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ABSTRACT: Organic diradicals are envisioned as elementary building blocks for designing
a new generation of spintronic devices and have been used in constructing prototypical field 02 _
effect transistors and nonlinear optical devices. Open-shell systems, however, are also  bian 00
reactive, thus requiring design strategies to “protect” their radical character from the 02 STS 1 Koo
environment, especially when they are embedded in solid-state devices. Here, we report the
persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene
(DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy
measurements on single-molecules detected singlet—triplet excitations that were absent
for DIAn species packed in assembled structures. Density functional theory simulations
unravel that the molecular geometry on the metal substrate can crucially modify the value of el /\F\_/\A
the singlet—triplet gap via the delocalization of the radical sites. The persistence of the
diradical character over metallic substrates is a promising finding for integrating radical-

based materials into functional devices.

iradical molecules are promising candidates for the

design of new-generation nonlinear optic (NLO)' and
spintronic devices.”” As examples, diradicals have been used to
build spin filters* and field-effect transistors,” and they could
potentially be used for memory storage devices."” In recent
years, much focus has been directed to the understanding of
the interactions established between the two spin centers of a
diradical and how those interactions can be controlled."*~*

To date, the impact of a contact metal electrode on the
electronic and magnetic properties of diradicals remains
unclear, especially because the influence of molecular
geometry, adsorption, and packing has yet to be revealed.
Those parameters have been shown to play a crucial role in
defining the magnetic properties of metal—organic molecules
on surfaces”'* and are also expected to affect the properties of
purely organic diradicals. Most of the recent studies on
diradicals have been performed in soft solution or solid
environments. Therefore, exploring their structures on metallic
surfaces can be of great significance to disentangle the
remaining unknown questions about these fascinating mole-
cules.

Among all diradical molecules, the diindeno[b,i]anthracene
(DIAn) framework is of particular interest due to its high
solubility in common organic solvents, high thermal stability,
ease of sublimation, and excellent oxidation resistance.'> DIAn
has also exceptional electronic properties, such as a small
singlet—trig)let gap and a balanced ambipolar charge-transport
behavior."°™"” Owing to these properties, DIAn molecules are
perfectly suitable for mass production for future market
applications in, for instance, high-performance organic field-
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effect transistors.” In a more fundamental scenario, DIAn is
ideally suited to investigate, at the atomic scale, the magnetic
behavior of prototypical diradical molecules in contact with
inorganic interfaces, seeking strategies to maintain their
molecular functionality when they form part of solid state
devices.

Here we demonstrate that individual DIAn molecules
maintain their diradical character on a metallic substrate with
a reduced singlet—triplet gap compared to values observed in
the solid state. We studied DIAn molecules and assemblies
adsorbed on an atomically clean Au(111) substrate and probed
inter- and intramolecular spin interactions by scanning
tunneling spectroscopy (STS). Usin% the Kondo effect as a
fingerprint of molecular magnetism,”’>® we probe local spin
interactions inside the diradicals, unraveling underlying
mechanisms at the origin of magnetic interactions between
the two spin centers of the diradical. More importantly, we
demonstrate that those magnetic interactions depend on the
molecular conformation over the surface and on their
interaction with other species in assembled nanostructures.
In particular, supported by density functional theory (DFT)
simulations, we show that the rotation of mesityl substituents
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Figure 1. Molecular packing of DIAn diradicals on Au(111). (a) Chemical structure of DIAn. The anthracene core is highlighted in red, while the
(triisopropylsilyl)ethynyl groups and mesityl groups are highlighted in orange and green, respectively. Indene groups are drawn in black. (b) STM
image showing the typical molecular chains and close-packed domains formed by DIAn. (c) STM image of the close-packed domain. A model of
the molecular packing indicating the bimolecular unit cell is superimposed on the topographic image. (d) dI/dV spectra obtained at the anthracene
core of a single diradical molecule in the domain, showing a vibrational inelastic electron tunneling (IETS) feature. (e, f) Topographic images of
isolated DIAn monomer obtained by lateral manipulation with the STM tip. Scale bars: (b) 20 nm; (c—e) 2 nm; (f) 1 nm.

modifies the magnetic interaction between the two spin centers
of a single DIAn molecule. These results outline the relevance
of intermolecular interactions in supramolecular nanoarchitec-
tures in the magnetic properties of open-shell molecular
systems.

The core of the DIAn molecule is composed of two indene
groups (black section, Figure la), spaced by an anthracene
bridge (red section, Figure la). The indene moieties endow
DIAn with the radical character of the molecule'® and, here,
incorporate bulky mesityl substituents (green section in Figure
1a) for protecting them. Additionally, (triisopropylsilyl)ethynyl
groups (CCSi(i-Pr),, orange section, Figure 1a) are attached to
the quinoidal anthracene core to provide high stability against
oxidation and high solubility. Details of the synthesis of DIAn
have been reported previously."

We deposited DIAn diradicals onto an atomically flat
Au(111) surface by thermal sublimation of the molecular
powder in ultrahigh vacuum at a temperature of 563 K.
Scanning tunneling microscopy (STM) images at 4 K show
that DIAn diradicals assemble in two types of structures for
submonolayer coverages: extended close-packed domains and
molecular chains (Figure 1b). The former consists of a
parallelogram network with a unit cell (white box in Figure 1c)
containing two DIAn molecules, as indicated in the molecular
model in Figure lc. Differential conductance (dI/dV) spectra

on the molecules in these close-packed domains show two
bias-symmetric steps at +11 meV (Figure 1d). The spectral
feature is highly localized at the central anthracene core and
absent over the protruding groups. We tentatively attribute it
to the inelastic excitation of a molecular vibrational mode.””**
In fact, Raman spectra of DIAn crystals show a prominent
band around 11 meV corresponding to the out-of-phane
deformation of the mesityl and of the isopropylsilyl groups
(Figures S1 and S2). Molecular chains, in contrast to the
domains, are rather disordered structures, weakly packed and
oriented along the Au(111) herringbone reconstruction.

To explore single DIAn diradicals, we moved apart
individual molecules from the chain structures using the tip
of the STM. As in the domains, DIAn molecules appear in
STM images as two inverted protrusions, each composed of
the bulkier mesityl groups (Mes) and the lower (triisopropyl-
silyl)ethynyl moiety (CCSi(i-Pr);), as shown in Figures le,f. It
is important to note that in some occasions tip-manipulated
DIAn molecules appeared with an asymmetric configuration,
with one-half appearing with a lower height (top right of
Figure le). Although we cannot state the precise origin of this
different aspect, we speculate that it might be due to a
distortion (e.g., a rotation) of the mesityl groups.

The open-shell character of the isolated DIAn species could
be resolved via STS measurements. Differential conductance
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Figure 2. Magnetic fingerprints of isolated DIAn diradical molecule. (a, b) Topographic images of the symmetric and asymmetric DIAn diradical.
Scale bar corresponds to 1 nm. Colored circles in the topographic image mark the positions where dI/dV spectra were recorded. The
corresponding dI/dV spectra measured on symmetric and asymmetric DIAn diradical are plotted in (d) and (e), respectively. A split Kondo feature
is observed at the mesityl groups (Mes), confirming the diradical character of the symmetric DIAn molecule, whereas a single Kondo peak is
observed for the asymmetric DIAn molecule (green curves). In both cases, a vibrational inelastic electron tunneling (IETS) feature is observed on
the central anthracene core of the molecule. The signal amplitude of the IETS spectra was multiplied by three for a better reading (red curves). (c)
dI/dV stacked plot taken along the white arrow in (b), showing that the Kondo is located on the mesityl group of the molecule while the vibrational
IETS feature is found at the anthracene position (red). The Kondo appears at only one side of the asymmetric molecule, on its brighter mesityl
group. (f) Non-Kekulé resonance diradical structure of DIAn, showing that the two radicals are located at the junction between the indene (black)

and mesityl (green) groups of the molecule.

(dI/dV) spectra over their mesityl groups (Figure 2a) resolved
now two narrow peaks centered symmetrically around zero
bias (green curve in Figure 2d), which reveal the survival of
their diradical state on the Au(111) substrate. Owing to a weak
interaction of the radical state with the metal surface, its
associated spin S = 1/2 can be partially screened via the Kondo
effect, %" 7! resulting in a narrow logarithmic resonance at
zero bias. However, over DIAn’s bulky sides, we observed,
instead, a double-peak structure. This is attributed to the
presence of two antiferromagnetically interacting radical states.
As shown in Figure 2f, DIAn can lie either in an open shell
non-Kekulé structure or in a closed shell state. In the former,
two radicals appear localized at the junctions between the
indene and mesityl groups (i.e., at the apical carbons of the
five-membered rings), spaced by the central anthracene bridge,
which mediates their antiferromagnetic interaction | between
them, forming a singlet ground state. In this configuration, the

11508

lower dI/dV signal at zero-bias reflects the absence of Kondo
states for the singlet ground state. At tunneling energies equal
to or larger than J, dI/dV peaks reflect the excitation of a triplet
state, with their corresponding energy providing a direct
measure of J.”>*”> Above these onsets, Kondo-like dynamical
fluctuations in the triplet state, now accessible by inelastic
tunneling electrons, result in the logarithmic tail and the
appearance of a split-Kondo resonance rather than inelastic
steps.33’3

In contrast, on the distorted DIAn molecules, a single dI/dV
peak centered at zero bias is measured only over the brighter
mesityl group (green curve, Figure 2e), while a featureless
spectrum appears on the lower half of the molecule (dI/dV
stacked plot, Figure 2c). This reveals that on the distorted side,
the radical state is either quenched probably due to a
conformational change or a strong interaction with the metal
underneath. Additionally, bias-symmetric dI/dV steps at +15
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Figure 3. Kondo feature in nanostructures made of a few DIAn molecules. STM images showing close-packed nanostructures made of several DIAn
molecules, with the corresponding chemical structures and characteristic dI/dV spectra taken over the regions highlighted in green and blue in the
chemical models. The data were obtained for (a) dimer, (b) trimer, and (c) molecular chain of DIAn molecules. Evident Kondo features are
observed on specific positions of the nanostructures. Color code: strongly interacting mesityl group (blue), noninteracting mesityl group (green),
and (triisopropylsilyl)ethynyl group (orange). Scale bars in (a—c) correspond to 1 nm.

meV were detected over the central anthracene core on both
pristine and distorted DIAn species (red curves in Figure 2d,e).
Because we observe them with similar intensity on the diradical
and monoradical species, we can safely exclude their magnetic
origin. Instead, we tentatively assign them to the excitation of
the vibrational mode observed on the assembled domains, here
at slightly higher energy, probably due to the different
conformations adopted when isolated on the metal substrate.

The shifted Kondo resonances on DIAn molecules amount
to a singlet—triplet excitation energy of Egr ~ 5 meV. This
value is significantly smaller than the singlet—triplet energy
difference obtained from density functional theory simulations

of DIAn in the gas phase.'” In particular, our DFT results in
Figures S3a and S3b corroborate the singlet ground state and
find a parallel spin configuration at almost 140 meV above,
signaling for a singlet—triplet gap Egr much larger than in our
experiment, and similar to previous measurements of DIAn."”

The origin of the smaller inter-radical exchange interaction
observed in the experiment is likely connected with molecular
modifications when adsorbed onto the gold surface. We have
simulated the geometric relaxation and magnetic state of a
DIAn molecule on a Au(111) slab using DFT (results
summarized in Figures S3—S7). The first important result is
that DFT reproduces the survival of the diradical character of
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DIAn molecules on the gold surface (Figure S3g). The
molecule is physisorbed and maintains C—Au distances larger
than 3 A. After geometry optimizations, two magnetic
configurations were converged corresponding to a S = 0
ground state and an S = 1 (2p;) excited state, with an energy
spacing significantly smaller than in the gas phase. Thus, DFT
confirms that on the gold surface, the exchange interaction
between indene radicals is reduced. The metallic substrate
imposes, first, a partial planarization on the molecular structure
by rotating the mesityl groups (Mes) toward the diindeno
anthracene plane. As shown in Figure S4, the mesityl rotation
induces a slight delocalization of the radical toward their
aromatic center, which effectively increases the separation
between spin centers and, consequently, reduces their
magnetic interaction. Additional corrections to the simulations
due to Coulomb correlations (considered in Figure S6) or the
renormalization of exchange coupling due to Kondo
correlations™ can account for the further reduction of the
reduced exchange observed in our experiments.

Our findings demonstrate that the commonly assumed inert
role of molecular substituents'” (e.g., Mes, CCSi(i-Pr),) on the
active magnetic properties of diindeno[b,i]anthracene deriva-
tives needs to be revised when the diradicals are put in contact
with a metallic electrode. Although, unpaired electron spins
remain present in the molecule, their interaction is altered
significantly upon adsorption on a metallic electrode. We
found that the CCSi(i-Pr), group connected at the anthracene
core allows preserving the spin polarization of isolated DIAn
diradicals on gold. Figure S7 shows that when the two CCSi(i-
Pr), groups were replaced by CCSiMe;, DIAn molecules are
found to adsorb closer to the surface. In that case, the gold
substrate imposes a bending of CCSi(i-Pr); triple bonds
(Figures S7a—c), while a gold atom is slightly pushed up from
the surface plane (Figure S7a). Such a modification of the
molecule—substrate separation modifies the charge distribution
and quenches spin polarization over the molecular backbone.

Next, we show that the spin interaction in DIAn diradicals is
modified in close-packed nanostructures made of a few
molecules. Figure 3 shows nanostructures formed by two,
three, or more DIAn molecules. Spectra recorded on the
interacting mesityl groups of a DIAn dimer (Figure 3a, blue
dot) reveal the absence of a magnetic fingerprint (blue curves),
while spectra on the noninteracting mesityl groups (green dot)
reveal now a single Kondo feature (green curves). This is
further confirmed by spatial maps of the Kondo resonance
shown in Figure S8, which illustrate the localization of the
Kondo signal exclusively over external mesityl termini. This
observation is consistent across other interacting molecular
nanostructures such as trimers (Figure 3b) and molecular
chains (Figure 3c).

The absence of a Kondo resonance on the neighboring
mesityls can be explained caused as a combination of both a
finite overlap of their electronic wave function of two
neighboring spins and the concomitant intramolecular rotation
of the involved mesityl groups for the assembly. Nevertheless,
the quenching of one of the two radicals of DIAn also explains
the observation of a single Kondo resonance on the external
mesityl groups in DIAn dimers, trimers, and chains, in clear
contrast with the split Kondo feature observed in isolated
molecules. This observation also explains the complete
quenching of all Kondo signals in extended 2D close-packed
domains, as shown earlier (Figure 1).

11510

In conclusion, here, we report the survival of the magnetic
state of DIAn diradicals upon their adsorption on a Au(111)
surface. We studied the spin interactions in the molecule
through the many-body Kondo effect by performing scanning
tunneling spectroscopy measurements and density functional
theory calculations. The significant results from this study are
(1) the persistence of the diradical singlet ground state upon
adsorption, (2) the detection of spin interactions between the
two spin centers of a single diradical, (3) the control over
intermolecular spin interactions through the formation of
nanostructures by self-assembly or STM tip manipulation, and
(4) the demonstration of the substrate influence on the
lowering of the singlet—triplet gap of the DIAn diradical by
imposing a rotation of its mesityl groups. Importantly, these
are crucial questions raised that need to be solved for the
future use of diradicals in spintronic and NLO devices in which
the molecules are in contact with metal electrodes. Our study
paves the way to this by precise control of the spin interactions
in isolated molecules and assembled nanostructures made of
diradicals.
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