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Abstract

This paper concerns error bounds for
recursive equations subject to Marko-
vian disturbances. Motivating examples
abound within the fields of Markov chain
Monte Carlo (MCMC) and Reinforce-
ment Learning (RL), and many of these
algorithms can be interpreted as special
cases of stochastic approximation (SA).
It is argued that it is not possible in gen-
eral to obtain a Hoeffding bound on the
error sequence, even when the underly-
ing Markov chain is reversible and geo-
metrically ergodic, such as the M/M/1
queue. This is motivation for the focus
on mean square error bounds for param-
eter estimates. It is shown that mean
square error achieves the optimal rate
of O(1/n), subject to conditions on the
step-size sequence. Moreover, the exact
constants in the rate are obtained, which
is of great value in algorithm design.

1 Introduction

Many questions in statistics and the area of rein-
forcement learning (RL) are concerned with com-
putation of the root of a function in the form of
an expectation: f(0) = E[f(6,®))], where ® is
a vector valued random variable, and # € R¢.
The value 0* satisfying f(#*) = 0 is most com-
monly approximated through some version of the
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stochastic approximation (SA) algorithm (Rob-
bins and Monro, 1951; Borkar, 2008). In its basic
form, this is the recursive algorithm

Gn—l—l = Hn + an+1f(9n7 (I)n—‘rl) (1)

in which {a,} is a non-negative gain sequence,
and {®,} is a sequence of random variables whose
distribution converges to that of ® as n — oo.
The sequence is a Markov chain in the applica-
tions of interest in this paper.

There is a large body of work on conditions for
convergence of this recursion, and also a Central
Limit Theorem (CLT): with 6,, = 6,, — 6%,

lim 9~n =0 almost surely
n—oo
lim v/nf, = N(0,%9) in distribution
n—oo

The d x d matrix Yy is known as the asymptotic
covariance (Benveniste et al., 2012; Kushner and
Yin, 1997).

Soon after the stochastic approximation algo-
rithm was first introduced in Robbins and Monro
(1951); Blum (1954). Chung et al. (1954) iden-
tified the optimal CLT covariance and tech-
niques to obtain the optimum for scalar recur-
sions. This can be cast as a form of stochas-
tic Newton-Raphson (SNR) (Devraj and Meyn,
2017a,b; Devraj et al., 2019; Devraj, 2019). Gra-
dient free methods [or stochastic quasi Newton-
Raphson (SQNR)] appeared in later work: The
first example was proposed in Venter et al. (1967),
which was shown to obtain the optimal variance
for a one-dimensional SA recursion. The algo-
rithm obtains estimates of the SNR gain —A~!
(see (2) below), through a procedure similar to
Kiefer and Wolfowitz (1952). Ruppert (1985)
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proposed an extension of Venter’s algorithm for
vector-valued functions .

The averaging technique of Ruppert and Polyak is
a two-time-scale algorithm that is also designed to
achieve the optimal asymptotic covariance (Rup-
pert, 1988; Polyak, 1990; Polyak and Juditsky,
1992). A two-time-scale variant of the SNR al-
gorithm known as “Zap-SNR” was proposed in
Devraj and Meyn (2017a,b); Devraj et al. (2019);
Devraj (2019), with applications to RL. Zap algo-
rithms are stable and convergent under mild as-
sumptions (Devraj and Meyn, 2017a; Chen et al.,
2019a).

The asymptotic covariance in the CLT for the re-
cursion (1) has an explicit form under general con-
ditions (Kushner and Yin, 2003, Chapter 10, The-
orem 3.3). Assuming that the root 6* is unique,
denote

A=0f0%), A,=f(6", ) (2)

and consider the linear approximation:
Ops1 = On + ani1[A0, + Apir] . (3)

Subject to the assumption that %I + A is Hurwitz
(i.e., Real(\) < —3 for each eigenvalue of A), the
dxd matrix Xy is the unique positive semi-definite
solution to the Lyapunov equation

BI+AS+EEI+AT+2ZA=0 (4)

in which ¥ is also an asymptotic covariance: the
covariance matrix appearing in the CLT for the
sequence {A,} (which may be expressed in terms
of a solution to a Poisson equation - see Kushner
and Yin (2003, Chapter 10, Theorem 2.2)).

The goal of this paper is to demonstrate that the
CLT is far less asymptotic than it may appear.
For this we focus analysis on the linearization (3),
along with first steps towards analysis of the non-
linear recursions. Subject to assumptions on A
and the Markov chain, we establish the bound

Cov (0,) = n~ 8y + O(n~17%) (5)

with Cov (6,) = E[6,6%]. The bound is refined
under further assumptions:

Cov (0,) = n~'Tg +n 20 + O(n~27%)  (6)

where § > 0, and X2 solves a second Lyapunov
equation based on a second Poisson equation.

It is hoped that these results will be helpful in con-
struction and performance analysis of algorithms
in machine learning, statistics and RL.

The reader may ask, why not search directly for
a version of Hoeffding’s inequality:

P{l|6n| > e} < bo exp(—nlo(c)) (7)

where by > 0 is fixed, and I is a convex func-
tion that is strictly positive and finite in a region
0 < 2 < &2. The answer is that such bounds
are not always possible even for the simplest SA
recursions, even when the Markov chain is geo-
metrically ergodic. This is clarified in the first
general example:

Markov Chain Monte Carlo As a prototypi-
cal example of stochastic approximation, Markov
chain Monte Carlo (MCMC) proceeds by con-
structing an ergodic Markov chain ® with in-
variant measure 7 so as to estimate w(F) =
[ F(2) 7(dz) for some function F' : Z — R? via,

1 n+1

Opsi1 = —— F(® 8
41 TESP (Pr) (8)

This is an instance of the SA recursion (1):
1
Opt1 =0p + ——(—0, + F (P,
+1 t o (O F(Tn)) (9)

Subtracting 0* = 7(F) from both sides of (9)
gives, with 6,, = 0,, — w(F),

~ ~ 1 -

i1 = On —O0p + F(®py1) — 7(F

Ops1 «9+n+1(9+( +1) — 7 (F))
which is (3) in a special case: A = —I, Apy; =

F(®,41) —7n(F) and a,, = 1/m.

A significant part of the literature on MCMC fo-
cuses on finding Markov chains whose marginals
approach the invariant measure 7 quickly. Fr-
ror estimates for MCMC have only been studied
under rather restrictive settings. For instance,
under the assumption of uniform ergodicity of
® and uniform boundedness of F' (which rarely
hold in practice outside of a finite state space), a
generalized Hoeffding’s inequality was obtained in
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Glynn and Ormoneit (2002) to obtain the PAC-
style error bound (7). We can not expect Ho-
effding’s bound if either of these assumptions is
relaxed. Consider the simplest countable state
space Markov chain: the M/M/1 queue with uni-
formization, defined with Z = {0,1,2,...} and

o _[on1
e max(®,, — 1,0)

prob. «
prob. p=1—-«

This is a reversible, geometrically ergodic Markov
chain when p = a/p < 1, with geometric invari-
ant measure. It is shown in Meyn (2007) that the
error bound (7) fails for most unbounded func-
tions F. The question is looked at in greater
depth in Duffy and Meyn (2010, 2014), where
asymptotic bounds are obtained for the special
case F'(z) = z. An asymptotic version of (7) is
obtained for the lower tail:

lim l1og(P{5n <-c})=-hl)  (10)

n—oo M

A different scaling is required for the upper tail:

lim l1og(|3{%” > g}) = —Je) (11

n—oo N

The functions Iy and Jy are strictly positive and
finite valued in some domain 0 < € < gp. Conse-
quently, the finite-n bound (7) is not attainable
for this simple Markov model.

Reinforcement Learning The theory of this
paper also applies to TD-learning. Consider a
Markov chain X evolving on a (Polish) state space
X. Given a cost function ¢ : X — R, and a dis-
count factor 5 € (0,1), the goal in TD-learning
is to approximate the solution h : X — R to the
Bellman equation:

h(z) = c(x) + BE[A( Xpnt1) | Xy = ] (12)
With &,,41 := (X, 41, X,,), this becomes
E[D(h, ®pi1) | By ... Bl =0  (13)

where D(h, ®,,11) = c(Xy) + Bh(Xn+1) — h(X,).
Equation (13) may be regarded as motivation
for the TD-learning algorithms of Sutton (1988);
Tsitsiklis and Van Roy (1997).

Consider a linearly parameterized family of candi-
date approximations {h?(z) = 0T¢(z) : 0 € R?},

where 1 : X — R? denotes the d basis functions.
The goal in TD-learning is to solve the Galerkin
relazation of (13):

E[D(h0*7¢n+1)<n] =0 (14)

where {(,} is a d-dimensional stochastic process,
adapted to ®, and the expectation is with respect
to the steady state distribution. The TD(0) algo-
rithm is the SA recursion (1) applied to solve (14)
with ¢, = ¥(X,):

9n+1 =0, + Oén—i-ldn—i-lw(Xn)

st — c(Xo) + B0 (Xps1) — WO (X))

Denoting

Apit = 0(X0) (B (Xnt1) — 9(Xn))T
bpy1:= _C(Xn)w(Xn)

the algorithm (15) can be rewritten as:

0n+1 = Hn + Anp41 (An+10n - bn+1) (16)

Note that 0* from (14) solves the linear equation
E[An+1]0" = E[bn11]. Subtracting 6 from both
sides of (16) gives, with 6,, = 6,, — 6*,

9n+1 = gn + an+1 [Agn + An+1§n + An+1] (17)

where An—i—l = An+19* — bn—i—l, An+l = An+1 —A.
We show through coupling that (17) and (3) have
the same asymptotic covariance if the matrix %I +
A is Hurwitz (see Thm. 2.5).

The matrix A = E[A,,11] is Hurwitz under general
conditions, and the sequence of estimates {6, }
converges to 6* (Tsitsiklis and Van Roy, 1997).
However, when the discount factor § is close to
1, it can be shown that Apax > —% (where Apax
denotes the largest eigenvalue of A), and is in fact
close to 0 under mild additional assumptions (De-
vraj and Meyn, 2017a; Devraj, 2019; Devraj et al.,
2020). Full details and finer results are presented
in Theorems 2.4, 2.6 and the discussion that fol-
lows.

The SNR algorithm is defined as follows:
Ot = On — nr1dpr AL 9 (X) (18)

~

An+1 = A\n + Qnt1 [AnJrl - A\n] (19)
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Under the assumption that the matrix sequence
{A, : n > 0} is invertible for each n, the se-
quence of estimates obtained using (18,19) are
identical to the parameter estimates obtained us-
ing the LSTD(0) algorithm (Devraj and Meyn,
2017a; Devraj, 2019). Consequently, the LSTD(0)
algorithm achieves the optimal asymptotic covari-
ance.

Q-learning and many other RL algorithms can
also be cast as SA recursions. They are no longer
linear, but it is anticipated that bounds can be
obtained through linearization (Gerencser, 1999).

Literature Survey Finite time performance
bounds for linear SA were obtained in many prior
papers, subject to the assumption that the noise
sequence {A,} appearing in (3) is a martingale
difference sequence (Dalal et al., 2017; Lakshmi-
narayanan and Szepesvari, 2018). Much of the
literature on finite time bounds for linear SA re-
cursions with Markovian noise has been recent.

For constant step-size algorithms with step-size
«, it follows from analysis in Borkar and Meyn
(2000) that the pair process (6, ®,,) is a geometri-
cally ergodic Markov chain, and the covariance of
0, is O(«) in steady state. Finite time bounds of
order O(«v) were obtained in Tadié¢ (2006); Bhan-
dari et al. (2018); Srikant and Ying (2019); Hu
and Syed (2019). Unfortunately, these bounds are
not tight, and hence their value for algorithm de-
sign is limited.

Mean-square error bounds have also been ob-
tained for diminishing step-size algorithms, to es-
tablish the optimal rate of convergence E[||,,[|?] <
bg/n (Srikant and Ying, 2019; Bhandari et al.,
2018; Chen et al., 2019b). The constant by is
a function of the mixing time of the underly-
ing Markov chain. These results require strong
assumptions (uniform ergodicity of the Markov
chain), and do not obtain the optimal constant
b, = trace (Xg). Finite time bounds are obtained
in Karimi et al. (2019) for E[|| f(6,,)]|?]. This may
be a more relevant performance criterion, but the
resulting bounds obtained to-date are not tight.

Contributions The main contribution of this
paper is a general framework for analyzing the
finite time performance of linear SA algorithms

(ii

with Markovian noise, and vanishing step-size (re-
quired to achieve the optimal convergence rate of
Chung-Ruppert-Polyak). The M/M/1 queue ex-
ample illustrates plainly that Markovian noise in-
troduces challenges not seen in the “white noise”
setting, and that the finite-n error bound (7) can-
not be obtained without substantial restrictions.
Even under the assumptions of Glynn and Or-
moneit (2002) (uniform ergodicity, and bounded
noise), the resulting bounds are extremely loose
and hence may give little insight for algorithm
design. Our approach allows us to obtain explicit
bounds under weak assumptions. In particular,
the V-uniform assumption imposed in this work
is far weaker than geometric mixing.

Our starting point is the classical martingale ap-
proximation of the noise used in CLT analysis of
Markov chains (Meyn and Tweedie, 2009, Chap-
ter 17), and used in the analysis of SA recursions
since Metivier and Priouret (1984). For each n,
the random vector A,, is expressed as the sum of a
martinagle difference and a telescoping term. The
solution of the linear recursion (3) is decomposed
as a sum of the respective responses:

O = M + 607 (20)
The challenge is to obtain explicit bounds on the

mean square error for each term.

A vector-valued sequence {e,} converges to zero
at rate 1/n2 if

0
lim nf||e,| = { ’
n—o0 00,

Bounds for the mean square error are obtained
in Thm. 2.4, subject to conditions on both the
matrix A and the noise sequence. In summary,
under general assumptions on {A,},

if 0 < 0o
if o> oo

(i) The bound (5) holds if 17 + A is Hurwitz.
(ii) (6) holds if I 4+ A is Hurwitz.
i)

If there is an eigenvalue of A with Real(\) >
%, and corresponding left-eigenvector v that
lies outside of the null-space of ¥, then

0, 0< 00
00, 0> 00

; 2p o 121 —
Jim nPE[[oT6,[] = { (21)

with po = |Real(\)]. The convergence of
E[||0,.]|?] to zero is thus no faster than n =20,
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2 Mean Square Convergence

Notation and Background Consider the lin-
ear SA recursion (3), with the noise sequence
{A,} defined in (2). We use the following no-
tation to represent the noise as a function of ®,,:

f*(q)n) = An = f(G* 5 (I)n) (22)

A form of geometric ergodicity is assumed
throughout. To apply standard theory, we assume
that the state space Z is Polish (the standing as-

sumption in Meyn and Tweedie (2009)). We fix a

measurable function V: Z — [1,00), and let LY,

denote the set of measurable functions g: Z — R

satisfying

The Markov chain ® is assumed to be V-

uniformly ergodic: there exists p € (0,1), and
By < oo such that for each g € LY, z € Z,

Elg(@a) | B = 2] - m(g)
< Bv|gllve"V(2),

where 7 is the unique invariant measure, and
7(g) = [ g(z) m(dz) is the steady state mean.

(23)
n>0

The uniform bound (23) is not a strong as-
sumption. For example, it is satisfied for the
M/M/1 queue described below (8) with V(z) =
exp(epz), for 9 > 0 sufficiently small, with z €
Z ={0,1,...} (Meyn and Tweedie, 2009, Theo-
rem. 16.4.1).

The following are imposed throughout:
Assumptions:

(A1) The Markov process ® is V-uniformly er-
godic, with unique invariant measure 7.

(A2) The dxd matrix A is Hurwitz, and the step-
size sequence oy, = 1/n, n > 1.

(A3) f* : Z — R? satisfies||f?|y < oo and
m(f¥) = 0 for each i.

For any g € LY, denote §(z) = g(z) — n(g), and

9(2) =Y E[g(®n) | @0 = 2] (24)

It is evident that ¢ € LY under (Al). Further
conclusions are summarized below. Thm. 2.1 (i)
follows immediately from (Al). Part (ii) follows
from (i) and Meyn and Tweedie (2009, Lemma
15.2.9) (the chain is also v/V-uniformly ergodic).

Theorem 2.1. The following conclusions hold
for a V-uniformly ergodic Markov chain:

(i) The function § € LY defined in (24) has
zero mean, and solves Poisson’s equation:

E[g(Pry1) [ Pr=2]=9(2) — §(2) (25)
(ii) If g> € LY, then §*> € LY. O

Assumption (A3) implies that the sequence {A,,}
appearing in (3) is zero mean for the stationary
version of the Markov chain ®. Its asymptotic
covariance (appearing in the Central Limit Theo-
rem) is denoted

Sa= Y E[ApA]] (26)

k=—o00
where the expectations are in steady state.

A more useful representation of XA is obtained
through a decomposition of the noise sequence
based on Poisson’s equation. This now standard
technique was introduced in the SA literature in
the 1980s (Metivier and Priouret, 1984).

With f* defined in (22), denote by f a solution
to Poisson’s equation:

~

E[f (@) | @ =2 = f(2) - f*(2)  (27)

This is in fact d separate Poisson equations since
f*:Z — RY It is assumed for convenience that
the solutions are normalized so f has zero steady-
state mean. This is justified by the fact that f —

7(f) also solves (27) under assumption (A3). The

fact that flz € LY, for 1 < i < d follows from
Thm. 2.1 (ii).

We then write, for n > 1,
Ay = f*((bn) = A?—}—l + Zn — Zn+1

where Z,, = f(®,) and ATy = Zyi1 — E[Zyi1 |
Fn] is a martingale difference sequence. Each of
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the sequences is bounded in Lo, and the asymp-
totic covariance (26) is expressed

Ea = Ex[A7AZT] (28)

where the expectation is taken in steady-state.
The equivalence of (28) and (26) appears in Meyn
and Tweedie (2009, Theorem 17.5.3) for the case
in which A, is scalar valued; the generalization to
vector valued processes involves only notational
changes.

Decomposition and Scaling We now explain
the decomposition (20). Each of the two se-
quences {HM 97—} evolves as a SA sequence, with
different inputs and initial conditions:

E+ an1 [AE) '+ AT
5n + opg1 [Agn +Zn+1 —

(29a)
(29b)

gn—i—l

5n+1 Zn+2]

with 5({‘/‘ =& and & = 0.

The second recursion admits a more tractable re-
alization through the change of variables, =, =
9T + OénZn+1, n > 1.

Lemma 2.2. The sequence {Z,} evolves as the

SA recursion, with =1 = Z1,
Ent1 = Entant1 [ASn—an[I + Al Zy11]  (30)
l
Lemma 2.2 combined with (29) gives
o= )+ 5 439 (31)
where 5(1) = gM 5(2) = Z,, and 5(3) —ndn+1

o)

for n > 1. Note that HT 0( )

It is more convenient to work directly with the
recursion for the scaled sequence:

Lemma 2.3. For any ¢ € (0,1/2], the scaled se-
quence 02 = nQH admits the recursion,

55+1 EF+ ann [Qngg + A(n, 0)&2 (32)

+ (n+1)%A0 4]
where o, = 0+¢&(n, o) with (n, 0) = O(n™1), and
A(n,0) = (1 +n1)2A. O

Denote 59’(1) = nQG( ) for each 7. Lemma 2.3 com-
bined with (31) gives

62 = 62 1 92 4 go.() (33)

The first two sequences evolve as SA recursions:

entt = &8V rans [lonl + A(m, 0lE2V g
+ (n+1)°A7,,]
gs’-&(?) = 557(2)"‘0471-&-1 [[QTLI + A(”v Q)]gréz)’@) (34b)

—(n+1)%an[l + A Zn41]
with initial conditions Sg’(l) =&, 819’(2) ==.

Mean Square Error Bounds Fix the initial
condition (@, 6p), and denote Cov (6,,) = E[6,,67]
and Yz = E;[Z,Z}]. The following summarizes
bounds on the convergence rate of E[||6,]]2] =
trace (Cov (6,)).

Theorem 2.4. Suppose (A1)-(A8) hold. Then,
for the linear recursion (3),

(i) If Real()\) < —% for every eigenvalue A of
A, then for some 6 = §(A,XA) >0,

Cov (6,) =n"18g + O(n~179), n>0,

where g > 0 is the solution to the Lyapunov
equation (4). Consequently, the rate of conver-
gence of E[||0,%] is 1/n.

(ii) Suppose there is an eigenvalue A of A that
satisfies —oo = Real(\) > —3%. Let v # 0 de-
note a corresponding left eigenvector, and sup-
pose that Xav # 0. Then, E[|v70,|?] converges
to 0 at rate =29, O

The proof proceeds by establishing the conver-
gence rate for each component in (31). Details
are in Appendix A.2.

One challenge in extension to nonlinear recursions
is that the noise sequence depends on the parame-
ter estimates (recall (2)). This is true even for TD
learning with linear function approximation (see
discussion surrounding (17)). Extension to these
recursions is obtained through coupling: consider
the error sequence for a random linear recursion

0211 = 05+ con 1 [Ans105 + Ap 10" — byga] (35)

subject to the following assumptions:

(A4) The sequences {A,, b,} are functions of the
Markov chain:

A, = A(®y),
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which satisfy HAZQ]HV < oo, |BZ|lv < oo for
each 1 < 4,5 < d. The steady state means are
denoted A = E,[Ay], b = Ex[by]. Moreover, the
matrix A is Hurwitz, and 6* = A~1b.

Theorem 2.5. Under A1-A4, if the matrix %I—i—

A is Hurwitz, the error bound (5) holds for {62}
obtained from (35), with Apy1 = Api160* — bpyr.

To establish coupling with (3), we write (35) in
the suggestive form

051 = 05+ i1 [A0S + Apyr + Apyr65]  (36)

where An+1 = An+19* — bn+1, An+1 = An+1 —A.
With common initial condition ®g, the sequence
{67} is compared with the error sequence {67 } for
the corresponding linear SA algorithm:

~1.1+1 = 5; + anJrl[Aé;.l + Anga]

The difference sequence {&, := 62 — 62} evolves
according to (3), with vanishing noise:

Ent1 = En + ans1[AEy + (Api1 — A)OZ]  (37)

Let A = —pg + ui denote an eigenvalue of the
matrix A with largest real part.

Theorem 2.6. Under (A1)-(A4),

(i) limsup n’E[[|€,]1%] < o0 if g0 > 1.

n—oo

(ii) limsup n*@E[||E,]1*] < oo for all 0 < o,
n—oo

provided o9 < 1. O

Thm. 2.6 provides a remarkable bound when py >
1: it immediately implies Thm. 2.5 because the
mean square coupling error E[||&, %] tends to zero
at rate no slower than n~2, which is far faster than
E[||62]]?] ~ trace (Xg)n .

An alert reader may observe that Theorems 2.5
and 2.6 leave out a special case: consider py < %,

so that the rate of convergence of E[||62|2] is the
sub-optimal value n=270. The bound obtained in
Thm. 2.6 remains valuable, in the sense that it
combined with Thm. 2.4 (ii) implies the rate of
convergence of E[[|#;]]|? is no slower than n~2/0.
However, because E[||€,]|?] and E[||62]%] tend to

zero at the same rate, we cannot rule out the

possibility that 5,‘; =&, + @'L converges to zero
much faster. In particular, it remains to prove
that if there is an eigenvalue A of A that satisfies
—00 = Real(\) > —%, and an eigenvector v # 0
satisfying Xav # 0, then, E[[vT62)?] converges to
0 at rate n—2¢,

Implications Thm. 2.4 indicates that the con-
vergence rate of Cov (6,,) is determined jointly by
the matrix A, and the martingale difference com-
ponent of the noise sequence {A,,}. Convergence
of {6,,} can be slow if the matrix A has eigenvalues
close to zero.

The result also explains the slow convergence of
some RL algorithms. For instance, the matrix A
in Watkins’ Q-learning has at least one eigenvalue
with real part greater than or equal to —(1 — f3),
where ( is the discount factor appearing in the
Markov decision process (Watkins, 1989; Devraj
and Meyn, 2017a; Devraj, 2019). Since § is usu-
ally close to one, Thm. 2.4 implies that the con-
vergence rate of the algorithm is much slower than
n~!. Under the assumption that A is Hurwitz, the
1/n convergence rate is guaranteed by the use of a
modified step-size sequence o, = g/n, with g > 0
chosen so that the matrix %I + gA is Hurwitz.
Corollary 2.7 follows directly from Thm. 2.4 (i).

Corollary 2.7. Let g be a constant such that %I—I—
gA is Hurwitz, and define for n > 0,

g ~
9+1 9 +7’L—|—1[ 9 + +1]

Then, for some 6 = 0(A,g,%a) >0,
Cov (6,,) = E[0,0]] = n 129 + O(n~179)
where Zz > 0 solves the Lyapunov equation

A1+ gAIS + SAT+ gA"+¢°Sa =0 O

We can also ensure the 1/n convergence rate by
using a matrix gain. Provided A is invertible,
and if it is known beforehand, o, = —A~1/n is
the optimal matrix step-size sequence (in terms
of minimizing the asymptotic covariance) (Ben-
veniste et al., 1990; Kushner and Yin, 1997; De-
vraj et al., 2020). The SQNR algorithm of Rup-
pert (1985) and the Zap-SNR algorithm of De-
vraj and Meyn (2017a); Devraj (2019) provide
general approaches to recursively estimate the op-
timal matrix gain.
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Finer Error Bound With f a zero-mean so-
lution to (27), let f be the zero-mean solution to
the second Poisson equation

— Znp1 (39)

where Z, = f(®,), and A = Zy1 — E[Zn41 |
F»] is a martingale difference sequence.

The type of decomposition discussed below (29)
can be applied to 0% in (30) for n > 2:

82 — g 4 §22) 4 §23) (40)
The first two sequences evolve as SA recursions:

5(2,1) _ 5(2,1)+an+1 [Aggzl)

n+l — Yn R (41&)
— an[l + AJAT ]
5(2,2) — 922 . A0(2:2)
n+1 n T +1[ n R (41b)
tan—1om[2] + Al + A Zp 4]
with initial conditions 61" = 7,65 = [T+

4]2\2, and ~7(12’3) = an_lan[l—i—A]ZnH. Therefore,
0, for n > 2 can be decomposed as:

6, = 60 4 62V 4 g2 L §23) 4 g (49)

The error bound (6) is obtained from (42). The
proof is in Appendix A.3.

Theorem 2.8. Suppose Assumptions (A1)-(A3)
hold, and moreover Real(\) < —1 for every eigen-
value X of A. Then, for (3),

Cov (6) = 1" Sy +n 289, + O(n~27%)

where 0 = 6(1 + A, XA) > 0, ¥go = Xy + X7 —
EX[ATZY] — Ex[Zn(A)T], and 2y is the unique

solution to the Lyapunov equation:
0 =[I + A][Z — Cov (AT, A™)]

+[2 = Cov (A, AM™M|[I + AT (43)
+ AXgAT — XA

3 Conclusions

Performance bounds for recursive algorithms are
challenging outside of the special cases surveyed
in the introduction. The general framework de-
veloped in this paper provides tight finite time
performance for linear stochastic recursions under
mild conditions on the Markovian noise, and we
are confident that the techniques will extend to
obtain similar bounds for nonlinear SA provided
that the linearization (2) is meaningful.

The bound (5) implies that, for some constant by
and all n,

E[||§n||2] < n”trace (Sg) + n~1 0, .

It may be argued that we have not obtained a
finite-n bound, because a bound on the constant
by is lacking. Our response is that the precision
of the dominant term is most important. We
have tested the bound in numerous experiments in
which the empirical mean square error is obtained
from multiple independent trials, and the result-
ing histogram is compared to what is predicted by
the Central Limit Theorem with covariance Yg. It
is found that the Central Limit Theorem is highly
predictive of finite-n performance in most cases
(Devraj and Meyn, 2017a; Devraj, 2019; Devraj
et al., 2020). While it is hoped that further re-
search will provide bounds on by, it seems likely
that any bound will involve high-order statistics
of the Markov chain; evidence of this is the com-
plex coefficient of n=2 in (6) for the special case
0 =1.

Current research concerns these topics, as well as
algorithm design for RL in various settings.
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