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Abstract—We revisit computationally relaxed locally decodable
codes (crLDCs) (Blocki et al., Trans. Inf. Theory ’21) and give
two new constructions. Our first construction is a Hamming
crLDC that is conceptually simpler than prior constructions,
leveraging digital signature schemes and an appropriately chosen
Hamming code. Our second construction is an extension of our
Hamming crLDC to handle insertion-deletion (InsDel) errors,
yielding an InsDel crLDC. This extension crucially relies on
the noisy binary search techniques of Block et al. (FSTTCS
’20) to handle InsDel errors. Both crLDC constructions have
binary codeword alphabets, are resilient to a constant fraction
of Hamming and InsDel errors, respectively, and under suitable
parameter choices have poly-logarithmic locality and encoding
length linear in the message length and polynomial in the
security parameter. These parameters compare favorably to prior
constructions in the poly-logarithmic locality regime.

I. INTRODUCTION

Locally decodable codes (LDCs) are error-correcting codes
that admit super-efficient (i.e., poly-logarithmic time) recovery
of individual symbols of an encoded message by querying only
a few locations into a received word. For an alphabet X and a
(normalized) metric dist, a pair of algorithms Enc: X% — %K
and Dec: [k] — X (for [k] :=={1,...,k}) is a (¢, p,p)-LDC
if Dec is a randomized oracle algorithm such that for any
message 2 and any received word y’, if dist(Enc(z),y’) < p
then for every i, Dec” (¢) makes at most ¢ queries to y’ and
outputs x; with probability at least p. Here, £ and K are the
message and block lengths, respectively, k/K is the rate, ¢ is
the locality, p is the error-rate, and p is the success probability.

Studied extensively in the context of worst-case Hamming
errors [1]-[9] where dist is the normalized Hamming distance
(HAM), Hamming LDCs seem to have irreconcilable trade-offs
between the rate, error-rate, and locality. For constant error-
rate (the target of most applications), the best known con-
structions with constant ¢ > 3 locality have super-polynomial
rate [4]-[6], for £ = 2 it is known that K = O(exp(k))
[3], and the best known constructions with constant rate have
super-logarithmic (sub-polynomial) locality [9]. Furthermore,
the best known lower bounds for general Hamming LDCs \Z»ilth
constant error-rate and locality ¢ > 3 are K = Q(k71)
[10], and any locality £ = 3 linear Hamming LDC has
K = Q(k?/log(k)) [11]. See surveys [7], [8] for more details.

To remedy these dramatic tradeoffs, Ben-Sasson et al. [12]
introduced relaxed LDCs (rLDCs). Relaxed LDCs are LDCs
that additionally allow the decoder to output a symbol L & 3,
which signifies that the decoder does not know the correct

value, under the following restrictions: the decoder (a) does
not output L “too often”; and (b) never outputs L when
the queried codeword is uncorrupted. This relaxation yields
LDCs with constant locality and block length K = k!t
for (small) constant € > 0. Blocki et al. consider a further
relaxation of rLDCs known as computationally relaxed LDCs
(crLDCs) [13]: rLDCs that are only resilient against adversarial
channels that are computationally bounded (i.e., probabilistic
polynomial time (PPT) channels). This relaxation, inspired by
the work of Lipton [14], yields crLDCs with constant rate,
constant error-rate, and polylog locality.

Recently, advances in coding theory have turned their focus
to understanding and constructing codes which are resilient
to insertion-deletion errors (InsDel errors) [15]-[33], where
an adversarial channel inserts and deletes a bounded number
of symbols into and from the encoded message. Known as
InsDel codes, the metric dist considered is the (normalized)
edit distance ED, defined as the minimum number of symbol
insertions and deletions to transform a string u into a string
v, normalized by 2 max{|ul,|v|}. Only recently have efficient
InsDel codes with asymptotically optimal rate and error-rate
been well-understood [20], [24]-[26], [30].

The study of LDCs resilient to InsDel errors (InsDel LDCs)
has been scarce, with only a handful of results to date.
Introduced by Ostrovsky and Paskin-Cherniavsky [34], to the
best of our knowledge, all InsDel LDC constructions follow
[34] and utilize a so-called “Hamming-to-InsDel compiler”
[35]-[37], which transforms any Hamming LDC into an InsDel
LDC, increasing both the rate and error-rate by a constant
factor and increasing the locality by a polylog factor. For
example, any locality-3 Hamming LDC with block length K
and error-rate p can be compiled into a locality-3- polylog(K)
InsDel LDC with block length ©(K) and error-rate ©(p).

A. Overview of Results

In this work, we revisit crLDCs with respect to both
Hamming and InsDel errors. We begin by defining crLDCs.

Definition 1 (Computationally Relaxed Locally Decodable
Codes). Let C = {C\[K, k, q1,q2]}ren be a code family with
encoding algorithms {Ency: X1 — Yo}taen where |X;| = q;.
We say C is a (£, p, p, 9, dist)-computationally relaxed locally
decodable code (crLDC) if there exists a family of randomized
oracle decoding algorithms {Decy: [k] — X1} xen such that:

1) For all X € N and any § € X3, Dec§ (i) makes at most ¢

queries to § for any i € [k];



2) For all N € N and any = € ¥k we have
Pr[DecEnc*(w) (1) =x;) =1 for all i € [k];

3) Define binary predicate Fool(y, p,p,z,y,\) = 1 iff (a)
dist(y,y) < p; and (b) i € [k] such that Pr[Dec} (i) €
{4, L}] < p, where the probability is taken over Decy;
otherwise Fool(g, p,p,x,y,\) = 0. We require that for
all PPT adversaries A there exists a negligible function
er(+) such that for all X € N and all z € X¥, we
have Pr[Fool(A(y), p,p,z,y,\) = 1] < ep(N), where
the probability is taken over A and y = Ency(x).

4) Define binary predicate Limit(g, p,d,z,y,\) = 1 iff the
following hold: (a) dist(y, ) < p; and (b) |Good(y)| <
0k, where Good(y) := {i: Pr[Deci(i) = z;] > 2/3},
where the probability is taken over Decy; otherwise
Limit(y, p,0,x,y,\) = 0. We require that for all ad-
versaries PPT adversaries A there exists a negligible
function e\ (+) such that for all X € N and all x € ¥¥, we
have Pr[Limit(A(y), p,d,z,y,\) = 1] < eL(X), where
the probability is taken over A and y = Ency(x).

If dist is the normalized Hamming distance HAM, we say
the code is a Hamming crLDC; if dist is the normalized edit
distance ED, we say the code is a InsDel crLDC. Here, ¢ is
the locality, p is the error-rate, p is the success probability,
and a function is negligible if it is o(x~¢) for all constants
¢ > 0. If g = 2, we say that C is a family of binary crLDCs,
and if ¢ = qo we simply write C)\[K, k, ¢1].

Definition 1 closely follows the crLDC definition of Blocki
et al. [13] with a few modifications. First, the constructions
of [13] utilize a public random seed for a collision-resistant
hash function, so their crLDC definition is quantified over
the randomness of the seed generation algorithm. Our con-
structions do not require a public random seed so we omit
this algorithm from our definition and instead quantify the
security of our crLDC over a code family {C)} en. This
quantification also captures the notion of asymptotic security
when interacting with PPT adversaries, which differs from
standard (r)LDC definitions that consider information-theoretic
adversaries. Moreover, [13] requires the public random seed to
be generated in an honest (i.e., trusted) way, and our definition
and constructions circumvent this requirement. Second, we
slightly strengthen the security definition by tweaking the
predicate Fool: in Definition 1, the adversary wins if there
exists an index ¢ (not necessarily known by the adversary)
such that the probability the decoder outputs correctly on input
1 is less than p. In contrast, [13] requires the adversary to
output corrupt codeword ¢’ and a target index ¢ such that the
probability the decoder outputs correctly on index ¢ is less
than p. Note that requiring Definition 1 to hold for p = 2/3,
er(A) = eL(A) = 0, and for all computationally unbounded
adversaries A results in the original rLDC definition [12].
Our first contribution is constructing a family of binary
Hamming crLDCs satisfying Definition 1. Our construction
borrows from code concatenation techniques [38], which uti-
lize an outer code Cyyt = (Encout, Decyyt) and an inner code
Cin = (Enc;p, Dec;y,) and encodes a message x as follows:

(1) compute y = Enc,yt(x); (2) partition y into some number
d of blocks y™M||...[|y"; (3) compute YV = Enc;, (y?)
for all 4; and (4) output Y =Y (V|| ||Y(4); here, || denotes
string concatenation. In our construction, we use the identity
function as C,,, utilize a suitable digital signature scheme
to sign each block y?), and use a classical Hamming code
as (. Briefly, a digital signature scheme with signatures of
length 7(+) is a tuple of PPT algorithms IT = (Gen, Sign, Ver)
that satisfy the following properties: (1) Gen takes as input
security parameter A € N (in unary) and outputs a key pair
(pk,sk), where pk is the public/verification key and sk is
the private/signing key, (2) Sign takes as input a message
m of arbitrary length and the signing key sk and outputs a
signature o € {0, 1}7“@) of message m. (3) Ver is deterministic
and takes as input a message m, some signature o, and a
verification key pk outputs 1 iff o is a valid signature of
message m and 0 otherwise. (4) For all PPT adversaries A,
for (pk,sk) < Gen(1*), if A is given pk as input and given
oracle access to Signg(-), then II is secure if, except with
negligible probability in A, A cannot output a pair (1, &) such
that Verpk(m, &) = 1 and A never queried Sign, (/). Given
a secure digital signature scheme and any binary Hamming
code, we obtain our first main result.

Theorem 1. Letr II be a r := r(\) length signature scheme.
Let C;, be a binary Hamming code with rate [;, and
error-rate p;,. Then for every positive polynomial k(-)
and constant ¢ € (0,1/2), there exists a code family
Ch = {Cu[K,k(N),2]}rxen and function p:= p(\) such
that Cy is a (¢,p,p,d)-Hamming crLDC with K =
O((1/Bin) max{k(1 + log(k)/r),r}), £ = O((n/Bin) - (r +
tog(K) p = cpin p = 1 — exp(—p(1/2 — 0 /2(1 - ¢)) >
2/3, and 0 = 1/2, where k := k(\).

Our code family Cy is constant rate whenever (3, = ©(1)
and Q(log(k(N))) = r(A) < k(). Our construction allows
for r(A) > k(X), but this results in locality ¢ > K, so it is
more efficient to use a Hamming code with comparable rate
and error-rate. Any choice of p satisfying p > 2/3 ensures
that § = 1/2; e.g., u()\) := O(log' T¢(\)) for constant € > 0
gives us polylog locality and success probability 1 — negl()),
where negl denotes some unspecified negligible function.

We can instantiate Theorem 1 with a constant rate and error-
rate binary Hamming code C;,, (e.g., [39]) and an appropri-
ate signature scheme to achieve a constant rate and error-
rate Hamming crLDC with polylog locality. Our construction
shines when r(\) = polylog()\) and under standard idealized
models there exist signature schemes with r(\) as small as
O(log't¢(\)) for small constant € > 0 [40], [41], assuming
these schemes satisfy the following notion of concrete security:
for security parameter A, any adversary running in time 2*/2
can violate the security of the scheme with probability at
most 2-*/2 for signatures of length r(\) = ). Plugging
in X = O(log'™()\)), said schemes are secure against
super-polynomial time adversaries with negligible security in
A, which implies they satisfy our definition of security for
signature schemes. Using such a scheme with a constant rate



and error-rate Hamming code Cj,, and p(\) := O(log'™¢()\)),
we obtain the following corollary.

Corollary 1. Let 11 be a r(\) = O(log'*(\)) length
signature scheme for constant ¢ > 0. Then for all suf-
ficiently large positive polynomials k(-), there exists code
family {Cu A\[K,k(N),2]}xen that is a (¢, p,p,d)-Hamming
crLDC with K = O(k), ¢ = O(log?™9 (X)), p = ©(1),
p=1—negl(\), and § = 1/2, where k := k().

The parameters of Corollary 1 are comparable to the Ham-
ming crLDC construction of [13], which achieves K = O(k),
¢ = polylog(n), p = O(1), p = 1 — negl(A), and § = O(1).
Our construction is arguably conceptually simpler than that
of [13], which utilizes local expander graphs and collision-
resistant hash functions (with a trusted setup), whereas our
construction simply partitions, signs, and encodes. Moreover,
our use of signatures does not require public key infrastructure
as such schemes exist from one-way functions [42].

1) Extension to InsDel Errors: Our second contribution is
extending the construction of Theorem 1 to handle InsDel
errors. Prior constructions of InsDel LDCs utilized a so-
called “Hamming-to-InsDel” compiler [34], [35]. Key to this
compiler is a noisy binary search algorithm, which intuitively
allows one to search an almost sorted list and find most entries
with high probability. We use this algorithm to find blocks of
codewords that are not “too corrupt”, allowing us to handle
more general InsDel errors. We use the noisy binary search
tools of Block et al. [35] and the well-known Schulman-
Zuckerman InsDel code [43] for C;, to extend Theorem 1
to the InsDel setting. Together with a secure digital signature
scheme, we obtain our second main result.

Theorem 2. Let IT be a r := r(\) length signature scheme.
There exists a constant ¢ € (0,1/2) such that for every positive
polynomial k(-) and constant p* € (0,1/3), there exists a code
Samily Cins := {CA\[K, k(N), 2]} aen and a function p = ()
such that Cins is a (£, p,p,0)-InsDel crLDC for parameters
K = O(max{k(1+log(k)/r),r}), £ = O((log®(n) +p)- (r+
log(k))), p=0O(1), p=1—p* —exp(—p(1/2 = ¢)*/2(1 -
c)) >2/3, and § =1 — O(p), where k := k(X).

As with Theorem 1, our family C,s is constant rate whenever
Qlog(k(A)) = r(A\) < k(\), and additionally has the
same downside whenever r(A) > k(A), in which case it
is more efficient to directly encode with an (asymptotically)
optimal InsDel code (e.g., [43]). We again choose p such that
p = 1 — negl(A) > 2/3; moreover, under the same set of
assumptions on the underlying signature scheme as with our
Hamming crLDC (e.g., [40], [41]), for () = ©(log' ¢ (N))
for small constant € > 0, we obtain the following corollary.

Corollary 2. Let 11 be a r(\) = O(log't(\)) length
signature scheme for constant € > 0. Then for all suffi-
ciently large positive polynomials k(-), there exists code family
{CiIAK, k(N), 2]} ren that is a (¢, p,p,0)-InsDel crLDC with
K = O(k), £ = 0(log’" "9 (\)), p = ©(1), p = 1 — negl(}),
and 0 = 1 — O(p), where k := k(\).

To the best of our knowledge, our InsDel crLDCs are the
first of their kind and compare favorably to the prior InsDel
LDCs of Block et al. [35] and are comparable to the private
and resource-bounded LDCs of Block and Blocki [37].

B. Related Work

Classical InsDel codes were initially studied in [15], inspir-
ing a rich line of research into these codes; see surveys [44]—
[46] for more information. Recently, k-deletion correcting
codes with optimal rate were constructed, answering a long
standing open question [32]. Randomized codes with positive
rate that are correct a large fraction of deletions are studied
in [16], [17]. Another line of work extends list decoding to
InsDel codes [19], [26], [30]. Finally, [20] constructs explicit
synchronization strings which can be “locally decoded” in the
following sense: each index of the string is computable using
symbols located at a small number of other locations in the
string. These synchronization strings are used to construct near
linear time interactive coding schemes for InsDel errors.

[14] initiated the study of codes resilient to errors intro-
duced by computationally bounded channels. Several follow-
up works adopt this channel model, yielding Hamming codes
with better parameters than their classical counterparts [47]-
[49]. It has been argued that any real-world communication
channel can be reasonably modeled as a computationally
bounded channel [14], [50], so one can reasonably expect
error patterns encountered in nature to be modeled by some
(possibly unknown) PPT algorithm. This channel model has
also been extended to the LDC setting for both Hamming [13],
[50]-[53] and, more recently, InsDel errors [37].

[12] introduced the notion of relaxed locally decodable
codes. In a follow-up work, [54] introduced and construct
relaxed locally correctable codes (rLCC) for Hamming errors:
codes with local correction algorithms which can correct
corrupt codeword symbols via querying a few locations into
the received word. Their construction has significantly better
parameters than classical Hamming LCCs, achieving constant
locality, constant error-rate, and polynomial block length.
Furthermore, their rLCC is also a rLDC since their code is
systematic. [13] studies Hamming rLDCs/rLCCs in the context
of computationally bounded channels (crLDC/crLCC). Our
work directly adapts this model but for InsDel errors.

[34] initiated the study of InsDel LDCs. They give a
compiler which transforms any Hamming LDC into an InsDel
LDC, asymptotically preserving the rate and error-rate of the
underlying Hamming LDC at the cost of a poly-logarithmic
increase in the locality. [35] reproves this result with a con-
ceptually simpler analysis using techniques borrowed from the
study of a cryptographic object known as memory-hard func-
tions [55]-[58]. [36] proposes the notion of Hamming/InsDel
LDCs with randomized encodings in various settings, includ-
ing when the encoder and decoder share randomness or when
the channel adds error patterns non-adaptively. In the InsDel
case, [36] invokes the compiler of [34] and obtain a code with
block length O(k) or O(klog(k)) and polylog(k) locality.
Recently, [37] extends the compiler of [35] to the private-



key setting of [51], where the encoder and decoder share
a secret key unknown to the channel, and to the resource-
bounded setting of [50], where the channel is assumed to
be resource constrained in some way. While it is likely that
applying the “Hamming-to-InsDel” compiler to the crLDC of
[13] or our crLDCs would yield an InsDel crLDC, this has
not been formally claimed or proven in prior work. Finally,
there has been recent progress in obtaining lower bounds for
InsDel LDCGCs. [59] proved that InsDel LDCs with constant
locality, even in the private-key setting, require exponential
block length, and also show that linear 2-query InsDel LDCs
do not exist. This makes it all the more surprising that a
constant rate InsDel crLDC in the polylog locality regime exist.

II. TECHNICAL OVERVIEW

The main technical ingredients for both our Hamming and
InsDel crLDC constructions are the use of a digital signature
scheme II with r-length signatures along with a suitable inner
code C,. The encoding algorithms for both codes are nearly
identical, with the main difference being the choice of Cj,.
The decoding algorithms are also similar: the InsDel decoder is
a (non-trivial) modification of the Hamming decoder to handle
InsDel errors using noisy binary search techniques.

1) Hamming crLDC Construction: Let Cj, be an ap-
propriate Hamming code (i.e., non-local), and let II =
(Gen, Sign, Ver) be an r-length signature scheme.

The Hamming Encoder: We define a family of encoding
algorithms {Ency x}x. Let A € N be the security parameter.
For any message =z € {O,l}k, encoder Ency ) partitions x
into d = [k/r(\)] blocks = 20| ---||z(®, where z() €
£0,1}"™ for all i (padding with 0 as necessary). Each z(?)
is now signed using IT: Ency ) generates key pair (pk, sk) <
Gen(1*) and computes signature o) < Signg (2(?|)). Next,
the block x(V|o(||pk||i is encoded using Cj, to obtain
codeword c(*), where pk is the public key generated previously.
Finally, Ency  outputs C' = ¢ .- [|c9) € {0, 1}K. If
r(A) = k, only a single block is signed and encoded at the
cost of locality > K, so it is more efficient to use a Hamming
code with similar rate and error-rate rather than Ency .

The Hamming Decoder: We define a family of decoding
algorithms {Decy x}x. Let A € N, u € N be a parameter of
our choice, z € {0,1}*, C = Encp (), and C « A(C)
such that HAM(C, C') < p, where A is a PPT adversary. On
input i € [k] and given oracle access to C, the decoder Decy »
tries to recover x; via a two-step process. First, Decy  tries to
recover the true public key pk. It begins by uniformly sampling

1y s jute|d]. Parsing C as C’(I)H e Hé(d)
Decy x (1) recovers some m =) « Dec;, (C

for each k € [u]
)) (2) parses
M) ag 70| G0x ||pk(]” ll7; and (3) recovers pk”’ 7<) The

decoder then sets pk* = maJorlty(pk( ,pk( )) Second,

Decy,» computes j such that z; lies in x(ﬂ) computes M)

Decm(C( )) parses it as x(J)HU(J)Hpk 7 J, then checks if

Verpe (9)]|7,59)) = 1, outputting 7!, where i* is the index
of x(J ) that corresponds to x; if true; else Decy \ outputs L.
Here it is crucial for Decy \ to use its computed value j,

otherwise it is possible for an adversary to swap two blocks
CU1) and CU2) where x(1) # 202 violating Ttem 3.
Theorem 1 Proof Overview: The main technical challenge
of proving Theorem 1 is showing that {(Encn x, Decy x)}a
satisfies Items 3 and 4 of Definition 1. Towards Item 3, for
any z € {0,1}", PPT adversary A, and i € [k], we analyze the
probability that Decﬁ)\(i) € {x;, L} for C < A(Encpa(z))
such that HAM(C, EncHyk(x))
77 = 2; and Very-(29)|j,59)) = 1. Conditioning on
(z (J)H 7, U(J)) not breaking the security of II, successful veri-
fication implies ) = () and 5 = ¢, and verification
succeeds whenever pk* = pk. By Chernoff, we can ensure that
pk™ = pk with high probability (depending on 1) as long as
more than half of the blocks C'(J have less than p;,-fraction
of Hamming errors, which is achieved by setting p = cp;y,
for any ¢ € (0,1/2). Now by definition, 5 does not break
security of IT with probability at least 1 — er7(\) (i.e., either
it is a correct signature or verification fails), where err(\) is
a negligible function for the security of II. As index ¢ was
arbitrary here, we establish Item 3 via a union bound for
p=1—exp(— (1/2—02/2 1—2c¢)) and eg(A) = k- en(N),
where £r () is negligible since k = poly(/\)
Towards Item 4, define 7 := {j: HAI\/I(C C(J ) <
Then p = ¢p;y, for c € (0 1/2) implies | 7| > d/2 Moreover,

Decm(C(J)) = 20|V ||pk||j for any j € J. Now for any
i € [k], if ; lies in ) for j € J, the probability Decp »
outputs z; equals the probability that Decy, ) correctly recovers
pk™ = pk. We choose 4 to ensure Pr[pk™ = pk] > 2/3. This
along with [J| > d/2 implies that |Good(C')| > k/2 and
§ = 1/2. By our choice of p, | 7| > d/2 and |Good(C)| > k/2
holds for any C' such that HAM(C, C) p; Thus Item 4 holds
with § = 1/2 and £ () := 0. We refer the reader to the full
version of our work [60] for the complete proof.

2) InsDel crLDC Construction: Let Cj,, be the Schulman-
Zuckerman InsDel code (SZ code) [43] and let II =
(Gen, Sign, Ver) be an r-length signature scheme.

Challenges to Decoding InsDel Errors: InsDel errors
allow an adversary to insert symbols into and delete symbols
from codewords, which introduces challenges that do not
arise with Hamming errors. One may hope to simply use
our family {(Encu,x, Decy x)}r with Cj, = SZ to achieve
Theorem 2; however this yields a trivial InsDel crLDC. Let
Encft , be identical to Ency , except we use the SZ code
as the code Cj,. For any z and C' = Ency ,(z), there is
a simple attack to ensure that Decy ) always outputs _L:
the adversary simply transforms C = CM|...||CY) into
¢ =c?cO|...jcd=)cs?, where C\,C1? are the
first and second halves of C'(9), respectively. This implies that
{(Encyy 5, Decy,x)}a is an InsDel crLDC with § = 0; ie., it
always outputs L given a corrupt codeword. However, we can
handle this and more general attacks by leveraging the noisy
binary search techniques of Block et al. [35].

Noisy Binary Search Overview: To understand the noisy
binary search algorithm NBS and its guarantees, we require
the notion of vy-goodness. For z,y € {0,1}", we say that y is

< p. If DecﬁA(i) = x;, then

Pm}



~v-good with respect to x if ED(z,y) < . The notion of -
goodness (albeit under different formal definitions) has been
useful in the design and analysis of depth-robust graphs, a
combinatorial object used extensively in the study of memory-
hard functions [55]-[57], and it is essential to the success of
NBS. Intuitively, for a fixed “correct” ordered list of strings
A = (ai,...,a), each of length x, and some other list
of strings B = (b1,...,by ), the algorithm NBS finds any
string b; that is ~y-good with respect to the string a; for
j € [n], except with negligible probability. In our context, each
b; corresponds to blocks in the (possibly corrupt) codeword.
Given a tolerance parameter p* € (0,1/2), the NBS algorithm
on input j € [n] outputs b; for at least (1 — p*)-fraction of the
~-good indices j, except with negligible probability. Moreover,
NBS runs in time & - polylog(n’), which is only possible by
allowing NBS to fail on a small fraction of ~-good indices,
else the algorithm requires Q(kn’) time.

Suppose that C' € {0, 1}"l for some n’ is a corrupt code-
word (from an appropriate encoding algorithm) and let i € [k].
We use the NBS algorithm to search C' for some (possibly
corrupt) block mY) which contains the desired symbol z;. So
long as C' and ) are “not too corrupt”, then NBS outputs

m) with high probability. For searching, NBS utilizes a block
decoding algorithm BlockDec to find YY) within C' with the
following guarantee: for input i, if ¢ is within a (small) ball
around a y-good block M), then BlockDec outputs mY) with
probability at least 1 — . Assuming M) is not too corrupt,
we can parse it as 2\)||5()||pk||j and use Ver to ensure that
#U) is correct. Note that both NBS and BlockDec can fail and
output L, which we take into consideration for our decoder.

The InsDel Encoder: We define a family of encoding
algorithms {Enc; »}. Let A € N be the security parameter and
let o be a constant specified by the NBS algorithm [35]. For
any message = € {0, l}k, encoder Enc ) behaves identically
to Ency, ) by partitioning x into d = [x/r()\)] blocks, gener-
ating (pk, sk) « Gen(1*), computing o) < Sign,, () ||5),
and computing c¢\/) = SZ.Enc(zV)||c\)||pk||j) for every
j. Next, the encoder computes buffered codewords C'V) =
027N |02 for every j, where 0"V is a all-zero
vector of length ar(A) and ensure the success of the NBS
and BlockDec algorithms. Finally, Encj, outputs C' =
CO---|CD, Again, if 7(\) > k, it is more efficient to
simply to encode = using the SZ code.

The InsDel Decoder: We define a family of decoding
algorithms {Decjx}x. Let A € N, o € N be a parameter of
our choice, z € {0,1}", ¢ = Encia(z), and C + A(C)
such that ED(C, C/’) < p, where A is a PPT adversary
and C € {0,1}" for some K’. Then on input i € [k]
and given oracle access to C‘, the decoder Decy  tries to
recover x; via the same two-step process as Decy y: first,
recover the public key pk; and second, find block j that is
supposed to contain z; and use the recovered pk to verify
its integrity. Recovery of pk is done similarly to Decy y,
except we leverage BlockDec to find blocks with potential
public keys. Dec y first samples iy, ...,%, & [n] uniformly

at random, then obtains M) BlockDec(i,) for each
K € [u], where j. € [d]. Intuitively, in the InsDel setting we
need to search for each block j, whereas in the Hamming
settlng we knew exactly where each block was located. If

mU=) = 1, then we set pk, = L; else, we parse =) as

U5 ln ||pk(JH |7 and set pk, pk( <, Finally, we let
pk = majority(pky, ..., pk,). Next, Deci » computes j such
that z; lies in (/). Then Dec; ) obtains m9) « NBS(j).
If either ) or pk™ are L, then Decy 5 aborts and outputs
L. Otherwise, m7) is parsed as i(j)||&(j)||p;k(])||3 and then
Deci s checks if Verpe(29)j,5%)) = 1. If not, Dec
outputs _L; otherwise, Dec|  outputs il(-i ), where ¢* is the index
of #(9) corresponding to ;.

Theorem 2 Proof Overview: The main technical challenge
of proving Theorem 2 is showing that {(Encj x, Deci )}
satisfies Items 3 and 4 of Definition 1. Towards Item 3, for any
z € {0,1}*, PPT adversary A, and ¢ € [k], we analyze the
probability that Decf/\(i) € {x;, L} for C + A(Encx(z))
such that ED(C, Ency»(z)) < p. The proof proceeds identi-
cally to the Hamming crLDC with the following key changes.
First, when recovering the public key, we must consider the
success probability of BlockDec in our Chernoff bound to
ensure pk® = pk with high probability. Second, we must
consider the success probability of NBS when recovering
block j that contains x;. Careful selection of parameters and
the guarantees of BlockDec and NBS ensures Item 3 holds.

Towards Item 4, the proof again proceeds nearly identically
to the Hamming crLDC case, except again we must take
into consideration the recovery of public key pk* = pk via
BlockDec and the recovery of block j with NBS. The noisy
binary search algorithm recovers any block that is v-good
with probability greater than 2/3 (under suitable parameter
choices), except with negligible probability. This directly
translates to the fraction 6 = 1 — ©(p) of indices we are
able to decode from for Item 4. We refer the reader to the full
version of our work [60] for the complete proof.
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