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This paper concerns bias and asymptotic statistics for
stochastic approximation (SA) driven by Markovian noise.
This extended abstract is organized into three parts: 1. Back-
ground, 2. Asymptotic statistics with Markovian noise, 3.
Quasi stochastic approximation.
1. Background: The goal of SA is to solve root finding
problems of the form sf(θ∗) = 0, where the function sf : Rd →
Rd is defined as an expectation sf(θ) := E[f(θ,Φ)]. Robbins
and Monro introduced in [13] the celebrated SA algorithm,
expressed as the d-dimensional recursion,

θn+1 = θn + αn+1f(θn,Φn+1) , n ≥ 0 (1)

with initial condition θ0 ∈ Rd, {αn} a non-negative step-size
sequence and Φ := {Φn} a sequence of vector-valued random
variables such that Φn

d−→ Φ as n→∞.
The SA algorithm is motivated by ordinary differential

equation theory, and this theory plays a large part in the
analysis and design of stochastic algorithms. In short, the SA
recursion is viewed as a noisy Euler approximation of the
ODE d

dtxt = sf(xt), designed to be globally asymptotically
stable with unique equilibrium θ∗. This and minor additional
assumptions imply that the estimates {θn} converge to θ∗

with probability one, from each initial condition. Interest in
machine learning has spurred recent growth in theory and
application of SA [1], [10], [15].

A typical choice of step-size in theory is

αn = g(1 + n/ne)
−ρ, (2)

in which g, ne > 0 and 1
2 < ρ ≤ 1; the constraint

on ρ is imposed so that the step-size is square summable,
but

∑
n αn = ∞. Here there is often a break between

“practitioners” and “theoreticians”. For reasons that are not
clear to the authors, many users of SA advocate a fixed
step-size, in which αn ≡ α > 0. There is no hope for
convergence in this case, but bounds on bias and variance can
be obtained once boundedness of the recursion is established.
One approach is to adopt a Markovian framework: if Φ is a
Markov chain, then the pair process Ψ := {Ψn = (θn,Φn)}
is also Markovian. Conditions for geometric ergodicity of the
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joint process are described in [4], where it is shown that the
steady-state variance of {θn} is typically of order α.

Recent work provides a bridge between theory and practice,
via the averaging technique of Polyak and Ruppert. For N ≥ 1
and a scalar δ0 ∈ (0, 1), the PR-estimate is defined by

θPR
N :=

1

N −N0

N∑
n=N0+1

θn, N0 = bδ0Nc (3)

It is well known that the resulting estimates are consistent
and asymptotically efficient under special conditions on the
step-size sequence and Φ:

lim
N→∞

θPR
N = θ∗ A. Unbiased (4a)

lim
N→∞

(N −N0)Cov (θPR
N ) = ΣPR A. Efficient (4b)

The efficiency is in a strong sense: if Σ:=limN→∞NCov (θ′N )
is the asymptotic covariance obtained with another consistent
SA recursion, then Σ ≥ ΣPR, in the sense that Σ − ΣPR is
positive semi-definite [12], [14]. Until recently, theory was
developed only for algorithms with vanishing step-size. For
the special case (2), asymptotic efficiency requires 1

2 < ρ < 1
(the value ρ = 1 is excluded).

This theory was generalized to SA recursions with fixed
step-size in [5], [11], along with finer finite-n bounds on
estimation error. These results come with a large price: it
is assumed that Φ is i.i.d., and also that f is linear in the
parameter, of the form f(θn,Φn+1) = An+1θn−bn+1 (so that
Φn := (An; bn)). Subject to second order moment bounds on
Φ, and a density assumption to obtain a form of irreducibility,
it follows from [4] that there is α0 > 0 such that the joint
process Ψ is geometrically ergodic for any α ∈ (0, α0) for
the nonlinear SA recursion.

For linear SA the irreducibility assumption can be relaxed,
since it is not difficult to instead consider a topological
form of coupling: let {θin : i = 1, 2; n ≥ 0} denote two
parameter estimate sequences with different initial conditions.
The difference evolves as a linear system without additive
disturbance:

En := θ2n − θ1n =
n∏
k=1

[I − αAk]E0
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If A∗ = E[Ak] is Hurwitz, then the right hand side converges
to 0 almost surely and in L2, for sufficiently small α > 0.
This implies geometric ergodicity in a topological sense, and
asymptotic consistency: θn → θ∗ = [A∗]−1b a.s., from each
initial condition, with b = E[bn].

The proof of efficiency is obtained through a representation
of the SA recursion with additive white noise,

θn+1 = θn + αn+1

(
A∗[θn − θ∗] +Wn+1

)
(5)

in which {Wn = Ãnθn−1 − b̃n} is a martingale-difference
sequence, with Ãn = An −A∗ and b̃n = bn − b.

The martingale difference sequence has bounded second
moment, and its covariance is convergent to the matrix ΣW =
Cov (Ãkθ

∗ − b̃k) under the i.i.d. assumptions, and whenever
θn → θ∗ in L2. These facts lead to a simple proof of efficiency
of PR-averaging, where for simplicity we take N0 = 1:
Summing both sides of (5) from n = 1 to N gives for the
fixed step-size recursion,

θN+1 = θ1 + α
N∑
n=1

(
A∗[θn − θ∗] +Wn+1

)
(6)

and after rearranging terms and dividing by N ,

θPR
N = θ∗ +G

1

N

[ 1

α
(θN+1 − θ1) +

N∑
n=1

Wn+1

]
(7)

where G = −[A∗]−1 is the stochastic Newton-Raphson matrix
gain [14]. It is clear from (7) that the PR-estimates are
asymptotically unbiased, and also asymptotically efficient:

lim
N→∞

NCov (θN ) = GΣWG
ᵀ = ΣPR

2. Asymptotic statistics with Markovian noise: It might be
hoped that the optimistic conclusions extend to the Markovian
setting. One source of optimism is from the work of Metivier
and Priouret [2], [9], who demonstrate that the noise can
be “whitened” when the sequence Φ is Markovian. This
technique is based on the change of notation,

f(θn,Φn+1) = sf(θn) + ∆n+1 (8)

Under mild conditions, the sequence ∆ := {∆n : n ≥ 1} can
be expressed as a martingale difference sequence, plus terms
that are negligible when considering second order statistics.
However, all prior work is based on SA with vanishing step-
size. For reasons that will soon be clear, it is not possible in
general to extend these results to recursions with fixed step-
size. Linearity of f does not provide much benefit, except to
simplify analysis.

Suppose that Φ is a geometrically ergodic Markov chain
on an abstract set X (assume this is finite if you are not
familiar with the general theory), with invariant measure π.
The disturbance decomposition of ∆ is based on a solution
to Poisson’s equation: for each θ ∈ Rd,

E[f̂(θ,Φn+1)−f̂(θ,Φn) | Φn = x] = −f̃(θ, x) , x ∈ X , (9)

in which f̃(θ, x) := f(θ, x)− sf(θ).

The following goes back to the 1984 paper [9]:

∆n+1 =Wn+2 − Tn+2 + Tn+1 − αΥn+2, (10a)

with Tn+1 := f̂(θn,Φn+1) , and

Wn+2 := f̂(θn,Φn+2)− E[f̂(θn,Φn+2) | Fn+1] (10b)

Υn+2 :=− 1

α

[
f̂(θn+1,Φn+2)− f̂(θn,Φn+2)

]
(10c)

The identity (10) expresses the disturbance as the sum of the
martingale difference Wn+2, a telescoping sequence, and the
final term that is small if α is small.

Substituting (8) into (1) and applying the same steps to
obtain (7) gives

1

N
[θN+1 − θ1] =

α

N

N∑
n=1

[ sf(θn) + ∆n+1] (11a)

=
α

N

N∑
n=1

[A∗(θn − θ∗) + εn + ∆n+1] (11b)

in which the second equation is obtained using a first order
Taylor series around θ∗, which implies the upper bound
‖εn‖ = O(‖θn − θ∗‖2).

Assumptions are required to ensure the existence of f̂ , along
with L2 bounds on the martingale difference sequence and
other terms. Subject to (A2)–(A5) of [3] we can be assured that
the bivariate process {Ψn = (θn,Φn)} is Markovian, and {θn}
admits a bounded fourth moment. Subject to an irreducibility
condition, the joint process is geometrically ergodic with
unique invariant measure $. Strong Lyapunov bounds in [3]
imply bounds on the solutions to Poisson’s equation of interest.

Bias and inefficiency with fixed gain algorithms: The first
conclusion is an extension of [4, Thm. 2.3]: there is α0 > 0
and b0 <∞ such that

E$[‖θ1 − θ∗‖2] = lim
n→∞

E[‖θn − θ∗‖2] ≤ b0α (12)

where the limit holds for each θ0 ∈ Rd. Hence the standard
deviation is of order

√
α as in the i.i.d. setting.

The bias is far smaller. First, on combining (10) and (11a)
we obtain a formula for the asymptotic target bias

b
sf := lim

n→∞
E[ sf(θn)] = lim

n→∞
E[Υn] = αsΥ (13)

A Taylor series approximation then implies that the bias itself
is of the same order: Combining (13) and (11b),

E$[θ1]− θ∗ = G lim
n→∞

E[εn + ∆n+1] = O(α) (14)

Obviously averaging cannot remove bias, but it may reduce
variance. From (11b) we obtain the approximation,

lim
n→∞

nCov (θPR
n ) = ΣPR + αZ +O(α3/2) (15)

in which Zi,j = 〈Wi, Υ̂j〉 + 〈Wj , Υ̂i〉 − 〈Wi,Υj〉, with Υ̂
defined in analogy with f̂ . It is not yet known if the matrix
Z is positive semi-definite.
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Numerical example: While bias is only of order α, the
magnitude of sΥ may be large when the Markov chain has
long memory. A scalar linear recursion is used to illustrate
this point:

f(θn,Φn+1) = An+1θn − b+Wn+1

where An+1 = −1 +Wn+1 ,

Wn+1 = βWn +
√

1− β2Nn+1

(16)

With {Nn} i.i.d. and Gaussian N(0,1), it follows that A∗ = −1
and θ∗ = −b.

The sequence {Wn} resembles the eligibility vector appear-
ing in the TD-algorithms of reinforcement learning [10], [15].

The steady-state variance of {Wn} is unity, but its asymp-
totic variance ΣWCLT is large when β ∼ 1:

ΣWCLT =
∞∑

n=−∞
E[WnW0] =

1 + β

1− β

with expectations in steady-state, giving E[WnW0] = β|n|.
Bias can be approximated for small α by

lim
n→∞

E[θn]− θ∗ = −α lim
n→∞

E
[
Υn]

≈ β

1− β [1 + θ∗]α = θ∗ + 99α
(17)

The Polyak-Ruppert covariance is the scalar,

ΣPR = GΣWCLTG
ᵀ = [1 + θ∗]2ΣWCLT (18)

The numerical results that follow are based on the Gaussian
model using β = 0.9, θ∗ = 10 and a short time-horizon of
N = 104. Five values of α were tested for the fixed step-size
algorithm, and five values of ρ for the vanishing step-size case:

α = 5e-4 2.8e-3 1.58e-2 8.89e-2 0.5

ρ = 0.4000 0.5375 0.6750 0.8125 0.9

The values of α are spaced equally on a logarithmic scale, and
the values of ρ are spaced linearly. The remaining two terms
in (2) where chosen to be g = αmax = 0.5 and ne = 1.

The estimates for the fixed step-size algorithm remain
bounded in n for this range of α. Boundedness and asymptotic
consistency holds for the vanishing step-size algorithm, as
predicted by theory for ρ ∈ ( 1

2 , 1] [3].
In application of PR-averaging (3), the value N0 = 0.2N

was chosen in all ten cases. With the given numerical values,
applying (18) gives the approximation for the vanishing gain
algorithm,

(N −N0)E[(θPR
N − θ∗)2] ≈ ΣPR ≈ 2.3× 103

To obtain estimates of mean and bias, for each experiment
M = 500 independent runs were conducted, initialized inde-
pendently θi0 ∼ N(0, 25) and W0 ∼ N(0, 1).

Fig. 1 shows the estimates of mean and variance obtained in
each case. The plot does not reveal much information for the
fixed step-size algorithms because most values of α gave very
poor results. The singular winner over all fixed step-size gains
was α? = 2.8 × 10−3, resulting in limn→∞ E[θn] ≈ 10.29
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Fig. 1. Comparison of mean and bias obtained from PR-averaging in a scalar
random linear system.

and limN→∞(N − N0)Cov [θN ] ≈ 0.7 ∗ ΣPR. The other four
performed far worse.

Each of the experiments using a vanishing gain resulted in
variance of approximately equal to what was obtained using
α? and with smaller bias.
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Fig. 2. Sample paths from four experiments.

Large bias can be anticipated for the fixed step-size al-
gorithms by the approximation in (17). For α? we have
θ∗ + 99α? ≈ 10.28, so this approximation nearly matches
the approximation limn→∞ E[θn] ≈ 10.29 obtained through
simulation for α? = 2.8× 10−3.

See the plot on the upper left hand side of Fig. 1 for a
comparison of this approximation with the empirical mean.
For the smallest value of α tested, the parameter estimates are
far from steady-state by the end of the run. In this case we
typically observe negative bias. The cause of the negative bias
for α = 5×10−4 is explained by the fact that θi0 is drawn from
N(0, 25) (so zero mean, while θ∗ = 10). Fig. 2 shows sample
paths with and without averaging for two selected values of
fixed step-size, and two values of ρ for vanishing step-size,
with initialization θ0 = 0 in each case. It is clear from these
plots why α = 5× 10−4 fails, and α = 2.8× 10−3 performs
much better.

The ten subplots in Fig. 3 show histograms of {θiN , θPR
N
i :

1 ≤ i ≤ M} for each of the ten settings. The results using a
vanishing step-size are not sensitive to ρ, even though theory
is violated for the smallest value ρ = 0.4 (recall that standard
theory requires 1

2 < ρ < 1 in (2)).
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Fig. 3. Histograms of the error θ̃N and θ̃PR
N obtained from M = 500

independent runs in each of 10 experiments. The top row shows results using
the fixed step-size algorithm for various values of α, and the bottom row
shows results from the vanishing step-size (2).

3. Quasi stochastic approximation: Theory does not offer
much encouragement to use a fixed step-size in SA (outside of
linear SA with additive white noise). There is bias that cannot
be removed with averaging, and we see in experiments that
variance may also be large.

Performance can be improved when the sequence Φ can be
chosen by the user, such as in gradient free optimization or
reinforcement learning, provided all randomness is a product
of exploration. In recent work [6], [8] it is shown that bias
can be reduced to O(α2) in quasi stochastic approximation for
which Φ remains Markovian, but deterministic. An example
is the K−dimensional clock process Φ with entries Φin =
exp(2πj[ωin+ φi]), so that X is a bounded subset of CK .

The pair process {Ψn = (θn,Φn)} is a Feller Markov chain;
if the sample paths are bounded, then it admits at least one
invariant measure $. Provided $ is unique, the identity (13)
holds in modified form:

b
sf := lim

N→∞
1

N

N∑
n=1

sf(θn) = lim
N→∞

1

N

N∑
n=1

Υn = αsΥ (19)

in which the definitions are unchanged: Υ in (10c) and its
mean sΥ =

∫
Υ(θ, x)$(dθ, dx). The existence of f̂ is assured

when f is smooth and {ωi} chosen with care [7], [8].
This theory is developed in continuous time, where the

definition of Υ is modified slightly and is shown that sΥ is
zero provided the frequencies {ωi} are irrationally related. We
can expect the same bias bounds provided we are careful in
choice of approximation of the ODE—this is a topic for future
research.

While these results are encouraging, results obtained using
a vanishing step-size algorithm are much better. It is likely that
theory from [6] can be extended to the discrete time setting
of this paper to obtain the following bounds using step-size
(2), and subject to the smoothness and stability assumptions
imposed in this prior work: for a fixed constant bf and any
initial condition (θ0; Φ0),

lim
n→∞

n4ρ‖θPR
n − θ∗‖2 ≤ bf

That is, instead of the O(1/n) rate of convergence that is found
in the most efficient SA recursions, we obtain a rate that is
arbitrarily close to O(1/n4) by choosing ρ close to unity.
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Fig. 4. Rastrigin objective (top left), scaled trace of empirical covariance
(bottom left), histograms of estimation error for 1SPSA with PR averaging
(top middle and top right), histograms of estimation error for 1qSGD with
PR averaging (bottom middle and bottom right).

Fig. 4 from [6] shows what can be expected: this is a
comparison of Spall’s 1SPSA and its QSA counterpart 1qSGD
on a non-convex objective function. The standard deviation of
the estimation error is reduced by two orders of magnitude
through the use of pseudo randomness.
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