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Abstract8

Locally Decodable Codes (LDCs) are error-correcting codes C : Σn → Σm, encoding messages in Σn
9

to codewords in Σm, with super-fast decoding algorithms. They are important mathematical objects10

in many areas of theoretical computer science, yet the best constructions so far have codeword length11

m that is super-polynomial in n, for codes with constant query complexity and constant alphabet12

size.13

In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006)14

show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost15

linear codeword length over the binary alphabet, and used them to obtain signiĄcantly-improved16

constructions of Probabilistically Checkable Proofs.17

In this work, we study RLDCs in the standard Hamming-error setting, and introduce their18

variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were19

Ąrst studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are20

further motivated by recent advances in DNA random access bio-technologies.21

Our Ąrst result is an exponential lower bound on the length of Hamming RLDCs making 222

queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by23

Gur and Lachish (SICOMP 2021) and is the Ąrst exponential lower bound for RLDCs. Combined24

with the results of Ben-Sasson et al., our result exhibits a Şphase-transitionŤ-type behavior on25

the codeword length for some constant-query complexity. We achieve these lower bounds via a26

transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of27

message bits that Ąx codeword bits.28

We further deĄne two variants of RLDCs in the Insdel-error setting, a weak and a strong version.29

On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant30

query complexity, matching the parameters of the Hamming variants. On the other hand, we prove31

exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these32

variants are equivalent in the Hamming setting, they are signiĄcantly different in the insdel setting.33

Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.34
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1 Introduction55

Locally Decodable Codes (LDCs) [55, 72] are error-correcting codes C : Σn → Σm that have56

super-fast decoding algorithms that can recover individual symbols of a message x ∈ Σn, even57

when worst-case errors are introduced in the codeword C(x). Similarly, Locally Correctable58

Codes (LCCs) are error-correcting codes C : Σn → Σm for which there exist very fast59

decoding algorithms that recover individual symbols of the codeword C(x) ∈ Σm, even when60

worst-case errors are introduced. LDCs/LCCs were Ąrst discovered by Katz and Trevisan [55]61

and since then have proven to be crucial tools in many areas of computer science, including62

private information retrieval, probabilistically checkable proofs, self-correction, fault-tolerant63

circuits, hardness ampliĄcation, and data structures (e.g., [2, 4, 17, 18, 20, 28, 62] and surveys64

[36, 73]).65

The parameters of interest of these codes are their rate, deĄned as the ratio between66

the message length n and the codeword length m, their relative minimum distance, deĄned67

as the minimum normalized Hamming distance between any pair of codewords, and their68

locality or query complexity, deĄned as the number of queries a decoder makes to a received69

word y ∈ Σm. Trade-offs between the achievable parameters of Hamming LDCs/LCCs have70

been studied extensively over the last two decades [8Ű11,32Ű35,37,56,57,74,75,78,79] (see71

also surveys by Yekhanin [79] and by Kopparty and Saraf [58]).72

SpeciĄcally, for 2-query Hamming LDCs/LCCs it is known that m = 2Θ(n) [6, 11, 37,73

56]. However, for q > 2 queries, the current gap between upper and lower bounds is74

superpolynomial in n. In particular, the best constructions have super-polynomial codeword75

length [32, 34, 78], while the most general lower bounds for q ≥ 3 are of the form m =76

Ω(( n
log n )1+1/(⌈ q

2 ⌉−1)) [55,56]. In particular, for q = 3, [55] showed an m = Ω(n3/2) bound,77

which was improved in [56] to m = Ω(n2/ log2 n). This was further improved by [75, 76]78

to m = Ω(n2/ log n) for general codes and m = Ω(n2) for linear codes. [11] used new79

combinatorial techniques to obtain the same m = Ω(n2/ log n) bound. A very recent paper80

[1] breaks the quadratic barrier and proves that m = Ω(n3/ poly log n). We note that the81

exponential lower bound on the length of 3-query LDCs from [35] holds only for some82

restricted parameter regimes, and do not apply to the natural ranges of the known upper83

bounds.84

Motivated by this large gap in the constant-query regime, as well as by applications in85

constructions of Probabilistically Checkable Proofs (PCPs), Ben-Sasson, Goldreich, Harsha,86
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Sudan, and Vadhan [7] introduced a relaxed version of LDCs for Hamming errors. SpeciĄcally,87

the decoder is allowed to output a Şdecoding failureŤ answer (marked as Ş⊥Ť), as long as it errs88

with some small probability. More precisely, a (q, δ, α, ρ)-relaxed LDC is an error-correcting89

code satisfying the following properties.90

▶ DeĄnition 1. A (q, δ, α, ρ)-Relaxed Locally Decodable Code C : Σn → Σm is a code for91

which there exists a decoder that makes at most q queries to the received word y, and satisĄes92

the following further properties:93

1. (Perfect completeness) For every i ∈ [n], if y = C(x) for some message x then the decoder,94

on input i, outputs xi with probability 1.195

2. (Relaxed decoding) For every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ for some unique96

C(x), then the decoder, on input i, outputs xi or ⊥ with probability ≥ α.97

3. (Success rate) For every y such that dist(y, C(x)) ≤ δ for some unique C(x), there is a98

set I of size ≥ ρn such that for every i ∈ I the decoder, on input i, correctly outputs xi99

with probability ≥ α.100

We will call an RLDC that satisĄes all 3 conditions by the notion of strong RLDC, and one101

that satisĄes just the Ąrst 2 conditions by the notion of weak RLDC, in which case it is called102

a (q, δ, α)-RLDC. Furthermore, if the q queries are made in advance, before seeing entries of103

the codeword, then the decoder is said to be non-adaptive; otherwise, it is called adaptive.104

The above deĄnition is quite general, in the sense that dist(a, b) can refer to several105

different distance metrics. In the most natural setting, we use dist(a, b) to mean the106

ŞrelativeŤ Hamming distance between a, b ∈ Σm, namely dist(a, b) = ♣¶i : ai ̸= bi♢♣/m. This107

corresponds to the standard RLDCs for Hamming errors. As it will be clear from the108

context, we also use dist(a, b) to mean the ŞrelativeŤ Edit distance between a, b ∈ Σ∗, namely109

dist(a, b) = ED(a, b)/(♣a♣ + ♣b♣), where ED(a, b) is the minimum number of insertions and110

deletions to transform string a into b. This corresponds to the new notion introduced and111

studied here, which we call Insdel RLDCs. Throughout this paper, we only consider the case112

where Σ = ¶0, 1♢.113

DeĄnition 1 has also been extended recently to the notion of Relaxed Locally Correctable114

Codes (RLCCs) by Gur, Ramnarayan, and Rothblum [40]. RLDCs and RLCCs have been115

studied in a sequence of exciting works, where new upper and lower bounds have emerged,116

and new applications to probabilistic proof systems have been discovered [3, 27,29,38Ű40].117

Surprisingly, [7] constructs strong RLDCs with q = O(1) queries and m = n1+O(1/
√

q), and118

more recently Asadi and Shinkar [3] improve the bounds to m = n1+O(1/q), in stark contrast119

with the state-of-the-art constructions of standard LDCs. Gur and Lachish [39] show that120

these bounds are in fact tight, as for every q ≥ 2, every weak q-query RLDC must have length121

m = n1+1/O(q2) for non-adaptive decoders. We remark that the lower bounds of [39] hold122

even when the decoder does not have perfect completeness and in particular valid message123

bits are decoded with success probability 2/3. DallŠAgnon, Gur, and Lachish [30] further124

extend these bounds to the setting where the decoder is adaptive, with m = n1+1/O(q2 log2 q).125

1 We remark that the initial deĄnition in [7] only requires that xi is output with probability 2/3 when
there are no errors. However, to the best of our knowledge, all constructions of RLDCs (and LDCs)
from the literature do satisfy perfect completeness. Moreover, some lower bounds (e.g., [11]) only hold
with respect to perfect completeness.
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1.1 Our results126

As discussed before, since the introduction of RLDCs, unlike standard LDCs, they displayed127

a behaviour amenable to nearly linear-size constructions, with almost matching upper and128

lower bounds. However, recently [39] conjecture that for q = 2 queries, there is in fact an129

exponential lower bound, matching the bounds for standard LDCs.130

In this paper, our Ąrst contribution is a proof of their conjecture, namely to show that131

Hamming 2-query RLDCs require exponential length. In fact, our exponential lower bound132

for q = 2 applies even to weak RLDCs, which only satisfy the Ąrst two properties (perfect133

completeness and relaxed decoding), and even for adaptive decoders.134

▶ Theorem 2. Let C : ¶0, 1♢n → ¶0, 1♢m
be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then135

m = 2Ωδ,ε(n).136

Our results are the Ąrst exponential bounds for RLDCs. Furthermore, combined with137

the constructions with nearly linear codeword length for some constant number of queries138

[3, 7], our results imply that RLDCs experience a Şphase transitionŤ-type phenomena, where139

the codeword length drops from being exponential at q = 2 queries to being almost linear140

at q = c queries for some constant c > 2. In particular, this also implies that there is a141

query number q where the codeword length drops from being super-polynomial at q to being142

polynomial at q + 1. Finding this exact threshold query complexity is an intriguing open143

question.144

As our second contribution, we introduce and study the notion of RLDCs correcting145

insertions and deletions, namely Insdel RLDCs. The non-relaxed variants of Insdel LDCs146

were Ąrst introduced in [68], and were further studied in [12,13,26]. Local decoding in the147

Insdel setting is motivated in DNA storage [77], and in particular [5] show recent advances148

in bio-technological aspects of random access to data in these precise settings.149

In [13,68], the authors give Hamming to Insdel reductions which transform any Hamming150

LDC into an Insdel LDC with rate reduced by a constant multiplicative factor, and locality151

increased by a polylog(m) multiplicative factor. Unfortunately, these compilers do not imply152

constant-query Insdel LDCs, whose existence is still an open question.153

The results of [14] show strong lower bounds on the length of constant-query Insdel154

LDCs. In particular, they show that linear Insdel LDCs with 2 queries do no exist, general155

Insdel LDCs for q = 3 queries must have m = exp(Ω(
√

n)), and for q ≥ 4 they must have156

m = exp(nΩ(1/q)).157

In this work we continue the study of locally decodable codes in insertion and deletion158

channels by proving the Ąrst upper and lower bounds regarding the relaxed variants of Insdel159

LDCs. We Ąrst consider strong Insdel RLDCs, which satisfy all three properties of DeĄnition160

1 and where the notion of distance is now that of relative edit distance. We adapt and extend161

the results of [14] to establish strong lower bounds on the codeword length of strong Insdel162

RLDCs. In particular, we prove that m = exp(nΩ(1/q)) for any strong Insdel RLDC with163

locality q.164

▶ Theorem 3. Let C : ¶0, 1♢n → ¶0, 1♢m
be a non-adaptive strong (q, δ, 1/2 + β, ρ)-Insdel165

RLDC where β > 0. Then for every q ≥ 2 there is a constant c1 = c1(q, δ, β, ρ) such that166

m = exp
(

c1 · nΩρ(β2/q)
)

.167

168

Furthermore, the same bound holds even if C does not have perfect completeness. If C has169

an adaptive decoder, the same bound holds with β replaced by β/2q−1. Formally, there exists170
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a constant c2 = c1(q, δ, β/2q−1, ρ) such that171

m = exp
(

c2 · nΩρ(β2/(q22q))
)

.172

173

Our reduction shown in the proof of Theorem 2, together with the impossibility results174

of standard linear or affine 2-query Insdel LDCs from [14] show a further impossibility result175

for linear and for affine 2-query Insdel RLDCs. A linear code of length m is deĄned over a176

Ąnite Ąeld F and it is a linear subspace of the vector space F
m, while an affine code is an177

affine subspace of Fm.178

We then consider weak Insdel RLDCs that only satisfy the Ąrst two properties (perfect179

completeness and relaxed decoding). In contrast with Theorem 3, we construct weak Insdel180

RLDCs with constant locality q = O(1) and length m = n1+γ for some constant γ ∈ (0, 1).181

To the best of our knowledge, this is the Ąrst positive result in the constant-query regime182

and the Insdel setting. However, the existence of a constant-query standard Insdel LDC (or183

even a constant-query strong Insdel RLDC) with any rate remains an open question. Finally,184

it is easy to see that our exponential lower bound for weak Hamming RLDCs with locality185

q = 2 still applies in the Insdel setting, since Insdel errors are more general than Hamming186

error. Thus, in the Insdel setting we discover the same Şphase transitionŤ-type phenomena187

as for Hamming RLDCs.188

▶ Theorem 4. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and189

q = q(δ, ε, γ), and non-adaptive weak (q, δ, 1/2 + ε)-Insdel RLDCs C : ¶0, 1♢n → ¶0, 1♢m
with190

m = O(n1+γ).191

We remark that in the Hamming setting, [7] shows that the Ąrst two properties of192

DeĄnition 1 imply the third property for codes with constant query complexity and which193

can withstand a constant fraction of errors. Our results demonstrate that, in general, unlike194

in the Hamming case, the Ąrst two properties do not imply the third property for Insdel195

RLDCs from DeĄnition 1. Indeed, while for strong Insdel RLDCs we have m = exp(nΩ(1/q))196

for codes of locality q, there exists q = O(1) for which we have constructions of weak Insdel197

RLDCs with m = n1+γ . This observation suggests that there are signiĄcant differences198

between Hamming RLDCs and Insdel RLDCs.199

We note that our construction of weak Insdel RLDCs can be modiĄed to obtain strong200

Insdel Relaxed Locally Correctable Codes (Insdel RLCCs). Informally, an Insdel RLCC201

is a code for which codeword entries can be decoded to the correct value or ⊥ with high202

probability, even in the presence of insdel errors (see the full version for a formal deĄnition203

of RLCC). We have the following corollary.204

▶ Corollary 5. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and205

q = q(δ, ε, γ), and non-adaptive strong (q, δ, 1/2+ε, 1/2)-Insdel RLCCs C : ¶0, 1♢n → ¶0, 1♢m
206

with m = O(n1+γ).207

1.2 Overview of techniques208

1.2.1 Exponential Lower Bound for Weak Hamming RLDCs with q = 2209

To simplify the presentation, we assume a non-adaptive decoder in this overview. While the210

exact same arguments do not directly apply to adaptive decoders2, with a bit more care they211

can be adapted to work in those settings.212

2 For standard LDCs Katz and Trevisan [55] observed that an adaptive decoder could be converted into a
non-adaptive decoder by randomly guessing the output yj of the Ąrst query j to learn the second query

CCC 2023
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At a high level we prove our lower bound by transforming any non-adaptive 2-query weak213

Hamming RLDC for messages of length n and δ fraction of errors into a standard 2-query214

Hamming LDC for messages of length n′ = Ω(n), with slightly reduced error tolerance of δ/2.215

Kerenidis and de Wolf [56] proved that any 2-query Hamming LDC for messages of length n216

must have codeword length m = exp(Ω(n)). Combining this result with our transformation,217

it immediately follows that any 2-query weak Hamming RLDC must also have codeword218

length m = exp(Ω(n)). While our transformation does not need the third property (success219

rate) of a strong RLDC, we crucially rely on the property of perfect completeness, and that220

the decoder only makes q = 2 queries.221

Let C : ¶0, 1♢n → ¶0, 1♢m
be a weak (2, δ, 1/2 + ε)-RLDC. For simplicity (and without222

loss of generality), let us assume the decoder Dec works as follows. For message x and223

input i ∈ [n], the decoder non-adaptively makes 2 random queries j, k ∈ [m], and outputs224

f i
j,k(yj , yk) ∈ ¶0, 1, ⊥♢, where yj , yk are answers to the queries from a received word y,225

and f i
j,k : ¶0, 1♢2 → ¶0, 1, ⊥♢ is a deterministic function. When there is no error, we have226

yj = C(x)j and yk = C(x)k.227

We present the main ideas below, and refer the readers to Section 4 for full details.228

1.2.1.1 Fixable codeword bits229

The starting point of our proof is to take a closer look at those functions f i
j,k with ⊥ entries230

in their truth tables. It turns out that when f i
j,k has at least one ⊥ entry in the truth table,231

C(x)j can be Ąxed to a constant by setting either xi = 0 or xi = 1, and same for C(x)k. To232

see this, note that the property of perfect completeness forces f i
j,k to be 0 or 1 whenever233

xi = 0 or xi = 1 and there is no error. Thus if neither xi = 0 nor xi = 1 Ąxes C(x)j , then234

there must be two entries of 0 and two entries of 1 in the truth table of f i
j,k, which leaves no235

space for ⊥ (see Claim 13). Thus, when there is at least one ⊥ entry in the truth table of236

f i
j,k, we say that C(x)j and C(x)k are Ąxable by xi.237

This motivates the deĄnition of the set Si, which contains all indices j ∈ [m] such that238

the codeword bits C(x)j are Ąxable by xi; and the deĄnition of Tj , the set of all indices239

i ∈ [n] such that C(x)j is Ąxable by the message bits xi. It is also natural to pay special240

attention to queries j, k that are not both contained in Si, since in this case the function f i
j,k241

never outputs ⊥.242

1.2.1.2 The query structure243

In general, a query set ¶j, k♢ falls into one of the following three cases: (1) both j, k lie244

inside Si; (2) both j, k lie outside of Si; (3) one of them lies inside Si and the other lies245

outside of Si. It turns out that case (3) essentially never occurs for a decoder with perfect246

completeness. The reason is that when, say, j ∈ Si and k /∈ Si, one can effectively pin down247

every entry in the truth table of f i
j,k by using the perfect completeness property, and observe248

that the output of f i
j,k does not depend on yk at all (see Claim 14). Thus in this case we can249

equivalently view the decoder as only querying yj where j ∈ Si, which leads us back to case250

k. Now we non-adaptively query the received codeword for both yj and yk. If our guess for yj was
correct then we continue simulating the adaptive decoder. Otherwise, we simply guess the output xi.
If the adaptive decoder succeeds with probability at least p ≥ 1/2 + ϵ then the non-adaptive decoder
succeeds with probability p′ ≥ 1/4 + p/2 ≥ 1/2 + ϵ/2. Unfortunately, this reduction does not preserve
perfect completeness as required by our proofs for relaxed 2-query Hamming RLDCs i.e., if p = 1 then
p′ = 3/4.
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(1). In what follows, we denote by E1 the event that case (1) occurs, and by E2 the event251

that case (2) occurs.252

1.2.1.3 The transformation by polarizing conditional success probabilities253

We now give a high level description of our transformation from a weak RLDC to a standard254

LDC. Let y be a string which contains at most δm/2 errors from the codeword C(x). We255

have established that the success probability of the weak RLDC decoder on y is an average256

of two conditional probabilities257

Pr[Dec(i, y) ∈ ¶xi, ⊥♢] = p1 · Pr[Dec(i, y) ∈ ¶xi, ⊥♢ ♣ E1] + p2 · Pr[Dec(i, y) ∈ ¶xi, ⊥♢ ♣ E2],258259

where p1 = Pr[E1] and p2 = Pr[E2]. Let us assume for the moment that Si has a small size,260

e.g., ♣Si♣ ≤ δm/2. The idea in this step is to introduce additional errors to the Si-portion261

of y, in a way that drops the conditional success probability Pr[Dec(i, y) ∈ ¶xi, ⊥♢ ♣ E1] to262

0 (see Lemma 15). In particular, we modify the bits in Si to make it consistent with the263

encoding of any message x̂ with x̂i = 1 − xi. Perfect completeness thus forces the decoder to264

output 1 − xi conditioned on E1. Note that we have introduced at most δm/2 + ♣Si♣ ≤ δm265

errors in total, meaning that the decoder should still have an overall success probability of266

1/2 + ε. Furthermore, now the conditional probability Pr[Dec(i, y) ∈ ¶xi, ⊥♢ ♣ E2] takes all267

credits for the overall success probability. Combined with the observation that Dec never268

outputs ⊥ given E2, this suggests the following natural way to decode xi in the sense of a269

standard LDC: sample queries j, k according to the conditional probability given E2 (i.e.,270

both j, k lie outside Si) and output f i
j,k(yj , yk). This gives a decoding algorithm for standard271

LDC, with success probability 1/2 + ε and error tolerance δm/2 (see Lemma 16), modulo272

the assumption that ♣Si♣ ≤ δm/2.273

1.2.1.4 Upper bounding ♣Si♣274

The Ąnal piece in our transformation from weak RLDC to standard LDC is to address the275

assumption that ♣Si♣ ≤ δm/2. This turns out to be not true in general, but it would still276

suffice to prove that ♣Si♣ ≤ δm/2 for n′ = Ω(n) of the message bits i. If we could show277

that ♣Tj ♣ is small for most j ∈ [m], then a double counting argument shows that ♣Si♣ is278

small for most i ∈ [n]. Unfortunately, if we had C(x)j =
∧n

i=1 xi for m/2 of the codeword279

bits j then we also have ♣Tj ♣ = n for m/2 codeword bits and ♣Si♣ ≥ m/2 ≥ δm/2 for all280

message bits i ∈ [n]. We address this challenge by Ąrst arguing that any weak RLDC for281

n-bit messages can be transformed into another weak RLDC for Ω(n)-bit messages for which282

we have ♣Tj ♣ ≤ 3 ln(8/δ) for all but δm/4 codeword bits. The transformation works by Ąxing283

some of the message bits and then eliminating codeword bits that are Ąxed to constants.284

Intuitively, if some C(x)j is Ąxable by many message bits, it will have very low entropy285

(e.g., C(x)j is the AND of many message bits) and hence contain very little information286

and can (likely) be eliminated. We make this intuition rigorous through the idea of random287

restriction: for each i ∈ [n], we Ąx xi = 0, xi = 1, or leave xi free, each with probability 1/3.288

The probability that C(x)j is not Ąxed to a constant is at most (1 − 1/3)♣Tj ♣ ≤ δ/8, provided289

that ♣Tj ♣ ≥ 3 ln(8/δ). After eliminating codeword bits that are Ąxed to constants, we show290

that with probability at least 1/2 at most δm/4 codeword bits C(x)j with ♣Tj ♣ ≥ 3 ln(8/δ)291

survived3. Note that with high probability the random restriction leaves at least n/6 message292

3 We are oversimplifying a bit for ease of presentation. In particular, the random restriction process may
cause a codeword bit C(x)j to be Ąxable by a new message bit xi that did not belong to Tj before the
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bits free. Thus, there must exist a restriction which leaves at least n/6 message bits free293

ensuring that ♣Tj ♣ ≥ 3 ln(8/δ) for at most δm/4 of the remaining codeword bits C(x)j . We294

can now apply the double counting argument to conclude that ♣Si♣ ≤ δm/2 for Ω(n) message295

bits, completing the transformation.296

1.2.1.5 Adaptive decoders297

For possibly adaptive decoders, we are going to follow the same proof strategy. The new298

idea and main difference is that we focus on the Ąrst query made by the decoder, which is299

always non-adaptive. We manage to show that the Ąrst query determines a similar query300

structure, which is the key to the transformation to a standard LDC. More details can be301

found in Section 4.2.302

1.2.2 Lower Bounds for Strong Insdel RLDCs303

We recall that a strong Insdel RLDC C is a weak Insdel RLDC which satisĄes an additional304

property: for every x ∈ ¶0, 1♢n
and y ∈ ¶0, 1♢m′

such that ED(C(x), y) ≤ δ · 2m, there exists305

a set Iy ⊆ [n] of size ♣Iy♣ ≥ ρn such that for every i ∈ Iy, we have Pr[Dec(i, y) = xi] ≥ α. In306

other words, for ρ-fraction of the message bits, the decoder can correctly recover them with307

high probability, just like in a standard Insdel LDC. Towards obtaining a lower bound on the308

codeword length m, a natural idea would be to view C as a standard Insdel LDC just for that309

ρ-fraction of message bits, and then apply the exponential lower bound for standard Insdel310

LDCs from [14]. This idea would succeed if the message bits correctly decoded with high311

probability were the same for all potential corrupted codewords y. However, it could be the312

case that i ∈ Iy for some strings y, whereas i /∈ Iy′ for other strings y′. Indeed, allowing the313

set Iy to depend on y is the main reason why very short constant-query Hamming RLDCs314

exist.315

We further develop this observation to obtain our lower bound. We use an averaging316

argument to show the existence of a corruption-independent set I of message bits with317

♣I♣ = Ω(n), which the decoder can recover with high probability. To this end, we need to open318

the Şblack boxŤ of the lower bound result of Blocki et al. [14]. The proof in [14] starts by319

constructing an error distribution E with several nice properties, and deduce the exponential320

lower bound based solely on the fact that the Insdel LDC should, on average (i.e., for a321

uniformly random message x), correctly recover each bit with high probability under E . One322

of the nice properties of E is that it is oblivious to the decoding algorithm Dec. Therefore,323

it makes sense to consider the average success rate against E , i.e., Pr[Dec(i, y) = xi], where324

i ∈ [n] is a uniformly random index, x ∈ ¶0, 1♢n
is a uniformly random string, and y is a325

random string obtained by applying E to C(x). By replacing ⊥ with a uniformly random bit326

in the output of Dec, the average success rate is at least ρα + (1 − ρ)α/2 = (1 + ρ)α/2, since327

there is a ρ-fraction of indices for which Dec can correctly recover with probability α, and328

for the remaining (1 − ρ)-fraction of indices the random guess provides an additional success329

rate of at least α/2. Assuming α is sufficiently close to 1, which we can achieve by repeating330

the queries independently for a constant number of times and doing something similar to a331

majority vote, the average success rate against E is strictly above 1/2. Therefore, there exist332

a constant fraction of indices for which the success rate against E is still strictly above 1/2,333

restriction Ű We thank an anonymous reviewer for pointing this out to us. Nevertheless, for our purpose
it is sufficient to eliminate codeword bits that initially have a large |Tj |. See the formal proof for more
details.
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and the number of queries remains a constant. This is sufficient for the purpose of applying334

the argument in [14] to get an exponential lower bound.335

1.2.3 Constant-Query Weak Insdel RLDC336

Our construction of a constant query weak Insdel RLDC uses code concatenation and two337

building blocks: a weak Hamming RLDC (as the outer code) with constant query complexity,338

constant error-tolerance, and codeword length k = O(n1+γ) for any γ > 0 [7], and the339

Schulman-Zuckerman [69] (from now on denoted by SZ) Insdel codes4 (as the inner code).340

We let Cout : ¶0, 1♢n → ¶0, 1♢k
and Cin : [k] × ¶0, 1♢ → ¶0, 1♢t

denote the outer and inner341

codes, respectively. Our Ąnal concatenation code C will have codewords in ¶0, 1♢m
for342

some m (to be determined shortly), will have constant query complexity, and will tolerate a343

constant fraction of Insdel errors.344

1.2.3.1 Code construction345

Given a message x ∈ ¶0, 1♢n
, we Ąrst apply the outer code to obtain a Hamming codeword y =346

y1 ◦ · · · ◦ yk = Cout(x) of length k, where each yi ∈ ¶0, 1♢ denotes a single bit of the codeword.347

Then for each index i, we compute ci = Cin(i, yi) ∈ ¶0, 1♢t as the encoding of the message348

(i, yi) via the inner code. Finally, we output the codeword C(x) := c1 ◦ 0t ◦ c2 ◦ · · · ◦ 0t ◦ ck,349

where 0t denotes a string of t zeros (which we later refer to as a buffer). Note that the350

inner code is a constant-rate code, i.e., t = O(log(k)), and has constant error-tolerance351

δin ∈ (0, 1/2). Thus, the Ąnal codeword has length m := (2t − 1)k = O(k log(k)) bits. For352

any constant γ > 0 we have a constant query outer code with length k = O(n1+γ). Plugging353

this into our construction we have codeword length m = O(n1+γ log n) which is O(n1+γ′

) for354

any constant γ′ > γ.355

1.2.3.2 Decoding algorithm: intuition and challenges356

Intuitively, our relaxed decoder will simulate the outer decoder. When the outer decoder357

requests yi, the natural approach would be to Ąnd and decode the block ci to obtain (i, yi).358

There are two challenges in this approach. First, if there were insertions or deletions, then we359

do not know where the block ci is located; moreover, searching for this block can potentially360

blow-up the query complexity by a multiplicative polylog(m) factor [13,68]. Second, even361

if we knew where ci were located, because t = O(log k) and we want the decoder to have362

constant locality, we cannot afford to recover the entire block ci.363

We address the Ąrst challenge by attempting to locate block ci under the optimistic364

assumption that there are no corruptions. If we detect any corruptions, then we may365

immediately abort and output ⊥ since our goal is only to obtain a weak Insdel RLDC.366

Assuming that there were no corruptions, we know exactly where the block ci is located, and367

we know that ci can only take on two possible values: it is either the inner encoding of (i, 0)368

or the inner encoding of (i, 1). If we Ąnd anything inconsistent with the inner encoding of369

either (i, 0) or (i, 1), then we can immediately output ⊥.370

Checking consistency with the inner encodings of (i, 0) and (i, 1) is exactly how we371

address the second challenge. In place of reading the entire block ci, we instead only need372

to determine whether (1) ci is (close to) the inner encoding of (i, 0), (2) ci is (close to) the373

inner encoding of (i, 1), or (3) ci is not close to either string. In either case (1) or case374

4 In particular, these are classical/non-local codes.
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(2), we simply output the appropriate bit, and in case (3), we simply output ⊥. Thus, our375

Insdel RLDC decoder simulates the outer decoder. Whenever the outer decoder request376

yi, we determine the expected location for ci, randomly sub-sample a constant number of377

indices from this block and compare with the inner encodings of (i, 0) and (i, 1) at the378

corresponding indices. To ensure perfect completeness, we always ensure that at least one379

of the sub-sampled indices is for a bit where the inner encodings of (i, 0) and (i, 1) differ.380

If there are no corruptions, then whenever the simulated outer decoder requests yi we will381

always respond with the correct bit. Perfect completeness of our Insdel RLDC now follows382

immediately from the perfect completeness of the outer decoder. Choosing a constant number383

of indices to sub-sample ensures that the locality of our weak Insdel RLDC decoder is a384

constant multiplicative factor larger than the outer decoder, which gives our Insdel RLDC385

decoder constant locality overall.386

1.2.3.3 Analysis of the decoding algorithm387

The main technical challenge is proving that our Insdel RLDC still satisĄes the second388

condition of DeĄnition 1, when the received word is not a correct encoding of the message389

x. Recall that ci = Cin(i, yi), and suppose c̃i ̸= ci is the block of the received word that we390

are going to check for consistency with the inner encodings of (i, 0) and (i, 1). Then, the391

analysis of our decoder falls into three cases. In the Ąrst case, if c̃i is not too corrupted (i.e.,392

ED(c̃i, ci) is not too large), then we can argue that the decoder outputs the correct bit yi or393

⊥ with good probability. In the second case, if c̃i has high edit distance from both Cin(i, 0)394

and Cin(i, 1), then we can argue that the decoder outputs ⊥ with good probability. The395

third case is the most difficult case, which we describe as ŞdangerousŤ. We say that the block396

c̃i is dangerous if the edit distance between c̃i and Cin(i, 1 − yi) is not too large; i.e., c̃i is397

close to the encoding of the opposite bit 1 − yi.398

The key insight to our decoding algorithm is that as long as the number of dangerous399

blocks c̃i is upper bounded, then we can argue the overall probability that our decoder400

outputs yi or ⊥ satisĄes the relaxed decoding condition of DeĄnition 1. Intuitively, we401

can we think of our weak Insdel RLDC decoder as running the outer decoder on a string402

ỹ = ỹ1 ◦ . . . ◦ ỹk, where each ỹi ∈ ¶0, 1, ⊥♢ and the outer decoder has been modiĄed to output403

⊥ whenever it queries for yi and receives ⊥. Observe that if δout is the error-tolerance of the404

outer decoder, then as long as the set
∣∣¶i : ỹi ̸= ⊥ ∧ ỹi ̸= yi♢

∣∣ ≤ δoutk, the modiĄed outer405

decoder, on input j ∈ [n], will output either the correct value xj or ⊥ with high probability406

(for appropriate choices of parameters). Intuitively, if a block is ŞdangerousŤ then we can407

view ỹi = 1 − yi, and otherwise we have ỹi ∈ ¶yi, ⊥♢ with reasonably high probability. Thus,408

as long as the number of ŞdangerousŤ block is at most δoutk/2, then our relaxed Insdel409

decoder will satisfy the second property of DeĄnition 1 and output either xj or ⊥ with high410

probability for any j ∈ [n].411

1.2.3.4 Upper bounding the number of dangerous blocks412

To upper bound the number of ŞdangerousŤ blocks we utilize a matching argument based on413

the longest common sub-sequence (LCS) between the original codeword and the received414

(corrupted) word. Our matching argument utilizes a key feature of the SZ Insdel code. In415

particular, the Hamming weight (i.e., number of non-zero symbols) of every substring c′
416

of an SZ codeword is at least
⌊
♣c′♣/2

⌋
. This ensures that the buffers 0t cannot be matched417

with large portions of any SZ codeword. We additionally leverage a key lemma (full version,418

Lemma 9) which states that the edit distance between the codeword Cin(i, 1 − yi) and any419
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substring of length less than 2t of the uncorrupted codeword C(x) has relative edit distance420

at least δin/2. We use these two properties, along with key facts about the LCS matching,421

to yield an upper bound on the number of dangerous blocks, completing the analysis of our422

decoder.423

1.2.3.5 Extension to relaxed locally correctable codes for insdel errors424

Our construction also yields a strong Insdel Relaxed Locally Correctable Code (RLCC) with425

constant locality if the outer code is a weak Hamming RLCC. First, observe that bits of426

the codeword corresponding to the 0t buffers are very easy to predict without even making427

any queries to the corrupted codeword. Thus, if we are asked to recover the jŠth bit of428

the codeword and j corresponds to a buffer 0t, we can simply return 0 without making429

any queries to the received word. Otherwise, if we are asked to recover the jŠth bit of the430

codeword and j corresponds to block ci, we can simulate the Hamming RLCC decoder (as431

above) on input i to obtain yi (or ⊥). Assuming that yi ∈ ¶0, 1♢, we can compute the432

corresponding SZ encoding of (i, yi) and obtain the original value of the block ci and then433

recover the jŠth bit of the original codeword. The analysis of the RLCC decoder is analogous434

to the RLDC decoder. See Section 6 in the full version for details on both our weak Insdel435

RLDC and strong Insdel RLCC constructions.436

▶ Remark 6. The ŞadaptivenessŤ of our constructed Insdel RLDC/RLCC decoder is identical437

to that of the outer Hamming RLDC/RLCC decoder. In particular, the weak Hamming438

RLDC of Ben-Sasson et al. [7] has a non-adaptive decoder, making our Ąnal decoder non-439

adaptive as well. Similarly, we use a weak Hamming RLCC due to Asadi and Shinkar [3] for440

our Insdel LCC, which is also a non-adaptive decoder.441

2 Open Questions442

Exact Şphase-transitionŤ thresholds443

Our results show that both in the Hamming and Insdel setting there is a constant q such444

that every q-query RLDC requires super-polynomial codeword length, while there exists445

a (q + 1)-query RLDC of polynomial codeword length. Finding the precise q remains an446

intriguing open question. Further, a more reĄned understanding of codeword length for447

RLDCs making 3, 4, 5 queries is another important question, which has lead to much progress448

in the understanding of the LDC variants.449

Constant-query strong Insdel RLDCs/RLCCs450

While we do construct the Ąrst weak RLDCs in the Insdel setting, the drawback of our451

constructions is the fact that our codes do not satisfy the third property of DeĄnition 1.452

Building strong Insdel RLDCs remains an open question. We note that our lower bounds453

imply that for a constant number of queries, such codes (if they exist) must have exponential454

codeword length.455

Applications of local Insdel codes456

As previously mentioned, Hamming LDCs/RLDCs have so far found many applications457

such as private information retrieval, probabilistically checkable proofs, self-correction, fault-458

tolerant circuits, hardness ampliĄcation, and data structures. Are there analogous or new459

applications of the Insdel variants in the broader computing area?460
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Lower bounds for Hamming RLDCs/LDCs461

Our 2-query lower bound for Hamming RLDCs crucially uses the perfect completeness462

property of the decoder. An immediate question is whether the bound still holds if we463

allow the decoder to have imperfect completeness. We also note that the argument in our464

exponential lower bounds for 2-query Hamming RLDCs fail to hold for alphabets other than465

the binary alphabet, and we leave the extension to larger alphabet sizes as an open problem.466

Another related question is to understand if one can leverage perfect completeness and/or467

random restrictions to obtain improved lower bounds for q ≥ 3-query standard Hamming468

LDCs. Perfect completeness has been explicitly used before to show exponential lower bounds469

for 2-query LCCs [11].470

2.1 Further discussion about related work471

Insdel codes472

The study of error correcting codes for insertions and deletions was initiated by Levenstein473

[59]. While progress has been slow because constructing codes for insdel errors is strictly474

more challenging than for Hamming errors, strong interest in these codes lately has led to475

many exciting results [19, 21Ű25,41Ű43,45Ű49,51,61, 63, 69] (See also the excellent surveys of476

[50, 64,66,71]).477

Insdel LDCs478

[67] gave private-key constructions of LDCs with m = Θ(n) and locality polylog(n). [16]479

extended the construction from [67] to settings where the sender/decoder do not share480

randomness, but the adversarial channel is resource bounded. [12] applied the [13] compiler481

to the private key Hamming LDC of [67] (resp. resource bounded LDCs of [16]) to obtain482

private key Insdel LDCs (resp. resource bounded Insdel LDCs) with constant rate and483

polylog(n) locality.484

Insdel LDCs have also been recently studied in computationally bounded channels, in-485

troduced in [60]. Such channels can perform a bounded number of adversarial errors, but486

do not have unlimited computational power as the general Hamming channels. Instead,487

such channels operate with bounded resources. As expected, in many such limited-resource488

settings one can construct codes with strictly better parameters than what can be done489

generally [31, 44, 65, 70]. LDCs in these channels under Hamming error were studied in490

[15, 16, 52Ű54, 67]. [12] applied the [13] compiler to the Hamming LDC of [16] to obtain a491

constant rate Insdel LDCs with polylog(n) locality for resource bounded channels. The work492

of [26] proposes the notion of locally decodable codes with randomized encoding, in both493

the Hamming and edit distance regimes, and in the setting where the channel is oblivious494

to the encoded message, or the encoder and decoder share randomness. For edit error they495

obtain codes with m = O(n) or m = n log n and polylog(n) query complexity. However, even496

in settings with shared randomness or where the channel is oblivious or resource bounded,497

there are no known constructions of Insdel LDCs with constant locality.498

Locality in the study of insdel codes was also considered in [49], which constructs explicit499

synchronization strings that can be locally decoded.500

2.2 Organization501

The remainder of the paper is organized as follows. We give general preliminaries and recall502

some prior results used in our results in Section 3. Due to space limit, we only present the503
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proof of Theorem 2 in Section 4. The readers are pointed to the full version for proofs of504

Theorem 3, Theorem 4 and Corollary 5.505

3 Preliminaries506

For natural number n ∈ N, we let [n] := ¶1, 2, . . . , n♢. We let Ş◦Ť denote the standard string507

concatenation operation. For a string x ∈ ¶0, 1♢∗
of Ąnite length, we let ♣x♣ denote the508

length of x. For i ∈ [♣x♣], we let x[i] denote the i-th bit of x. Furthermore, for I ⊆ [♣x♣], we509

let x[I] denote the subsequence x[i1] ◦ x[i2] ◦ · · · ◦ x[iℓ], where ij ∈ I and ℓ = ♣I♣. For two510

strings x, y ∈ ¶0, 1♢n
of length n, we let HAM(x, y) denote the Hamming Distance between511

x and y; i.e., HAM(x, y) :=
∣∣¶i ∈ [n] : xi ̸= yi♢

∣∣. Similarly, we let ED(x, y) denote the Edit512

Distance between x and y; i.e., ED(x, y) is the minimum number of insertions and deletions513

needed to transform string x into string y. We often discuss the relative Hamming Distance514

(resp., relative Edit Distance) between x and y, which is simply the Hamming Distance515

normalized by n, i.e., HAM(x, y)/n (resp., the Edit Distance normalized by ♣x♣ + ♣y♣, i.e.,516

ED(x, y)/(♣x♣ + ♣y♣)). Finally, the Hamming weight of a string x is the number of non-zero517

entries of x, which we denote as wt(x) := ♣¶i ∈ [♣x♣] : xi ̸= 0♢♣.518

For completeness, we recall the deĄnition of a classical locally decodable code, or just a519

locally decodable code.520

▶ DeĄnition 7 (Locally Decodable Codes). A (q, δ, α)-Locally Decodable Code C : Σn → Σm is521

a code for which there exists a randomized decoder that makes at most q queries to the received522

word y and satisĄes the following property: for every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ523

for some unique C(x), then the decoder, on input i, outputs xi with probability ≥ α. Here, the524

randomness is taken over the random coins of the decoder, and dist is a normalized metric.525

If dist is the relative Hamming distance, then we say that the code is a Hamming LDC;526

similarly, if dist is the relative edit distance, then we say that the code is an Insdel LDC.527

We recall the general 2-query Hamming LDC lower bound [6,56].528

▶ Theorem 8 ([6,56]). For constants δ, ε ∈ (0, 1/2) there exists a constant c = c(δ, ε) ∈ (0, 1)529

such that if C : ¶0, 1♢n → ¶0, 1♢m
is a (2, δ, 1/2 + ε) Hamming LDC then m ≥ 2cn−1.530

In our weak Insdel RLDC construction, we utilize a weak Hamming RLDC due to [7].531

▶ Lemma 9 ([7]). For constants ε, δ ∈ (0, 1/2) and γ ∈ (0, 1), there exists a constant532

q = Oδ,ε(1/γ2) and a weak (q, δ, 1/2 + ε)-Hamming RLDC C : ¶0, 1♢n → ¶0, 1♢m
with533

m = O(n1+γ). Moreover, the decoder of this code is non-adaptive.534

Our construction additionally utilizes the well-known Schulman-Zuckerman Insdel codes535

[69].536

▶ Lemma 10 (Schulman-Zuckerman (SZ) Code [69]). There exists constants β ≥ 1 and δ > 0537

such that for large enough values of t > 0, there exists a code C : ¶0, 1♢t → ¶0, 1♢βt
capable of538

decoding from δ-fraction of Insdel errors and the additional property that for every x ∈ ¶0, 1♢t
539

and y = C(x), every substring y′ of y with length at least 2 has Hamming weight ≥
⌊
♣y′♣/2

⌋
.540

Our strong Insdel RLCC construction relies on a weak Hamming RLCC. We utilize the541

following weak Hamming RLCC implicit in [3].542

▶ Lemma 11 (Implied by Theorem 1 of [3]). For every sufficiently large q ∈ N and ε ∈ (0, 1/2),543

there is a constant δ such that there exists a weak (q, δ, 1/2 + ε)-relaxed Hamming Locally544

Correctable Code C : ¶0, 1♢n → ¶0, 1♢m
with m = n1+O(1/q). Moreover, the decoder of this545

code is non-adaptive.546
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4 Lower Bounds for 2-Query Hamming RLDCs547

We prove Theorem 2 in this section. As a reminder, a weak (q, δ, α)-RLDC satisĄes the Ąrst548

two conditions in DeĄnition 1, and non-adaptive means the decoder makes queries according549

to a distribution which is independent of the received string y. Here we are interested in the550

case q = 2 and α = 1/2 + ε.551

To avoid overloading Ąrst-time readers with heavy notations, we Ąrst present a proof of the552

lower bound for non-adaptive decoders, i.e., decoders with a query distribution independent553

of the received string. This proof will be easier to follow, while the crucial ideas behind it554

remain the same. The proof for the most general case is presented in the last subsection,555

with an emphasis on the nuances in dealing with adaptivity.556

4.1 A Warm-up: the lower bound for non-adaptive decoders557

In the following, we Ąx a relaxed decoder Dec for C. In this subsection, we assume that Dec558

is non-adaptive, and that it has the Ąrst two properties speciĄed in DeĄnition 1. To avoid559

technical details, we also assume Dec always makes exactly 2 queries (otherwise add dummy560

queries to make the query count exactly 2).561

Given an index i ∈ [n] and queries j, k made by Dec(i, ·), in the most general setting562

the output could be a random variable which depends on i and yj , yk, where yj , yk are the563

answers to queries j, k, respectively. An equivalent view is that the decoder picks a random564

function f according to some distribution and outputs f(yj , yk). Let DF
i
j,k be the set of565

all decoding functions f : ¶0, 1♢2 → ¶0, 1, ⊥♢ which are selected by Dec(i, ·) with non-zero566

probability when querying j, k. We partition the queries into the following two sets567

F 0
i :=

{
¶j, k♢ ⊆ [m] : ∀f ∈ DF

i
j,k the truth table of f contains no Ş⊥Ť

}
,568

F ≥1
i :=

{
¶j, k♢ ⊆ [m] : ∃f ∈ DF

i
j,k the truth table of f contains at least 1 Ş⊥Ť

}
.569

570

Notations571

Given a string w ∈ ¶0, 1♢m
and a subset S ⊆ [m], we denote w[S] := (wi)i∈S ∈ ¶0, 1♢♣S♣

.572

Given a Boolean function f : ¶0, 1♢n → ¶0, 1♢, and σ ∈ ¶0, 1♢, we write f ↾xi=σ to denote573

the restriction of f to the domain
{

x ∈ ¶0, 1♢n : xi = σ
}

. For a sequence of restrictions, we574

simply write f ↾(xj1
,...,xjk

)=(σ1,...,σk), or fJ♣σ where J = [n]\¶j1, . . . , jk♢ and σ = (σ1, . . . , σk).575

Note that fJ♣σ is a Boolean function over the domain ¶0, 1♢J
.576

We will identify the encoding function of C as a collection of m Boolean functions577

C :=
{

C1, . . . , Cm : ∀j ∈ [m], Cj : ¶0, 1♢n → ¶0, 1♢
}

.578
579

Namely, C(x) = (C1(x), C2(x), . . . , Cm(x)) for all x ∈ ¶0, 1♢n
.580

For j ∈ [m], we say Cj is Ąxable by xi if at least one of the restrictions Cj ↾xi=0 and581

Cj ↾xi=1 is a constant function. Denote582

Si :=
{

j ∈ [m] : Cj is Ąxable by xi

}
, Tj :=

{
i ∈ [n] : Cj is Ąxable by xi

}
,583

584

and wj := ♣Tj ♣. Let585

W :=
{

j ∈ [m] : wj ≥ 3 ln(8/δ)
}

.586
587

For i ∈ [n] deĄne the sets Si,+ := Si ∩ W , and Si,− := Si ∩ W .588
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Let J ⊆ [n] and ρ ∈ ¶0, 1♢J
. A code C : ¶0, 1♢n → ¶0, 1♢m

restricted to xJ = ρ, denoted589

by CJ♣ρ, is speciĄed by the following collection of Boolean functions590

CJ♣ρ :=
{

Cj ↾x
J

=ρ : j ∈ [m], Cj ↾x
J

=ρ is not a constant function
}

.591

592

Namely, we restrict each function Cj in C to xJ = ρ, and eliminate those that have become593

constant functions. CJ♣ρ encodes n′-bit messages into m′-bit codewords, where n′ = ♣J ♣ and594

m′ =
∣∣∣CJ♣ρ

∣∣∣ ≤ m.595

We note that the local decoder Dec for C can also be used as a local decoder for CJ♣ρ,596

while preserving all the parameters. This is because, Dec never needs to really read a597

codeword bit which has become a constant function under the restriction J ♣ρ.598

The lemma below will be useful later in the proof. It shows that a constant fraction of599

the message bits can be Ąxed so that most codeword bits Cj with large wj become constants.600

▶ Lemma 12. There exist a set J ⊆ [n] and assignments ρ ∈ ¶0, 1♢J
such that ♣J ♣ ≥ n/6,601

and ♣W \ A♣ ≤ δm/4, where A ⊆ W collects all codeword bits j ∈ W such that Cj ↾x
J

=ρ is a602

constant function.603

Proof. Let J be a random subset formed by selecting each i ∈ [n] independently with604

probability 1/3. For each j ∈ J , set ρj = 0 or ρj = 1 with probability 1/2. We have E[♣J ♣] =605

n/3, and hence the Chernoff bound shows that ♣J ♣ < n/6 with probability exp(−Ω(n)).606

Furthermore, for each j ∈ W , Cj ↾x
J

=ρ becomes a constant function except with probability607

δ/8. This is because for each i ∈ Tj , Cj ↾xi=0 or Cj ↾xi=1 is a constant function, and either608

case happens with probability 1/3. Therefore609

Pr
[
Cj ↾x

J
=ρ is not constant

]
≤

(
1 − 1

3

)♣Tj ♣
< e−♣Tj ♣/3 ≤ δ

8
,610

611

where the last inequality is due to wj = ♣Tj ♣ ≥ 3 ln(8/δ), since j ∈ W .612

By linearity of expectation and MarkovŠs inequality, we have613

Pr




∑

j∈W

1

{
Cj ↾x

J
=ρ is not constant

}
≥ δ

4
♣W ♣




614

≤
E

[∑
j∈W 1

{
Cj ↾x

J
=ρ is not constant

}]

δ♣W ♣/4
615

=

∑
j∈W Pr

[
Cj ↾x

J
=ρ is not constant

]

δ♣W ♣/4
616

≤δ/8 · ♣W ♣
δ♣W ♣/4

≤ 1

2
.617

618

Applying a union bound gives619

Pr




(
♣J ♣ < n/6

)
∨




∑

j∈W

1

{
Cj ↾x

J
=ρ is not constant

}
≥ δ

4
♣W ♣





620

≤ exp
(
−Ω(n)

)
+

1

2
< 1.621

622

Finally, we can conclude that there exist J ⊆ [n] and ρ ∈ ¶0, 1♢J
such that ♣J ♣ ≥ n/6, and623

Cj ↾x
J

=ρ becomes a constant function for all but δ/4 fraction of j ∈ W . ◀624
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Let J ⊆ [n] and ρ ∈ ¶0, 1♢J
be given by the Lemma 12, and consider the restricted code625

CJ♣ρ. By rearranging the codeword bits, we may assume J = [n′] where n′ = ♣J ♣ ≥ n/6.626

Let A ⊆ [m] be the set of codeword bits which get Ąxed to constants under J ♣ρ. We627

denote W ′ := W \ A, S′
i := Si \ A, S′

i,− := Si,− \ A, and S′
i,+ := Si,+ \ A. Note that628

♣W ′♣ = ♣W \ A♣ ≤ δm/4, and thus ♣S′
i,+♣ = ♣Si,+ ∩ W ′♣ ≤ δm/4 for all i ∈ [n′]. We emphasize629

that S′
i does not necessarily contain all codeword bits Ąxable by xi in the restricted code630

CJ♣ρ, as Ąxing some message bits may cause more codeword bits to be Ąxable by xi.631

We Ąrst show that the queries of C must have certain structures. The following claim632

characterizes the queries in F ≥1
i .633

▷ Claim 13. Suppose ¶j, k♢ ∈ F ≥1
i . Then we must have j, k ∈ Si.634

Proof. Let ¶j, k♢ ∈ F ≥1
i . Suppose for the sake of contradiction that j /∈ Si. This implies635

there are partial assignments σ00, σ01, σ10, σ11 ∈ ¶0, 1♢n−1
such that636

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,637

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,638
639

where x−i is deĄned as
(
xt : t ∈ [n] \ ¶i♢

)
.640

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.641

Since the relaxed decoder has perfect completeness, when Dec(i, ·) is given access to C00 or642

C10 it must output xi = 0. Note that the j-th bit is different in C00 and C10. Similarly,643

when Dec(i, ·) is given access to C01 or C11 it must output xi = 1. However, this already644

takes up 4 entries in the truth table of any decoding function f ∈ DF
i
j,k, leaving no space for645

any Ş⊥Ť entry. This contradicts with the assumption ¶j, k♢ ∈ F ≥1
i . ◀646

Here is another way to view Claim 13 which will be useful later: Suppose ¶j, k♢ is a query647

set such that j /∈ Si (or k /∈ Si), then ¶j, k♢ ∈ F 0
i . In other words, conditioned on the event648

that some query is not contained in Si, the decoder never outputs ⊥.649

The following claim characterizes the queries in F 0
i .650

▷ Claim 14. Suppose ¶j, k♢ ∈ F 0
i , and j ∈ Si. Then one of the following three cases occur:651

(1) k ∈ Si, (2) Cj = xi, or (3) Cj = ¬xi.652

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant653

function. Let us further assume it is the constant-zero function. The proofs for the other654

cases are going to be similar.655

Denote by f(yj , yk) the function returned by Dec(i, ·) conditioned on reading ¶j, k♢. Any656

function f ∈ DF
i
j,k takes values in ¶0, 1♢ since ¶j, k♢ ∈ F 0

i . Suppose case (1) does not occur,657

meaning that Ck ↾xi=0 is not a constant function. Then there must be partial assignments658

σ00, σ01 ∈ ¶0, 1♢n−1
such that659

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.660
661

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. Due662

to perfect completeness of Dec, it must always output xi = 0 when given access to C00 or663

C01. That means f(0, 0) = f(0, 1) = 0.664

Now we claim that Cj ↾xi=1 must be the constant-one function. Otherwise there is a665

partial assignment σ10 ∈ ¶0, 1♢n−1
such that666

Cj(xi = 1, x−i = σ10) = 0.667
668
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Let C10 be the encoding of this assignment. On the one hand, due to perfect completeness669

Dec(i, ·) should always output xi = 1 when given access to C10. On the other hand, Dec(i, ·)670

outputs f((C10)j , 0) = f(0, 0) = 0. This contradiction shows that Cj ↾xi=1 must be the671

constant-one function. Therefore Cj = xi, i.e., case (2) occurs.672

Similarly, when Cj ↾xi=0 is the constant-one function, we can deduce that Cj = ¬xi, i.e.,673

case (3) occurs. ◀674

We remark that Claim 13 and Claim 14 jointly show that for any query set ¶j, k♢ made675

by Dec(i, ·) there are 2 essentially different cases: (1) both j, k lie inside Si, and (2) both676

j, k lie outside Si. The case j ∈ Si, k /∈ Si (k ∈ Si, j /∈ Si, resp.) means that k (j, resp.) is677

a dummy query which is not used for decoding. Furthermore, conditioned on case (2), the678

decoder never outputs ⊥.679

Another important observation is that all properties of the decoder discussed above hold680

for the restricted code CJ♣ρ, with Si replaced by S′
i. This is because CJ♣ρ uses essentially681

the same decoder, except that it does not actually query any codeword bit which became a682

constant.683

For a subset S ⊆ [m], we say ŞDec(i, ·) reads SŤ if the event Şj ∈ S and k ∈ SŤ occurs684

where j, k ∈ [m] are the queries made by Dec(i, ·). The following lemma says that conditioned685

on Dec(i, ·) reads some subset S, there is a way of modifying the bits in S that Ćips the686

output of the decoder.687

▶ Lemma 15. Let S ⊆ [m] be a subset such that Pr[Dec(i, ·) reads S] > 0. Then for688

any string s ∈ ¶0, 1♢m
and any bit b ∈ ¶0, 1♢, there exists a string z ∈ ¶0, 1♢m

such that689

z[[m] \ S] = s[[m] \ S], and690

Pr
[
Dec(i, z) = 1 − b ♣ Dec(i, ·) reads S

]
= 1.691

692

Proof. Let x ∈ ¶0, 1♢n
be a string with xi = 1 − b. Let z ∈ ¶0, 1♢m

be the string satisfying693

z[S] = C(x)[S], z[[m] \ S] = s[[m] \ S].694
695

Since Dec has perfect completeness, we have696

1 = Pr
[
Dec(i, C(x)) = xi ♣ Dec(i, ·) reads S

]
= Pr

[
Dec(i, z) = 1 − b ♣ Dec(i, ·) reads S

]
.697

698

◀699

The next lemma is a key step in our proof. It roughly says that there is a local decoder700

for xi in the standard sense as long as the size of Si is not too large.701

▶ Lemma 16. Suppose i ∈ [n] is such that ♣Si♣ ≤ δm/2. Then there is a (2, δ/2, 1/2 + ε)-702

local decoder Di for i. In other words, for any x ∈ ¶0, 1♢n
and y ∈ ¶0, 1♢m

such that703

HAM(C(x), y) ≤ δm/2, we have704

Pr
[
Di(y) = xi

]
≥ 1

2
+ ε,705

706

and Di makes at most 2 queries into y.707

Proof. Let i ∈ [n] be such that ♣Si♣ ≤ δm/2. The local decoder Di works as follows. Given708

x ∈ ¶0, 1♢n
and y ∈ ¶0, 1♢m

such that HAM(C(x), y) ≤ δm/2, Di obtains a query set Q709

according to the query distribution of Dec(i, ·) conditioned on Q ⊆ [m] \ Si. Then Di Ąnishes710

by outputting the result returned by Dec(i, ·).711
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Denote by Ei the event ŞDec(i, ·) reads [m]\SiŤ, i.e., both two queries made by Dec(i, ·) lie712

outside Si. In order for the conditional distribution to be well-deĄned, we need to argue that713

Ei occurs with non-zero probability. Suppose this is not the case, meaning that Q ∩ Si ̸= ∅714

for all possible query set Q. Let z ∈ ¶0, 1♢m
be the string obtained by applying Lemma 15715

with S = Si, s = C(x) and b = xi. Claim 13 and Claim 14 jointly show that either Q ⊆ Si,716

or the decoderŠs output does not depend on the answers to queries in Q \ Si. In any case,717

the output of Dec(i, z) depends only on z[Si]. However, by the choice of z we now have a718

contradiction since719

1

2
+ ε ≤ Pr

[
Dec(i, z) ∈ ¶xi, ⊥♢

]
= Pr

[
Dec(i, z) ∈ ¶xi, ⊥♢ ♣ Dec(i, ·) reads Si

]
= 0,720

721

where the Ąrst inequality is due to HAM(C(x), z) ≤ ♣Si♣ < δm and the relaxed decoding722

property of Dec.723

By deĄnition of Di, it makes at most 2 queries into y. Its success rate is given by724

Pr[Di(y) = xi] = Pr[Dec(i, y) = xi ♣ Ei].725
726

Therefore it remains to show that727

Pr
[
Dec(i, y) = xi ♣ Ei

]
≥ 1

2
+ ε.728

729

Let z be the string obtained by applying Lemma 15 with S = Si, s = y and b = xi. From730

previous discussions we see that conditioned on Ei (i.e., the event Ei does not occur), the731

output of Dec(i, z) only depends on z[Si]. Therefore732

Pr
[
Dec(i, z) ∈ ¶xi, ⊥♢ ♣ Ei

]
= 1 − Pr

[
Dec(i, z) = 1 − xi ♣ Ei

]
= 0. (1)733

734

We also have that z is close to C(x) since735

HAM(z, C(x)) ≤ HAM(z, y) + HAM(y, C(x)) ≤♣Si♣ + δm/2 ≤ δm.736
737

Thus, the relaxed decoding property of Dec gives738

Pr
[
Dec(i, z) ∈ ¶xi, ⊥♢

]
≥ 1

2
+ ε.739

740

On the other hand, we also have741

Pr
[
Dec(i, z) ∈ ¶xi, ⊥♢

]
742

= Pr
[
Dec(i, z) ∈ ¶xi, ⊥♢ ♣ Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, z) ∈ ¶xi, ⊥♢ ♣ Ei

]
· Pr [Ei]743

= Pr
[
Dec(i, z) ∈ ¶xi, ⊥♢ ♣ Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, y) ∈ ¶xi, ⊥♢ ♣ Ei

]
· Pr [Ei]

(z[[m] \ Si] = y[[m] \ Si])

744

= Pr
[
Dec(i, y) ∈ ¶xi, ⊥♢ ♣ Ei

]
· Pr [Ei] (Equation (1))745

≤ Pr
[
Dec(i, y) ∈ ¶xi, ⊥♢ ♣ Ei

]
.746

747

Note that by Claim 13, conditioned on Ei, Dec(i, ·) never outputs Ş⊥Ť. We thus have748

Pr
[
Dec(i, y) = xi ♣ Ei

]
≥ 1

2
+ ε.749

750

◀751
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We remark once again that the above lemma holds for the restricted code CJ♣ρ, with Si752

replaced by S′
i.753

Below we prove an exponential lower bound for non-adaptive 2-query Hamming RLDCs.754

▶ Proposition 17. Let C : ¶0, 1♢n → ¶0, 1♢m
be a non-adaptive weak (2, δ, 1/2 + ε)-RLDC.755

Then m = 2Ωδ,ε(n).756

Proof. Let CJ♣ρ : ¶0, 1♢n′

→ ¶0, 1♢m′

be the restricted code where J ♣ρ is given by Lemma 12,757

and A ⊆ [m] be the set of codeword bits which get Ąxed to constants. We also let S′
i := Si \A,758

S′
i,− = Si,− \ A, S′

i,+ = Si,+ \ A.759

Denote T ′
j :=

{
i ∈ [n′] : j ∈ S′

i

}
. Since S′

i ⊆ Si for each i, we also have T ′
j ⊆ Tj for each760

j. In particular, for each j /∈ W ′ ⊆ W , we have ♣T ′
j ♣ ≤ ♣Tj ♣ ≤ 3 ln(8/δ). Therefore761

E
i∈[n′]

[
♣S′

i,−♣
]

=
1

n′

n′∑

i=1

♣S′
i,−♣ =

1

n′

∑

j∈[m′]\W ′

♣T ′
j ♣ ≤ 3 ln(8/δ) · m′

n′ .762

763

Therefore by MarkovŠs inequality,764

Pr
i∈[n′]

[
♣S′

i,−♣ > δm′/4
]

≤ 12 ln(8/δ)

δn′ = Oδ

(
1

n′

)
.765

766

In other words, there exists I ⊆ [n′] of size ♣I♣ ≥ n′ − Oδ(1) such that ♣S′
i,−♣ ≤ δm′/4 for767

all i ∈ I. For any such i ∈ I, we have ♣S′
i♣ = ♣S′

i,−♣ + ♣S′
i,+♣ ≤ δm′/4 + δm′/4 = δm′/2. By768

Lemma 16, we can view CJ♣ρ as a (2, δ/2, 1/2 + ε)-LDC for message bits in I (for instance,769

we can arbitrarily Ąx the message bits outside I), where ♣I♣ > n′ − Oδ(1) = Ω(n). Finally,770

the statement of the proposition follows from Theorem 8. ◀771

4.2 Lower bounds for adaptive 2-Query Hamming RLDCs772

Now we turn to the actual proof, which still works for possibly adaptive decoders. Let C be773

a weak (2, δ, 1/2 + ε)-RLDC with perfect completeness. We Ąx a relaxed decoder Dec for774

C. Without loss of generality, we assume Dec works as follows: on input i ∈ [n], Dec(i, ·)775

picks the Ąrst query j ∈ [m] according to a distribution Di. Let b ∈ ¶0, 1♢ be the answer to776

this query. Then Dec picks the second query k ∈ [m] according to a distribution Di;j,b, and777

obtains an answer b′ ∈ ¶0, 1♢. Finally, Dec outputs a random variable Xi;j,b,k,b′ ∈ ¶0, 1, ⊥♢.778

We partition the support of Di into the following two sets:779

F 0
i :=

{
j ∈ supp(Di) : ∀b, b′ ∈ ¶0, 1♢ , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] = 0

}
,780

F >0
i :=

{
j ∈ supp(Di) : ∃b, b′ ∈ ¶0, 1♢ , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] > 0

}
.781

782

We will still apply the restriction guaranteed by Lemma 12 to C. The sets Si, Tj , W ,783

Si,−, Si,+ (are their counterparts for CJ♣ρ) are deĄned in the exact same way.784

The following claim is adapted from Claim 13.785

▷ Claim 18. (supp(Di) \ Si) ⊆ F 0
i .786

Proof. Let j ∈ supp(Di) \ Si and we will show j ∈ F 0
i . By the deĄnition of Si, j /∈ Si means787

that there are partial assignments σ00, σ01, σ10, σ11 ∈ ¶0, 1♢n−1
such that788

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,789

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,790
791
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where x−i is deĄned as
(
xt : t ∈ [n] \ ¶i♢

)
.792

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.793

Consider an arbitrary query k ∈ supp(Di;j,0), and let b′
1, b′

2 be the k-th bit of C00 and C01,794

respectively. We note that Xi;j,0,k,b′

1
is the output of Dec(i, C00) conditioned on the queries795

j, k, and Xi;j,0,k,b′

2
is the output of Dec(i, C01) conditioned on the queries j, k. Due to perfect796

completeness of Dec, we have797

Pr[Xi;j,0,k,b′

1
= 0] = 1, Pr[Xi;j,0,k,b′

2
= 1] = 1.798

799

Therefore, it must be the case that b′
1 ≠ b′

2, which implies that Pr[Xi;j,0,k,b′ =⊥] = 0 for any800

b′ ∈ ¶0, 1♢.801

An identical argument shows that Pr[Xi;j,1,k,b′ =⊥] = 0 for any k ∈ supp(Di;j,1) and802

b′ ∈ ¶0, 1♢. Thus we have shown j ∈ F 0
i . ◀803

We remark that the above claim also implies F >0
i ⊆ Si, since supp(Di) is a disjoint804

union of F 0
i and F >0

i . In other words, conditioned on the event that the Ąrst query j is not805

contained in Si, the decoder never outputs ⊥.806

The next claim is adapted from Claim 14.807

▷ Claim 19. Let j ∈ supp(Di) ∩ Si. For any b ∈ ¶0, 1♢ one of the following three cases808

occurs:809

1. supp(Di;j,b) ⊆ Si;810

2. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1;811

3. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.812

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant813

function. Let us further assume Cj ↾xi=0 ≡ 0. The proofs for the other cases are going to be814

similar.815

Suppose supp(Di;j,0) ̸⊆ Si, and let k ∈ supp(Di;j,0) \ Si. By the deĄnition of Si, k /∈ Si816

means that there are partial assignments σ00, σ01 ∈ ¶0, 1♢n−1
such that817

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.818
819

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. We820

note that Xi;j,0,k,0 and Xi;j,0,k,1 are the outputs of Dec(i, C00) and Dec(i, C01), respectively,821

conditioned on the queries j, k. Due to perfect completeness of Dec, we must have822

Pr[Xi;j,0,k,0 = 0] = Pr[Xi;j,0,k,1 = 0] = 1,823
824

since both C00 and C01 encode messages with xi = 0.825

Now we claim that Cj ↾xi=1 ≡ 1 must hold. Otherwise there is a partial assignment826

σ10 ∈ ¶0, 1♢n−1
such that827

Cj(xi = 1, x−i = σ10) = 0.828
829

Let C10 be the encoding of this assignment, and let b′ ∈ ¶0, 1♢ be the k-th bit of C10. On830

the one hand, Xi;j,0,k,b′ is the output Dec(i, C10) conditioned on the queries j, k, and we831

have just established832

Pr[Xi;j,0,k,b′ = 0] = 1.833
834

On the other hand, Dec(i, C10) should output xi = 1 with probability 1 due to perfect835

completeness. This contradiction shows that Cj ↾xi=1 ≡ 1.836



A. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, M. Zhu 14:21

Similarly, suppose supp(Di;j,1) ̸⊆ Si and let k ∈ supp(Di;j,1) \ Si, meaning that there are837

partial assignments σ10, σ11 ∈ ¶0, 1♢n−1
such that838

Ck(xi = 1, x−i = σ10) = 0, Ck(xi = 1, x−i = σ11) = 1.839
840

Let C10 and C11 be the corresponding encodings, and note that Xi;j,1,k,0 and Xi;j,1,k,1 are the841

outputs of Dec(i, C10) and Dec(i, C11), respectively, conditioned on the queries j, k. Perfect842

completeness of Dec implies843

Pr[Xi;j,1,k,0 = 1] = Pr[Xi;j,1,k,1 = 1] = 1,844
845

since both C10 and C11 encode messages with xi = 1.846

So far we have shown that for any b ∈ ¶0, 1♢ such that supp(Di;j,b) ̸⊆ Si, it holds that847

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1,848
849

provided that Cj ↾xi=0 ≡ 0. In case of Cj ↾xi=0 ≡ 1, we can use an identical argument to850

deduce that for any b ∈ ¶0, 1♢ such that supp(Di;j,b) ̸⊆ Si, it holds that851

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.852
853

◀854

Here is another way to view Claim 19: conditioned on the event that the Ąrst query j is855

contained in Si, either the second query k is also contained in Si, or the output Xi;j,b,k,b′ is856

independent of the answer b′ to query k. In either case, the decoderŠs output depends solely857

on the Si-portion of the received string.858

Once again, the conclusions of Claim 18 and Claim 19 hold for CJ♣ρ, with Si replaced by859

S′
i.860

Finally, we are ready to prove Theorem 2. We recall the Theorem below.861

▶ Theorem 2. Let C : ¶0, 1♢n → ¶0, 1♢m
be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then862

m = 2Ωδ,ε(n).863

Proof. The proof is almost identical to the one for Proposition 17. First, we can show that864

there exists I ⊆ [n′] of size ♣I♣ ≥ n′ − Oδ(1) = Ω(n) such that ♣S′
i,−♣ ≤ δm/4 for all i ∈ I,865

and hence ♣S′
i♣ = ♣S′

i,−♣ + ♣S′
i,+♣ ≤ δm/2. Second, similar to the proof of Lemma 16, for each866

i ∈ I we can construct a decoder Di for xi as follows. Di restarts Dec(i, ·) until it makes a867

Ąrst query j ∈ [m′] \ S′
i. Then Di Ąnishes simulating Dec(i, ·) and returns its output. With868

the help of Claim 18 and Claim 19, the same analysis in Lemma 16 shows that Di never869

returns ⊥, and that the probability of returning xi is at least 1/2 + ε. Finally, the theorem870

follows from Theorem 8. ◀871
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