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ABSTRACT

The present work is devoted to the analysis of the internal structure of relativistic jets under the condition that the velocity of the
plasma flow at the jet axis vanishes. It is shown that in spite of the seemingly fundamental difference in the formulation of the
problem at the axis, the key properties of the internal structure of such relativistic jets remain the same as for non-zero velocity
along the axis. In both cases, at a sufficiently low ambient pressure, a dense core appears near the axis, the radius of which is

close to the size of the light cylinder.
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1 INTRODUCTION

The significant progress of radio interferometry at long baselines
makes it possible to directly explore the internal structure of rela-
tivistic jets from active galactic nuclei (AGN; Gabuzda, Murray &
Cronin 2004; Kovalev et al. 2007; Hovatta et al. 2012; Lister et al.
2016; Mertens et al. 2016; Hodge et al. 2018; Zobnina et al. 2022),
which are visible manifestations of their activity at an early stage
of evolution (Begelman, Blandford & Rees 1984; Urry & Padovani
1995; Davis & Tchekhovskoy 2020; Komissarov & Porth 2021).
Such detailed observational studies allow us to test the numerous
predictions of the theory of strongly magnetized outflows that have
been developed since the 1970s (Blandford 1976; Lovelace 1976;
Camenzind 1986; Heyvaerts & Norman 1989; Camenzind 1990;
Takahashi et al. 1990; Chiueh, Li & Begelman 1991; Appl & Ca-
menzind 1992; Bogovalov 1992; Pelletier & Pudritz 1992; Beskin &
Pariev 1993; Eichler 1993; Lery et al. 1999; Beskin & Malyshkin
2000; Beskin & Nokhrina 2006, 2009; Lyubarsky 2009). The main
conclusions of these theoretical papers, discussed in several reviews
and monographs (Begelman et al. 1984; Heyvaerts 1996; Krolik
1999; Camenzind 2007; Beskin 2010; Meier 2012), were later
confirmed by numerical simulations of jets from accreting black
holes (Ustyugova et al. 1995, 1999; McKinney 2006; Komissarov
et al. 2007; Tchekhovskoy, McKinney & Narayan 2008; Romanova
etal. 2009; Porth et al. 2011; McKinney, Tchekhovskoy & Blandford
2012; Chatterjee et al. 2019).

One of these theoretical predictions repeatedly confirmed by
numerical simulations is the existence of a universal asymptotic
behaviour for the Lorentz factor of an outflow y = @ /Ry, where
w is the distance from the rotation axis, and Ry, = ¢/ is the radius
of the light cylinder (€2 is the angular velocity of the central engine).
As another example, one can mention the presence of a central dense
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cylindrical core with the radius
Teore = UinRL, M

where uj, is the four-velocity of a flow along rotation axis. This result
was first obtained analytically (Chiueh et al. 1991; Eichler 1993;
Bogovalov 1995, 1998; Beskin & Malyshkin 2000; Beskin & Nokh-
rina 2006, 2009; Lyubarsky 2009) and later confirmed numerically
(Komissarov et al. 2007; Tchekhovskoy et al. 2008; Porth et al. 2011).
As shown in Fig. 1, this core is formed over long enough distances
7 > zo from the central engine when the transverse dimension of
the jet rjer becomes larger than re; = (uino'm)"?Ry. Accordingly, the
poloidal magnetic field at this distance B., = Bp(z.:) becomes equal
to

BL

B, = ——.
OMUin

@3
Here, oy is the Michel magnetization parameter and By is the
magnetic field on the light cylinder near the origin (see formal
definitions below). It is necessary to emphasize that relation (1) was
also verified for non-relativistic flows, i.e. for u;, < 1 (Bogovalov &
Tsinganos 1999; Lery et al. 1999; Tsinganos & Bogovalov 2002;
Beskin & Nokhrina 2009).

We emphasize that, as was already known in the late 1990s, the
internal structure of relativistic jets is very sensitive to the behaviour
of the solution of the Grad—Shafranov (GS) equation near the axis
(Chiueh et al. 1991; Eichler 1993; Bogovalov 1995; Lyubarskii
1997). The difficulty of solving the GS equation in this region proved
to be the stumbling block that did not allow us to link together
the various asymptotic solutions obtained. Only after the work by
Beskin & Malyshkin (2000) did it become clear that the central core
exists only for sufficiently low ambient medium pressure Pex; < Per
(i.e. at sufficiently large distances from the central engine), where
P, = BCZr /8. For larger ambient pressures Py > P, (i.e. at small
distances z < z), the poloidal magnetic field remains practically
constant within the whole jet.
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Figure 1. The structure of the magnetic field in the model under consider-
ation. At a distances z > z¢ from the central engine, when the transverse
size of the jet reaches the scale ~r¢;, in a conical flow (in which the plasma
density and the magnetic field weakly depend on the distance from the axis),
a denser central core begins to form. The light cylinder is shown by a dashed
line.

As a result, depending on the ambient pressure Pey < P, the
poloidal magnetic field B, outside the central core has the form

Byxw™® 3)

with 0 < o < 1. At the same time, however, the magnetic field in
the core itself does not differ significantly from the value B,,. In this
case, the jet remains magnetically dominated till the distance from
the origin when the external pressure drops to Pey ~ Poq = qu /8,
where B,y = (71\]2 By.. At lower ambient pressures, the flow becomes
particle-dominated.

Here, however, one important remark should be made. This model
explicitly assumed that the flow velocity along the jet axis itself does
not vanish. In fact, relation (1) that, in the non-relativistic regime
(i.e. uy; — 0), the core radius reoe — 0 as well. Thus, in the non-
relativistic regime, .o — 0 When u;, tends to zero. Thus, the very
existence of the central core is called into question. Whether this
result remains valid if the flow velocity vanishes on the jet axis has
not been considered in detail up to now.

It must be said that the very assumption that the velocity on the
jet axis is not equal to zero still had some grounds. It is based on the
model of plasma generation in the vacuum region near the black hole
surface (Beskin, Istomin & Parev 1992; Hirotani & Okamoto 1998;
Ptitsyna & Neronov 2016; Crinquand et al. 2020), which is equivalent
to the so-called ‘outer gap’ in the magnetosphere of radio pulsars. In
this case, the value u;, arises as a natural boundary condition for the
GS equation (Beskin & Kuznetsova 2000), which ultimately leads to
the existence of a central core.

On the other hand, there is also support for outflow models with
zero velocity along the jet axis. For example, this occurs when the
only mechanism of plasma acceleration is via electromagnetic forces
(the Poynting vector flux on the jet axis is equal to zero). This point
of view can also be supported by the pioneering work of Takahashi
et al. (1990), who introduced the notion of a stagnation point, i.e. the
region of the base of the flow where the velocity is zero. It was further
shown that the hydrodynamical motion in a strongly magnetized flow
is completely determined by the electric drift; the motion along the
magnetic field lines can be neglected (Tchekhovskoy et al. 2008;
Beskin 2010). Despite the fact that this result concerns only the
asymptotically far region @ > Ry, it began to be used inside the
light cylinder as well (see e.g. Takahashi et al. 2018). Finally, the
zero velocity along the jet axis was reproduced in recent numerical
simulation (Chatterjee et al. 2019).

As was already emphasized, since the results of (1)—(2) discussed
above were obtained under the assumption of a non-zero velocity
along the jet axis, it is important to discuss the question of whether
such an internal structure of relativistic jets is preserved under the
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assumption u;,(0) = 0. The present work is devoted precisely to this
issue. As will be shown, the seemingly fundamental difference in the
formulation of the problem does not change the key properties of the
internal structure of relativistic jets. Moreover, relations 7eoe & R
and B, ~ oy B, also remain valid.

The paper is organized as follows. In Section 2, we formulate
the basic equation describing cylindrical cold magnetized flow.
Section 3 is devoted to the analysis of singular points. In the problem
considered here, this is the rotation axis, as well as the Alfvénic
surface near the light cylinder. Finally, in Section 4, we formulate
the main results of our consideration.

2 BASIC EQUATIONS

Below we use the language developed by Thorne, Price & Mac-
Donald (1986): all 3D vectors correspond to physical quantities
measured by Zero Angular Momentum Observers (which in our
case, i.e. far from the central black hole, coincides with the usual
cylindrical reference frame). Further, it should be immediately
noted that our task is not devoted to the construction of a global
solution. It is dedicated to the area far beyond the plasma generation
region. Therefore, the region of plasma generation participates in our
analysis indirectly through the integrals of motion, which we will try
to choose in the most reasonable way.

Besides, as was shown by Beskin & Nokhrina (2006), one can
consider strongly collimated jet as a sequence of cylindrical flows.
This makes it possible to explore their internal structure by analysing
not the second-order GS equation, but two first-order ordinary
differential equations for magnetic flux W (=) and poloidal Alfvénic
Mach number M (e ) (Beskin 1997; Beskin & Malyshkin 2000)
ae = A’ @)

n

Here, n is the number density in the comoving reference frame and
W is relativistic enthalpy. Accordingly, 7 is the particle-to-magnetic
flux ratio determined from relation

nu, = nB,, )

which is constant along magnetic field lines: n = n(¥). Finally, by
definition, in the cylindrical geometry

s _ L dv ©
T 2w dw’

L2l

T cw

Here, I is the total electric current flowing within the magnetic tube
W = const.
The first equation is the relativistic Bernoulli equation

uy =y* —uy — 1, @)

where u, and u, are the poloidal and toroidal components of the
4-velocity u, respectively. It can be rewritten in the form (Beskin
2010)

M de\? K 5 s
6442 (@) T @Az M ®
Here,
A=1-Qiw?/c* — M? )

is the Alfvénic factor, where the so-called field angular velocity Qr =
Qp(W) is constant on the magnetic surfaces (2r = €2 near the central
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engine),

K = () (A — M)+ M*@E* — M*L2?, (10)
and by definition,

e(W) = E(V) — Qrp(V)L(P). an

Remember that Bernoulli integral £ = E(W¥) and the angular
momentum flux L = L(\W)

Qil
E(W) = yunc® + ——, (12)
21
I
L(W) = wuyunc + —, (13)
27

together with the angular velocity Qr(W) are also integrals of motion.
In this case, the current /, the Lorentz factor y, and the toroidal four-
velocity u,, are expressed as follows

1 L — Qrow?E/c?

— = , 14
2t 1 — Qiw?/ct — M2 (19
1 (E —QpL) — EM?
y=— e (15)
un 1 —Qir2/c2 =M
1 (E - QrL)Qrw?/c* — LM?
“, ( rL)Qrw?/c M (16)

T ouncw 1 —Q&r2/c2 — M2
The second equation determines the Mach number M for a cold flow
(the sound speed ¢; = 0 and the relativistic enthalpy 1 = m, ¢ > =
const) and is given by (Beskin 2010):

[ (e')? 1 Q%wz} dm? MOL?

do = Aw3u’n’c?

W2n2ct 2
" Qiw M? 5 (€)? , € d¥de
2 Aulnct W2n2ct der dW

MPw? d¥ ﬁ VI Q%wz) dw 1 dpy

a7)
C

2¢? do d¥ c? do nd¥’

Let us now define the integrals of motion in a convenient form.
In contrast to the basic assumption on the finite velocity along the
jet axis discussed earlier, we must now, following (5), set n(¥) — 0
as W — 0. At the same time, thanks to the definitions (12)—(13), it
is convenient to express the invariant ¢ (¥) (11) in terms of the flux

ratio (V) and an additional function e(\W)

(@) = WP (W)c* — w2 n*(W)ce(). (18)

As can be seen from relations (12)—(13), the value of & vanishes
for zero flow velocity. Therefore, it turns out to be convenient in
the analysis of the problem under consideration. In particular, the
function ¢(W¥) cannot have an arbitrary form. We clarify this issue a
little later.

Besides, following (Beskin et al. 2017; Chernoglazov, Beskin &
Pariev 2019), we set

QoW W
L) = "o 1= " (19)

v
Wi

Qr(W) = Qoy/1 — (20)

Such definitions ensure the closure of the longitudinal electric current
within the jet. Further, thanks to (11) and (18), we have
E(W) = Qe(W)L(Y) + un(W)e’[1 — e(¥)]'2. @1

Finally, due to our main assumption 7(0) = 0, the fourth integral
n(W¥), in the limit ¥ — 0, can be written as

W B
: (22)
"I',tol )

n(¥) = no <
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where 8 > 0. Below, for simplicity, we assume that the relation (22)
is valid for any value of W.
Introducing the dimensionless variables

Q
x =2 (23)
c
- (24)
T
one can rewrite equations (8) and (17) as
dy n(y)x 2,12 2
== 1- -2
dx — omlAM? [f(x, I — o™ (y)x M7]
l
= Mie(y) + oy Ly i
n(y)
Py 1"
42 M ()2 — 1 25
oM @™ (y)x ]x2n2(y) (25)
f(xs)’)dM2 _ 2M4 12(Y) 2
M2 dx MY n2(y) +xo ()
xw?(y) o Lde(y)dy
Ta e Ml
2 2
lxzdw Mdy 1 f&x,y) dn"(y) (Ly 26)
2 dy dx 2 n%(y) dy dx
Here,
QF Wiot
™ S 7

is the Michel magnetization parameter already mentioned above,
n(¥) = non(y), and now

A=1-wo’(y)x*— M>. (28)
Further, we introduce new important function

fx,y) = o’ ()x* — &(y). (29)

Finally, despite the fact that according to (19), (20), and (22), we
have /(y) = y(1 — ', w(y) = (1 — )", and n(y) = y*, we have
kept their literal expressions in equations (25) and (26).

3 SINGULAR POINTS

3.1 Rotation axis

Before integrating equations (25)—(26), let us discuss their behaviour
for x — 0. This helps us with numerical integration as well. Below
we assume that poloidal magnetic field B, and the number density n
are finite at the rotation axis. Then, due to definition (4), M? — 0 if
n — 0. Storing now only the leading terms (and grouping the similar
ones), we obtain

d
PGy d [ M e MY
L |:f1/27](y):| MO =doi s G

As one can see, the function f(x, y) plays the primary role in
determining the behaviour of the solution near the rotation axis, and
thus, the function &(y) should be introduced. In order to understand
the functional form of ¢(y) for our problem statement, let us suppose
that the magnetic field is regular at x — 0. In this case, it is convenient
to introduce the dimensionless magnetic field

B,
b =
BL

, (32)
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where By is the magnetic field on the light cylinder near the origin
and can be determined from the condition W,y = anBL. It gives

1 dy

b(x)= — — 33
(x) 7 dr (33)
In particular, denoting by = b(0), we get for x — 0

y(x) & box>. (34)

In what follows, we will be interested in the case by < 1, because

the light cylinder must contain only a small part of the total magnetic

flux as the size of the jet is much larger than the light cylinder.
Further, according to (12)—(13), we have for v < ¢,

(D) Qro Ly, 19 Qo v,
=y - =l+-=+-—=—-———. (35
un(¥)c? v c e + 2c¢ 22 c ¢ (33)
Comparing this expression with the definition (18), we obtain
Qrow v, 22
s()=2—r L -2 _ 2 (36)
c ¢ ¢ c
and thus, according to (29), we have
(v, — Qrw)> V2
fy) = % + 3 37)

However, as is well known (see, e.g. Beskin 2010), relation (16) gives
v, = Qpw for o — 0. Thus, f(x,y) — vlf/c2 as x — 0. Using
now definitions (4) and (5), we return to relation (30).

This result is certainly an important confirmation of the consis-
tency of our approach. Moreover, it allows us to use relation (29) as
a definition of ¢(y) for y — 0. Together with (30), it gives

y
e(y) = b 4n*(y) by Mg oyy. (38)
Here, we introduce one more parameter
Amtun?
M= TTHT (39)
no

specifying the particle number density on the rotation axis ny = n(0).

Relation (38) immediately allows us to make two important
conclusions. Indeed, since &(y) is only a function of y, it cannot
depend on such parameters as the magnetic field by and the number
density ny on any particular slice. This becomes possible only if the
conditions

n(y) = y'? (40)

and

1

oo —Aby Moy =C, S
0

where C = const, are met. The first of them fixes the behaviour of
the function n(y) for y — 0. As was already stressed, in what follows
we assume that condition (40) is valid for all values of y. As for
relation (41), we must now consider it as a connection between the
magnetic field by and the number density ny on the jet axis. Further,
for estimates we can set C = 0, so that 2 b ./\/lé oM ~ bgl/z > 1.

Returning now to equations (30)—(31) in the limit x — 0, let us
rewrite them in the form

R OV s

PO = S hoow M) @
1 dB(x) ( ¢ ) x

- + (14~ == 43
A(x) dx )" T B @3

Here,

¢ L _dmune (44)

T AMok | B?
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Figure 2. Change in y(x)/(box) and M (x) for small x, obtained as a solution
of exact equations (25)—(26) using boundary conditions y(xp) = boxg and
MA(xp) = xg for xo = 0.01.

and B(x) = b(x)/by so that B(0) = 1. As one can see, equation (43)
is regular at x — 0. It describes the change of the magnetic field.
Actually, it depends on only one parameter ¢ (44), which is small due
to condition by < 1. This confirms our assumption that the magnetic
field remains finite at x — 0.

As for equation (42), it can be now used to determine M?(x) in
the limit x — 0. It finally gives

M?(x) & by M3 x%. (45)

In Fig. 2, we show the change in y(x)/(box) ~ x and M(x)  x for
small x, obtained as an exact solution of equations (25)—(26) using
boundary conditions y(xp) = boxZ and M?(x) = bgM3x3 for xo =
0.01. As one can see, the exact solution is in full agreement with the
analytical estimates (34) and (45).

3.2 Alfvénic surface

Before proceeding to a discussion of the general structure of a
poloidal magnetic field outside the light cylinder, it is necessary
to discuss the critical conditions on the Alfvénic surface A = 0. As
for the fast magnetosonic surface, there is no singularity on it in
the cylindrical geometry considered here (Beskin 2010). This well
known effect is similar to the shift of the singularity into the modified
fast magnetosonic surface in the self-similar Blandford & Payne
(1982) solution. For cylindrical geometry, this singularity shifts to
infinity.

As for the critical condition on the Alfvénic surface, it is more
convenient to find it from the numerator of relation (15):

€'(Wp) = E(WA)M?(rp). (46)

Here, all the quantities are to be taken at the Alfvénic point, so
that W5 = W(ry). It is easy to check that, in this case, the regularity
conditions in relations (14) and (16), as well as in our basic equations
(25)—(26), are automatically fulfilled.

Note now that for the strongly magnetized flow (M? <« 1) under
discussion, the Alfvénic surface is located near the light cylinder:
ra & Ry (i.e. xo ~ 1). Using the dimensionless variables (23)—(24)
introduced above, one can rewrite the critical condition (46) as

2oM Mg yn(y) = 1. 47)

Taking into account relations (34) and (40) as well as under condition
xa ~ 1, we finally obtain

4oy My~ by>. (48)
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Figure 3. Dimensionless magnetic field b(x) obtained from solutions of
general equations (25)—(26). The jet size xjet = rjet/RL is determined from the
condition W (7jer) = Weot.

As we see, condition (48) is in accordance with relation (41) for
C = 0. Therefore, we will not dwell on the problem of passing the
critical surface in detail and will immediately proceed to the analysis
of the solution for r > Ry, (or x > 1).

4 DISCUSSION AND CONCLUSION

In Fig. 3, we show solutions of general equations (25)-(26) for
dimensionless magnetic field b(x). We carry out the integration from
the region of a singular point with boundary conditions corresponding
to the asymptotic solutions (34) and (45) for x = 1. For this reason,
the main control parameter is the magnetic field by on the jet axis.
The jet size rj is determined from the condition W (7je;) = Wior-

As one can see, despite the fact that the velocity at the axis
vanishes, in general, there is complete qualitative agreement with
the results obtained under the assumption of a finite flow velocity
near the axis (see, e.g. Beskin & Nokhrina 2009; Lyubarsky 2009).
The poloidal magnetic field B, remains practically constant within
the light cylinder. As for the structure of the magnetic field outside
the light cylinder, it depends on the magnetic field by on the jet
axis. For sufficiently large values of by, longitudinal magnetic field
remains essentially uniform (B, & const). But for small values of
by, a central core begins to form near the jet axis, the size of which,
however, does not tend to zero, as might be expected according to
(1). In all cases, its size remains on the order of the radius of the light
cylinder:

Tcore ~° RL- (49)

Additionally, there is a quantitative agreement if the expression
(2) is corrected to
B, ~ ﬂ (50)

oM
For oy = 30 shown in Fig. 3, expression (50) results in by = 0.03
for the critical magnetic field. As one can see, this is exactly what
takes place. Finally, as shown in Fig. 4, the universal asymptotic
behaviour y = x is also reproduced with good accuracy outside the
light cylinder.

On the other hand, we found one significant difference between
the commonly assumed case 7(y) & const and the case 7(y) = y'?
considered in this paper. As shown in Fig. 5, particle number density
nip = ny in the laboratory reference frame remains almost constant
outside the central core. This difference, however, can easily be
explained.
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Figure 4. Lorentz-factor of particles y(x) as a function of distance from
the axis x at different distances from “the central engine” outside the light
cylinder. The downward bend at large x is associated with a rather small value
of o', which determines the maximum possible value of y.
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Figure 5. Particle number density nj,, = ny in the laboratory reference
frame as a function of distance from the axis x at different distances from
“the central engine” outside the light cylinder.

Indeed, according to definition (4), the number density in the
comoving reference frame can be written as n = 4mun®/M?2.
Further, far from the light cylinder (2w 2/c? > 1), but in the region
of a strongly magnetized flow (M? « Qw2 /c?), Lorentz factor y
according to (15) has the form

N M?Ec?

~ . 51
o 51)

Y
Using now relations (19)—(21) to determine Bernoully integral E, we
finally obtain

nv

Map ¥ ——.
nw

(52)
As aresult, at a constant n and in the region of existence of the central
core, when magnetic flux W grows slowly than w2, the number
density nyy, is to decrease with increasing distance @ from the axis.
On the other hand, in the case i = "2, depending on the behaviour
of the solution W = W(x), both an increase and a decrease in the
number density nj,, with distance x from the axis are possible. Here,
however, it should be noted that such behaviour takes place only if
the relation 7 = y'? remains valid up to the jet boundary. If this
dependence takes place only at x — 0 and at x ~ 1, we have n ~
const, then the number density ny,;, is to decrease with the distance
from the axis.
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Figure 6. Function 7n(y) reproduced from the results of a numerical simu-
lation carried out by Chatterjee et al. (2019). Different curves correspond to
different distances from “the central engine”, confirming that n(y) is indeed
an integral of motion.
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Figure 7. Dependence of the dimensionless poloidal magnetic field b(x) on
the distance to the axis x = @/Ry at different distances from the origin
obtained by numerical simulation carried out by Chatterjee et al. (2019).
The non-uniform behaviour of b(x) at large x occurs to the jet boundary
instabilities.

Moreover, our analytical results are in excellent agreement with the
above-mentioned results of the numerical simulations of Chatterjee
et al. (2019). First, Fig. 6 shows that jets in numerical simulations
exhibit the dependence 7(y) o y'? (40), surprisingly matching the
relation (40). Here, different curves correspond to different distances
from “the central engine”, confirming that n(y) is indeed an integral
of motion. We emphasize that the value of the integral (W), like all
other integrals of motion, was not set initially, as is done in analytical
calculations, but emerged self-consistently as a result of evolving a
time-dependent numerical simulation. Second, as shown in Fig. 7,
the dependence of the dimensionless poloidal magnetic field b(x)
on the dimensionless distance to the axis x = @ /Ry, at different
distances from the origin in the simulation also well reproduces
the structure of the poloidal field shown in Fig. 3. As far as the
number density distribution is concerned, it is determined by the
magnetic field strength in the form of the so-called density floors
(Porth et al. 2019), which does not allow us to determine it with
sufficient accuracy. Therefore, we do not present here the results of
the numerical simulation concerning the quantity 7j,p.

Thus, we can state with confidence that the appearance of a central
core at sufficiently large distances from the central engine does not
depend on the plasma flow velocity near the jet axis. In all cases, at
a sufficiently low ambient pressure, a dense core appears near the
axis, the radius of which is close to the size of the light cylinder.
Outside the central core, both the poloidal magnetic field and the
plasma number density decrease with a power-law behaviour.
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Finally, our results hold important implications for the jet structure
and velocities at distances far from the black hole, relevant for
interpreting observed jet morphologies and widths as well as the
transverse jet velocity stratification measured in AGN jets (as was
seen by Mertens et al. 2016; Park et al. 2019, for the M87 jet). Indeed,
the presence of a central core region and a low-velocity region at the
jet axis was also seen in global semianalytical work (Pu & Takahashi
2020; Takahashi, Kino & Pu 2021). As we show, once the central core
forms at distances z > z., from the black hole, the poloidal magnetic
field in the jet becomes of the order of B, the jet becomes susceptible
to magnetic pinch and kink instabilities. This result is verified in 2D
and 3D numerical simulations (Bromberg & Tchekhovskoy 2016;
Chatterjee et al. 2019). Thus, we suggest that when a central core
appears, the observed width of the jet will be determined precisely by
the magnetically dominated inner jet region and not by the geometric
width of the jet.
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