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ABSTRACT

We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT)
targets Sgr Ax and M87x, computed by performing general relativistic radiative transfer calculations on general relativistic
magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-
electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked
polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin,
inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle
how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each
observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as
important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library,
for the real M87x data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due
to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and
next-generation (EHT) continue to develop and monitor their targets.

Key words: accretion, accretion discs —black hole physics — (magnetohydrodynamics) MHD — polarization — galaxies: individ-

ual: (M87).

1 INTRODUCTION

Supermassive black holes (SMBHs) are believed to reside at the
centres of all or nearly all massive galaxies, some with masses of
billions of times that of the Sun (e.g. Kormendy & Richstone 1995;
Kormendy & Ho 2013). In the past few years, the Event Horizon
Telescope (EHT) collaboration produced the first resolved images
of SMBHs, ushering in a new era of resolved SMBH astrophysics
(Event Horizon Telescope Collaboration 2019a, b, c, d, e, f, 2021a,
b, 2022a, b, c, d, e, f). So far, published observations include both
spatially resolved total intensity and linear polarization maps, while
circular polarization, spectral index maps, and rotation measure
maps are anticipated. In the upcoming decade, the next-generation
EHT (ngEHT) will improve observing capabilities to include larger
bandwidths, additional stations, and additional frequencies. This
will enable the production of movies with orders of magnitude of
dynamic range that will simultaneously capture disc and jet dynamics
(Doeleman et al. 2019; Raymond et al. 2021).

Spatially resolved polarimetric imaging of these SMBH accretion
flows has allowed us to place constraints on aspects of the accretion
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flow and the space-time that houses it. Theoretically interpreting
these data has usually involved generating computationally expensive
libraries of tens to hundreds of thousands of images originating from
general relativistic magnetohydrodynamic (GRMHD) simulations
(Event Horizon Telescope Collaboration 2019e, 2021b, 2022¢). To
bridge the gap between theory and observation, observable quantities
are computed from each simulated image, which can be compared
to the observations. This methodology has allowed the EHT collab-
oration to conclude that M87x has dynamically important magnetic
fields (Event Horizon Telescope Collaboration 2021a, b), but this can
be both cumbersome and inefficient for finding physical trends span-
ning a multidimensional parameter space. As our observational data
sets grow more complex and the theoretical parameter space grows,
connecting data and theory will grow increasingly challenging.
EHT data sit at an intersection between theories of gravity, mag-
netohydrodynamics, and plasma physics, and thus many theoretical
parameters can be jointly constrained. For each SMBH, one key
unknown is its spin, henceforth denoted a, € [—1, 1],' its dimen-
sionless angular momentum (Kerr 1963). A SMBH’s spin mediates

'We use a negative sign to denote a retrograde accretion disc, where the
SMBH and accretion disc angular momenta are anti-aligned.
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Table 1. A non-exhaustive list of observables achievable by the EHT or ngEHT as well as theoretical parameters one
can constrain using a library of GRMHD simulations. Parameters considered in this study are shown in black, while
additional parameters outside the scope of this work are written in grey. As both the observational data and our theoretical
explorations expand, it is important to devise efficient frameworks to connect observational and theoretical parameters.

Observable parameters

Theoretical parameters

Image size

Image asymmetry

Net linear polarization fraction

Net circular polarization fraction

Resolved linear polarization morphology ()
Resolved linear polarization fraction
Resolved circular polarization fraction
Rotation measure

Spectral index

Black hole spin
Inclination
Magnetic field polarity
Ion-to-electron temperature ratio (Rhigh)
Magnetic field state

Positron fraction

Non-thermal electron distribution slope
Disc tilt
Hydrogen-to-helium ratio

both its accretion and feedback processes: the radiative efficiency of
a thin disc depends on the location of the innermost stable circular
orbit (e.g. Longair 2011), and spin can be extracted to power jets via
the magnetic analog of the Penrose process (Penrose & Floyd 1971;
Blandford & Znajek 1977). A SMBH’s spin also encodes its recent
cosmic assembly history (e.g. Volonteri et al. 2005; Barausse 2012).
Prolonged accretion via a thin disc that maintains its orientation can
spin a SMBH up to a maximum value of a, = 0.998 (Thorne 1974).
However, thin disc accretion at random orientations will tend to spin
a SMBH down on average (e.g. King, Pringle & Hofmann 2008). At
lower Eddington rates when accretion discs become geometrically
thick, even prograde accretion can spin SMBHs down due to the
spin extraction required to power jets (Tchekhovskoy, McKinney &
Narayan 2012; Narayan et al. 2022). Spin is also directly impacted
by SMBH mergers, which may even dominate low-redshift SMBH
growth in the most massive galaxies (Kulier et al. 2015; Ricarte &
Natarajan 2018; Weinberger et al. 2018; Pacucci & Loeb 2020). For
these reasons, constraining SMBH spins is a key science goal for the
ngEHT (Ricarte et al. 2023b).

In addition to spin, EHT analyses also typically explore different
prescriptions for the electron temperature (described in more detail
in Section 2.2). In these rarified accretion flows, the mean free path
is much larger than the size scale of the system, causing ions and
electrons to separate into a two-temperature plasma (Shapiro, Light-
man & Eardley 1976; Ichimaru 1977; Rees et al. 1982; Narayan &
Yi 1995; Yuan & Narayan 2014). Significant uncertainties still exist
in modelling the heating of electrons, which may be one or two
orders of magnitude cooler than the ions in regions where thermal
pressure dominates over magnetic pressure (Sadowski et al. 2017;
Ryan et al. 2018; Chael, Narayan & Johnson 2019; Mizuno et al.
2021). Finally, while typically ignored, we also consider the polarity
of the magnetic field with respect to the angular momentum of the
disc. As we shall show, this can impart signatures onto both linear and
circular polarization (see also Emami et al. 2022), and may provide
insights into how the magnetic field is generated (Contopoulos &
Kazanas 1998; Contopoulos et al. 2022).

In Table 1, we provide a non-exhaustive list of observational mea-
surements accessible to EHT on the left, and important parameters
for theoretical models on the right. We write those which we will
consider in this study in black, and additional interesting observa-
tional constraints and theoretical explorations in grey. Additional
observations include potentially both resolved and unresolved rota-
tion measure (e.g. Agol 2000; Quataert & Gruzinov 2000; Marrone
2006; Kuo et al. 2014; Ricarte et al. 2020; Goddi et al. 2021) and
spectral index (e.g. Kim et al. 2018; Bower et al. 2019; Ricarte et al.
2023c), which require a significantly more expensive multifrequency
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theoretical analysis. Meanwhile, GRMHD image libraries could be
extended to include positrons (Anantua et al. 2020; Emami et al.
2021), various implementations of non-thermal electrons (Mao,
Dexter & Quataert 2017; Davelaar et al. 2018; Cruz-Osorio et al.
2022; Fromm et al. 2022; Event Horizon Telescope Collaboration
2022e), misaligned discs (Fragile et al. 2007; Liska et al. 2021), and
different elemental abundances (Wong & Gammie 2022), all of which
may have significant effects on the observables, but would balloon
the dimensionality of a theoretical investigation. Fortunately, the
recent development of machine learning algorithms offers an efficient
framework for connecting an increasingly burgeoning theoretical
parameter space to an increasingly rich observational data set.

In this work, we first develop a novel library of images for Sgr A
and M87x using a suite of MAD GRMHD simulations first presented
in Narayan et al. (2022). These simulations feature densely sampled
spin coverage (nine values between £0.9) and long run times (up
to ~10° GM,/c3, where G is the gravitational constant, M, is the
SMBH mass, and ¢ is the speed of light). Then, we compute a
variety of different observable quantities obtainable by EHT studies
and apply a machine learning model to identify trends that can
allow us to infer quantities such as spin, inclination, and Rpign, a
parameter associated with electron heating. Within the context of
our incomplete library, we make estimates for M87:x’s values of a,,
Rhign, and magnetic field polarity. Perhaps more importantly than
the predictions themselves, we use the machine learning algorithm
to learn how each of the physical parameters is imprinted onto the
observational data to provide insights for further development of the
EHT and ngEHT.

In Section 2, we describe how our image library is generated
and how quantities are computed for comparison with observations.
Then, in Section 3, we develop a random forest machine learning
model to analyse this library. We use this library to determine how
well our model can infer a,, Rpjgn, and magnetic field polarity,
apply it to M87x constraints, and test the importance of repeated
observations. Finally, we summarize and discuss the conclusions of
this study in Section 4.

2 IMAGE LIBRARY

We consider GRMHD simulations of MAD accretion discs (Narayan
etal. 2022) and perform general relativistic radiative transfer (GRRT)
with IPOLE to produce images appropriate for Sgr Ax and M87x
(Moscibrodzka & Gammie 2018; Wong et al. 2022). We compute
observable quantities from these images, then develop a random
forest machine learning model that can infer a,, Ryigh, inclination,
and magnetic field polarity from these observables.
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2.1 GRMHD

The GRMHD simulations used as the starting point of our calcula-
tions are presented in Narayan et al. (2022). These simulations were
run with the code KORAL (Sadowski et al. 2013, 2014), assuming
ideal GRMHD, with an adiabatic index of 13/9, a compromise
between 5/3 (appropriate for the non-relativistic ions), and 4/3
(appropriate for the relativistic electrons). We use nine separate
GRMHD simulations, corresponding to different spins a, € {—0.9,
—0.7, —0.5, —0.3, 0.0, 0.3, 0.5, 0.7, 0.9}. These simulations feature
a resolution of 288 x 192 x 144 cells in the r, 6, and ¢ directions,
respectively, with an outer radial boundary of 10° GM,/c*. They are
run in a modified version of Kerr—Schild coordinates that concentrate
resolution in both the jet and mid-plane regions. These simulations
are initialized with a standard Fishbone & Moncrief (1976) torus of
gas seeded with a weak poloidal magnetic field that extends between
20 GM,/c* and 10* GM,/c*. Gas is artificially inserted in the zero
angular momentum observer (ZAMO) frame to maintain a ceiling
on the plasma magnetization of o < 100. Each simulation was run
for a duration of ~10° GM,/c* in search of evolution on long time-
scales. As we discuss in Appendix A, we do not find any significant
evolution on these time-scales apart from an exponential decrease
in the accretion rate attributable to the draining and relaxation of
the initial torus. This suggests that simulated images originating
from GRMHD are insensitive to the length of the simulation, up
to 10° GM,/c?, as long as the they are sampled beyond the initial
relaxation phase.

Each of these simulations quickly reaches the ‘Magnetically
Arrested Disc’ (MAD) state (Bisnovatyi-Kogan & Ruzmaikin 1974;
Igumenshchev, Narayan & Abramowicz 2003; Narayan, Igumen-
shchev & Abramowicz 2003), which is characterized by relatively
ordered and dynamically important magnetic fields with magnetic
flux parameter ¢y ~ 30-50, where

Var //
= — B'|,_., /—gdod 1
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is the magnetic flux threading the horizon, normalized by the square-
root of the accretion rate (Tchekhovskoy, Narayan & McKinney
2011). Here, M, is the mass accretion rate through the horizon,
located atradiusry = 1 + /1 — a,. In this work, we do not consider
‘Standard and Normal Evolution’” (SANE) models (Narayan et al.
2012; Sadowski et al. 2013), which are characterized by weaker
and more turbulent magnetic fields. At present, MAD models are
favoured over SANEs by polarized EHT observations of M87x
(Event Horizon Telescope Collaboration 2021b) and more naturally
explain flaring activity of Sgr Ax (Dexter et al. 2020; Porth et al.
2021; Wielgus et al. 2022).

2.2 GRRT

We create images in post-processing using the code IPOLE
(Moscibrodzka & Gammie 2018), following standard methodology
for library generation (Wong et al. 2022). Ideal GRMHD simulations
are scale free, and it is at the radiative transfer step where we
must specify the mass, distance, accretion rate, viewing angle, and
electron distribution function. The SMBH mass determines the length
and time-scales for the problem. Meanwhile, the equations of ideal
GRMHD are invariant under the transformation

o Mp 2)
u +— Mu (3)
B — VMB, 4)

Polarization ML~ 4869

where p is the mass density, u is the thermal energy density, B
is the magnetic field strength, and M is an arbitrary mass-density
scale factor. We iteratively fit for M(z) such that the average flux
at 230 GHz matches that of the observations. A novel aspect of our
fitting procedure is that rather than fitting for a single scalar, we allow
M to vary with time: we parametrize M(t) = exp(a + bt), where ¢
is time in gravitational units, and simultaneously fit for @ and b. This
parametrization allows us to counteract the artificial decrease in flux
that occurs due to the draining and relaxation of the initial torus on
long time-scales while preserving variability on short time-scales,
discussed in more detail in Appendix A. We fit M(t) to reproduce
an average flux of 0.5 and 2.4 Jy at 230 GHz for our M87: and Sgr
A libraries, respectively, consistent with Event Horizon Telescope
Collaboration (2021b) and Event Horizon Telescope Collaboration
(2022e). We imaged our M87x library with a field of view of 160 pas
and an angular resolution of 0.4 pas. We imaged our Sgr Ax library
with a field of view of 200 pas and an angular resolution of 0.5 pas.

As first defined by Moscibrodzka, Falcke & Shiokawa (2016),
we set the ratio of ion to electron temperatures using the plasma
magnetization using the following prescription:

Tion ! B
R= = Riow——— + Ruigh———.
Telectron o I+ ﬂZ et 1+ :32

(&)

where Rjo, and Ry, are dimensionless scalars and 8 = Pgus/Prnag
is the ratio of the gas to magnetic pressure. Typically, 8 is smaller
in jet/funnel regions of a simulation compared to mid-plane regions.
Consequently, increasing Ry, tends to move emission from the mid-
plane to the jet/funnel, although the effect is much more dramatic
for SANE simulations than for MADs (Event Horizon Telescope
Collaboration 2019¢). By cooling the mid-plane, increasing Rpign
requires larger values of M to match the 230 GHz flux, and both
higher mass densities and lower temperatures result in larger Faraday
rotation depths. During ray-tracing, we zero the radiative transfer
coefficients in any regions where the plasma magnetization o > 1,
where numerical floors may artifically inject material.

From the nine GRMHD simulations, we generate two image
libraries, one for M87x and one for Sgr Ax. Both libraries span
six values of Rugn = {1, 10, 20, 40, 80, 160}. Although Event
Horizon Telescope Collaboration (2021b) considered both Rjoy, = 1
and Rjow = 10, we limit our study to only R}, = 1. We briefly test
the effect of varying Ry, in Appendix C for a subset of our M87:x
models. Sgr Ax’s inclination is presently not directly constrained,
and thus its library spans nine inclinations with i = {10°, 30°, 50°,
70°, 90°, 110°, 130°, 150°, 170°}. Meanwhile, M87x’s large-scale
jet and the orientation of its brightness asymmetry directly constrain
its inclination. Prograde and zero spin simulations in the M87x%
library are imaged at i = 163° and retrograde spin simulations at
i = 17° in order to preserve the observed orientation of the bright-
ness asymmetry. Each parameter set is imaged at 901 simulation
snapshots from 10000 GM,/c* to 100 000 GM,/c* uniformly spaced
100 GM,/c? apart. It has recently been appreciated that the poloidal
magnetic field direction matters not only for circular polarization,
but also for the overall twisty morphology of linear polarization
ticks (Emami et al. 2022). For the M87:x library, we generate images
with both polarities of the magnetic field, either aligned with the
disc angular momentum vector or anti-aligned (henceforth simply
‘aligned’ or ‘anti-aligned’). We only compute the aligned case for
Sgr Ax simply due to the increased computational expense, as this
library contains far more inclinations. We summarize the parameter
ranges spanned by each of our libraries in Table 2.

In total, the M87x and Sgr Ax libraries have 97 308 and 437 886
images, respectively. Figs 1 and 2 display representative images from
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Figure 1. Representative snapshots across the range of spins and Ry;gn in our M87x image library. Prograde and a, = 0 models are traced at inclination i =
163°, while retrograde models are traced at inclination i = 17°. Here, the forward-jet is projected straight down, the mean brightness asymmetry appears on the
left, and the flow rotates clockwise on the sky. All models plotted here have magnetic field polarities aligned with the outer disc angular momentum vector. Some

images exhibit cavities from flux eruption events, which occur occasionally in MAD simulations. Each image is plotted in logarithmic scale with three orders of

magnitude dynamic range, normalized individually. Models with small |a,| produce more radial inflows than models with large |a,|. Increasing Rygh typically
suppresses disc flux relative to jet flux, but this effect is subtle for MAD models relative to SANEs (e.g. Event Horizon Telescope Collaboration 2019¢).

the M87x and Sgr Ax libraries, each presented in logarithmic scale.
The Ryign = 20 images in the Sgr Ax library were included in the
analysis performed in Georgiev et al. (2022) (as image set C) and
Event Horizon Telescope Collaboration (2022¢), where they were
found to be broadly consistent with other image libraries. In those
papers, only our library employed an exponential fit for M due to the
uniquely long GRMHD time-scale probed. A smaller set of M87x%
images created using this methodology were also used in Ricarte
et al. (2022) to study signatures of retrograde accretion flows.

In Fig. 1, we plot models with different values of @, and Rygh.
All images are optically thin enough to feature a clear photon ring,
composed of light making multiple orbits around the BH, and an inner
shadow. In logarithmic scale, one can discern thin streams of gas,
which sometimes turn around in the retrograde case as explored in
Ricarte et al. (2022). The effect of varying Ry;gn in our MAD models
is quite subtle in total intensity, but as discussed in future sections,
is more noticeable in polarization. In Fig. 2, we fix Rygn = 20,
but display different inclinations. Compared to M87x, these images
are more optically thick (see also Ricarte et al. 2023c), but still
optically thin enough to see the photon ring and inner shadow at all
inclinations. At large inclinations, emission from the jet funnel is
more obvious and separable from the disc. Some snapshots such as
a, = 0.3 feature large cavities due to ‘flux eruption events,” behaviour
characteristic of the MAD state that is implicated in polarized flares
(e.g. Tchekhovskoy et al. 2011; Dexter et al. 2020; Porth et al. 2021;
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Chatterjee & Narayan 2022; Gelles et al. 2022; Ripperda et al. 2022;
Wielgus et al. 2022).

2.3 Observable image quantities

As described in Section 2.2, our data set for analysis consists
of 535194 images spanning four free parameters, each of which
contains a wealth of information. Despite this large number of
images, each of these parameters is sampled somewhat coarsely,
a problem that will inevitably grow more intractable as additional
parameters are considered. This motivates a machine learning model
to efficiently identify trends and make inferences about models.
Since we still do not know all of the characteristics of polarized
images that may carry useful information, several recent studies
have trained deep convolutional neural networks on raw image data
directly. van der Gucht et al. (2020) trained a Bayesian convolutional
neural networks to predict spin, inclination, Rpign, M, M, and
position angle from a library of M87x images. Considering only
SANE models without polarization information, they found that at
the ~20 pas resolution of the EHT, their models could accurately
recover M and M. Yao-Yu Lin et al. (2021) fine-tuned pretrained
convolutional neural networks to predict accretion state (MAD or
SANE) and spin, both of which they showed can be recovered with
high accuracy. However, unlike van der Gucht et al. (2020), they did
not consider EHT resolution limitations. As a result, they found that
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Figure 2. Representative snapshots across the range of spins and inclinations in our Sgr A= image library. Each image is plotted in logarithmic scale with three
orders of magnitude dynamic range, normalized individually. Here, we show only Rpjgn = 20, but explore different inclinations. The same GRMHD snapshots
are shown as in Fig. 1. Compared to the M87x images, Sgr Ax images subtend a larger angle and tend to be more optically thick.

their model honed in on low level surface brightness features, which
are not resolvable by the EHT at current resolutions. And like van
der Gucht et al. (2020), they only consider the total intensity image,
while EHT observations include polarimetric data which have been
shown to be important for discriminating between models (Event
Horizon Telescope Collaboration 2021b).

Our approach differs from these previous works in two key ways:
(i) our analysis include polarimetric information, and (ii) rather
than working with raw image data, we first compute pre-processed
observables that the machine learning model receives as input. This
approach has several advantages over a neural network approach.
First, neural networks are notoriously difficult to interpret, and

their extreme model capacity may cause them to use untrustworthy
aspects of images for model discrimination, including numerical
artifacts or image details that are impossible to observe in practice.
Our methodology ensures that the model only sees information that
we believe is both trustworthy and observable. Another significant
advantage of this methodology is that we can also directly rank
the importance of each observable in a straightforward and intuitive
manner. On the other hand, the clear downside of our approach is that
we may not include important observables that we have not identified.

Based on previous EHT-related studies, we have identified the
following image integrated quantities as important, each computed
after first blurring images with a 20 pas Gaussian beam:

MNRAS 520, 4867-4888 (2023)
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(i) Total unresolved linear polarization fraction

2 2
\/( Zj Q/) + (Z; Z/{,)
Z Jj 1;
(ii) Total unresolved signed circular polarization fraction

Y
net —
ijj

(iii) The first few modes (amplitudes and phases) of radially in-
tegrated Fourier decompositions of the azimuthal linear polarization
pattern: 8, j € {0, 1, 2, 3} (Palumbo, Wong & Prather 2020)

(iv) Image asymmetry, A (Medeiros et al. 2022)

(v) Image size (the average of its major and minor axes of the total
intensity image)

(6)

|m|net =

N

Here, {Z;, Q;,U;, V;} refer to the Stokes parameters computed
in pixel j. We note that the unresolved electric vector position
angle (EVPA), defined east relative to the SMBH spin axis as

X = %arctan%j Z’]
that only Zf, is invariant under rotation of the image. For M87x, we
know the orientation of the jet on the sky observationally, and thus
have an absolute reference for £y, Z81, £B3. However, for Sgr Ax
(or for a generic low-luminosity AGN ngEHT may observe in the
future), we have no such prior knowledge at present. Thus, we use
Zp, as a reference angle and instead use in our machine learning
analysis the rotation invariant quantities ZB\ %" = ZB, — 2/B
and Aﬂgsgm*) = /B3 + 4B, and omit ZB; from our set of observ-
ables for Sgr Ax. Similarly, Medeiros et al. (2022) calculate the image
asymmetry across the mid-plane of the image, defined as orthogonal
relative to the SMBH spin axis, which they show robustly maximizes
the asymmetry across angles on the image. Thus, as we may not know
the SMBH spin axis a priori, we calculate the rotationally invariant
asymmetry A2 A% = max ,A(6).

The unresolved linear polarization fraction encodes information
about the magnetic field geometry. In particular, it indirectly contains
information about symmetries in the geometry (e.g. due to cancel-
lations due to symmetries that flip the angle of polarization) and
scrambling due to Faraday rotation.

The unresolved circular polarization fraction is affected by (i)
direct circularly polarized synchrotron emission, (ii) Faraday con-
version that exchanges linear and circular polarization, (iii) Faraday
rotation that can rotate or potentially scramble linear polarization
that can be converted into circular (Wardle & Homan 2003). It is
sensitive to both the direction of the magnetic field and its overall
geometry (Ricarte, Qiu & Narayan 2021). Event Horizon Telescope
Collaboration (2021b) found that some SANE models had too much
circular polarization due to large Faraday conversion depths. As we
shall show, the unresolved circular polarization fraction is one of the
most important parameters for inferring the magnetic field’s polarity,
since both the circular polarization emission coefficient and Faraday
rotation coefficient switch sign upon a flip of the magnetic field,
but the Faraday conversion coefficient does not (e.g. Dexter 2016;
Pandya et al. 2016).

The resolved linear polarization structure of an image encodes
the structure of the near-horizon magnetic field. In particular, the
direction of polarized emission is perpendicular to the magnetic field
and wavevector. The structure of linear polarization in the resolved
image is complicated by Faraday rotation and relativistic effects, but
still encodes useful information about the magnetic field structure.
As such, we include the argument and magnitude of the Oth through

isrelated to ZBo by x = %4,80. Finally, we note
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3rd radially integrated Fourier modes of linear polarization (B¢, B,
B2, and B3). Notably, Palumbo et al. (2020) found that ‘twisty’ linear
polarization structure represented by Zf, is highly discriminating
for spin within a library of M87x* images. Likewise, Event Horizon
Telescope Collaboration (2021b) found that among all constraints,
limits on S, are the most discriminating among various models.

Beyond polarized image observables considered by Event Horizon
Telescope Collaboration (2021b), we also consider observables
which characterize the resolved total intensity image: brightness
asymmetry A and the mean second image moment. The brightness
asymmetry in a resolved image is caused by Doppler beaming and
boosting which in turn capture information about the near-horizon
velocity of the accretion flow. As these are influenced by the viewer’s
observing angle and spin of the black hole, brightness asymmetry
may be a useful discriminant for these BH properties (Medeiros et al.
2022). Similarly, the image size is influenced by both Doppler effects
as well as directly by observing inclination. Additionally, different
electron heating prescriptions influence what regions of the accretion
flow and jet emit, so the image size may also help constrain the ion-
to-electron temperature ratio.

2.4 Distributions of observables

For each image, we compute the image-integrated observable quanti-
ties outlined in Section 2.3. Before developing our machine learning
model, we first briefly explore distributions of observables among
a few slices of the parameter space to gain an intuition of relevant
trends.

2.4.1 Varying spin

In Fig. 3, we first explore trends in our observables as a function of
spin. Here, we include only a subset of our Sgr A% models, where
we have fixed i = 150° and Ryign = 40. Spin affects the dynamics of
the inflowing gas, which can be reflected in the polarization structure
and Doppler boosting.

Spin is imprinted onto the total intensity features that we have
selected somewhat weakly. First, larger prograde spins result in
smaller image sizes. These models have the greatest Doppler beam-
ing, focusing the emission into a smaller region. The same physics
results in larger brightness asymmetries for the prograde models
compared to the retrogrades, consistent with Medeiros et al. (2022).
These effects are more dramatic for more edge-on inclinations.

Clearer trends are imprinted onto the polarization structure,
especially the 8, coefficient, as first noticed in Palumbo et al. (2020).
Recall that 8, describes the rotationally symmetric mode of a full
Fourier decomposition of the emission. This mode is believed to trace
the underlying magnetic field structure, which in turn is affected by
frame dragging (Emami et al. 2022). In retrograde models, which
have more complex emission morphologies the polarization structure
is inherently messier and thus |B;] is lower. For a fixed inclination,
note that ZB, flips sign for retrogrades compared to progrades,
since the spin axis is pointed in the opposite direction with respect
to the observer. Meanwhile, the circular polarization distributions
exhibit complex trends that we caution are sensitive to all of the
other parameters: inclination, Ry;gn, and magnetic field polarity. This
is because intrinsic emission and Faraday rotation switch sign as
the magnetic field polarity switches sign, but Faraday conversion
does not. The relative importances of intrinsic emission and Faraday
conversion also depend on inclination and Ry;gp.
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Figure 3. Distributions of observables among our Sgr A* models with i = 150° and Rp;gh = 40 as a function of spin. At this inclination and Rpigp, both the

magnitude and phase of 8, trend strongly with spin. Note the strong evolution of 8>, which encodes the twisty morphology of linear polarization ticks.

2.4.2 Varying Rpgn

InFig. 4, we now vary Ry, for a subset of the Sgr Ax models, keeping
fixed a moderate prograde spin a, = 0.5 and observing inclination
i = 10°. Increasing Ry, tends to shift emission from the mid-plane
to the jet funnel, although the effect is not as pronounced for MADs
as it is for SANEs (Event Horizon Telescope Collaboration 2019e¢).
In total intensity, for this face-on model, Ryjzn = 1 models have
the largest sizes, since they light up disc material. Material in the
funnel is always projected to relatively small image radius for this
inclination. Meanwhile, in polarization, first notice that |8;| tends
to decreases with increasing Rpgn. Models with larger Ry, have
larger Faraday depths, as explored in Event Horizon Telescope
Collaboration (2021b). Colder electrons are more efficient at Faraday
rotation, and these models are also normalized to have higher density.
Since |B;] is correlated with the image-averaged polarization, more
Faraday rotation results in smaller |8;|. We also notice a very small
shiftin Zf, as a function of Ry, due to different amounts of Faraday
rotation, first pointed out in Emami et al. (2022). As we shall show,
since /5 is not too sensitive to Ryign at low inclination, it is a good
predictor of spin. Regarding circular polarization, greater values
of Ruign lead to wider distributions of v for this model, though
we suspect this will depend on the detailed interplay of Faraday
conversion and intrinsic emission in any particular model. At higher
inclinations, Faraday depth becomes more important, since emission
now must pass through colder disc material on the way to the camera.
We find that for larger viewing angles, increasing Ry, has more
dramatic effects decreasing |S;| and scrambling their phases.

2.4.3 Varying inclination

In Fig. 5, we explore how our observables vary as a function of
inclination for the subset of our Sgr A* images with a, = 0.9 and
Ryigh = 20. Important physical effects that vary with inclination
include the strength of Doppler beaming, and the evolution of the
radiative transfer coefficients that are sensitive to magnetic field
direction with respect to the photon wavevector, especially jy and pv,
which describe circularly polarized emission and Faraday rotation.

In total intensity, we observe that edge-on inclinations lead to
smaller and more asymmetric images. Doppler boosting is most
effective at edge-on inclinations, resulting in emission concentrated
in a relatively small area on one side of the image. Note that the trend
may be reversed for different models dominated by jet emission such
as large Ryion SANEs, which can be projected to a larger extent at
edge-on inclinations.

There are several interesting trends in polarized quantities. Coun-
terintuitively, ||, is minimized for face-on inclinations at the same
time that |fB,| is maximized. This is because this model is very
symmetric in linear polarization when viewed face-on, leading to
cancellation when the linear polarization is summed (e.g. Ricarte
et al. 2023a). Unsurprisingly, the rotationally symmetric 8, mode is
strongest when viewing the disc face-on. Also, viewing the system
from the opposite side flips the handedness of the linear polarization
ticks, which corresponds to a flip in the sign of Z,. Interestingly,
the amplitudes |8, 3| are highest at intermediate inclinations. As the
system is tilted away from face-on, the power in the rotationally
symmetric mode spills onto nearby modes. In the distributions of
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Figure 4. Distributions of observables among our Sgr Ax models with a, = 0.5 and aligned magnetic field as a function of Ry;gn. Larger values of Ryign cool
the mid-plane by construction. Models with larger Rpigh have more jet emission and stronger Faraday effects. Models with larger Rygn therefore have more
scrambled linear polarization patterns (weaker 8 mode amplitudes). Increased Faraday rotation and a shifted emission region also impart a subtle shift in

mode arguments as Rpyjgn increases.

Uner, We see some moderate shifts as a function of inclination and a
sign flip when flipping the viewing angle. This is because the sign
of circular polarization from intrinsic emission and Faraday rotation
flip with the viewing angle. However, we caution that flipping the
viewing angle does not always negate the circular polarized image
(Ricarte et al. 2021).

2.4.4 Trends as a function of magnetic field polarity

Finally, in Fig. 6, we explore the effect of flipping the magnetic field
polarity in the subset of our M87x models with a, = 0.9 (i = 163°)
and Rygn, = 40. Both the circular polarization emission coefficient
Jjv and the Faraday rotation coefficient py flip sign upon flipping the
magnetic field direction, leading to cascading effects.

Although most quantities are insensitive to the magnetic field
polarity, we observe interesting shifts in v, and Zf,. Interestingly,
the distribution of v, does not simply reflect across vper = 0 upon
flipping the magnetic field direction, but the nature of the distribution
changes entirely. In this model, an aligned magnetic field polarity
with the disc angular momentum results in vy, > 0 almost always,
whereas the anti-aligned case yields a more symmetric distribution.
As discussed in Ricarte et al. (2021), flipping the magnetic field
flips the circular polarization emission coefficient jy and the Faraday
rotation coefficient py, but not the Faraday conversion coefficient
pq- Depending on the model and magnetic field polarity, the circular

MNRAS 520, 4867-4888 (2023)

polarization from intrinsic emission and Faraday conversion may add
or cancel. This will be explored in much more detail using a library
of simulations in Joshi et al. (in prep.).

A systematic shift occurs in Zf, upon flipping the magnetic
field, also explored in Emami et al. (2022). This occurs because the
magnetic field polarity imparts a systematic shift in all of the linear
polarization ticks due to Faraday rotation, which switches direction
upon flipping the field.

3 INFERRING MODEL PARAMETERS WITH
MACHINE LEARNING

Using the quantities described in Section 2.3 as predictors, we
perform regression on spin, inclination, Ryien, and magnetic field
polarity by building a random forest machine learning model.
Generically, we expect the functional relationship between these
quantities and spin to be complicated. Random forests are particularly
well-suited for this task due to their ability to characterize arbitrarily
complicated relationships (given sufficiently large data), relative
robustness against overfitting, and relative lack of hyperparameters
(and therefore little hand-tuning needed to achieve strong predictive
performance) (Breiman 2001). We give a brief overview of random
forests and their training algorithms here, but refer readers to Breiman
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Figure 5. Distributions of observables among our Sgr Ax models with a, = 0.9 and Rpgn = 20 as a function of inclination. For these models, flipping the viewing
angle negates the distribution of v,e. (We caution that this is not a generic result. Although Faraday rotation and intrinsic emission of circular polarization flip
sign with flipped orientation, the Faraday conversion coefficient does not (Ricarte et al. 2021).) Doppler beaming concentrates emission into a smaller area at
large inclinations (see also Event Horizon Telescope Collaboration 2022e). Although one might expect increased Faraday rotation from the mid-plane projected
into our line-of-sight to decrease |m|ne; as inclination increases, it instead increases because image symmetry causes cancellation at face-on inclinations.

(2001), Hastie, Tibshirani & Friedman (2009), Mehta et al. (2019)
for a more detailed explanation.

3.1 Random forests

A random forest is a collection of independently trained decision
trees, which are commonly used in data mining to predict some
target value from a set of input variables. In our case, the target value
may be a quantity such as spin that we would like to infer from
the input variables which are our observables. Each tree is given a
bootstrapped sample of the model images, which is then optimized
to predict the target value. A separate forest is constructed for each
of the target values.

We provide a schematic diagram of the training process for an
individual tree in Fig. 7, where training proceeds from left to right.
In this example, for simplicity, the target value is a boolean such as
magnetic field polarity, represented by red circles and blue crosses.
We consider here only two input variables, vy and |m|,e, and the
two magnetic field polarities occupy two complicated regions in this
space. The decision tree is trained by making successive cuts in the
space spanned by the input variables until a termination condition is
reached. In computer science parlance, we start at the root node and
branch the tree by making cuts until we reach a termination condition,

after which each leaf node of the tree contains a prediction value for
the target variable. Specifically, the training algorithm iteratively
finds the next best cut among all leaf nodes and updates the tree
by splitting the appropriate node. To do so, we consider all splits
across all input variables, and add the split that maximizes the
tree’s improvement in performance, measured in terms of mean
squared predictive error (when performing regression) or Gini
impurity (Breiman et al. 1984) (when performing classification). For
classification tasks, the output value of a leaf node is a given class.
For regression, the value is the average output value of training data
points in the corresponding region of the data space. In our example,
the fully trained tree’s predictions are perfect.

Each tree in the random forest is different because it has seen
a different subset of the data. When using the random forest to
make predictions, the predictions of each tree are aggregated. For
classification, the aggregation method is majority vote, and for
regression, the method is averaging. Collecting many individual
learners to form a single, more robust algorithm in this way
is called bootstrap aggregation. The advantage of this method
is that while each decision tree may overfit on its given train-
ing data set, the collection of trees formed by bootstrap ag-
gregation is robust to overfitting, given enough trees (Breiman
2001).
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Figure 6. Distributions of observables among our M87+ models with a, = 0.9 and Ryign = 40 as a function of magnetic field polarity with respect to the
disc angular momentum vector, which is either aligned or anti-aligned. While most distributions are identical, there are noticeable shifts in vpe and Z 5. Note
that the distribution of vy, does not simply flip across vpee = 0. This is because flipping the magnetic field direction flips the Faraday rotation and circular
polarization emissivity coefficients, but not the Faraday conversion coefficient (see Ricarte et al. 2021, for more detail). Meanwhile, the noticeable shift in 8,
can be explained entirely by Faraday rotation. A magnetic field pointing towards us rotates linear polarization ticks counter-clockwise, and vice-versa for a field

pointing away from us.

For our libraries, we partition each image time series into an
80-20 per cent training-testing split, partitioned chronologically to
avoid autocorrelation between training and testing data sets. On our
training data sets, we fit random forests to predict spin, inclination
(Sgr Ax only), log Ry, and B-field direction (for M87x only) using
scikit-learn (Pedregosa et al. 2011). When predicting on spin, Rpigh,
and inclination, we used a regression forest and fit to minimize mean
squared error. For predicting the magnetic field polarity, which is a
boolean instead of a continuous quantity, we used a classification
forest and used Gini impurity as our criterion. We train forests with
400 trees each with a minimum of eight data points to split a node. We
selected each of these parameters following a grid-based parameter
sweep but found that our results were robust to moderate deviations
in the number of trees and minimum split.

We present a schematic diagram of our methodology as a whole in
Fig. 8. First, an image library is created of M87x and Sgr Ax models
using the GRRT code IPOLE. From these images, we compute tables
of observables that we believe are observable and robust. We use
the first 80 per cent of these values chronologically for training, and
reserve the last 20 per cent for testing. For the training set, we build
random forests to predict spin, inclination, Rpign, and magnetic field
polarity. Finally, we apply these random forests to the unseen data to
evaluate performance.

MNRAS 520, 4867-4888 (2023)

3.2 Random forest model performance

After training a given model, we perform inference on our test
library for the relevant predicted quantity to produce a predicted test
distribution. We show predictive distributions for our Sgr Ax library
in spin, inclination, and Ry;e, in Figs 9, 10, and 11, respectively,
and we show the predictive distribution for our M87x library in B-
field direction in Fig. 12. As outlined in Section 3.1, each predictive
distribution represents the output of a different random forest model
for each inferred quantity, though each random forest sees the same
set of computed observables for training. We note that in general, we
expect that for extreme values in the predictive range (e.g. a, =
+0.9), we expect our models to systematically predict closer to
the overall mean because the predicted values are an average of
individual decision tree outputs which cannot exceed the extreme
values in the predictive distribution.

For spin, the predicted distributions for prograde, retrograde, and
zero-spin models share very little overlap, indicating high model
confidence in distinguishing each of these cases. However, there
is substantial overlap among prograde and retrograde spins with
different |a,|. Notably, the predicted distributions for a, = {—0.9,
—0.7, —0.5} are nearly indistinguishable, indicating that for Sgr Ax,
the model cannot discriminate well between high retrograde spin
images, whereas it can discriminate more meaningfully between
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Figure 7. A schematic diagram of the iterative training process of a single decision tree on a toy data set. At every iteration, the decision tree training algorithm
considers adding a ‘split’ in every variable of the input data set (in this case |m|pe; OF Upet, but in general we consider all 11 observables) between all values of that
variable. Across all variables and split locations, the decision tree chooses the split according to a particular criterion. For classification tasks, a typical criterion
is maximizing the difference in Gini impurity before and after the split. For regression, minimizing the mean squared error is typical. After the split, the newly
created leaf nodes are assigned new output values. The training algorithm iteratively splits nodes until reaching some stopping criteria. In this paper, we stop
training when the number of data points represented by a given leaf node in the tree is less than 8. For simplicity, in this diagram, we show a binary classification
task (categorizing data points as either red circles or blue crosses), but the algorithm generalizes in a straightforward way to regression. In particular, rather than
having the output value of each leaf node be the majority class in a given region, the output value is the average value of data points in a given region.
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Figure 8. A schematic diagram of the methodology of Sections 2 and 3. Starting in the top left, we show that we have generated a large image library,
as described in Section 2.2. Then, for each image, we compute a set of observables after blurring the image with a 20 pas Gaussian beam, as described in
Section 2.3. We split the images into training data and testing data for the machine learning model and use the former to train random forest models to predict
quantities of interest (for instance a,), described in Section 3.1. Finally, we predict the same quantities of interest for the unseen test images and show the
predicted distributions, per Section 3.2.
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Figure 10. Distributions of predicted inclination for unseen data on the Sgr
Ax random forest model. Colour indicates true inclination.

high prograde spins. We also find that our model performs slightly
better for predicting spin at face-on inclinations than edge-on, likely
because S, is stronger and more discriminating for different values
of spin at face-on inclinations.

Our random forest model is more successful at predicting inclina-
tion of our Sgr Ax models. In Fig. 10, the predictive distributions for
each inclination captured by our library have clearly distinguished
peaks centreed at their true inclination values. However, each predic-
tive distribution still contains a long tail which deviates substantially
from the true value, likely due to time variability and turbulence in
these models.

Our random forest model can also meaningfully infer Ry, shown
in Fig. 11. As mentioned in Section 3.1, we train and predict on
log Ryign, reflected in Fig. 11. The predictive distributions contain
substantial overlap with adjacent values of Ry, but large differences
in Rygn are well distinguished (for instance, Rygn = 10 and 80). We
note that the wide distribution of Ryg, = 1 is likely because our
library does not contain intermediate values between Ryg, = 1 and
10, which is a larger gap in log-space than the rest of the values of
Ryign captured by our library.

Lastly in Fig. 12, we plot the binary predictive distributions
of the B-field direction. Unlike the other models, which perform
regression, our model for predicting the B-field alignment performs
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Figure 11. Distributions of predicted Ryignh for unseen data on the Sgr Asx
random forest model. Colour indicates true Ryigh value, which is again well-
predicted with biases towards more central values. We train and predict values
of logarithmic Rygh, as reflected by the horizontal axis.
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Figure 12. Categorical distributions of predicted B-field alignment for
unseen data on the M87x% random forest model.

binary classification. Our model is weakly able to discriminate B-
field direction, predicting the correct alignment for about 70 per cent
of test images.

3.3 Interpreting model predictions

We can use machine learning interpretability tools to provide expla-
nations for our individual predictions. SHapely Additive exPlana-
tions (SHAP) is a recently proposed interpretability tool which has
quickly gained popularity (Lundberg & Lee 2017). SHAP borrows
ideas from coalition game theory to unify several existing frame-
works for local model interpretability while improving theoretical
guarantees on the explanations.

Briefly, SHAP unpacks individual model predictions by attributing
a SHAP value to each feature (observable, in our case) for every
model prediction. A feature’s SHAP value represents its contribution
towards the overall model prediction. The SHAP values across all
features for a given prediction sum to the difference between (i) the
mean prediction over the entire data set (e.g. a, = 0 or i = 90°) and
(ii) the model prediction on that individual image.

Consider a model f(x) that makes a prediction as a function of data
x. Let R be an ordering of features, and let R be the set of all possible
orderings. The SHAP value of feature i on model f at data point x is
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given as follows Lundberg & Lee (2017):

SHAP;(f, x) = . > [f(PRUI) = £(PF)]. ®)
|R| ReR

where PR is the set of features in ordering R that come before (and
exclude) feature i, PX U is the set of all features that come before
and include feature 7, and |R| = M !, where M is the number of input
features of the model. f,(S) for some set of features S is given by
f:(S) = E[fix)|xs], where f(x) is the model prediction on data point
x and xg is the subset of x with only features in S; thus £,(S) is the
average model prediction on data point x with only the features in
S. For tree-based models, f,(S) is calculated in low-order polynomial
time by the algorithm given in Lundberg et al. (2020).

Heuristically, the SHAP value for a given feature and prediction is
how much the individual feature value ‘pushes’ the overall model
prediction on a given image relative to predictions without that
feature. For example, consider our model trained on our Sgr Asx
library to predict spin. For every image in the test library, we can
compute a SHAP value for each observable. If a given image has
/B, = —m/2 and we calculate that the 28, SHAP value is 0.4, then
compared to model predictions on subsets of input features without
ZB,, adding £B, = —m/2 to the set of input features increases
our model’s predicted value of spin by an average of 0.4 for that
image. The larger the magnitude of the SHAP value is for a given
feature and prediction, the more important that feature is towards
the final model output. In Section 3.4, we discuss using the mean
absolute SHAP value of a given feature across the test data set as
a feature importance measure in more detail. For more details, we
refer readers to Lundberg & Lee (2017) and Molnar (2022). Lastly,
we note that SHAP values are in general exponentially costly to
calculate for any given machine learning algorithm. However, for
tree-based algorithms, they can be computed in polynomial time
using the TreeSHAP algorithm (Lundberg et al. 2020), which exploits
the branching structure of the trees to cache and avoid redundant
computations.

We show distributions of test library SHAP values for each feature
for our Sgr Ax spin model in Fig. 13. We remind readers that, as
described in Section 2.3, since the orientation of the spin axis of Sgr
Ax projected on the sky is presently unknown, we anchor Zf 2 3
to ZB1, and thus ZB; is omitted from Fig. 13. Note that unlike in
Fig. 3, where we fix a particular value of viewing inclination and Ry;gh,
Fig. 13 includes SHAP values across the full parameter space of the
library. Thus, these trends are not specific to particular inclinations or
Ruign values. Each feature has different numerical values, so they are
colour-coded based on their position within the full range of values
spanned by that feature in the test library. Some features have SHAP
values clustered around 0, and therefore do not have much impact
on a spin prediction, such as ||, EVPA, and Zf3. On the other
hand, B, and A stand out as important due to their comparably large
SHAP values. As shown in Fig. 3 and Medeiros et al. (2022), we
generally expect that large values of asymmetry correspond to high
prograde spins due to Doppler beaming. Meanwhile, 8, encodes
both the magnetic field’s geometry and relative order in its phase and
amplitude, respectively.

We dig deeper into the interaction between A and |f8,| in Fig. 14,
where we plot the distribution of spin SHAP values as a function
of A, colour-coded by |B,]|. We observe that asymmetry SHAP
values appear to increase monotonically with asymmetry, with
more common low asymmetry values having moderately negative
SHAP values amd less common large asymmetry values having
high positive SHAP values. This indicates that while the bulk of
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Figure 13. For each image feature, we visualize the distribution of its SHAP
values for predicting spin. Each point represents one image in the testing set of
the Sgr Ax library. Since each feature has different numerical values, colours
encode the relative value of each feature compared to the full range that it
spans. For example, for Zf, the bluest points correspond to —7t and the
reddest points correspond to 7t. As discussed in the text, the larger the SHAP
value, the larger impact of this value on predicting the spin. The vertical
width of each distribution corresponds to the frequency of images with that
particular SHAP value.
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Figure 14. Distribution of SHAP values for predicting spin, showing the
interaction between asymmetry and | 82|. Large values of asymmetry push the
prediction towards higher values of spin, due to Doppler beaming. Then, for
a given value of asymmetry, larger values of | 82| imply larger spin values for
more symmetric systems, or lower spin values for more symmetric systems.

images have moderate asymmetry values that the model weakly
assoicates with more negative spins, very high asymmetry values
are associated with substantially more positive spin predictions.
However, high-asymmetry values can occur across a large range
of prograde spins. We see that |f8,| seems to mediate the SHAP
value for a given asymmetry value. For small asymmetry val-
ues, low values of [B,| push for more negative predictions of
spin, but this relationship inverts for large asymmetry values,
where lower values of |B,| result in more positive predictions of
spin.

MNRAS 520, 4867-4888 (2023)

$20z Arenuer zo uo Jasn Aleiqi euozuy 1o Ausisalun Aq SyE¥£0.2/.98%/1/02S/010ne/seiuw/woo dnoolwepese//:sdiy wo.ll papeojumod


art/stad466_f13.eps
art/stad466_f14.eps

4880  R. Qiu et al.
0.6
& o 035
Y04y E 0.30
S . - '
v 0.2 P RS 0.25
2 Y. r% 020 B
> 0.0- & e R
< g ‘il 015
B 021 # KR4I
< A 0.10
& 0417 Y oo

-n -2 0 /2 m

Figure 15. Distribution of SHAP values for predicting spin, showing the
interaction between Zf> and |B2|. The model learns to associate images
with ZB, ~ 0 (more radial EVPA patterns, and therefore more toroidal
magnetic fields) with prograde spins and Zf, ~ =7t with retrograde spins
(more toroidal EVPA patterns, and therefore more radial magnetic fields). | 82|
carries similar information, since it declines for messy retrograde systems.
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Figure 16. Distribution of SHAP values for predicting inclination, showing
the interaction between /B, and |B;|. First, the model can use the sign
of Zf, to distinguish whether or not the inclination is greater than or less
than the mean value of 90°. This is because by construction the sign of
/B, distinguishes clockwise from counterclockwise linear polarization ticks.
Then, larger values of | 82| imply more face-on viewing angles. This is because
face-on viewing angles result in more rotationally symmetric images.

In Fig. 15, we now examine the interaction between £, and
|B2]. We see a wide distribution of SHAP values, with more extreme
phases (i.e. closer to —7t and ) yielding negative SHAP values
and more moderate phases (i.e. closer to Zf, = 0) giving more
positive SHAP values. Referring back towards Fig. 3, this model
inference stems from the phenomenon that high prograde spin images
have narrow O-centred distributions in Zf, whereas high retro-
grade spin models have distributions centred more closely around
Zﬁz = 4.

Finally in Fig. 16, we examine the relationship between £, and
[B2| for predicting inclination. We observe a distinct bifurcation
based on the sign of Zf,. For ZB, > 0, the corresponding SHAP
values are negative, meaning the model is pushed towards predicting
inclinations closer to 0°. Conversely, for Z8, < 0, the SHAP
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values are positive, and the model prefers predicting inclinations
near 180°. This is because the sign of Zf, directly encodes the
handedness of the spiral EVPA structure, which flips if you flip
the viewing angle. Further, the gradient of |8,| demonstrates that
larger values of |B,| lead to more face-on inclination predictions.
This statistical relationship learned by our model is consistent with
the trend observed in the distribution of quantities as a function of
inclination (see Fig. 5), and for which we provide physical motivation
in Section 2.4.

3.4 Feature importances

In addition to explanations of individual predictions based on a
given image’s computed observable values, we can also examine
the distribution of predictions and assess the overall importance of
each image observable across testing libraries for each model. In
particular, we consider SHAP feature importances and permutation
feature importances.

To compute the importance of a feature using SHAP values, we
compute SHAP values for that feature on every image in the testing
distribution (e.g. Fig. 13). Then, the feature importance is the mean
absolute SHAP value for that feature across the test library (Lundberg
et al. 2020). Intuitively, this is a sensible metric as large SHAP values
correspond to a given feature having a large influence on the model
prediction for an individual image.

As a simpler alternative, we also calculate a permutation feature
importance (Breiman 2001) for each library and image observable.
To do so, we first compute a reference pseudo-R? score over the set
of testing predictions, defined as:

> JO =3 )?

Z j(y i Y)z ’
where j indexes over images, y; is the true value (e.g. the true spin or
true inclination) forimage j, y; is the model prediction on image j, and
y is the mean value of y; over all images. To compute the permutation
feature importance for observable quantity x, we randomly shuffle
the order of the computed x in the test library while holding the
remaining observables fixed. Then, we compute the new R> value
for our shuffled data set and calculate the feature importance as
the decrease from our reference R”. Essentially, this procedure tests
how much the model’s predictions worsen if one of the features is
removed.

In Fig. 17, we show normalized feature importances (such that the
sum of importances sum to 1 for SHAP and permutation methods)
for each Sgr Ax model in predicting spin, inclination, and Ry;gp.
We remind readers that, as in Fig. 13 and described in Section 2.3,
since the orientation of the spin axis of Sgr A% projected onto the
sky is presently unknown, we anchor Zf¢ 3 to ZB;, and thus
/B, is omitted from Fig. 17. For predicting spin, 82| and £,
have the greatest feature importances, followed by asymmetry and
size. The remaining features have relatively low importances. The
reason for these feature importance trends is evident in Fig. 3,
where we observe that both |B,| and £, trend with a, with fairly
tight distributions with minimal overlap for different values of a,.
Similarly, the distribution of A gets wider at higher prograde spins,
though with more overlap at differing values of a,.

For inclination, Fig. 17 shows that £/, is highly important, |S5|
and v, are moderately important, and all other observables are rela-
tively unimportant. Looking towards Fig. 5, we see that sign of Z8,
cleanly indicates whether i > 90° or i < 90°. This is the largest segre-
gation in terms of absolute error so both feature importance methods
rank Zf, as the most important observable. We also observe that vy,e,
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Figure 17. Permutation and SHAP feature importances among our Sgr Ax
models for inferring a,, i, and Ryjgn, where larger values correspond to greater
importance. Here, feature importance values are normalized such that the sum
of all feature importances for a given model and method sum to unity.

plays a similar role but does not discriminate as cleanly. Once i > 90°
or i < 90° is known, |fB;| can be used to determine |i — 90°|, which
follows from the distributions of observables shown in Fig. 5 and our
examination of SHAP values in Section 3.3 (particularly Fig. 16).

Looking towards Ry, we find that | 85| and Z 8, remain among the
most important features. Fig. 4 suggests that |8, | in particular trends
strongly with Ry;en. As also explored in Event Horizon Telescope Col-
laboration (2021b), models with larger Ry;gn have larger Faraday ro-
tation depths, leading to more scrambling, and therefore smaller |8, |.
However, we also find more disagreement between our two feature
importance methods and that generally more features are important.
Since the ‘importance’ of a feature is not well-defined, we do not nec-
essarily expect agreement between differen feature importance meth-
ods. In this case, the disagreement may suggest that inferring Rpign
is a more difficult and messy problem, and that Ry;e, changes images
in many different ways. The SHAP distributions of Ry;e, (not shown)
suggest our model learns to infer complex higher-dimensional
relationships among input features, some of which are likely used to
indirectly infer the spin and inclination of a particular image.

In Fig. 18, we show permutation and SHAP feature importances for
each of our M87x models predicting spin, Ry;gh, and B-field direction.
For a,, we observe similar trends to Sgr Ax with the exception that the
asymmetry A is no longer important. This is because our M87x model
is fixed at observing inclinations of 163° and 17° and asymmetry
discriminates most strongly for inclinations closer to edge-on. For
M87x, the distributions of asymmetry as a function of spin overlap
nearly entirely, unlike that for Sgr A% even at moderately edge-on
inclinations, such as that shown in Fig. 3. We also discover that
Z B plays an important role in discriminating spin for M87x. This
is because we observe a shift in /8, as a function of inclination
(exemplified by the same in Sgr A, shown in Fig. 5), which for our
M&87x library indirectly distinguishes progrades from retrogrades.

For Ryign, we observe fewer highly important features compared
to Sgr Ax but similar general trends. In particular, |8, | remains the
most important feature. However, for M87x, again because we fix the
inclination, we find that | 8, | and v, are alone sufficient to capture a
strong trend in Ryign, Without needing to implicitly infer intermediate
quantities such as viewing inclination as is the case for Sgr Ax.
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Figure 18. Permutation and SHAP feature importances among our M87x
models for inferring a,, the magnetic field alignment, and Rpgn, where larger
values correspond to greater importance. Here, feature importance values are
normalized such that the sum of all feature importances for a given model
and method sum to unity.

Finally, for the magnetic field alignment, we find that £, and
Upet are the most important quantities. This is unsurprising, as these
two quantities track most strongly with magnetic field alignment, as
shown in Fig. 6. The model finds £, more important that vy, likely
because the discrimination between the distributions is more distinct
for ZB,.

3.5 Repeated polarimetric observations

So far, all of our model predictions have involved only a single
snapshot of information. The EHT has already observed its targets
for multiple (unpublished) epochs and will continue to do so. We train
models on varying amounts of sampled information to simulate the
effect of varying EHT resolving power and polarimetric capabilities.
Specifically, we simulate the following scenarios with our M87x%
library:

(i) Spatially unresolved: Only ||, and vye included.

(i) Resolved, no polarimetry: |7]per, Unet, asymmetry, and second
image moment.

(iii) Resoled, full polarimetry: All image features, viz., |71|ne, Unets
asymmetry, second image moment, |8;| and Z8;,j € {0, 1, 2, 3}.

(iv) Resolved, full polarimetry, five observations: All image fea-
tures as above but with five random snapshots drawn from the same
library. Independent samples are drawn with replacement and without
regard to order.

Predictions on the corresponding test libraries are shown in Fig. 19.
With spatially unresolved information alone, the model can produce
no meaningful predictions on spin. With resolved images, the model
begins to weakly separate spin-zero images from prograde images,
and can more strongly separate out prograde and retrograde images.
By introducing spatially resolved polarimetry, suddenly the model
can distinguish different individual spins but with substantial overlap
in the predicted test library distributions. Note that these predictions
are much better than for Sgr Ax (Fig. 9) due to the known inclination
of M87x. Finally, with five observations, we see substantially
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Figure 19. Random forest predicted distributions of spin for increasing amounts of information available from our M87x models, as described in more detail
in Section 3.5. Spatially resolved polarimetric information (panels 3 and 4), in particular S, is essential for inferring spin, since this encodes the magnetic
field geometry. All observables fluctuate around their mean values due to turbulence in the accretion flow. Predicted distributions grow narrower if multiple
independent epochs are observed (panel 4), motivating continued monitoring of EHT sources.

more distinct separation between spins, motivating repeated EHT
observations of M87x and Sgr Ax.

3.6 Interpreting observations of M87+

We take allowable parameter ranges of various observables for M87:x
from Event Horizon Telescope Collaboration (2021b) and Event
Horizon Telescope Collaboration (2019d) (for the image size), as
listed in Table 3, and evaluate them against our M87x image
library. Of the 97308 images in the library, a mere 154 images
fall within the allowable constraints. Of the passing images, 133 are
from retrograde models, 13 have a, = 0, and eight are prograde
models. All but two images have Ryjgn > 80. Three models have
more than 15 passing images. Two are consistent with EHTC Paper
VIII: a, = —0.5 and Ryigp, = 160 with aligned magnetic field and
a, = —0.7, Rygn = 160 with aligned magnetic field. The third, with
a, = —0.3 and Rygn = 160, has an accretion flow anti-aligned B-
field, and therefore falls outside of the scope of the EHTC Paper VIII
analysis.

We also use the allowable parameter ranges as inputs to our
random forest models and generate posterior distributions of the
spin, Rpign, and magnetic field polarity of M87x. We assume a
uniform distribution as a prior over the allowable parameter ranges
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in each observable quantity. We further assume independence of
each constraint and take our joint prior over all constraints to be
independent in each quantity. We sample our joint prior to form a
large test distribution of possible M87: observables. We train random
forest models on our ray-traced library of M87x observables, but in
contrast to the models described earlier in Section 3.1, we exclude By,
B1, and B3 information as EHT papers VII and VIII do not constrain
these observables.

After training, we ask our random forest models to predict spin,
Ryign, and the B-field alignment over each test distribution; these pre-
dictions are shown in Figs 20, 21, and 22, respectively, in red. These
predictive distributions show that we generally prefer high retrograde
spins between a, = —0.7 and a, = —0.4 with some density around
a, = 0. We also generally prefer large values of Rpigy, with some
density near Ry;op, = 20 and Ry,ig, = 80. Both of these distributions are
generally consistent with the conclusions of Event Horizon Telescope
Collaboration (2021b). Finally, looking at predictions of the B-field
direction, our model weakly prefers accretion-aligned B-fields with
~74 per cent of predictions suggesting an aligned B-field. We also
note that though we present results starting from uniform priors over
the allowable parameter space, we have found that the choice of
prior does not substantially affect the predicted distribution of each
quantity.
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Table 2. A summary of the GRMHD and imaging parameters spanned by our M87x and Sgr Ax libraries. Compared

to the Event Horizon Telescope Collaboration (2021b) library for M87x, we consider more spins, slightly more values

of Rhign, and both polarities of the magnetic field, but only one value of Rjow.

Parameter MB87x Library values Sgr Ax Library values

e 0, +0.3, £0.5, £0.7, £0.9 0, +0.3, 0.5, £0.7, £0.9

Rhigh 1, 10, 20, 40, 80, 160 1, 10, 20, 40, 80, 160

Riow 1 1

i 163° for as > 0 10°, 30°, 50°, 70°, 90°, 110°, 130°, 150°, 170°

17° fora, < 0

B-field aligned, anti-aligned aligned
Table 3. Allowable parameter ranges for various observables for M87:x - - "
based on Event Horizon Telescope Collaboration (2021a) and Event Horizon Prior over Constraints

Telescope Collaboration (2019d).

Parameter Allowable range for M87x
[m]net [0.01,0.037]
Unet [—0.008, 0.008]
A [2.0,2.9]
|B2| [0.04, 0.07]
ZB> [—163°, —127°]
Size [38 pas, 78 pas]
‘,"1‘ Prior over Constraints
H ll = Full EHTC Range
HE = = 95th Percentile KORAL
> t
= I
2 ’ 3
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Figure 20. Posterior distributions of spin from independent uniform priors on
observed M87x constraints (Event Horizon Telescope Collaboration 2021a)
(red) and further constrained to lie within the 95th percentile of our M87x
image library (dashed black). Our model prefers a highly spinning retrograde
spin for M87x for both priors. Note that these values are likely biased low due
to our averaging method. The small peak at a, = 0 could likely be eliminated
by applying a jet power constraint.

We find that our posterior distributions exhibit strange detailed
structure, and we track most of this to library incompleteness related
to the image size constraint. The Event Horizon Telescope Collabo-
ration (2019d) constraint on image size is wide and includes smaller
and larger image sizes than we observe in our own ray-traced M87:x
library. Thus, when performing inference in that area of parameter
space, our random forest model extrapolates out-of-distribution.
Considering this, we construct a second more restrictive prior from
the original EHT constraint ranges by additionally requiring that the
observable values also lie within the 95th percentiles of our KORAL
library. Essentially, this imposes a prior that the real system must lie
within our image library. This, for example, restricts the values in
our prior over image size to lie between roughly [50.7, 65.2 pas],
64 percent more narrow than the full Event Horizon Telescope
Collaboration (2019d) range. The 95th percentile restriction for |S,|
is 11 per cent more restrictive than the full Event Horizon Telescope

== Full EHTC Range
= == 95th Percentile KORAL

Density

Predicted Rhigh

Figure 21. Posterior distributions of Rpigh from independent uniform priors
on observed M87x constraints (Event Horizon Telescope Collaboration
2021a) (red) and further constrained to lie within the 95th percentile of our
M87x image library (dashed black). Our methodology prefers large values
(much colder electrons than ions), particularly with our 95th percentile prior,
which helps depolarize models via Faraday rotation.

1.0 Prior over
74.01% Constraints
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Figure 22. Categorical posterior distributions of magnetic field alignment
relative to disc angular momentum from independent uniform priors on
observed M87x constraints (Event Horizon Telescope Collaboration 2021a)
(red) and further constrained to lie within the 95th percentile of our M87x
image library (dashed black). Our models mildly prefer magnetic fields
aligned with the disc angular momentum, but this is not very constrained
in part because M87:x’s circular polarization has not been detected.

Collaboration (2021a) range. For all observables other than size and
|B2], this stronger restriction eliminates a negligible portion of the
original constraint range, meaning our library spans a wider range of
observable values than existing EHT constraints.

We perform inference on this restricted prior and show results for
spin, Rygn, and B-field alignment in Figs 20, 21, and 22, respectively,
in black. We find that our inferred posterior for spin shifts density
from near a, = —0.7 to a, = —0.5. For predicting Ryjg, our
restricted prior eliminates nearly all of the posterior density for Rp;gn
< 80. Finally, inference of the B-field polarity is not substantially
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Figure 23. For each image feature, we visualize the distribution of its SHAP
values for predicting the spin over our sampled M87: constraint distribution.
As in Fig. 13, the colour encodes the relative value of each feature over the
full range of values that feature spans.

affected. This analysis underscores the incompleteness of our library.
In particular, models including non-thermal electrons can produce
larger images (Ozel, Psaltis & Narayan 2000; Mao et al. 2017).

Finally, we examine the spin SHAP values from predictions on our
full EHTC constraint prior. Though this is always the case, we make
particular note here that SHAP values are calculated relative to the
training distribution (our M87x% image library) rather than the testing
distribution (the EHTC constraint prior). This means, for example,
that the sum of all spin SHAP values across the testing distribution
may not average to 0. Instead, they average to the mean model
prediction in the posterior, which is negative. We show distributions
of SHAP values for predictions over our EHTC prior in Fig. 23.
We find that in general, the image size and 8, lead the model to
predict large retrograde values for the spin. Constraints on |, and
image asymmetry have relatively moderate effect on our posteriors
for spin. Finally, we observe that v, < 0 has positive SHAP values,
corresponding to the posterior density near a, = 0.

As noted earlier, the posteriors for spin and Ry, produced by
our random forests are consistent with the analysis in Event Horizon
Telescope Collaboration (2021b), which eliminates images which do
not pass all observational constraints. Additionally, our approach has
the advantage of generating continuous posterior distributions over
parameters of interest, which have concrete widths and predictive
uncertainties. Further, by analysing our models using SHAP or
other interpretability tools, we can investigate the statistical relations
learned by our model between observables and BH and accretion
parameters of interest.

4 DISCUSSION AND CONCLUSIONS

We have generated a library of 535194 images for both M87x
and Sgr Ax derived from nine GRMHD simulations with strong
magnetic fields (MAD regime of accretion). We compute observable
quantities from each image and train a random forest machine
learning algorithm to infer spin, inclination, the ion-to-electron
temperature ratio, and magnetic field polarity from these quantities.
Our results are summarized as follows:

(1) In the context of a very large but nevertheless incomplete
GRMHD library, we have shown that spatially resolved polarimetric
observables, that are currently accessible to the EHT, can be used
to indirectly constrain spin, inclination, and the ion-to-electron
temperature ratio using a random forest algorithm.
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(ii) For predicting these parameters, spatially resolved linear
polarization stands out as the most important type of observation. In
particular, the twisty morphology of the linear polarization pattern,
encapsulated in the parameter S5, stands out as the most important ob-
servable, consistent with trends found in previous studies (Palumbo
et al. 2020; Emami et al. 2022).

(iii) Based on current EHT constraints of M87x, our modelling
prefers retrograde accretion discs around a relatively rapidly spinning
black hole, and significantly colder electrons than ions in large B
regions.

(iv) We have demonstrated that repeated EHT/ngEHT observa-
tions substantially tightens constraints on spin. This is because
turbulence in the accretion flow causes each of the observables to
fluctuate.

The main limitation of our methodology is the incompleteness of
our simulation set. We have only considered MAD simulations in our
study, guided by the polarimetric study of M87x performed by Event
Horizon Telescope Collaboration (2021b). There are many ways in
which the simulation library could be expanded, which are beyond
the scope of a single paper:

(i) We have only considered one value of R,, which may deviate
from 1 in the case of M87:x, where radiative cooling may be impor-
tant. Moreover, alternatives to the Rpjgn—Rjow temperature prescription
adopted here exist in the literature that we have not explored (e.g.
Anantua et al. 2020). Different temperature prescriptions can change
the impact of Faraday rotation as well as the location at which
emission occurs. Self-consistently including cooling in GRMHD
simulations can also impact the structure of M87x models (e.g. Chael
et al. 2019; Yoon et al. 2020), and the implications for polarized
signatures have yet to be fully explored.

(i) We have only considered thermal electron distribution func-
tions, whereas the spectrum of Sgr Ax motivates a non-thermal
electron distribution (Ozel et al. 2000), also predicted by particle-
in-cell simulations (Ball, Sironi & Ozel 2018). Models with a high-
energy tail of non-thermal electrons tend to produce larger images
(Ozel et al. 2000; Mao et al. 2017), and their impact on polarimetry
remains understudied.

(iii) Our models include only perfectly aligned or anti-aligned
discs, while in general these sources may be fed from a tilted disc
(e.g. Fragile etal. 2007; Liska etal. 2021). This may alter the structure
of images at large image radius.

(iv) Our models assume an electron-ion plasma, while electron—
positron pairs may also form in these systems (Wardle et al. 1998;
Moscibrodzka et al. 2011; Broderick & Tchekhovskoy 2015; Wong,
Ryan & Gammie 2021). The most important difference is that neither
Faraday rotation nor emission of circularly polarization occur in pair
plasmas, which may have a strong impact on all of the polarimetric
observables considered here if pairs are produced in substantial
quantities.

(v) We have only considered observations at 230 GHz. However,
in the near future, the EHT will produce images at 345 GHz,
and the ngEHT will observe at 86 GHz. Since the magnetic field
geometry drives the linear polarization structure and MAD models
are not very Faraday thick (Emami et al. 2022), we do not expect
dramatic changes to single-frequency metrics at 345 GHz compared
to 230 GHz. Images at 86 GHz may show more changes, however,
as models may transition to becoming more optically and/or Fara-
day thick. Depending on the sensitivity of observations, spectral
index and rotation measures may provide additional insights and
constraints on BH and magnetic field properties. For example, Ricarte
et al. (2023c) show that spectral index is sensitive to inclination of
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Sgr Ax, and Ricarte et al. (2020) find that rotation measure can
provide insights toward magnetic field geometry and the ‘cold’
electron population. In all, though multiwavelength observations
and constraints are beyond the scope of this work, they represent
an interesting area for future work.

Our methodology is also limited in our approach to modelling and
inference. We have only considered one particular class of machine
learning algorithms, random forests, whose input we limit to pre-
defined image observables. Though random forests typically have
strong performance compared to other methods (see e.g. Caruana &
Niculescu-Mizil (2006) or Borisov et al. (2022)), other algorithms
could nevertheless learn different trends within the data and achieve
better predictive accuracy, particularly if they have access to a
broader set of image information. Though beyond the scope of a
this paper, deep neural networks in particular could learn much
richer polarimetric image features by not only learning trends
between the input data, but by learning the features themselves,
potentially discover new polarimetric observables the EHT can
target.

For simplicity, we have trained independent models for predicting
each property of interest. A combined model which simultaneously
predicts all properties at once can benefit from explicit mutual
information (for example, when training to predict spin, such a model
would not need to implicitly infer the inclination as an intermediate
step) and achieve improved performance over the models we have
presented in this work. However, such a model would be more
complex to train and interpret, and we leave this investigation to
future studies.

Finally, our posterior distributions are generated by sampling
uncertainty bounds on EHT observations. Though beyond the scope
of this paper, Bayesian models can generate posteriors by directly
and explicitly incorporating distributional uncertainty bounds from
observations. Future studies exploring Bayesian models to perform
inference with polarimetric data may be interesting to explore.

EHT polarimetric imaging has enabled new capabilities for black
hole accretion flow science on event horizon scales. The theoretical
interpretation of these images involves an enormous modelling space,
as detailed aspects of gravity, magnetohydrodynamics, and plasma
physics all play a role. Machine learning is ideal for bridging the gap
between these two rich data sets.

In the future, EHT will continue to observe Sgr Ax and M8&7x,
which as we have shown, will help reduce uncertainties in our
inferences related to the time variability of our sources. The ngEHT
will produce much more detailed maps with orders of magnitude
more dynamic range and a greater field of view that will enable
movies of both disc and jet. For these new data sets, additional
observable metrics will need to be devised that will be sensitive
to fainter and more detailed features. For this, parallel explorations
with neural networks synergize well with our approach. In general,
the small hand-picked set of observables we consider in our study
most likely misses informative aspects of our images that we have
not noticed. It is possible that there are other, more informative
observables that could further constrain our predictive distributions.
Notably, we have also not considered the time variability and
the frequency dependence of our models, which we expect could
provide a wealth of new constraining power. With the inclusion
of more observational data and improved modelling, the perfor-
mance of our random forest model is likely a lower limit to how
tightly we can constrain the properties of the largest SMBHs on
the sky.
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APPENDIX A: LONG TIME EVOLUTION OF
SIMULATIONS

One might expect that the scaling in M should be inversely
proportional to the decrease in M in the simulations. We examine this
possibility in Fig. A1 by comparing our intensity-fitted M scaling to
the direct logarithmic decrease in M. The scaling in M is a reasonable
approximation to M to first order, but does not capture all of the
variation in M scaling. This suggests there are more effects than
just M scaling at play. In particular, there may be fluctuations in
temperature and scaling in B> which are captured by M but not M.
Additionally, M may not trace the density in the emitting region
perfectly.

One of the primary motivations for generating this set of long
GRMHD simulations was to test whether any of the observables
change as these simulations evolve over long time-scales. Apart from
the expected decrease in the overall accretion rate associated with the
draining and relaxation of the torus, which we remove when imaging,
we do not find any evidence of significant time evolution. We show
distributions of observables for early and late snapshots in our M87x
library in Fig. A2; similarly we do not find any evidence of time
evolution within our resolved image observables. This bolsters our
confidence in results from simulations run for much shorter periods
of time.

APPENDIX B: COMPARISON TO EHT GRMHD
LIBRARY

As a validation test, we perform spin inference on an image library
ray-traced from an independent set of GRMHD simulations. In
particular, we use a subset of the M87x library first presented in
Event Horizon Telescope Collaboration (2021b). This validation
image library contains 1230 images at five spins (a, = {—0.94, —0.5,
0,0.5,0.94}) and six values of Ry (1, 10, 20, 40, 80, 160). As with
our KORAL image library, we flip the viewing inclination such that
the jet direction is consistent with observations of the orientation of
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Figure A1. Comparison of log-derivatives of M, fit directly from imaging,
and mass accretion rate, obtained directly from GRMHD simulations. Each
point represents a distinct time series with fixed spin, Rnigh, and observer
inclination. A small amount of horizontal jitter has been added purely for
visualization purposes.
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the jet. In particular, prograde and O spin models are ray traced at an
inclination of i = 163° and retrograde models with inclination of i =
17°.

We blur each image with a 20 pas Gaussian beam and calculate
the 11 observable image quantities described in Section 2.3. As
indicated by the feature importances shown in Fig. 18, the most
important feature for predicting the spin of M87x is f,. Thus, we
show a comparison of the distributions of |B,| and ZB, between
our KORAL image library and the Illinois image library in Fig. B1.
The distributions of |B;| and /B, are consistent between the two
image libraries, despite being generated from different GRMHD
models. Though not shown here, we observe similar consistency
with the other computed image observables. This suggests that our
chosen computed image observables are broadly consistent between
different GRMHD schemes. We note, however, that the initial
conditions of these simulations were both magnetized Fishbone &
Moncrief (1976) tori in hydrostatic equilibrium with initially dipolar
fields. It will be an important next step to explore the relative
consistency of simulations with different initial conditions.

Using our random forest model trained on our KORAL library
to predict spin, we perform inference on the spin of each image
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Figure A2. Distributions of each observable quantity for our M87: library, partitioned into early snapshots from the first third of each image sequence
(10000 GM/c? < t < 40000 GM/c?) and late snapshots from the final third (70 000 GM/c> < t < 100000 GM/c?). We note that because of the finite width kernel
used to compute the densities, the violin plots may extend beyond the true range of allowable values (e.g. [Z8;| > 7). We observe no significant time evolution

in the distributions of any observable quantity.
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of ag = £0.94 to a, = £0.9 for visual consistency. Though the libraries were
generated with independent GRMHD models, the distributions are generally
robust.
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Figure B2. Predictions of spin on the Illinois vl M87:x library using a
model trained on our KORAL M87x library. Despite being a different set
of GRMHD models, our model is able to recover the true spin values with
reasonable accuracy. We note that the model is limited to predicting values
within its training data, i.e. a, € [—0.9, 0.9], but the extreme spins in the
Illinois library are slightly beyond this range.

in the Illinois library. The distributions of predicted spin values
are shown in Fig. B2. We find that our model is able to recover
the true spins with high accuracy. Each of the five spin values
represented in the Illinois library is discriminated with little overlap
in the predictive distributions. This suggests that our model is not
overfitting to model-specific GRMHD and imaging parameters used
to generate our KORAL image library. Instead, our model is learning
more general underlying physical features robust to differences in
GRMHD schemes.

APPENDIX C: EFFECT OF VARYING Ry ow

We only consider R,y = 1 models in our analysis due to compu-
tational expense, and we consider this to be an important limitation
of our work. Here, we briefly explore the effect of varying Rjoy to
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10, a value that is also tested in previous EHT studies of M87x (e.g.
Event Horizon Telescope Collaboration 2021b; Fromm et al. 2022).
This is motivated by the fact that radiative cooling may be significant
enough in M87x% to warrant additional suppression of the electron
temperature in these models (e.g. MoScibrodzka et al. 2011; Ryan
et al. 2018; Chael et al. 2019).

We recompute M87x images with Rj,,, = 10 and all spins, but
with fixed Rpign = 160 and aligned magnetic field. We most carefully
examine f,, which is shown to be the most important observable in
this work. In Fig. C1, we plot distributions of |8,|, £8, for each
of these Ry, values as a function of spin. As expected, increasing
Riow (cooling the electrons) results in larger Faraday depths. This
is because Faraday rotation is less efficient at higher temperatures,
and these models need larger mass scalings in order to reproduce the
0.5Jy core flux of M87x. As a direct result, |B,| decreases as Rjoy
increases. Fortunately, although there are some small differences,
the distributions of £, are relatively robust. This is consistent with
Emami et al. (2022), who study the sensitivity of /8, to Faraday
rotation in detail and generally find small shifts for MAD models.
We might expect larger differences for SANE models, which tend
to be more Faraday thick (Moscibrodzka et al. 2016; Ricarte et al.
2020; Event Horizon Telescope Collaboration 2021b). Though not
shown, we observe a similar degree of stability in other Zf; modes
and depolarization in |8;|. While some differences remain, it is also
plausible that a random forest model trained on a complete library
of both R}y = 1 and Ry, = 10 models could learn to separate them
about as well as it does Ry, currently.

True a.

—-09 —-0.7 -0.5 -0.3 0.0 0.3 05 —0.7 —09

Riow =1

R|0W =10

m10?! 102

0.00 0.25 -—nm 0
B2 LB Faraday Depth

Figure C1. Distributions of 5 and Faraday depth for the Rjo = 1 M87x
library used in this paper and an Rjoy, = 10 M87:x library. All distributions
shown are restricted to Ryjgn = 160 and aligned magnetic fields. The
distributions of /3, are generally robust while | 8| is moderately suppressed
for Rjow = 10, due to the additional scrambling from increased Faraday depth.
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