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A B S T R A C T 

We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) 
targets Sgr A ∗ and M87 ∗, computed by performing general relativistic radiative transfer calculations on general relativistic 
magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to- 
electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked 

polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, 
inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle 
how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each 

observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as 
important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, 
for the real M87 ∗ data, our machinery fa v ours high-spin retrograde models with large ion-to-electron temperature ratios. Due 
to the time-variable nature of these targets, repeated polarimetric imaging will further impro v e model inference as the EHT and 

next-generation (EHT) continue to develop and monitor their targets. 

Key words: accretion, accretion discs – black hole physics – ( magnetohydrodynamics ) MHD – polarization – galaxies: individ- 
ual: (M87). 
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 INTRODUCTION  

upermassive black holes (SMBHs) are believed to reside at the 
entres of all or nearly all massive galaxies, some with masses of
illions of times that of the Sun (e.g. Kormendy & Richstone 1995 ;
ormendy & Ho 2013 ). In the past few years, the Event Horizon
elescope (EHT) collaboration produced the first resolved images 
f SMBHs, ushering in a new era of resolved SMBH astrophysics
Event Horizon Telescope Collaboration 2019a , b , c , d , e , f , 2021a ,
 , 2022a , b , c , d , e , f ). So far, published observations include both
patially resolved total intensity and linear polarization maps, while 
ircular polarization, spectral index maps, and rotation measure 
aps are anticipated. In the upcoming decade, the next-generation 
HT (ngEHT) will impro v e observing capabilities to include larger 
andwidths, additional stations, and additional frequencies. This 
ill enable the production of movies with orders of magnitude of
ynamic range that will simultaneously capture disc and jet dynamics 
Doeleman et al. 2019 ; Raymond et al. 2021 ). 

Spatially resolved polarimetric imaging of these SMBH accretion 
ows has allowed us to place constraints on aspects of the accretion
 E-mail: rqiu@college.harvard.edu 
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ow and the space–time that houses it. Theoretically interpreting 
hese data has usually involved generating computationally expensive 
ibraries of tens to hundreds of thousands of images originating from
eneral relativistic magnetohydrodynamic (GRMHD) simulations 
Event Horizon Telescope Collaboration 2019e , 2021b , 2022e ). To
ridge the gap between theory and observ ation, observ able quantities
re computed from each simulated image, which can be compared 
o the observations. This methodology has allowed the EHT collab- 
ration to conclude that M87 ∗ has dynamically important magnetic 
elds (Event Horizon Telescope Collaboration 2021a , b ), but this can
e both cumbersome and inefficient for finding physical trends span- 
ing a multidimensional parameter space. As our observational data 
ets grow more complex and the theoretical parameter space grows, 
onnecting data and theory will grow increasingly challenging. 

EHT data sit at an intersection between theories of gravity, mag-
etoh ydrodynamics, and plasma ph ysics, and thus many theoretical 
arameters can be jointly constrained. For each SMBH, one key 
nknown is its spin, henceforth denoted a • ∈ [ −1, 1], 1 its dimen-
ionless angular momentum (Kerr 1963 ). A SMBH’s spin mediates 
 We use a ne gativ e sign to denote a retrograde accretion disc, where the 
MBH and accretion disc angular momenta are anti-aligned. 
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Table 1. A non-e xhaustiv e list of observables achievable by the EHT or ngEHT as well as theoretical parameters one 
can constrain using a library of GRMHD simulations. Parameters considered in this study are shown in black, while 
additional parameters outside the scope of this work are written in grey. As both the observational data and our theoretical 
e xplorations e xpand, it is important to de vise ef ficient frame works to connect observ ational and theoretical parameters. 

Observable parameters Theoretical parameters 

Image size Black hole spin 
Image asymmetry Inclination 
Net linear polarization fraction Magnetic field polarity 
Net circular polarization fraction Ion-to-electron temperature ratio ( R high ) 
Resolved linear polarization morphology ( β j ) Magnetic field state 
Resolved linear polarization fraction Positron fraction 
Resolved circular polarization fraction Non-thermal electron distribution slope 
Rotation measure Disc tilt 
Spectral index Hydrogen-to-helium ratio 

b  

a  

o  

t  

B  

c  

P  

s  

H  

a  

l  

t  

s  

N  

b  

g  

N  

t  

n
 

p  

i  

i  

e  

m  

Y  

i  

o  

p  

R  

2  

o  

d  

c  

i  

K
 

s  

f  

c  

t  

o  

t  

2  

s  

2  

t  

e  

2  

D  

2  

2  

d  

m  

t  

r  

f  

p

a  

i  

s  

t  

S  

v  

a  

a  

p  

o  

R  

t  

t  

o  

E
 

a  

T  

m  

w  

a  

o  

t

2

W  

e  

w
(  

o  

f  

and magnetic field polarity from these observables. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/4/4867/7034345 by U
niversity of Arizona Library user on 02 January 2024
oth its accretion and feedback processes: the radiative efficiency of
 thin disc depends on the location of the innermost stable circular
rbit (e.g. Longair 2011 ), and spin can be extracted to power jets via
he magnetic analog of the Penrose process (Penrose & Floyd 1971 ;
landford & Znajek 1977 ). A SMBH’s spin also encodes its recent
osmic assembly history (e.g. Volonteri et al. 2005 ; Barausse 2012 ).
rolonged accretion via a thin disc that maintains its orientation can
pin a SMBH up to a maximum value of a • = 0.998 (Thorne 1974 ).
o we ver, thin disc accretion at random orientations will tend to spin
 SMBH down on average (e.g. King, Pringle & Hofmann 2008 ). At
ower Eddington rates when accretion discs become geometrically
hick, even prograde accretion can spin SMBHs down due to the
pin extraction required to power jets (Tchekhovsk o y, McKinney &
arayan 2012 ; Narayan et al. 2022 ). Spin is also directly impacted
y SMBH mergers, which may even dominate low-redshift SMBH
rowth in the most massive galaxies (Kulier et al. 2015 ; Ricarte &
atarajan 2018 ; Weinberger et al. 2018 ; Pacucci & Loeb 2020 ). For

hese reasons, constraining SMBH spins is a key science goal for the
gEHT (Ricarte et al. 2023b ). 
In addition to spin, EHT analyses also typically explore different

rescriptions for the electron temperature (described in more detail
n Section 2.2 ). In these rarified accretion flows, the mean free path
s much larger than the size scale of the system, causing ions and
lectrons to separate into a two-temperature plasma (Shapiro, Light-
an & Eardley 1976 ; Ichimaru 1977 ; Rees et al. 1982 ; Narayan &
i 1995 ; Yuan & Narayan 2014 ). Significant uncertainties still exist

n modelling the heating of electrons, which may be one or two
rders of magnitude cooler than the ions in regions where thermal
ressure dominates o v er magnetic pressure (S 

↪ 
adowski et al. 2017 ;

yan et al. 2018 ; Chael, Narayan & Johnson 2019 ; Mizuno et al.
021 ). Finally, while typically ignored, we also consider the polarity
f the magnetic field with respect to the angular momentum of the
isc. As we shall show, this can impart signatures onto both linear and
ircular polarization (see also Emami et al. 2022 ), and may provide
nsights into how the magnetic field is generated (Contopoulos &
azanas 1998 ; Contopoulos et al. 2022 ). 
In Table 1 , we provide a non-e xhaustiv e list of observational mea-

urements accessible to EHT on the left, and important parameters
or theoretical models on the right. We write those which we will
onsider in this study in black, and additional interesting observa-
ional constraints and theoretical explorations in grey. Additional
bservations include potentially both resolved and unresolved rota-
ion measure (e.g. Agol 2000 ; Quataert & Gruzinov 2000 ; Marrone
006 ; Kuo et al. 2014 ; Ricarte et al. 2020 ; Goddi et al. 2021 ) and
pectral index (e.g. Kim et al. 2018 ; Bower et al. 2019 ; Ricarte et al.
023c ), which require a significantly more e xpensiv e multifrequenc y
NRAS 520, 4867–4888 (2023) 
heoretical analysis. Meanwhile, GRMHD image libraries could be
xtended to include positrons (Anantua et al. 2020 ; Emami et al.
021 ), various implementations of non-thermal electrons (Mao,
exter & Quataert 2017 ; Davelaar et al. 2018 ; Cruz-Osorio et al.
022 ; Fromm et al. 2022 ; Event Horizon Telescope Collaboration
022e ), misaligned discs (Fragile et al. 2007 ; Liska et al. 2021 ), and
ifferent elemental abundances (Wong & Gammie 2022 ), all of which
ay have significant effects on the observables, but would balloon

he dimensionality of a theoretical inv estigation. F ortunately, the
ecent development of machine learning algorithms offers an efficient
ramework for connecting an increasingly burgeoning theoretical
arameter space to an increasingly rich observational data set. 
In this work, we first develop a no v el library of images for Sgr A ∗

nd M87 ∗ using a suite of MAD GRMHD simulations first presented
n Narayan et al. ( 2022 ). These simulations feature densely sampled
pin co v erage (nine values between ±0.9) and long run times (up
o ≈10 5 GM •/ c 3 , where G is the gravitational constant, M • is the
MBH mass, and c is the speed of light). Then, we compute a
 ariety of dif ferent observ able quantities obtainable by EHT studies
nd apply a machine learning model to identify trends that can
llow us to infer quantities such as spin, inclination, and R high , a
arameter associated with electron heating. Within the context of
ur incomplete library, we make estimates for M87 ∗’s values of a •,
 high , and magnetic field polarity. Perhaps more importantly than

he predictions themselves, we use the machine learning algorithm
o learn how each of the physical parameters is imprinted onto the
bservational data to provide insights for further development of the
HT and ngEHT. 
In Section 2 , we describe how our image library is generated

nd how quantities are computed for comparison with observations.
hen, in Section 3 , we develop a random forest machine learning
odel to analyse this library. We use this library to determine how
ell our model can infer a •, R high , and magnetic field polarity,

pply it to M87 ∗ constraints, and test the importance of repeated
bservations. Finally, we summarize and discuss the conclusions of
his study in Section 4 . 

 IMAGE  LIBRARY  

e consider GRMHD simulations of MAD accretion discs (Narayan
t al. 2022 ) and perform general relativistic radiative transfer (GRRT)
ith IPOLE to produce images appropriate for Sgr A ∗ and M87 ∗

Mo ́scibrodzka & Gammie 2018 ; Wong et al. 2022 ). We compute
bservable quantities from these images, then develop a random
orest machine learning model that can infer a •, R high , inclination,
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.1 GRMHD 

he GRMHD simulations used as the starting point of our calcula- 
ions are presented in Narayan et al. ( 2022 ). These simulations were
un with the code KORAL (S 

↪ 
adowski et al. 2013 , 2014 ), assuming

deal GRMHD, with an adiabatic index of 13/9, a compromise 
etween 5/3 (appropriate for the non-relativistic ions), and 4/3 
appropriate for the relativistic electrons). We use nine separate 
RMHD simulations, corresponding to different spins a • ∈ { −0.9, 
0.7, −0.5, −0.3, 0.0, 0.3, 0.5, 0.7, 0.9 } . These simulations feature
 resolution of 288 × 192 × 144 cells in the r , θ , and φ directions,
espectively, with an outer radial boundary of 10 5 GM •/ c 2 . They are
un in a modified version of Kerr–Schild coordinates that concentrate 
esolution in both the jet and mid-plane regions. These simulations 
re initialized with a standard Fishbone & Moncrief ( 1976 ) torus of
as seeded with a weak poloidal magnetic field that extends between 
0 GM •/ c 2 and 10 4 GM •/ c 2 . Gas is artificially inserted in the zero
ngular momentum observer (ZAMO) frame to maintain a ceiling 
n the plasma magnetization of σ ≤ 100. Each simulation was run 
or a duration of ≈10 5 GM •/ c 3 in search of evolution on long time-
cales. As we discuss in Appendix A , we do not find any significant
volution on these time-scales apart from an exponential decrease 
n the accretion rate attributable to the draining and relaxation of
he initial torus. This suggests that simulated images originating 
rom GRMHD are insensitive to the length of the simulation, up 
o 10 5 GM •/ c 3 , as long as the the y are sampled be yond the initial
elaxation phase. 

Each of these simulations quickly reaches the ‘Magnetically 
rrested Disc’ (MAD) state (Bisnovatyi-Kogan & Ruzmaikin 1974 ; 

gumenshchev, Narayan & Abramowicz 2003 ; Narayan, Igumen- 
hche v & Abramo wicz 2003 ), which is characterized by relatively
rdered and dynamically important magnetic fields with magnetic 
ux parameter φBH ∼ 30–50, where 

BH = 

√ 

4 π

2 
√ 

Ṁ 0 

∫ 
θ

∫ 
φ

| B 
r | r= r H 

√ −g d θ d φ (1) 

s the magnetic flux threading the horizon, normalized by the square- 
oot of the accretion rate (Tchekhovsk o y, Narayan & McKinney 
011 ). Here, Ṁ 0 is the mass accretion rate through the horizon, 
ocated at radius r H = 1 + 

√ 

1 − a •. In this work, we do not consider
Standard and Normal Evolution’ (SANE) models (Narayan et al. 
012 ; S 

↪ 
adowski et al. 2013 ), which are characterized by weaker

nd more turbulent magnetic fields. At present, MAD models are 
a v oured o v er SANEs by polarized EHT observations of M87 ∗
Event Horizon Telescope Collaboration 2021b ) and more naturally 
xplain flaring activity of Sgr A ∗ (Dexter et al. 2020 ; Porth et al.
021 ; Wielgus et al. 2022 ). 

.2 GRRT 

e create images in post-processing using the code IPOLE 

Mo ́scibrodzka & Gammie 2018 ), following standard methodology 
or library generation (Wong et al. 2022 ). Ideal GRMHD simulations
re scale free, and it is at the radiative transfer step where we
ust specify the mass, distance, accretion rate, viewing angle, and 

lectron distribution function. The SMBH mass determines the length 
nd time-scales for the problem. Meanwhile, the equations of ideal 
RMHD are invariant under the transformation 

�→ M ρ (2) 

 �→ M u (3) 

 �→ 

√ 

M B, (4) 
here ρ is the mass density, u is the thermal energy density, B
s the magnetic field strength, and M is an arbitrary mass-density
cale factor. We iteratively fit for M ( t) such that the average flux
t 230 GHz matches that of the observations. A no v el aspect of our
tting procedure is that rather than fitting for a single scalar, we allow
 to vary with time: we parametrize M ( t) = exp ( a + bt), where t

s time in gravitational units, and simultaneously fit for a and b . This
arametrization allows us to counteract the artificial decrease in flux 
hat occurs due to the draining and relaxation of the initial torus on
ong time-scales while preserving variability on short time-scales, 
iscussed in more detail in Appendix A . We fit M (t) to reproduce
n average flux of 0.5 and 2.4 Jy at 230 GHz for our M87 ∗ and Sgr
 ∗ libraries, respectively, consistent with Event Horizon Telescope 
ollaboration ( 2021b ) and Event Horizon Telescope Collaboration 
 2022e ). We imaged our M87 ∗ library with a field of view of 160 μas
nd an angular resolution of 0 . 4 μas . We imaged our Sgr A ∗ library
ith a field of view of 200 μas and an angular resolution of 0 . 5 μas .
As first defined by Mo ́scibrodzka, Falcke & Shiokawa ( 2016 ),

e set the ratio of ion to electron temperatures using the plasma
agnetization using the following prescription: 

 ≡ T ion 

T electron 
= R low 

1 

1 + β2 
+ R high 

β2 

1 + β2 
, (5) 

here R low and R high are dimensionless scalars and β = P gas / P mag 

s the ratio of the gas to magnetic pressure. Typically, β is smaller
n jet/funnel regions of a simulation compared to mid-plane regions. 
onsequently, increasing R high tends to mo v e emission from the mid-
lane to the jet/funnel, although the effect is much more dramatic
or SANE simulations than for MADs (Event Horizon Telescope 
ollaboration 2019e ). By cooling the mid-plane, increasing R high 

equires larger values of M to match the 230 GHz flux, and both
igher mass densities and lower temperatures result in larger Faraday 
otation depths. During ray-tracing, we zero the radiative transfer 
oefficients in any regions where the plasma magnetization σ > 1, 
here numerical floors may artifically inject material. 
From the nine GRMHD simulations, we generate two image 

ibraries, one for M87 ∗ and one for Sgr A ∗. Both libraries span
ix values of R high = { 1, 10, 20, 40, 80, 160 } . Although Event
orizon Telescope Collaboration ( 2021b ) considered both R low = 1

nd R low = 10, we limit our study to only R low = 1. We briefly test
he effect of varying R low in Appendix C for a subset of our M87 ∗

odels. Sgr A ∗’s inclination is presently not directly constrained, 
nd thus its library spans nine inclinations with i = { 10 ◦, 30 ◦, 50 ◦,
0 ◦, 90 ◦, 110 ◦, 130 ◦, 150 ◦, 170 ◦} . Meanwhile, M87 ∗’s large-scale
et and the orientation of its brightness asymmetry directly constrain 
ts inclination. Prograde and zero spin simulations in the M87 ∗
ibrary are imaged at i = 163 ◦ and retrograde spin simulations at
 = 17 ◦ in order to preserve the observed orientation of the bright-
ess asymmetry. Each parameter set is imaged at 901 simulation 
napshots from 10 000 GM •/ c 3 to 100 000 GM •/ c 3 uniformly spaced
00 GM •/ c 3 apart. It has recently been appreciated that the poloidal
agnetic field direction matters not only for circular polarization, 

ut also for the o v erall twisty morphology of linear polarization
icks (Emami et al. 2022 ). For the M87 ∗ library, we generate images
ith both polarities of the magnetic field, either aligned with the
isc angular momentum vector or anti-aligned (henceforth simply 
aligned’ or ‘anti-aligned’). We only compute the aligned case for 
gr A ∗ simply due to the increased computational expense, as this

ibrary contains far more inclinations. We summarize the parameter 
anges spanned by each of our libraries in Table 2 . 

In total, the M87 ∗ and Sgr A ∗ libraries have 97 308 and 437 886
mages, respectively. Figs 1 and 2 display representative images from 
MNRAS 520, 4867–4888 (2023) 
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Figure 1. Representative snapshots across the range of spins and R high in our M87 ∗ image library. Prograde and a • = 0 models are traced at inclination i = 

163 ◦, while retrograde models are traced at inclination i = 17 ◦. Here, the forward-jet is projected straight down, the mean brightness asymmetry appears on the 
left, and the flow rotates clockwise on the sky. All models plotted here have magnetic field polarities aligned with the outer disc angular momentum vector. Some 
images exhibit cavities from flux eruption events, which occur occasionally in MAD simulations. Each image is plotted in logarithmic scale with three orders of 
magnitude dynamic range, normalized individually. Models with small | a •| produce more radial inflows than models with large | a •| . Increasing R high typically 
suppresses disc flux relative to jet flux, but this effect is subtle for MAD models relative to SANEs (e.g. Event Horizon Telescope Collaboration 2019e ). 
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he M87 ∗ and Sgr A ∗ libraries, each presented in logarithmic scale.
he R high = 20 images in the Sgr A ∗ library were included in the
nalysis performed in Georgiev et al. ( 2022 ) (as image set C) and
vent Horizon Telescope Collaboration ( 2022e ), where they were

ound to be broadly consistent with other image libraries. In those
apers, only our library employed an exponential fit for M due to the
niquely long GRMHD time-scale probed. A smaller set of M87 ∗
mages created using this methodology were also used in Ricarte
t al. ( 2022 ) to study signatures of retrograde accretion flows. 

In Fig. 1 , we plot models with different values of a • and R high .
ll images are optically thin enough to feature a clear photon ring,

omposed of light making multiple orbits around the BH, and an inner
hadow. In logarithmic scale, one can discern thin streams of gas,
hich sometimes turn around in the retrograde case as explored in
icarte et al. ( 2022 ). The effect of varying R high in our MAD models

s quite subtle in total intensity, but as discussed in future sections,
s more noticeable in polarization. In Fig. 2 , we fix R high = 20,
ut display different inclinations. Compared to M87 ∗, these images
re more optically thick (see also Ricarte et al. 2023c ), but still
ptically thin enough to see the photon ring and inner shadow at all
nclinations. At large inclinations, emission from the jet funnel is

ore obvious and separable from the disc. Some snapshots such as
 • = 0.3 feature large cavities due to ‘flux eruption events,’ behaviour
haracteristic of the MAD state that is implicated in polarized flares
e.g. Tchekhovsk o y et al. 2011 ; Dexter et al. 2020 ; Porth et al. 2021 ;
NRAS 520, 4867–4888 (2023) 
hatterjee & Narayan 2022 ; Gelles et al. 2022 ; Ripperda et al. 2022 ;
ielgus et al. 2022 ). 

.3 Obser v able image quantities 

s described in Section 2.2 , our data set for analysis consists
f 535 194 images spanning four free parameters, each of which
ontains a wealth of information. Despite this large number of
mages, each of these parameters is sampled somewhat coarsely,
 problem that will inevitably grow more intractable as additional
arameters are considered. This moti v ates a machine learning model
o efficiently identify trends and make inferences about models. 

Since we still do not know all of the characteristics of polarized
mages that may carry useful information, several recent studies
ave trained deep convolutional neural networks on raw image data
irectly. van der Gucht et al. ( 2020 ) trained a Bayesian convolutional
eural networks to predict spin, inclination, R high , M , Ṁ , and
osition angle from a library of M87 ∗ images. Considering only
ANE models without polarization information, they found that at

he ∼20 μas resolution of the EHT, their models could accurately
eco v er M and Ṁ . Yao-Yu Lin et al. ( 2021 ) fine-tuned pretrained
onvolutional neural networks to predict accretion state (MAD or
ANE) and spin, both of which they showed can be reco v ered with
igh accuracy. Ho we ver, unlike v an der Gucht et al. ( 2020 ), they did
ot consider EHT resolution limitations. As a result, they found that

art/stad466_f1.eps
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Figure 2. Representative snapshots across the range of spins and inclinations in our Sgr A ∗ image library. Each image is plotted in logarithmic scale with three 
orders of magnitude dynamic range, normalized individually. Here, we show only R high = 20, but explore different inclinations. The same GRMHD snapshots 
are shown as in Fig. 1 . Compared to the M87 ∗ images, Sgr A ∗ images subtend a larger angle and tend to be more optically thick. 
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heir model honed in on lo w le vel surface brightness features, which
re not resolvable by the EHT at current resolutions. And like van
er Gucht et al. ( 2020 ), they only consider the total intensity image,
hile EHT observations include polarimetric data which have been 

hown to be important for discriminating between models (Event 
orizon Telescope Collaboration 2021b ). 
Our approach differs from these previous works in two key ways: 

i) our analysis include polarimetric information, and (ii) rather 
han working with raw image data, we first compute pre-processed 
bservables that the machine learning model receives as input. This 
pproach has several advantages o v er a neural network approach. 
irst, neural networks are notoriously difficult to interpret, and 
heir extreme model capacity may cause them to use untrustworthy 
spects of images for model discrimination, including numerical 
rtifacts or image details that are impossible to observe in practice.
ur methodology ensures that the model only sees information that 
e believe is both trustworthy and observable. Another significant 

dvantage of this methodology is that we can also directly rank
he importance of each observable in a straightforward and intuitive 
anner. On the other hand, the clear downside of our approach is that
e may not include important observables that we have not identified.
Based on previous EHT-related studies, we have identified the 

ollowing image integrated quantities as important, each computed 
fter first blurring images with a 20 μas Gaussian beam: 
MNRAS 520, 4867–4888 (2023) 
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(i) Total unresolved linear polarization fraction 

 m | net = 

√ (∑ 

j Q j 

)2 + 

(∑ 

j U j 

)2 

∑ 

j I j 
(6) 

(ii) Total unresolved signed circular polarization fraction 

 net = 

∑ 

j V j ∑ 

j I j 
(7) 

(iii) The first few modes (amplitudes and phases) of radially in-
e grated F ourier decompositions of the azimuthal linear polarization
attern: β j , j ∈ { 0, 1, 2, 3 } (Palumbo, Wong & Prather 2020 ) 
(iv) Image asymmetry, A (Medeiros et al. 2022 ) 
(v) Image size (the average of its major and minor axes of the total

ntensity image) 

Here, { I j , Q j , U j , V j } refer to the Stokes parameters computed
n pixel j . We note that the unresolved electric vector position
ngle (EVPA), defined east relative to the SMBH spin axis as

= 
1 
2 arctan 

∑ 

j U j ∑ 

j Q j 
, is related to ∠ β0 by χ = 

1 
2 ∠ β0 . Finally, we note

hat only ∠ β2 is invariant under rotation of the image. For M87 ∗, we
now the orientation of the jet on the sky observationally, and thus
ave an absolute reference for ∠ β0 , ∠ β1 , ∠ β3 . Ho we ver, for Sgr A ∗
or for a generic low-luminosity AGN ngEHT may observe in the
uture), we have no such prior knowledge at present. Thus, we use
 β1 as a reference angle and instead use in our machine learning

nalysis the rotation invariant quantities ∠ β
(Sgr A*) 
0 = ∠ β0 − 2 ∠ β1 

nd ∠ β
(Sgr A*) 
3 = ∠ β3 + ∠ β1 and omit ∠ β1 from our set of observ-

bles for Sgr A ∗. Similarly, Medeiros et al. ( 2022 ) calculate the image
symmetry across the mid-plane of the image, defined as orthogonal
elative to the SMBH spin axis, which they show robustly maximizes
he asymmetry across angles on the image. Thus, as we may not know
he SMBH spin axis a priori, we calculate the rotationally invariant
symmetry A 

(Sgr A ∗) = max θA ( θ ). 
The unresolved linear polarization fraction encodes information

bout the magnetic field geometry. In particular, it indirectly contains
nformation about symmetries in the geometry (e.g. due to cancel-
ations due to symmetries that flip the angle of polarization) and
crambling due to Faraday rotation. 

The unresolved circular polarization fraction is affected by (i)
irect circularly polarized synchrotron emission, (ii) Faraday con-
ersion that exchanges linear and circular polarization, (iii) Faraday
otation that can rotate or potentially scramble linear polarization
hat can be converted into circular (Wardle & Homan 2003 ). It is
ensitive to both the direction of the magnetic field and its o v erall
eometry (Ricarte, Qiu & Narayan 2021 ). Event Horizon Telescope
ollaboration ( 2021b ) found that some SANE models had too much
ircular polarization due to large F araday conv ersion depths. As we
hall show, the unresolved circular polarization fraction is one of the
ost important parameters for inferring the magnetic field’s polarity,

ince both the circular polarization emission coefficient and Faraday
otation coefficient switch sign upon a flip of the magnetic field,
ut the Faraday conversion coefficient does not (e.g. Dexter 2016 ;
andya et al. 2016 ). 
The resolved linear polarization structure of an image encodes

he structure of the near-horizon magnetic field. In particular, the
irection of polarized emission is perpendicular to the magnetic field
nd wav ev ector. The structure of linear polarization in the resolv ed
mage is complicated by Faraday rotation and relativistic effects, but
till encodes useful information about the magnetic field structure.
s such, we include the argument and magnitude of the 0th through
NRAS 520, 4867–4888 (2023) 
rd radially integrated Fourier modes of linear polarization ( β0 , β1 ,
2 , and β3 ). Notably, Palumbo et al. ( 2020 ) found that ‘twisty’ linear
olarization structure represented by ∠ β2 is highly discriminating
or spin within a library of M87 ∗ images. Likewise, Event Horizon
elescope Collaboration ( 2021b ) found that among all constraints,

imits on β2 are the most discriminating among various models. 
Beyond polarized image observables considered by Event Horizon

elescope Collaboration ( 2021b ), we also consider observables
hich characterize the resolved total intensity image: brightness

symmetry A and the mean second image moment. The brightness
symmetry in a resolved image is caused by Doppler beaming and
oosting which in turn capture information about the near-horizon
elocity of the accretion flow. As these are influenced by the viewer’s
bserving angle and spin of the black hole, brightness asymmetry
ay be a useful discriminant for these BH properties (Medeiros et al.

022 ). Similarly, the image size is influenced by both Doppler effects
s well as directly by observing inclination. Additionally, different
lectron heating prescriptions influence what regions of the accretion
ow and jet emit, so the image size may also help constrain the ion-

o-electron temperature ratio. 

.4 Distributions of obser v ables 

or each image, we compute the image-integrated observable quanti-
ies outlined in Section 2.3 . Before developing our machine learning

odel, we first briefly explore distributions of observables among
 few slices of the parameter space to gain an intuition of rele v ant
rends. 

.4.1 Varying spin 

n Fig. 3 , we first explore trends in our observables as a function of
pin. Here, we include only a subset of our Sgr A ∗ models, where
e have fixed i = 150 ◦ and R high = 40. Spin affects the dynamics of

he inflowing gas, which can be reflected in the polarization structure
nd Doppler boosting. 

Spin is imprinted onto the total intensity features that we have
elected somewhat weakly. First, larger prograde spins result in
maller image sizes. These models have the greatest Doppler beam-
ng, focusing the emission into a smaller region. The same physics
esults in larger brightness asymmetries for the prograde models
ompared to the retrogrades, consistent with Medeiros et al. ( 2022 ).
hese effects are more dramatic for more edge-on inclinations. 
Clearer trends are imprinted onto the polarization structure,

specially the β2 coefficient, as first noticed in Palumbo et al. ( 2020 ).
ecall that β2 describes the rotationally symmetric mode of a full
ourier decomposition of the emission. This mode is believed to trace

he underlying magnetic field structure, which in turn is affected by
rame dragging (Emami et al. 2022 ). In retrograde models, which
ave more complex emission morphologies the polarization structure
s inherently messier and thus | β j | is lower. For a fixed inclination,
ote that ∠ β2 flips sign for retrogrades compared to progrades,
ince the spin axis is pointed in the opposite direction with respect
o the observer. Meanwhile, the circular polarization distributions
 xhibit comple x trends that we caution are sensitive to all of the
ther parameters: inclination, R high , and magnetic field polarity. This
s because intrinsic emission and Faraday rotation switch sign as
he magnetic field polarity switches sign, but Faraday conversion
oes not. The relative importances of intrinsic emission and Faraday
onversion also depend on inclination and R high . 
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Figure 3. Distributions of observables among our Sgr A ∗ models with i = 150 ◦ and R high = 40 as a function of spin. At this inclination and R high , both the 
magnitude and phase of β2 trend strongly with spin. Note the strong evolution of β2 , which encodes the twisty morphology of linear polarization ticks. 
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.4.2 Varying R high 

n Fig. 4 , we no w v ary R high for a subset of the Sgr A ∗ models, keeping
xed a moderate prograde spin a • = 0.5 and observing inclination 
 = 10 ◦. Increasing R high tends to shift emission from the mid-plane
o the jet funnel, although the effect is not as pronounced for MADs
s it is for SANEs (Event Horizon Telescope Collaboration 2019e ). 

In total intensity, for this face-on model, R high = 1 models have
he largest sizes, since they light up disc material. Material in the
unnel is al w ays projected to relatively small image radius for this
nclination. Meanwhile, in polarization, first notice that | β j | tends 
o decreases with increasing R high . Models with larger R high have 
arger Faraday depths, as explored in Event Horizon Telescope 
ollaboration ( 2021b ). Colder electrons are more efficient at Faraday 

otation, and these models are also normalized to have higher density. 
ince | β j | is correlated with the image-averaged polarization, more 
araday rotation results in smaller | β j | . We also notice a very small
hift in ∠ β2 as a function of R high due to different amounts of Faraday
otation, first pointed out in Emami et al. ( 2022 ). As we shall show,
ince ∠ β2 is not too sensitive to R high at low inclination, it is a good
redictor of spin. Regarding circular polarization, greater values 
f R high lead to wider distributions of v net for this model, though
e suspect this will depend on the detailed interplay of Faraday 

onversion and intrinsic emission in any particular model. At higher 
nclinations, Faraday depth becomes more important, since emission 
ow must pass through colder disc material on the way to the camera.
e find that for larger viewing angles, increasing R high has more 

ramatic effects decreasing | β j | and scrambling their phases. 
.4.3 Varying inclination 

n Fig. 5 , we explore how our observables vary as a function of
nclination for the subset of our Sgr A ∗ images with a • = 0.9 and
 high = 20. Important physical ef fects that v ary with inclination

nclude the strength of Doppler beaming, and the evolution of the
adiative transfer coefficients that are sensitive to magnetic field 
irection with respect to the photon wav ev ector, especially j V and ρV ,
hich describe circularly polarized emission and Faraday rotation. 
In total intensity, we observe that edge-on inclinations lead to 

maller and more asymmetric images. Doppler boosting is most 
f fecti ve at edge-on inclinations, resulting in emission concentrated 
n a relatively small area on one side of the image. Note that the trend
ay be reversed for different models dominated by jet emission such

s large R high SANEs, which can be projected to a larger extent at
dge-on inclinations. 

There are several interesting trends in polarized quantities. Coun- 
erintuitively, | m | net is minimized for face-on inclinations at the same
ime that | β2 | is maximized. This is because this model is very
ymmetric in linear polarization when viewed face-on, leading to 
ancellation when the linear polarization is summed (e.g. Ricarte 
t al. 2023a ). Unsurprisingly, the rotationally symmetric β2 mode is 
trongest when viewing the disc face-on. Also, viewing the system 

rom the opposite side flips the handedness of the linear polarization
icks, which corresponds to a flip in the sign of ∠ β2 . Interestingly,
he amplitudes | β1, 3 | are highest at intermediate inclinations. As the
ystem is tilted away from face-on, the power in the rotationally
ymmetric mode spills onto nearby modes. In the distributions of 
MNRAS 520, 4867–4888 (2023) 
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Figure 4. Distributions of observables among our Sgr A ∗ models with a • = 0.5 and aligned magnetic field as a function of R high . Larger values of R high cool 
the mid-plane by construction. Models with larger R high have more jet emission and stronger Faraday effects. Models with larger R high therefore have more 
scrambled linear polarization patterns (weaker β mode amplitudes). Increased Faraday rotation and a shifted emission region also impart a subtle shift in β
mode arguments as R high increases. 
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 net , we see some moderate shifts as a function of inclination and a
ign flip when flipping the viewing angle. This is because the sign
f circular polarization from intrinsic emission and Faraday rotation
ip with the viewing angle. However, we caution that flipping the
iewing angle does not al w ays negate the circular polarized image
Ricarte et al. 2021 ). 

.4.4 Trends as a function of magnetic field polarity 

inally, in Fig. 6 , we explore the effect of flipping the magnetic field
olarity in the subset of our M87 ∗ models with a • = 0.9 ( i = 163 ◦)
nd R high = 40. Both the circular polarization emission coefficient
 V and the Faraday rotation coefficient ρV flip sign upon flipping the
agnetic field direction, leading to cascading effects. 
Although most quantities are insensitive to the magnetic field

olarity, we observe interesting shifts in v net and ∠ β2 . Interestingly,
he distribution of v net does not simply reflect across v net = 0 upon
ipping the magnetic field direction, but the nature of the distribution
hanges entirely. In this model, an aligned magnetic field polarity
ith the disc angular momentum results in v net > 0 almost al w ays,
hereas the anti-aligned case yields a more symmetric distribution.
s discussed in Ricarte et al. ( 2021 ), flipping the magnetic field
ips the circular polarization emission coefficient j V and the Faraday
otation coefficient ρV , but not the F araday conv ersion coefficient
Q . Depending on the model and magnetic field polarity, the circular
NRAS 520, 4867–4888 (2023) 
olarization from intrinsic emission and Faraday conversion may add
r cancel. This will be explored in much more detail using a library
f simulations in Joshi et al. (in prep.). 
A systematic shift occurs in ∠ β2 upon flipping the magnetic

eld, also explored in Emami et al. ( 2022 ). This occurs because the
agnetic field polarity imparts a systematic shift in all of the linear

olarization ticks due to Faraday rotation, which switches direction
pon flipping the field. 

 INFERRING  MODEL  PARAMETERS  WITH  

ACHINE  LEARNING  

sing the quantities described in Section 2.3 as predictors, we
erform regression on spin, inclination, R high , and magnetic field
olarity by building a random forest machine learning model.
enerically, we expect the functional relationship between these
uantities and spin to be complicated. Random forests are particularly
ell-suited for this task due to their ability to characterize arbitrarily

omplicated relationships (gi ven suf ficiently large data), relative
obustness against o v erfitting, and relativ e lack of hyperparameters
and therefore little hand-tuning needed to achieve strong predictive
erformance) (Breiman 2001 ). We give a brief o v erview of random
orests and their training algorithms here, but refer readers to Breiman
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Polarization ML 4875 

Figure 5. Distributions of observables among our Sgr A ∗ models with a • = 0.9 and R high = 20 as a function of inclination. For these models, flipping the viewing 
angle negates the distribution of v net . (We caution that this is not a generic result. Although Faraday rotation and intrinsic emission of circular polarization flip 
sign with flipped orientation, the Faraday conversion coefficient does not (Ricarte et al. 2021 ).) Doppler beaming concentrates emission into a smaller area at 
large inclinations (see also Event Horizon Telescope Collaboration 2022e ). Although one might expect increased Faraday rotation from the mid-plane projected 
into our line-of-sight to decrease | m | net as inclination increases, it instead increases because image symmetry causes cancellation at face-on inclinations. 
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 2001 ), Hastie, Tibshirani & Friedman ( 2009 ), Mehta et al. ( 2019 )
or a more detailed explanation. 

.1 Random forests 

 random forest is a collection of independently trained decision 
rees, which are commonly used in data mining to predict some 
arget value from a set of input variables. In our case, the target value

ay be a quantity such as spin that we w ould lik e to infer from
he input variables which are our observables. Each tree is given a
ootstrapped sample of the model images, which is then optimized 
o predict the target value. A separate forest is constructed for each
f the target values. 
We provide a schematic diagram of the training process for an 

ndividual tree in Fig. 7 , where training proceeds from left to right.
n this example, for simplicity, the target value is a boolean such as
agnetic field polarity, represented by red circles and blue crosses. 
e consider here only two input variables, v net and | m | net , and the

wo magnetic field polarities occupy two complicated regions in this 
pace. The decision tree is trained by making successive cuts in the
pace spanned by the input variables until a termination condition is
eached. In computer science parlance, we start at the root node and
ranch the tree by making cuts until we reach a termination condition, 
fter which each leaf node of the tree contains a prediction value for
he target variable. Specifically, the training algorithm iteratively 
nds the next best cut among all leaf nodes and updates the tree
y splitting the appropriate node. To do so, we consider all splits
cross all input variables, and add the split that maximizes the
ree’s impro v ement in performance, measured in terms of mean
quared predictive error (when performing regression) or Gini 
mpurity (Breiman et al. 1984 ) (when performing classification). For 
lassification tasks, the output value of a leaf node is a given class.
 or re gression, the value is the av erage output value of training data
oints in the corresponding region of the data space. In our example,
he fully trained tree’s predictions are perfect. 

Each tree in the random forest is different because it has seen
 different subset of the data. When using the random forest to
ake predictions, the predictions of each tree are aggre gated. F or

lassification, the aggregation method is majority vote, and for 
egression, the method is averaging. Collecting many individual 
earners to form a single, more robust algorithm in this way
s called bootstrap a g gregation . The advantage of this method
s that while each decision tree may o v erfit on its given train-
ng data set, the collection of trees formed by bootstrap ag-
regation is robust to o v erfitting, giv en enough trees (Breiman
001 ). 
MNRAS 520, 4867–4888 (2023) 
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Figure 6. Distributions of observables among our M87 ∗ models with a • = 0.9 and R high = 40 as a function of magnetic field polarity with respect to the 
disc angular momentum vector, which is either aligned or anti-aligned. While most distributions are identical, there are noticeable shifts in v net and ∠ β2 . Note 
that the distribution of v net does not simply flip across v net = 0. This is because flipping the magnetic field direction flips the Faraday rotation and circular 
polarization emissivity coefficients, but not the Faraday conversion coefficient (see Ricarte et al. 2021 , for more detail). Meanwhile, the noticeable shift in β2 

can be explained entirely by Faraday rotation. A magnetic field pointing towards us rotates linear polarization ticks counter-clockwise, and vice-versa for a field 
pointing away from us. 
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For our libraries, we partition each image time series into an
0–20 per cent training-testing split, partitioned chronologically to
 v oid autocorrelation between training and testing data sets. On our
raining data sets, we fit random forests to predict spin, inclination
Sgr A ∗ only), log R high , and B -field direction (for M87 ∗ only) using
cikit-learn (Pedregosa et al. 2011 ). When predicting on spin, R high ,
nd inclination, we used a regression forest and fit to minimize mean
quared error. For predicting the magnetic field polarity, which is a
oolean instead of a continuous quantity, we used a classification
orest and used Gini impurity as our criterion. We train forests with
00 trees each with a minimum of eight data points to split a node. We
elected each of these parameters following a grid-based parameter
weep but found that our results were robust to moderate deviations
n the number of trees and minimum split. 

We present a schematic diagram of our methodology as a whole in
ig. 8 . First, an image library is created of M87 ∗ and Sgr A ∗ models
sing the GRRT code IPOLE . From these images, we compute tables
f observables that we believe are observable and robust. We use
he first 80 per cent of these values chronologically for training, and
eserve the last 20 per cent for testing. For the training set, we build
andom forests to predict spin, inclination, R high , and magnetic field
olarity . Finally , we apply these random forests to the unseen data to
 v aluate performance. 
NRAS 520, 4867–4888 (2023) 

i  
.2 Random forest model performance 

fter training a given model, we perform inference on our test
ibrary for the rele v ant predicted quantity to produce a predicted test
istribution. We sho w predicti ve distributions for our Sgr A ∗ library
n spin, inclination, and R high in Figs 9 , 10 , and 11 , respectively,
nd we show the predictive distribution for our M87 ∗ library in B -
eld direction in Fig. 12 . As outlined in Section 3.1 , each predictive
istribution represents the output of a different random forest model
or each inferred quantity, though each random forest sees the same
et of computed observables for training. We note that in general, we
xpect that for extreme values in the predictive range (e.g. a • =
0.9), we expect our models to systematically predict closer to

he o v erall mean because the predicted values are an average of
ndividual decision tree outputs which cannot exceed the extreme
alues in the predictive distribution. 

For spin, the predicted distributions for prograde, retrograde, and
ero-spin models share very little overlap, indicating high model
onfidence in distinguishing each of these cases. Ho we ver, there
s substantial o v erlap among prograde and retrograde spins with
ifferent | a •| . Notably, the predicted distributions for a • = { −0.9,
0.7, −0.5 } are nearly indistinguishable, indicating that for Sgr A ∗,

he model cannot discriminate well between high retrograde spin
mages, whereas it can discriminate more meaningfully between

art/stad466_f6.eps


Polarization ML 4877 

MNRAS 520, 4867–4888 (2023) 

...

Figure 7. A schematic diagram of the iterative training process of a single decision tree on a toy data set. At every iteration, the decision tree training algorithm 

considers adding a ‘split’ in every variable of the input data set (in this case | m | net or v net , but in general we consider all 11 observables) between all values of that 
v ariable. Across all v ariables and split locations, the decision tree chooses the split according to a particular criterion. For classification tasks, a typical criterion 
is maximizing the difference in Gini impurity before and after the split. For regression, minimizing the mean squared error is typical. After the split, the newly 
created leaf nodes are assigned new output values. The training algorithm iteratively splits nodes until reaching some stopping criteria. In this paper, we stop 
training when the number of data points represented by a given leaf node in the tree is less than 8. For simplicity, in this diagram, we show a binary classification 
task (categorizing data points as either red circles or blue crosses), but the algorithm generalizes in a straightforw ard w ay to regression. In particular, rather than 
having the output value of each leaf node be the majority class in a given region, the output value is the avera g e value of data points in a given region. 

...

...

... ... ...

...

Bootstrap Resample &
Train Random Forest

...

...

Compute Observables and Split Test/Train Data

Predict on
Test Set

Image
Library

Random Forest Model

Figure 8. A schematic diagram of the methodology of Sections 2 and 3 . Starting in the top left, we show that we have generated a large image library, 
as described in Section 2.2 . Then, for each image, we compute a set of observables after blurring the image with a 20 μas Gaussian beam, as described in 
Section 2.3 . We split the images into training data and testing data for the machine learning model and use the former to train random forest models to predict 
quantities of interest (for instance a •), described in Section 3.1 . Finally, we predict the same quantities of interest for the unseen test images and show the 
predicted distributions, per Section 3.2 . 
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Figure 9. Predicted distributions of spin on unseen Sgr A ∗ models by our 
random forest as a function of true spin (indicated by colour). The model can 
successfully make meaningful predictions and almost al w ays distinguishes 
progrades from retrogrades. For high spins, the distributions are biased 
to wards lo wer v alues, due in part to our method of averaging tree predictions. 

Figure 10. Distributions of predicted inclination for unseen data on the Sgr 
A ∗ random forest model. Colour indicates true inclination. 
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Figure 11. Distributions of predicted R high for unseen data on the Sgr A ∗
random forest model. Colour indicates true R high value, which is again well- 
predicted with biases towards more central values. We train and predict values 
of logarithmic R high , as reflected by the horizontal axis. 

Figure 12. Categorical distributions of predicted B -field alignment for 
unseen data on the M87 ∗ random forest model. 
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igh prograde spins. We also find that our model performs slightly
etter for predicting spin at face-on inclinations than edge-on, likely
ecause β2 is stronger and more discriminating for different values
f spin at face-on inclinations. 
Our random forest model is more successful at predicting inclina-

ion of our Sgr A ∗ models. In Fig. 10 , the predictive distributions for
ach inclination captured by our library have clearly distinguished
eaks centreed at their true inclination v alues. Ho we ver, each predic-
ive distribution still contains a long tail which deviates substantially
rom the true value, likely due to time variability and turbulence in
hese models. 

Our random forest model can also meaningfully infer R high , shown
n Fig. 11 . As mentioned in Section 3.1 , we train and predict on
og R high , reflected in Fig. 11 . The predictive distributions contain
ubstantial o v erlap with adjacent values of R high but large differences
n R high are well distinguished (for instance, R high = 10 and 80). We
ote that the wide distribution of R high = 1 is likely because our
ibrary does not contain intermediate values between R high = 1 and
0, which is a larger gap in log-space than the rest of the values of
 high captured by our library. 
Lastly in Fig. 12 , we plot the binary predictive distributions

f the B -field direction. Unlike the other models, which perform
egression, our model for predicting the B -field alignment performs
NRAS 520, 4867–4888 (2023) 
inary classification. Our model is weakly able to discriminate B -
eld direction, predicting the correct alignment for about 70 per cent
f test images. 

.3 Interpreting model predictions 

e can use machine learning interpretability tools to provide expla-
ations for our individual predictions. SHapely Additive exPlana-
ions (SHAP) is a recently proposed interpretability tool which has
uickly gained popularity (Lundberg & Lee 2017 ). SHAP borrows
deas from coalition game theory to unify sev eral e xisting frame-
orks for local model interpretability while improving theoretical
uarantees on the explanations. 
Briefly, SHAP unpacks individual model predictions by attributing

 SHAP value to each feature (observable, in our case) for every
odel prediction. A feature’s SHAP value represents its contribution

owards the o v erall model prediction. The SHAP values across all
eatures for a given prediction sum to the difference between (i) the
ean prediction o v er the entire data set (e.g. a • = 0 or i = 90 ◦) and

ii) the model prediction on that individual image. 
Consider a model f ( x ) that makes a prediction as a function of data

 . Let R be an ordering of features, and let R be the set of all possible
rderings. The SHAP value of feature i on model f at data point x is
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Figure 13. For each image feature, we visualize the distribution of its SHAP 
values for predicting spin. Each point represents one image in the testing set of 
the Sgr A ∗ library. Since each feature has different numerical values, colours 
encode the relative value of each feature compared to the full range that it 
spans. F or e xample, for ∠ β2 , the bluest points correspond to −π and the 
reddest points correspond to π. As discussed in the text, the larger the SHAP 
value, the larger impact of this value on predicting the spin. The vertical 
width of each distribution corresponds to the frequency of images with that 
particular SHAP value. 

Figure 14. Distribution of SHAP values for predicting spin, showing the 
interaction between asymmetry and | β2 | . Large values of asymmetry push the 
prediction towards higher values of spin, due to Doppler beaming. Then, for 
a gi ven v alue of asymmetry, larger v alues of | β2 | imply larger spin values for 
more symmetric systems, or lower spin values for more symmetric systems. 
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iven as follows Lundberg & Lee ( 2017 ): 

HAP i ( f , x ) = 

1 

| R | 
∑ 

R∈ R 

[
f x 
(
P 

R 
i ∪ i 

) − f x 
(
P 

R 
i 

)]
, (8) 

here P 
R 
i is the set of features in ordering R that come before (and

xclude) feature i , P 
R 
i ∪ i is the set of all features that come before

nd include feature i , and | R | = M!, where M is the number of input
eatures of the model. f x ( S ) for some set of features S is given by
 x ( S ) = E [ f ( x ) | x S ], where f ( x ) is the model prediction on data point
 and x S is the subset of x with only features in S ; thus f x ( S ) is the
verage model prediction on data point x with only the features in
 . For tree-based models, f x ( S ) is calculated in low-order polynomial
ime by the algorithm given in Lundberg et al. ( 2020 ). 

Heuristically, the SHAP value for a given feature and prediction is
ow much the individual feature value ‘pushes’ the o v erall model
rediction on a given image relative to predictions without that 
eature. F or e xample, consider our model trained on our Sgr A ∗
ibrary to predict spin. For every image in the test library, we can
ompute a SHAP value for each observable. If a given image has
 β2 = −π/ 2 and we calculate that the ∠ β2 SHAP value is 0.4, then

ompared to model predictions on subsets of input features without 
 β2 , adding ∠ β2 = −π/ 2 to the set of input features increases
ur model’s predicted value of spin by an average of 0.4 for that
mage. The larger the magnitude of the SHAP value is for a given
eature and prediction, the more important that feature is towards 
he final model output. In Section 3.4 , we discuss using the mean
bsolute SHAP value of a given feature across the test data set as
 feature importance measure in more detail. For more details, we 
efer readers to Lundberg & Lee ( 2017 ) and Molnar ( 2022 ). Lastly,
e note that SHAP values are in general exponentially costly to 

alculate for any given machine learning algorithm. Ho we ver, for
ree-based algorithms, they can be computed in polynomial time 
sing the TreeSHAP algorithm (Lundberg et al. 2020 ), which exploits 
he branching structure of the trees to cache and a v oid redundant
omputations. 

We show distributions of test library SHAP values for each feature 
or our Sgr A ∗ spin model in Fig. 13 . We remind readers that, as
escribed in Section 2.3 , since the orientation of the spin axis of Sgr
 ∗ projected on the sky is presently unknown, we anchor ∠ β0, 2, 3 

o ∠ β1 , and thus ∠ β1 is omitted from Fig. 13 . Note that unlike in
ig. 3 , where we fix a particular value of viewing inclination and R high ,
ig. 13 includes SHAP values across the full parameter space of the

ibrary. Thus, these trends are not specific to particular inclinations or
 high values. Each feature has different numerical values, so they are 
olour-coded based on their position within the full range of values 
panned by that feature in the test library. Some features have SHAP
alues clustered around 0, and therefore do not have much impact 
n a spin prediction, such as | β1 | , EVPA, and ∠ β3 . On the other
and, β2 and A stand out as important due to their comparably large
HAP v alues. As sho wn in Fig. 3 and Medeiros et al. ( 2022 ), we
enerally expect that large values of asymmetry correspond to high 
rograde spins due to Doppler beaming. Meanwhile, β2 encodes 
oth the magnetic field’s geometry and relative order in its phase and
mplitude, respectively. 

We dig deeper into the interaction between A and | β2 | in Fig. 14 ,
here we plot the distribution of spin SHAP values as a function
f A , colour-coded by | β2 | . We observe that asymmetry SHAP
alues appear to increase monotonically with asymmetry, with 
ore common low asymmetry values having moderately ne gativ e 
HAP values amd less common large asymmetry values having 
igh positi ve SHAP v alues. This indicates that while the bulk of
mages have moderate asymmetry values that the model weakly 
ssoicates with more ne gativ e spins, v ery high asymmetry values
re associated with substantially more positive spin predictions. 
o we ver, high-asymmetry v alues can occur across a large range
f prograde spins. We see that | β2 | seems to mediate the SHAP
alue for a given asymmetry value. For small asymmetry val- 
es, lo w v alues of | β2 | push for more negati ve predictions of
pin, but this relationship inverts for large asymmetry values, 
here lo wer v alues of | β2 | result in more positi ve predictions of 

pin. 
MNRAS 520, 4867–4888 (2023) 
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Figure 15. Distribution of SHAP values for predicting spin, showing the 
interaction between ∠ β2 and | β2 | . The model learns to associate images 
with ∠ β2 ≈ 0 (more radial EVPA patterns, and therefore more toroidal 
magnetic fields) with prograde spins and ∠ β2 ≈ ±π with retrograde spins 
(more toroidal EVPA patterns, and therefore more radial magnetic fields). | β2 | 
carries similar information, since it declines for messy retrograde systems. 

Figure 16. Distribution of SHAP values for predicting inclination, showing 
the interaction between ∠ β2 and | β2 | . First, the model can use the sign 
of ∠ β2 to distinguish whether or not the inclination is greater than or less 
than the mean value of 90 ◦. This is because by construction the sign of 
∠ β2 distinguishes clockwise from counterclockwise linear polarization ticks. 
Then, larger values of | β2 | imply more face-on viewing angles. This is because 
face-on viewing angles result in more rotationally symmetric images. 

 

|  

p  

a  

p  

i  

h  

g  

∠
 

|  

b  

v  

i  

v  

n  

h  

t  

l  

T  

t  

i  

i

3

I  

g  

t  

e  

p  

f
 

c  

d  

a  

e  

c  

p
 

i  

T  

o

R

w  

t  

y  

f  

t  

r  

f  

t  

h  

r
 

s  

f  

W  

s  

s  

∠
h  

s  

r  

w  

t  

S  

t
 

a  

t
c  

g  

r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/4/4867/7034345 by U
niversity of Arizona Library user on 02 January 2024
In Fig. 15 , we now examine the interaction between ∠ β2 and
 β2 | . We see a wide distribution of SHAP values, with more extreme
hases (i.e. closer to −π and π ) yielding ne gativ e SHAP values
nd more moderate phases (i.e. closer to ∠ β2 = 0) giving more
ositi ve SHAP v alues. Referring back to wards Fig. 3 , this model
nference stems from the phenomenon that high prograde spin images
ave narrow 0-centred distributions in ∠ β2 whereas high retro-
rade spin models have distributions centred more closely around
 β2 = ±π. 
Finally in Fig. 16 , we examine the relationship between ∠ β2 and

 β2 | for predicting inclination. We observe a distinct bifurcation
ased on the sign of ∠ β2 . For ∠ β2 > 0, the corresponding SHAP
alues are ne gativ e, meaning the model is pushed towards predicting
nclinations closer to 0 ◦. Conversely, for ∠ β2 < 0, the SHAP
NRAS 520, 4867–4888 (2023) 
alues are positive, and the model prefers predicting inclinations
ear 180 ◦. This is because the sign of ∠ β2 directly encodes the
andedness of the spiral EVPA structure, which flips if you flip
he viewing angle. Further, the gradient of | β2 | demonstrates that
arger values of | β2 | lead to more face-on inclination predictions.
his statistical relationship learned by our model is consistent with

he trend observed in the distribution of quantities as a function of
nclination (see Fig. 5 ), and for which we provide physical moti v ation
n Section 2.4 . 

.4 Feature importances 

n addition to explanations of individual predictions based on a
iven image’s computed observable values, we can also examine
he distribution of predictions and assess the o v erall importance of
ach image observable across testing libraries for each model. In
articular, we consider SHAP feature importances and permutation
eature importances. 

To compute the importance of a feature using SHAP values, we
ompute SHAP values for that feature on every image in the testing
istribution (e.g. Fig. 13 ). Then, the feature importance is the mean
bsolute SHAP value for that feature across the test library (Lundberg
t al. 2020 ). Intuiti vely, this is a sensible metric as large SHAP v alues
orrespond to a given feature having a large influence on the model
rediction for an individual image. 
As a simpler alternative, we also calculate a permutation feature

mportance (Breiman 2001 ) for each library and image observable.
o do so, we first compute a reference pseudo- R 

2 score o v er the set
f testing predictions, defined as: 

 
2 = 1 −

∑ 

j ( y j − ˆ y j ) 2 ∑ 

j ( y j − y ) 2 
, (9) 

here j inde x es o v er images, y j is the true value (e.g. the true spin or
rue inclination) for image j , ̂  y j is the model prediction on image j , and
 is the mean value of y j o v er all images. To compute the permutation
eature importance for observable quantity x , we randomly shuffle
he order of the computed x in the test library while holding the
emaining observables fixed. Then, we compute the new R 

2 value
or our shuffled data set and calculate the feature importance as
he decrease from our reference R 

2 . Essentially, this procedure tests
ow much the model’s predictions worsen if one of the features is
emo v ed. 

In Fig. 17 , we show normalized feature importances (such that the
um of importances sum to 1 for SHAP and permutation methods)
or each Sgr A ∗ model in predicting spin, inclination, and R high .

e remind readers that, as in Fig. 13 and described in Section 2.3 ,
ince the orientation of the spin axis of Sgr A ∗ projected onto the
ky is presently unknown, we anchor ∠ β0, 2, 3 to ∠ β1 , and thus
 β1 is omitted from Fig. 17 . For predicting spin, | β2 | and ∠ β2 

ave the greatest feature importances, followed by asymmetry and
ize. The remaining features hav e relativ ely low importances. The
eason for these feature importance trends is evident in Fig. 3 ,
here we observe that both | β2 | and ∠ β2 trend with a • with fairly

ight distributions with minimal o v erlap for different values of a •.
imilarly, the distribution of A gets wider at higher prograde spins,

hough with more o v erlap at differing values of a •. 
For inclination, Fig. 17 shows that ∠ β2 is highly important, | β2 |

nd v net are moderately important, and all other observables are rela-
i vely unimportant. Looking to wards Fig. 5 , we see that sign of ∠ β2 

leanly indicates whether i > 90 ◦ or i < 90 ◦. This is the largest segre-
ation in terms of absolute error so both feature importance methods
ank ∠ β2 as the most important observable. We also observe that v net 
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Figure 17. Permutation and SHAP feature importances among our Sgr A ∗
models for inferring a •, i , and R high , where larger values correspond to greater 
importance. Here, feature importance values are normalized such that the sum 

of all feature importances for a given model and method sum to unity. 
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Figure 18. Permutation and SHAP feature importances among our M87 ∗
models for inferring a •, the magnetic field alignment, and R high , where larger 
values correspond to greater importance. Here, feature importance values are 
normalized such that the sum of all feature importances for a given model 
and method sum to unity. 

 

v  

t
s  

b
f

3

S  

s
f  

m
e  

S
l

 

i
 

a

t  

l
r

 

W
n
b
a
B
c  

i
a  

o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/4/4867/7034345 by U
niversity of Arizona Library user on 02 January 2024
lays a similar role but does not discriminate as cleanly. Once i > 90 ◦

r i < 90 ◦ is known, | β2 | can be used to determine | i − 90 ◦| , which
ollows from the distributions of observables shown in Fig. 5 and our
xamination of SHAP values in Section 3.3 (particularly Fig. 16 ). 

Looking towards R high , we find that | β2 | and ∠ β2 remain among the
ost important features. Fig. 4 suggests that | β2 | in particular trends

trongly with R high . As also explored in Event Horizon Telescope Col-
aboration ( 2021b ), models with larger R high have larger Faraday ro-
ation depths, leading to more scrambling, and therefore smaller | β2 | .
o we ver, we also find more disagreement between our two feature

mportance methods and that generally more features are important. 
ince the ‘importance’ of a feature is not well-defined, we do not nec-
ssarily expect agreement between differen feature importance meth- 
ds. In this case, the disagreement may suggest that inferring R high 

s a more difficult and messy problem, and that R high changes images
n many different ways. The SHAP distributions of R high (not shown) 
uggest our model learns to infer complex higher-dimensional 
elationships among input features, some of which are likely used to 
ndirectly infer the spin and inclination of a particular image. 

In Fig. 18 , we show permutation and SHAP feature importances for 
ach of our M87 ∗ models predicting spin, R high , and B -field direction.
or a •, we observe similar trends to Sgr A ∗ with the exception that the
symmetry A is no longer important. This is because our M87 ∗ model
s fixed at observing inclinations of 163 ◦ and 17 ◦ and asymmetry 
iscriminates most strongly for inclinations closer to edge-on. For 
87 ∗, the distributions of asymmetry as a function of spin o v erlap

early entirely, unlike that for Sgr A ∗ even at moderately edge-on 
nclinations, such as that shown in Fig. 3 . We also disco v er that
 β1 plays an important role in discriminating spin for M87 ∗. This

s because we observe a shift in ∠ β1 as a function of inclination
e x emplified by the same in Sgr A ∗, shown in Fig. 5 ), which for our

87 ∗ library indirectly distinguishes progrades from retrogrades. 
F or R high , we observ e fewer highly important features compared

o Sgr A ∗ but similar general trends. In particular, | β2 | remains the
ost important feature. Ho we ver, for M87 ∗, again because we fix the

nclination, we find that | β2 | and v net are alone sufficient to capture a
trong trend in R high without needing to implicitly infer intermediate 
uantities such as viewing inclination as is the case for Sgr A ∗. 
Finally, for the magnetic field alignment, we find that ∠ β2 and
 net are the most important quantities. This is unsurprising, as these
wo quantities track most strongly with magnetic field alignment, as 
hown in Fig. 6 . The model finds ∠ β2 more important that v net , likely
ecause the discrimination between the distributions is more distinct 
or ∠ β2 . 

.5 Repeated polarimetric obser v ations 

o far, all of our model predictions have involved only a single
napshot of information. The EHT has already observed its targets 
or multiple (unpublished) epochs and will continue to do so. We train
odels on varying amounts of sampled information to simulate the 

f fect of v arying EHT resolving po wer and polarimetric capabilities.
pecifically, we simulate the following scenarios with our M87 ∗

ibrary: 

(i) Spatially unresolved: Only | m | net and v net included. 
(ii) Resolved, no polarimetry: | m | net , v net , asymmetry, and second

mage moment. 
(iii) Resoled, full polarimetry: All image features, viz., | m | net , v net ,

symmetry, second image moment, | β j | and ∠ β j , j ∈ { 0, 1, 2, 3 } . 
(iv) Resolv ed, full polarimetry, fiv e observations: All image fea- 

ures as abo v e but with fiv e random snapshots dra wn from the same
ibrary. Independent samples are drawn with replacement and without 
egard to order. 

Predictions on the corresponding test libraries are shown in Fig. 19 .
ith spatially unresolved information alone, the model can produce 

o meaningful predictions on spin. With resolved images, the model 
egins to weakly separate spin-zero images from prograde images, 
nd can more strongly separate out prograde and retrograde images. 
y introducing spatially resolved polarimetry, suddenly the model 
an distinguish different individual spins but with substantial o v erlap
n the predicted test library distributions. Note that these predictions 
re much better than for Sgr A ∗ (Fig. 9 ) due to the known inclination
f M87 ∗. Finally, with five observations, we see substantially 
MNRAS 520, 4867–4888 (2023) 
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Figure 19. Random forest predicted distributions of spin for increasing amounts of information available from our M87 ∗ models, as described in more detail 
in Section 3.5 . Spatially resolved polarimetric information (panels 3 and 4), in particular β2 , is essential for inferring spin, since this encodes the magnetic 
field geometry. All observables fluctuate around their mean values due to turbulence in the accretion flow. Predicted distributions grow narrower if multiple 
independent epochs are observed (panel 4), moti v ating continued monitoring of EHT sources. 
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ore distinct separation between spins, moti v ating repeated EHT
bservations of M87 ∗ and Sgr A ∗. 

.6 Inter preting obser v ations of M87 ∗
e take allowable parameter ranges of various observables for M87 ∗

rom Event Horizon Telescope Collaboration ( 2021b ) and Event
orizon Telescope Collaboration ( 2019d ) (for the image size), as

isted in Table 3 , and e v aluate them against our M87 ∗ image
ibrary. Of the 97 308 images in the library, a mere 154 images
all within the allowable constraints. Of the passing images, 133 are
rom retrograde models, 13 have a • = 0, and eight are prograde
odels. All but two images have R high ≥ 80. Three models have
ore than 15 passing images. Two are consistent with EHTC Paper
III: a • = −0.5 and R high = 160 with aligned magnetic field and
 • = −0.7, R high = 160 with aligned magnetic field. The third, with
 • = −0.3 and R high = 160, has an accretion flow anti-aligned B -
eld, and therefore falls outside of the scope of the EHTC Paper VIII
nalysis. 

We also use the allowable parameter ranges as inputs to our
andom forest models and generate posterior distributions of the
pin, R high , and magnetic field polarity of M87 ∗. We assume a
niform distribution as a prior o v er the allowable parameter ranges
NRAS 520, 4867–4888 (2023) 
n each observable quantity. We further assume independence of
ach constraint and take our joint prior o v er all constraints to be
ndependent in each quantity. We sample our joint prior to form a
arge test distribution of possible M87 ∗ observables. We train random
orest models on our ray-traced library of M87 ∗ observables, but in
ontrast to the models described earlier in Section 3.1 , we exclude β0 ,
1 , and β3 information as EHT papers VII and VIII do not constrain

hese observables. 
After training, we ask our random forest models to predict spin,

 high , and the B -field alignment o v er each test distribution; these pre-
ictions are shown in Figs 20 , 21 , and 22 , respectively, in red. These
redicti ve distributions sho w that we generally prefer high retrograde
pins between a • = −0.7 and a • = −0.4 with some density around
 • = 0. We also generally prefer large values of R high , with some
ensity near R high = 20 and R high = 80. Both of these distributions are
enerally consistent with the conclusions of Event Horizon Telescope
ollaboration ( 2021b ). Finally, looking at predictions of the B -field
irection, our model weakly prefers accretion-aligned B -fields with
74 per cent of predictions suggesting an aligned B -field. We also

ote that though we present results starting from uniform priors o v er
he allowable parameter space, we have found that the choice of
rior does not substantially affect the predicted distribution of each
uantity. 
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Table 2. A summary of the GRMHD and imaging parameters spanned by our M87 ∗ and Sgr A ∗ libraries. Compared 
to the Event Horizon Telescope Collaboration ( 2021b ) library for M87 ∗, we consider more spins, slightly more values 
of R high , and both polarities of the magnetic field, but only one value of R low . 

Parameter M87 ∗ Library values Sgr A ∗ Library values 

a • 0, ±0.3, ±0.5, ±0.7, ±0.9 0, ±0.3, ±0.5, ±0.7, ±0.9 
R high 1, 10, 20, 40, 80, 160 1, 10, 20, 40, 80, 160 
R low 1 1 
i 163 ◦ for a • ≥ 0 10 ◦, 30 ◦, 50 ◦, 70 ◦, 90 ◦, 110 ◦, 130 ◦, 150 ◦, 170 ◦

17 ◦ for a • < 0 
B -field aligned, anti-aligned aligned 

Table 3. Allowable parameter ranges for various observables for M87 ∗
based on Event Horizon Telescope Collaboration ( 2021a ) and Event Horizon 
Telescope Collaboration ( 2019d ). 

Parameter Allowable range for M87 ∗
| m | net [0.01, 0.037] 
v net [ −0.008, 0.008] 
A [2.0, 2.9] 
| β2 | [0.04, 0.07] 
∠ β2 [ −163 ◦, −127 ◦] 
Size [38 μas, 78 μas] 

Figure 20. Posterior distributions of spin from independent uniform priors on 
observed M87 ∗ constraints (Event Horizon Telescope Collaboration 2021a ) 
(red) and further constrained to lie within the 95th percentile of our M87 ∗
image library (dashed black). Our model prefers a highly spinning retrograde 
spin for M87 ∗ for both priors. Note that these values are likely biased low due 
to our averaging method. The small peak at a • = 0 could likely be eliminated 
by applying a jet power constraint. 
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Figure 21. Posterior distributions of R high from independent uniform priors 
on observed M87 ∗ constraints (Event Horizon Telescope Collaboration 
2021a ) (red) and further constrained to lie within the 95th percentile of our 
M87 ∗ image library (dashed black). Our methodology prefers large values 
(much colder electrons than ions), particularly with our 95th percentile prior, 
which helps depolarize models via Faraday rotation. 

Figure 22. Categorical posterior distributions of magnetic field alignment 
relative to disc angular momentum from independent uniform priors on 
observed M87 ∗ constraints (Event Horizon Telescope Collaboration 2021a ) 
(red) and further constrained to lie within the 95th percentile of our M87 ∗
image library (dashed black). Our models mildly prefer magnetic fields 
aligned with the disc angular momentum, but this is not very constrained 
in part because M87 ∗’s circular polarization has not been detected. 
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We find that our posterior distributions exhibit strange detailed 
tructure, and we track most of this to library incompleteness related 
o the image size constraint. The Event Horizon Telescope Collabo- 
ation ( 2019d ) constraint on image size is wide and includes smaller
nd larger image sizes than we observe in our own ray-traced M87 ∗
ibrary. Thus, when performing inference in that area of parameter 
pace, our random forest model extrapolates out-of-distribution. 
onsidering this, we construct a second more restrictive prior from 

he original EHT constraint ranges by additionally requiring that the 
bserv able v alues also lie within the 95th percentiles of our KORAL
ibrary . Essentially , this imposes a prior that the real system must lie
ithin our image library. This, for example, restricts the values in 
ur prior o v er image size to lie between roughly [50.7, 65.2 μas],
4 per cent more narrow than the full Event Horizon Telescope 
ollaboration ( 2019d ) range. The 95th percentile restriction for | β2 |

s 11 per cent more restrictive than the full Event Horizon Telescope
ollaboration ( 2021a ) range. For all observables other than size and
 β2 | , this stronger restriction eliminates a negligible portion of the
riginal constraint range, meaning our library spans a wider range of
bserv able v alues than existing EHT constraints. 
We perform inference on this restricted prior and show results for

pin, R high , and B -field alignment in Figs 20 , 21 , and 22 , respectively,
n black. We find that our inferred posterior for spin shifts density
rom near a • = −0.7 to a • = −0.5. For predicting R high , our
estricted prior eliminates nearly all of the posterior density for R high 

 80. Finally, inference of the B -field polarity is not substantially
MNRAS 520, 4867–4888 (2023) 
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M

Figure 23. For each image feature, we visualize the distribution of its SHAP 
values for predicting the spin o v er our sampled M87 ∗ constraint distribution. 
As in Fig. 13 , the colour encodes the relative value of each feature o v er the 
full range of values that feature spans. 
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ffected. This analysis underscores the incompleteness of our library.
n particular, models including non-thermal electrons can produce
arger images ( ̈Ozel, Psaltis & Narayan 2000 ; Mao et al. 2017 ). 

Finally, we examine the spin SHAP values from predictions on our
ull EHTC constraint prior. Though this is al w ays the case, we make
articular note here that SHAP values are calculated relative to the
raining distribution (our M87 ∗ image library) rather than the testing
istribution (the EHTC constraint prior). This means, for example,
hat the sum of all spin SHAP values across the testing distribution

ay not average to 0. Instead, they average to the mean model
rediction in the posterior, which is ne gativ e. We show distributions
f SHAP values for predictions o v er our EHTC prior in Fig. 23 .
e find that in general, the image size and β2 lead the model to

redict large retrograde values for the spin. Constraints on | m | net and
mage asymmetry have relatively moderate effect on our posteriors
or spin. Finally, we observe that v net < 0 has positive SHAP values,
orresponding to the posterior density near a • = 0. 

As noted earlier, the posteriors for spin and R high produced by
ur random forests are consistent with the analysis in Event Horizon
elescope Collaboration ( 2021b ), which eliminates images which do
ot pass all observational constraints. Additionally, our approach has
he advantage of generating continuous posterior distributions o v er
arameters of interest, which have concrete widths and predictive
ncertainties. Further, by analysing our models using SHAP or
ther interpretability tools, we can investigate the statistical relations
earned by our model between observables and BH and accretion
arameters of interest. 

 DISCUSSION  AND  CONCLUSIONS  

e have generated a library of 535 194 images for both M87 ∗
nd Sgr A ∗ derived from nine GRMHD simulations with strong
agnetic fields (MAD regime of accretion). We compute observable

uantities from each image and train a random forest machine
earning algorithm to infer spin, inclination, the ion-to-electron
emperature ratio, and magnetic field polarity from these quantities.
ur results are summarized as follows: 

(i) In the context of a very large but nevertheless incomplete
RMHD library, we have shown that spatially resolved polarimetric
bservables, that are currently accessible to the EHT, can be used
o indirectly constrain spin, inclination, and the ion-to-electron
emperature ratio using a random forest algorithm. 
NRAS 520, 4867–4888 (2023) 
(ii) For predicting these parameters, spatially resolved linear
olarization stands out as the most important type of observation. In
articular, the twisty morphology of the linear polarization pattern,
ncapsulated in the parameter β2 , stands out as the most important ob-
ervable, consistent with trends found in previous studies (Palumbo
t al. 2020 ; Emami et al. 2022 ). 

(iii) Based on current EHT constraints of M87 ∗, our modelling
refers retrograde accretion discs around a relatively rapidly spinning
lack hole, and significantly colder electrons than ions in large β
egions. 

(iv) We have demonstrated that repeated EHT/ngEHT observa-
ions substantially tightens constraints on spin. This is because
urbulence in the accretion flow causes each of the observables to
uctuate. 

The main limitation of our methodology is the incompleteness of
ur simulation set. We have only considered MAD simulations in our
tudy, guided by the polarimetric study of M87 ∗ performed by Event
orizon Telescope Collaboration ( 2021b ). There are many ways in
hich the simulation library could be expanded, which are beyond

he scope of a single paper: 

(i) We have only considered one value of R low , which may deviate
rom 1 in the case of M87 ∗, where radiative cooling may be impor-
ant. Moreo v er, alternativ es to the R high –R low temperature prescription
dopted here exist in the literature that we have not explored (e.g.
nantua et al. 2020 ). Different temperature prescriptions can change

he impact of Faraday rotation as well as the location at which
mission occurs. Self-consistently including cooling in GRMHD
imulations can also impact the structure of M87 ∗ models (e.g. Chael
t al. 2019 ; Yoon et al. 2020 ), and the implications for polarized
ignatures have yet to be fully explored. 

(ii) We have only considered thermal electron distribution func-
ions, whereas the spectrum of Sgr A ∗ moti v ates a non-thermal
lectron distribution ( ̈Ozel et al. 2000 ), also predicted by particle-
n-cell simulations (Ball, Sironi & Özel 2018 ). Models with a high-
nergy tail of non-thermal electrons tend to produce larger images
 ̈Ozel et al. 2000 ; Mao et al. 2017 ), and their impact on polarimetry
emains understudied. 

(iii) Our models include only perfectly aligned or anti-aligned
iscs, while in general these sources may be fed from a tilted disc
e.g. Fragile et al. 2007 ; Liska et al. 2021 ). This may alter the structure
f images at large image radius. 
(iv) Our models assume an electron-ion plasma, while electron–

ositron pairs may also form in these systems (Wardle et al. 1998 ;
o ́scibrodzka et al. 2011 ; Broderick & Tchekhovsk o y 2015 ; Wong,
yan & Gammie 2021 ). The most important difference is that neither
araday rotation nor emission of circularly polarization occur in pair
lasmas, which may have a strong impact on all of the polarimetric
bservables considered here if pairs are produced in substantial
uantities. 
(v) We have only considered observations at 230 GHz. Ho we ver,

n the near future, the EHT will produce images at 345 GHz,
nd the ngEHT will observe at 86 GHz. Since the magnetic field
eometry drives the linear polarization structure and MAD models
re not v ery F araday thick (Emami et al. 2022 ), we do not expect
ramatic changes to single-frequency metrics at 345 GHz compared
o 230 GHz. Images at 86 GHz may show more changes, however,
s models may transition to becoming more optically and/or Fara-
ay thick. Depending on the sensitivity of observations, spectral
ndex and rotation measures may provide additional insights and
onstraints on BH and magnetic field properties. For example, Ricarte
t al. ( 2023c ) show that spectral index is sensitive to inclination of
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gr A ∗, and Ricarte et al. ( 2020 ) find that rotation measure can
rovide insights toward magnetic field geometry and the ‘cold’ 
lectron population. In all, though multiwavelength observations 
nd constraints are beyond the scope of this work, they represent 
n interesting area for future work. 

Our methodology is also limited in our approach to modelling and 
nference. We have only considered one particular class of machine 
earning algorithms, random forests, whose input we limit to pre- 
efined image observables. Though random forests typically have 
trong performance compared to other methods (see e.g. Caruana & 

iculescu-Mizil ( 2006 ) or Borisov et al. ( 2022 )), other algorithms
ould nevertheless learn different trends within the data and achieve 
etter predictive accuracy, particularly if they have access to a 
roader set of image information. Though beyond the scope of a 
his paper, deep neural networks in particular could learn much 
icher polarimetric image features by not only learning trends 
etween the input data, but by learning the features themselves, 
otentially disco v er new polarimetric observables the EHT can 
arget. 

For simplicity, we have trained independent models for predicting 
ach property of interest. A combined model which simultaneously 
redicts all properties at once can benefit from explicit mutual 
nformation (for example, when training to predict spin, such a model 
ould not need to implicitly infer the inclination as an intermediate 

tep) and achieve improved performance over the models we have 
resented in this work. Ho we ver, such a model would be more
omplex to train and interpret, and we leave this investigation to 
uture studies. 

Finally, our posterior distributions are generated by sampling 
ncertainty bounds on EHT observations. Though beyond the scope 
f this paper, Bayesian models can generate posteriors by directly 
nd explicitly incorporating distributional uncertainty bounds from 

bservations. Future studies exploring Bayesian models to perform 

nference with polarimetric data may be interesting to explore. 
EHT polarimetric imaging has enabled new capabilities for black 

ole accretion flow science on event horizon scales. The theoretical 
nterpretation of these images involves an enormous modelling space, 
s detailed aspects of gravity, magnetohydrodynamics, and plasma 
hysics all play a role. Machine learning is ideal for bridging the gap
etween these two rich data sets. 

In the future, EHT will continue to observe Sgr A ∗ and M87 ∗,
hich as we have shown, will help reduce uncertainties in our 

nferences related to the time variability of our sources. The ngEHT 

ill produce much more detailed maps with orders of magnitude 
ore dynamic range and a greater field of view that will enable
ovies of both disc and jet. For these new data sets, additional

bservable metrics will need to be devised that will be sensitive 
o fainter and more detailed features. For this, parallel explorations 
ith neural networks synergize well with our approach. In general, 

he small hand-picked set of observables we consider in our study
ost likely misses informative aspects of our images that we have 

ot noticed. It is possible that there are other, more informative 
bservables that could further constrain our predictive distributions. 
otably, we have also not considered the time variability and 

he frequency dependence of our models, which we expect could 
rovide a wealth of new constraining power. With the inclusion 
f more observational data and impro v ed modelling, the perfor-
ance of our random forest model is likely a lower limit to how

ightly we can constrain the properties of the largest SMBHs on 
he sky. 
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PPENDIX  A:  LONG  TIME  EVOLUTION  OF  

IMULATIONS  

ne might expect that the scaling in M should be inversely
roportional to the decrease in Ṁ in the simulations. We examine this
ossibility in Fig. A1 by comparing our intensity-fitted M scaling to
he direct logarithmic decrease in Ṁ . The scaling in Ṁ is a reasonable
pproximation to M to first order, but does not capture all of the
ariation in M scaling. This suggests there are more effects than
ust Ṁ scaling at play. In particular, there may be fluctuations in
emperature and scaling in B 

2 which are captured by M but not Ṁ .
dditionally, Ṁ may not trace the density in the emitting region
erfectly. 
One of the primary moti v ations for generating this set of long

RMHD simulations was to test whether any of the observables
hange as these simulations evolve over long time-scales. Apart from
he expected decrease in the o v erall accretion rate associated with the
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Figure A1. Comparison of log-deri v ati ves of M , fit directly from imaging, 
and mass accretion rate, obtained directly from GRMHD simulations. Each 
point represents a distinct time series with fixed spin, R high , and observer 
inclination. A small amount of horizontal jitter has been added purely for 
visualization purposes. 
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Figure A2. Distributions of each observable quantity for our M87 ∗ library, par
(10 000 GM / c 3 < t < 40 000 GM / c 3 ) and late snapshots from the final third (70 000 
used to compute the densities, the violin plots may extend beyond the true range of
in the distributions of any observable quantity. 
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he jet. In particular, prograde and 0 spin models are ray traced at an
nclination of i = 163 ◦ and retrograde models with inclination of i =
7 ◦. 
We blur each image with a 20 μas Gaussian beam and calculate

he 11 observable image quantities described in Section 2.3 . As
ndicated by the feature importances shown in Fig. 18 , the most
mportant feature for predicting the spin of M87 ∗ is β2 . Thus, we
how a comparison of the distributions of | β2 | and ∠ β2 between
ur KORAL image library and the Illinois image library in Fig. B1 .
he distributions of | β2 | and ∠ β2 are consistent between the two

mage libraries, despite being generated from different GRMHD 

odels. Though not shown here, we observe similar consistency 
ith the other computed image observables. This suggests that our 

hosen computed image observables are broadly consistent between 
ifferent GRMHD schemes. We note, however, that the initial 
onditions of these simulations were both magnetized Fishbone & 

oncrief ( 1976 ) tori in hydrostatic equilibrium with initially dipolar
elds. It will be an important next step to explore the relative
onsistency of simulations with different initial conditions. 

Using our random forest model trained on our KORAL library 
o predict spin, we perform inference on the spin of each image
MNRAS 520, 4867–4888 (2023) 

titioned into early snapshots from the first third of each image sequence 
GM / c 3 < t < 100 000 GM / c 3 ). We note that because of the finite width kernel 
 allowable values (e.g. | ∠ β j | > π). We observe no significant time evolution 
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M

Figure B1. Distributions of β2 for our KORAL image library and the Illinois 
image library across v arious v alues of spin and R high = 20. We map the colour 
of a • = ±0.94 to a • = ±0.9 for visual consistency. Though the libraries were 
generated with independent GRMHD models, the distributions are generally 
robust. 

Figure B2. Predictions of spin on the Illinois v1 M87 ∗ library using a 
model trained on our KORAL M87 ∗ library. Despite being a different set 
of GRMHD models, our model is able to reco v er the true spin values with 
reasonable accuracy. We note that the model is limited to predicting values 
within its training data, i.e. a • ∈ [ −0.9, 0.9], but the extreme spins in the 
Illinois library are slightly beyond this range. 
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Figure C1. Distributions of β2 and Faraday depth for the R low = 1 M87 ∗
library used in this paper and an R low = 10 M87 ∗ library. All distributions 
shown are restricted to R high = 160 and aligned magnetic fields. The 
distributions of ∠ β2 are generally robust while | β2 | is moderately suppressed 
for R low = 10, due to the additional scrambling from increased Faraday depth. 
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n the Illinois library. The distributions of predicted spin values
re shown in Fig. B2 . We find that our model is able to reco v er
he true spins with high accuracy. Each of the five spin values
epresented in the Illinois library is discriminated with little o v erlap
n the predictive distributions. This suggests that our model is not
 v erfitting to model-specific GRMHD and imaging parameters used
o generate our KORAL image library. Instead, our model is learning

ore general underlying physical features robust to differences in
RMHD schemes. 

PPENDIX  C:  EFFECT  OF  VARYING  R LOW 

e only consider R low = 1 models in our analysis due to compu-
ational expense, and we consider this to be an important limitation
f our work. Here, we briefly explore the ef fect of v arying R low to
NRAS 520, 4867–4888 (2023) 
0, a value that is also tested in previous EHT studies of M87 ∗ (e.g.
vent Horizon Telescope Collaboration 2021b ; Fromm et al. 2022 ).
his is moti v ated by the fact that radiati ve cooling may be significant
nough in M87 ∗ to warrant additional suppression of the electron
emperature in these models (e.g. Mo ́scibrodzka et al. 2011 ; Ryan
t al. 2018 ; Chael et al. 2019 ). 

We recompute M87 ∗ images with R low = 10 and all spins, but
ith fixed R high = 160 and aligned magnetic field. We most carefully

xamine β2 , which is shown to be the most important observable in
his work. In Fig. C1 , we plot distributions of | β2 | , ∠ β2 for each
f these R low values as a function of spin. As expected, increasing
 low (cooling the electrons) results in larger Faraday depths. This

s because Faraday rotation is less efficient at higher temperatures,
nd these models need larger mass scalings in order to reproduce the
.5 Jy core flux of M87 ∗. As a direct result, | β2 | decreases as R low 

ncreases. Fortunately, although there are some small differences,
he distributions of ∠ β2 are relatively robust. This is consistent with
mami et al. ( 2022 ), who study the sensitivity of ∠ β2 to Faraday

otation in detail and generally find small shifts for MAD models.
e might expect larger differences for SANE models, which tend

o be more Faraday thick (Mo ́scibrodzka et al. 2016 ; Ricarte et al.
020 ; Event Horizon Telescope Collaboration 2021b ). Though not
hown, we observe a similar degree of stability in other ∠ β i modes
nd depolarization in | β i | . While some differences remain, it is also
lausible that a random forest model trained on a complete library
f both R low = 1 and R low = 10 models could learn to separate them
bout as well as it does R high currently. 
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