring cooperative vehicles Bl & N ;, it
identifies the hyperplane (line for 2D cases) that separates x (t) and
X (t)sland constructs the convex set Xs,1(t) with the half-space
(created by the hyperplane) that includes x (t). To factor in the
shape (described by the convex set X shape) of the CAV, Pontrya-
gin’s difference (@) is taken between the convex constraint set
and set X;shape. This way, every cooperative CAV evaluates their
own state constraints, which decouples the coupled constraint in
Eq. (4b), and hence, every CAV can take their decision in a decen-
tralized fashion without violating the coupling constraint.

Algorithm 1 Constraint set evaluate

Input : x*f(t), T B [k, k + T],1BN; and Xsi(T), B B Nijye

Output: Xqi(t), T @ [k, k + T]

Initialize Xi(t) = X;;

Whilet< k+ T do

While j < Nj, do

From x,(t), use project and linearize method [40] to obtain
Xsii(T);

Update Xsi(t) = Xsi(r) n Xsi,j(T);

j=i+ L

While 1< |N;| do

Find the hyperplane hji(t) = 0 passing through the middle of
xsi(t) and xq(t);

Assign the convex set X (T) as the half-space that contains x(T);
Update Xi(t) = Xsi(t) n Xqi1(t);

Xsi(T) = Xsi(t) Xi,shaps; 1

=1+ 1

=1+ I

In this constraint set generation approach, the cooperative CAVs
only communicate at the beginning of solving their control solution.
This reduces high communication requirements associated with
iterative methods. The state constraint set Z;(t) @ R* for each
vehicle i can be obtained from the position constraint set Xsi(T)
and the bounds on velocity and its heading direction.

3.4 Data-Driven Linear Dynamic Model. To generate the
convex equivalent of the problem in Eq. (4), we utilize linear
model representation of the system in Eq. (3) by using dynamic
mode decomposition-based methods [27]. Here, we identify a
linear discrete-time state space model of the nonlinear system (3)
of the form

Xi(k + 1) = AiXi(k) + BiVi(k) (12)

using vehicle state and control trajectory data. We create snapshot
matrices X, Xj, and Vi with time series data samples from
any time t to t+N, such that X;= [xi(t+ 1), xi(t+ 2),...,

011004-6 / Vol. 2, JANUARY 2022

xi(t+ N)JBRY™N, X[xi(1), xi(t+ 1),..., xi(t + N = )] B R*N,
and V; = [vi(t), vi(t + 1),..., vi(t + N = 1)] @ R>N. Given the
data, A;j and B; will need to satisfy X' = A; X; + B; Vi. We use the
method developed in Ref. [27] to con'lpute A; and B; as follows:

Xi

X =[A; B
= [ ]Vi

= GiQi; Gi=[AiBi]= X'i Q" (13)
where Qf is the Moore—Penrose pseudo-inverse of Q;.

3.5 Robust Model Predictive Controller. The robust tube-
based MPC method ensures the vehicle satisfies its convexified
state constraints (as discussed in Sec. 3.3) in the presence of
process noise (w; in Eq. (1)). Here, the controller vi(k) is given by

vi(k) = ui(k) + Ki(zi(k) - xi(k)) (14)

where u;(k) is the nominal controller and K; is the feedback gain that
stabilizes the closed-loop system (A; + B : Kj). The feedback gain
attenuates the effect of uncertainties and compensates for the differ-
ence between the actual and the nominal system. With the linear
system dynamic model and the convexified state constraint sets,
the problem in Eq. (4) can be reformulated as a convex optimal
control problem:

k+T-1
[ui()"Rirui(t)
— (15a)

+ (ui(0) = wi(t = 1) Ria(ui(t) = wi(t - 1)]

min  Axi(k + T)?P;Ax;(k + T)3 +

s.t. xi(t+ 1) = Aixi(t) + Bjui(t) (15b)

xi(T) B Zi(t) BSi(r), Br@[k+ 1, k+ T] (15¢)

ui(t) BV BK;Si(t), Br@[k+ 1, k+ T- 1] (15d)

Si(t+ 1) = (Ai + BiKj)Si(v) + BuiW;i (15¢)

where mi= [uik)” wik+ 1 ..., uik+ T - 1) and

Axi(k + T) = xi(k + T) - xl’e1 (k + T). Here, the controller minimizes
the control effort over the horizon (the second term), the rate of
change of control (the last term), and a terminal cost (the first
term) that penalizes the nominal terminal state’s deviation from
that of the reference trajectory. Si(t) in Egs. (15¢) and (15d) is
the set in which the error between zj(t) and xi(t) lies at time T
[41]. Its update is given by Eq. (15¢). To ensure constraint satisfac-
tion in the presence of uncertainty w; in Eq. (1), the nominal state
and nominal control constraints are tightened, as shown in
Egs. (15¢) and (15d), so that the actual state z(t) and control
vi(t) ensure the satisfaction of z;(t) @ Z; and v; B V;,'respectively. By
tightening the constraints, we are reducing the size of the feasi-ble
state and control constraint sets.

To solve the aforementioned problem in Eq. (15) in a computa-
tionally efficient fashion, we convert it into a quadratic program

(QP)

1 . ,
min = (yi = y) Hi(yi - y)

3 (16a)
t. Myi < h;; Gy = by
s y Y (16b)
yi= [k, xitk+ 1), wk+ 1),...,
xik+ T- 1), witk+ T-1), xk+ T)  (16¢)

where Vi RT(nx+n..), M R(2T(nx+nu)—T,T(nx+nu))’ G R(Tnx,T(nx+nu)), bi
R and h; @ RCTM*n)-T) 1y and n, are the state and control

dimensions. The equality constraint in Eq. (16b) includes the con-
straint on state dynamics in Eq. (15b). H; is a diagonal matrix and

Transactions of the ASME

[/G08Z689/700 1 | 0/1/Z/4Pd-0[01LE/SO[OIOASNOIOUOINE/BIO"OWSE OO |00eNBIPaWSE// ARy WOl Papeojumoq

0 L Z sAe

€20z Aenuer z) uo Jesn ABojouyoa] JO ensu| sioullll A ypd 4001 |



1
0T Il l E 1 l L 1 L B
0 20 40 60 80 100 120 140
I I I I I I I
sosr — == -
o 1 ! = = ! . ‘ —
0 20 40 60 80 100 120 140
I 1 I 1 1 I I
2 — -
o wl — — —J -
b I I | L | |
8 0 20 40 60 80 100 120 140
c I I I I 1 I I
. —J B
600 — -
0 20 40 60 80 100 120 140
1 1 I I 1 1 1
0s™ 1 N
il -i -
Il 1 D i L E Il Il
0 20 40 60 80 100 120 140
(3 T T T I T T
oS — — -
600 =5 m ] —
Il 1 | l Il 1
0 20 40 60 80 100 120 140

X locations

Fig. 6 Trajectories of the CAVs when robust tube-based MPC with DMD is used. The obstacles are shown in gray, while the

CAVs are shown in upper lane and lower lane.

y! is the target state, which includes the reference state trajectory
xi“f. The Lagrangian of the problem in Eq. (16) is given by the fol-
lowing equation, where A;; and A;; are the Lagrange multipliers,

1 . )
Li(yi, M2, hi) = E(Yi -y Hi(yi - y)
+ N (Giyi = bi) + Ao(Miyi - hi) (17)
From the aforementioned equation, the first-order Karush—-Kuhn—

Tucker (KKT) optimality conditions can be obtained as follows
[42]:

? )
Hi(}’i - y‘) + CTi)\il + MT;)\iz

(vt Aoy B Miy; + s = by B_
Fl(y11 }\11, }\12) Ciyi b 0 (18)
YiSil

where s;; are the slack variables given by s; = h; = M;y;, while Y; and
S,; are diagonal matrices given by Y; = diag(Ai2) and S; = diag(sy)-
1 is a unity vector, and the last term in the aforementioned equation
denotes the complementary slackness condition. The solution to the
aforementioned problem in Eq. (18) provides the solution to the
optimal control problem. To aid faster convergence, the problem
in Eq. (18) is solved using the Newton step [42]. The corresponding
update directions, Ayi, AAi1, and AMAiz, of the optimization vari-
ables are obtained from the following equation:

? Bl
A @AAy}“‘
1 B i2 -Fi(yi, A, Ai2) (19)
Asyi

Finally, using a step size a;, that keeps the Lagrange multipliers and
the slack variables positive, the solution is updated at each iteration
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by:
Y
y(t+1) y (1) Ay (1)

Ail(t+ 1 Ail(t) A}\j](t)
Ao+ DB = B B * 28 (20)
Sli(t+ 1) Sli(t) AS]i(t)

Thus, at each time instant k, an iterative method is used, where the
search direction is obtained from Eq. (19) and the solution is
updated as in Eq. (20) till it converges, to find the optimal control
solution for a time horizon T. To further expedite the process,
similar to Refs. [43,44], a constant number of iterative steps are con-
sidered in this article, which provides suboptimal yet fast solutions.
It was shown in Ref. [43] that the suboptimality of the solution for a
very small number of iterative steps (even a single iterative step)
was not high and hence the rational behind using a constant
number of iterative steps.

4 Simulation Results

We present the simulation results for our proposed controller for
two different scenarios: (i) a simultaneous lane change problem and
(i) a merging problem. We also compare our result with the lane
change method proposed in Ref. [19].

For the simultaneous lane change problem, we consider two
cooperative CAVs planning to change lane at the same time in
an environment with three noncooperative vehicles (obstacles).
The initial locations of the noncooperative vehicles and the
cooperative CAVs are shown in the first subplot of Fig. 6.
The initial locations of CAV 1 (in blue in the lower lane) and
CAV 2 (in red in the upper lane) are given by x ; =[20,600] and
X, =[45,604], respectively. The uncertainty bounds in the CAVs
are  considered to be W;=[-1, -0.01, -0.01, -0.2]
x [1, 0.01, 0.01, 0.2], i @ {1, 2}. The minimum and maximum
velocity of the CAVs are considered to be 0 m/s and 25 m/s, respec-
tively. The obstacles” initial velocities are arbitrarily chosen as
18.95 m/s, 18.9m/s, and 18 m/s, respectively, while the initial
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Fig. 7 Acceleration and steering of the vehicles in lane change scenario

velocities of the cooperative CAVs are chosen as 18 m/s. The CAV
accelerations are constrained within —4.5 to 4.5 m/s®, which ensures
prevention of vehicle rollover [17]. The steering angle & is con-
strained to be within -0.3 to 0.3 rad. The obstacles are considered
to follow their lane with a velocity that lies within a finite bound
of their initial velocity, but no change of lane occurs during the
lane change maneuver of the CAVs. All the vehicles are considered
to be of 4.5m in length and 2 m in width (a standard sedan).
Following the layered control solution in Fig. 1, CAVs first use
the reference position trajectory generation approach in Sec. 3.2
to generate their potential references, as shown in Fig. 4. Since
both the CAVs plan to change lane, they only sample the center
of their target lanes. The trajectories that maximize the distance
traveled are chosen as their desired trajectories. However, as
shown in Fig. 4, the initial reference trajectories, although avoid
noncooperative vehicles, have a conflict point. The trajectories of
both the CAVs are then modified by Axg;, 1B {1, 2}, by the heuristic
approach mentioned in Sec. 3.2 to obtain the reference position tra-
jectories that are conflict free, as shown in Fig. 5. Although there is

v, © shape
|

35

30
CAV 1 CAV 2
Fig. 8 Initial positions of CAV 1 and CAV 2. The light shaded
regions are their Voronoi cells. After taking into account of the
vehicle shapes, the constraint sets are given by the darker
shaded regions.

606

no guarantee that conflict-free trajectories can be obtained in the
first iteration of the modification method, in simulation, we experi-
enced that the approach provided conflict-free trajectories within the
first few iterations (mostly in the first step).

Given the reference trajectories, the state constraint sets are gen-
erated by the CAVs following Algorithm 1. We then use the data-
driven DMD-based linear system representation to obtain the
system and control matrices of the system, i.e., A; and Bi. To con-
sider the vehicle process noise, we exploit robust tube-based
MPC method and solve the problem (15). The feedback gain K;in
Eq. (14) is computed as the linear quadratic regulator gain,
which stabilizes the closed-loop system. A finite time horizon of
6 s with At =1 s sampling time is considered, i.e., T=6. In a com-
puter with 3.5 GHz Intel® Xeon™ processor and 32 GB RAM, the
MPC problem required =0.11 s (including reference trajectory gen-
eration, constraint set evaluation, and solution of the tube-based
MPC in a computationally efficient fashion), which is comparable
to the time budget available for onboard implementation. It may
be noted that no effort of optimizing the code to improve computa-
tion time has been done.

Figure 6 shows the successful simultaneous lane change maneu-
vers performed by the cooperative CAVs in the presence of obsta-
cles. Figure 7 shows the control actions of the two CAVs. The
solution obtained from the robust tube-based method with
DMD-based linear model leads to smooth vehicle trajectories
while being computationally efficient at the same time. Further-
more, these solutions ensure satisfaction of the system constraints
in the presence of affine uncertainties.

We compare our work with the distributed lane change algorithm
described in Ref. [19] that uses buffer Voronoi cells (BVCs) to con-
straint vehicle states and buffer input cells (BIC) to constraint the
inputs to ensure collision avoidance. The reference trajectory in
Ref. [19] is generated using Eq. (11). The approach in Ref. [19]
uses Voronoi diagram to partition the feasible position space at a
given time. It also constraints the vehicle input to the BIC (com-
puted based on the current BVC) to ensure the vehicle stays

T T
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Fig. 9 Distributed lane change with BIC when the initial CAV 1 position is xs; =[15,600]
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Fig. 10 Distributed lane change with BIC when the initial CAV 1 position is xs; =[17,600]

Fig. 11 Different instances in the lane change simulation in CARLA. The CAVs are shown in black. (a) initial locations;
(b) intermediate stage; and (c) final locations.
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Fig. 12 Actual and reference trajectories in the lane changing scenario in Fig. 11
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Fig. 13 |Initial reference trajectories in a merging scenario
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Fig. 15 Vehicle positions in a merging scenario: (a) times 1, 3, and 5 secs and (b) times 7,9, and 11 secs
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Fig. 16 Acceleration and steering of the vehicles: (a) times 1, 3,
and 5secs and (b) times 7,9, and 11 secs
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within the current BVC in the next time-step. To account for the
vehicle shape, Pontryagin difference between the BVC and the
set defining the vehicle shape is taken. This is one of the critical dif-
ference between [19] and our work, that we solve the problem over
a horizon and generate time-varying state constraints; and choose
our current control solution to keep the vehicle in the constraint
set in the next time instant, which is different from the constraint
set in the current time instant. The work in Ref. [19] also requires
Taylor series approximation-based linearization, where the nonlin-
ear dynamics is linearized around the current vehicle operating
conditions.

Figure 8 shows initial positions of the CAVs (same as in Fig. 4),
Xs1 =[20,600] and xy, =[45,604], the Voronoi cells (V;) of each
CAV (in light shade), and the Voronoi cell after taking into
account the vehicle shape (in slightly darker shade). It is shown
in Fig. 8 that the initial BVC of CAV 1 renders its position to be
infeasible. The vehicle from that point cannot track its reference
or even satisfy the system constraints, since the constraint set
enforced by BIC keeps on choosing the lower bound of its
control to bring the vehicle to the BVC, which is not possible con-
sidering vehicle’s control constraints.

If we change the CAV 1 initial position to xs; = [15,600], both the
CAVs are able to change lanes as shown Fig. 9. However, as shown
in Fig. 9, the CAV 1 tends to move back to its lane in the middle of
lane change due to CAV 2. If the CAV 1 starts from position to xs; =
[17,600], Fig. 10 shows that it is unable to track the reference (and
hence reach the other lane) since the control and state constraints
due to CAV 2 positions prohibit it to do so. Apart from these, we
also saw that the BIC-based control constraints can violate the vehi-
cle’s constraints—we saturated the control solution during the com-
parison. Also, there are cases of model mismatch between the
linearized dynamics and the nonlinear dynamics. However,
despite being conservative, the approach in Ref. [19] is highly com-
putationally efficient and requires less computation time than our
proposed method.

We also simulated our proposed method in CARLA [45],
which is an open-source simulator for autonomous driving
research. To simulate in CARLA, our solution was provided to
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the CAVs to track. The road coordinates were defined using the
inbuilt map in CARLA 0.9.X. Our control solutions were then
passed on as reference trajectories to CARLA, where it was
tracked using the CARLA object “VehiclePIDController()” for
each vehicle. Figure 11 shows how the two CAVs (black vehi-
cles) simultaneously change lanes. Figure 12 shows the trajecto-
ries from our proposed method that the vehicles should follow,
and the vehicles” actual trajectories, which resulted in less than
1 m lateral error.

In the second scenario, we consider a vehicle merging case as
shown in Figs. 13 and 14, where the green CAV (merging lane)
intends to merge, while the red CAV (upper lane) intends to
change lane as well. In this scenario, we consider three cooperative
CAVs, and Fig. 13 shows their conflicting reference trajectories.
Their modified feasible trajectories according to Sec. 3.2 are
shown in Fig. 14. Here, only the red (upper lane) and blue (lower
lane) CAVs modify their reference trajectories to help the green
vehicle (in the merging lane) successfully merge in the highway.
Similar to the simultaneous lane change case, the state constraints
are obtained based on the reference trajectories and the process
noise in CAVs are addressed by using a robust tube-based MPC
approach. The resulting vehicle trajectories while following the ref-
erence trajectories are shown in Fig. 15, and the control actions are
shown in Fig. 16.

The advantages of the proposed controller include computa-
tional tractability, ensured collision avoidance in the presence of
process noise and obstacle prediction error, and simultaneous
decision-making (lane change maneuvers) among the CAVs. The
simulation results validate these. However, the proposed approach
does not include multiplicative errors, uncertainty in communica-
tion, and faulty communications or cyber-attacks. These topics
are out of scope of this article, but will be pursued in the future
work.

5 Conclusion

In this article, we present a computationally efficient layered
control framework for CAVs to ensure their safe operation in the
presence of uncertainty. The distributed constraint set generation
approach decouples the coupled constraints, which allows each
CAV to take its own decisions. The distributed coordinated
approach to generate their reference trajectories helps the CAVs to
take nonconservative actions while ensuring collision avoidance.
The robust tube-based MPC approach ensures constraint satisfac-
tion in the presence of process noise. Future work includes incorpo-
ration of surrounding vehicle prediction methods, use of detailed
vehicle dynamic models, optimization-based reference trajectory
modification, consideration of multiplicative errors, and cyber-
secure navigation.
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