

1 On Relaxed Locally Decodable Codes for Hamming 2 and Insertion-Deletion Errors

3 Alexander R. Block

University of Maryland, College Park, USA
Georgetown University, USA

Jeremiah Blocki

Department of Computer Science, Purdue University, USA

4 Kuan Cheng

Center on Frontiers of Computing Studies, Peking University, China

Elena Grigorescu

Department of Computer Science, Purdue University, USA

5 Xin Li

Department of Computer Science, Johns Hopkins University, USA

Yu Zheng

Meta Platforms, Inc., USA

6 Minshen Zhu

Department of Computer Science, Purdue University, USA

8 Abstract

9 Locally Decodable Codes (LDCs) are error-correcting codes $C : \Sigma^n \rightarrow \Sigma^m$, encoding *messages* in Σ^n
10 to *codewords* in Σ^m , with super-fast decoding algorithms. They are important mathematical objects
11 in many areas of theoretical computer science, yet the best constructions so far have codeword length
12 m that is super-polynomial in n , for codes with constant query complexity and constant alphabet
13 size.

14 In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006)
15 show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost
16 linear codeword length over the binary alphabet, and used them to obtain significantly-improved
17 constructions of Probabilistically Checkable Proofs.

18 In this work, we study RLDCs in the standard Hamming-error setting, and introduce their
19 variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were
20 first studied by Ostrovsky and Paskin-Cherniavsky (*Information Theoretic Security*, 2015), and are
21 further motivated by recent advances in DNA random access bio-technologies.

22 Our first result is an exponential lower bound on the length of Hamming RLDCs making 2
23 queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by
24 Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined
25 with the results of Ben-Sasson et al., our result exhibits a “phase-transition”-type behavior on
26 the codeword length for some constant-query complexity. We achieve these lower bounds via a
27 transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of
28 message bits that fix codeword bits.

29 We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version.
30 On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant
31 query complexity, matching the parameters of the Hamming variants. On the other hand, we prove
32 exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these
33 variants are equivalent in the Hamming setting, they are significantly different in the insdel setting.
34 Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.

35 **2012 ACM Subject Classification** Theory of computation → Error-correcting codes; Mathematics of
36 computing → Coding theory; Theory of computation → Lower bounds and information complexity

37 **Keywords and phrases** Relaxed Locally Decodable Codes, Hamming Errors, Insdel Errors, Lower
38 Bounds

39 **Digital Object Identifier** 10.4230/LIPIcs.CCC.2023.14

40 **Related Version** *Full Version*: <https://arxiv.org/abs/2209.08688>

© Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and
Minshen Zhu;

licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).

Editor: Amnon Ta-Shma; Article No. 14; pp. 14:1–14:25

Leibniz International Proceedings in Informatics

LIPIcs Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

41 **Funding** *Alexander R. Block:* NSF Award CCF-1910659 and DARPA agreement No. HR00112020022
 42 and No. HR00112020025. The views, opinions, findings, conclusions and/or recommendations
 43 expressed in this material are those of the author and should not be interpreted as reflecting the
 44 position or policy of the Department of Defense or the U.S. Government, and no official endorsement
 45 should be inferred.

46 *Jeremiah Blocki:* NSF CAREER Award CNS-2047272 and NSF Award CCF-1910659

47 *Kuan Cheng:* A start-up fund from Peking University, Innovation Program for Quantum Science
 48 and Technology 2021ZD0302900

49 *Elena Grigorescu:* NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-2228814

50 *Xin Li:* NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575

51 *Yu Zheng:* NSF CAREER Award CCF-1845349

52 *Minshen Zhu:* NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-2228814

53 **Acknowledgements** We are indebted to some anonymous reviewers who helped us improve the
 54 presentation of the paper.

55 1 Introduction

56 Locally Decodable Codes (LDCs) [55, 72] are error-correcting codes $C : \Sigma^n \rightarrow \Sigma^m$ that have
 57 super-fast decoding algorithms that can recover individual symbols of a *message* $x \in \Sigma^n$, even
 58 when worst-case errors are introduced in the *codeword* $C(x)$. Similarly, Locally Correctable
 59 Codes (LCCs) are error-correcting codes $C : \Sigma^n \rightarrow \Sigma^m$ for which there exist very fast
 60 decoding algorithms that recover individual symbols of the *codeword* $C(x) \in \Sigma^m$, even when
 61 worst-case errors are introduced. LDCs/LCCs were first discovered by Katz and Trevisan [55]
 62 and since then have proven to be crucial tools in many areas of computer science, including
 63 private information retrieval, probabilistically checkable proofs, self-correction, fault-tolerant
 64 circuits, hardness amplification, and data structures (e.g., [2, 4, 17, 18, 20, 28, 62] and surveys
 65 [36, 73]).

66 The *parameters* of interest of these codes are their *rate*, defined as the ratio between
 67 the message length n and the codeword length m , their *relative minimum distance*, defined
 68 as the minimum normalized Hamming distance between any pair of codewords, and their
 69 *locality* or *query complexity*, defined as the number of queries a decoder makes to a received
 70 word $y \in \Sigma^m$. Trade-offs between the achievable parameters of Hamming LDCs/LCCs have
 71 been studied extensively over the last two decades [8–11, 32–35, 37, 56, 57, 74, 75, 78, 79] (see
 72 also surveys by Yekhanin [79] and by Kopparty and Saraf [58]).

73 Specifically, for 2-query Hamming LDCs/LCCs it is known that $m = 2^{\Theta(n)}$ [6, 11, 37,
 74 56]. However, for $q > 2$ queries, the current gap between upper and lower bounds is
 75 superpolynomial in n . In particular, the best constructions have super-polynomial codeword
 76 length [32, 34, 78], while the most general lower bounds for $q \geq 3$ are of the form $m =$
 77 $\Omega((\frac{n}{\log n})^{1+1/(\lceil \frac{q}{2} \rceil - 1)})$ [55, 56]. In particular, for $q = 3$, [55] showed an $m = \Omega(n^{3/2})$ bound,
 78 which was improved in [56] to $m = \Omega(n^2/\log^2 n)$. This was further improved by [75, 76]
 79 to $m = \Omega(n^2/\log n)$ for general codes and $m = \Omega(n^2)$ for linear codes. [11] used new
 80 combinatorial techniques to obtain the same $m = \Omega(n^2/\log n)$ bound. A very recent paper
 81 [1] breaks the quadratic barrier and proves that $m = \Omega(n^3/\text{polylog } n)$. We note that the
 82 exponential lower bound on the length of 3-query LDCs from [35] holds only for some
 83 restricted parameter regimes, and do not apply to the natural ranges of the known upper
 84 bounds.

85 Motivated by this large gap in the constant-query regime, as well as by applications in
 86 constructions of Probabilistically Checkable Proofs (PCPs), Ben-Sasson, Goldreich, Harsha,

87 Sudan, and Vadhan [7] introduced a relaxed version of LDCs for Hamming errors. Specifically,
 88 the decoder is allowed to output a “decoding failure” answer (marked as “ \perp ”), as long as it errs
 89 with some small probability. More precisely, a $(q, \delta, \alpha, \rho)$ -relaxed LDC is an error-correcting
 90 code satisfying the following properties.

91 **► Definition 1.** A $(q, \delta, \alpha, \rho)$ -Relaxed Locally Decodable Code $C : \Sigma^n \rightarrow \Sigma^m$ is a code for
 92 which there exists a decoder that makes at most q queries to the received word y , and satisfies
 93 the following further properties:

- 94 1. (Perfect completeness) For every $i \in [n]$, if $y = C(x)$ for some message x then the decoder,
 95 on input i , outputs x_i with probability 1.¹
- 96 2. (Relaxed decoding) For every $i \in [n]$, if y is such that $\text{dist}(y, C(x)) \leq \delta$ for some unique
 97 $C(x)$, then the decoder, on input i , outputs x_i or \perp with probability $\geq \alpha$.
- 98 3. (Success rate) For every y such that $\text{dist}(y, C(x)) \leq \delta$ for some unique $C(x)$, there is a
 99 set I of size $\geq \rho n$ such that for every $i \in I$ the decoder, on input i , correctly outputs x_i
 100 with probability $\geq \alpha$.

101 We will call an RLDC that satisfies all 3 conditions by the notion of strong RLDC, and one
 102 that satisfies just the first 2 conditions by the notion of weak RLDC, in which case it is called
 103 a (q, δ, α) -RLDC. Furthermore, if the q queries are made in advance, before seeing entries of
 104 the codeword, then the decoder is said to be non-adaptive; otherwise, it is called adaptive.

105 The above definition is quite general, in the sense that $\text{dist}(a, b)$ can refer to several
 106 different distance metrics. In the most natural setting, we use $\text{dist}(a, b)$ to mean the
 107 “relative” Hamming distance between $a, b \in \Sigma^m$, namely $\text{dist}(a, b) = |\{i : a_i \neq b_i\}|/m$. This
 108 corresponds to the standard RLDCs for Hamming errors. As it will be clear from the
 109 context, we also use $\text{dist}(a, b)$ to mean the “relative” Edit distance between $a, b \in \Sigma^*$, namely
 110 $\text{dist}(a, b) = \text{ED}(a, b)/(|a| + |b|)$, where $\text{ED}(a, b)$ is the minimum number of insertions and
 111 deletions to transform string a into b . This corresponds to the new notion introduced and
 112 studied here, which we call *Insdel RLDCs*. Throughout this paper, we only consider the case
 113 where $\Sigma = \{0, 1\}$.

114 Definition 1 has also been extended recently to the notion of *Relaxed Locally Correctable*
 115 *Codes (RLCCs)* by Gur, Ramnarayan, and Rothblum [40]. RLDCs and RLCCs have been
 116 studied in a sequence of exciting works, where new upper and lower bounds have emerged,
 117 and new applications to probabilistic proof systems have been discovered [3, 27, 29, 38–40].

118 Surprisingly, [7] constructs strong RLDCs with $q = O(1)$ queries and $m = n^{1+O(1/\sqrt{q})}$, and
 119 more recently Asadi and Shinkar [3] improve the bounds to $m = n^{1+O(1/q)}$, in stark contrast
 120 with the state-of-the-art constructions of standard LDCs. Gur and Lachish [39] show that
 121 these bounds are in fact tight, as for every $q \geq 2$, every weak q -query RLDC must have length
 122 $m = n^{1+1/O(q^2)}$ for non-adaptive decoders. We remark that the lower bounds of [39] hold
 123 even when the decoder does not have perfect completeness and in particular valid message
 124 bits are decoded with success probability $2/3$. Dall’Agnon, Gur, and Lachish [30] further
 125 extend these bounds to the setting where the decoder is adaptive, with $m = n^{1+1/O(q^2 \log^2 q)}$.

¹ We remark that the initial definition in [7] only requires that x_i is output with probability $2/3$ when there are no errors. However, to the best of our knowledge, all constructions of RLDCs (and LDCs) from the literature do satisfy perfect completeness. Moreover, some lower bounds (e.g., [11]) only hold with respect to perfect completeness.

126 1.1 Our results

127 As discussed before, since the introduction of RLDCs, unlike standard LDCs, they displayed
 128 a behaviour amenable to nearly linear-size constructions, with almost matching upper and
 129 lower bounds. However, recently [39] conjecture that for $q = 2$ queries, there is in fact an
 130 exponential lower bound, matching the bounds for standard LDCs.

131 In this paper, our first contribution is a proof of their conjecture, namely to show that
 132 Hamming 2-query RLDCs require exponential length. In fact, our exponential lower bound
 133 for $q = 2$ applies even to weak RLDCs, which only satisfy the first two properties (perfect
 134 completeness and relaxed decoding), and even for adaptive decoders.

135 ▶ **Theorem 2.** *Let $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a weak adaptive $(2, \delta, 1/2 + \varepsilon)$ -RLDC. Then
 136 $m = 2^{\Omega_{\delta, \varepsilon}(n)}$.*

137 Our results are the first exponential bounds for RLDCs. Furthermore, combined with
 138 the constructions with nearly linear codeword length for some constant number of queries
 139 [3, 7], our results imply that RLDCs experience a “phase transition”-type phenomena, where
 140 the codeword length drops from being exponential at $q = 2$ queries to being almost linear
 141 at $q = c$ queries for some constant $c > 2$. In particular, this also implies that there is a
 142 query number q where the codeword length drops from being super-polynomial at q to being
 143 polynomial at $q + 1$. Finding this exact threshold query complexity is an intriguing open
 144 question.

145 As our second contribution, we introduce and study the notion of RLDCs correcting
 146 *insertions and deletions*, namely Insdel RLDCs. The non-relaxed variants of Insdel LDCs
 147 were first introduced in [68], and were further studied in [12, 13, 26]. Local decoding in the
 148 Insdel setting is motivated in DNA storage [77], and in particular [5] show recent advances
 149 in bio-technological aspects of random access to data in these precise settings.

150 In [13, 68], the authors give Hamming to Insdel reductions which transform any Hamming
 151 LDC into an Insdel LDC with rate reduced by a constant multiplicative factor, and locality
 152 increased by a $\text{polylog}(m)$ multiplicative factor. Unfortunately, these compilers do not imply
 153 constant-query Insdel LDCs, whose existence is still an open question.

154 The results of [14] show strong lower bounds on the length of constant-query Insdel
 155 LDCs. In particular, they show that linear Insdel LDCs with 2 queries do not exist, general
 156 Insdel LDCs for $q = 3$ queries must have $m = \exp(\Omega(\sqrt{n}))$, and for $q \geq 4$ they must have
 157 $m = \exp(n^{\Omega(1/q)})$.

158 In this work we continue the study of locally decodable codes in insertion and deletion
 159 channels by proving the first upper and lower bounds regarding the relaxed variants of Insdel
 160 LDCs. We first consider strong Insdel RLDCs, which satisfy all three properties of Definition
 161 1 and where the notion of distance is now that of relative edit distance. We adapt and extend
 162 the results of [14] to establish strong lower bounds on the codeword length of strong Insdel
 163 RLDCs. In particular, we prove that $m = \exp(n^{\Omega(1/q)})$ for any strong Insdel RLDC with
 164 locality q .

165 ▶ **Theorem 3.** *Let $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a non-adaptive strong $(q, \delta, 1/2 + \beta, \rho)$ -Insdel
 166 RLDC where $\beta > 0$. Then for every $q \geq 2$ there is a constant $c_1 = c_1(q, \delta, \beta, \rho)$ such that*

$$167 \quad 168 \quad m = \exp\left(c_1 \cdot n^{\Omega_{\rho}(\beta^2/q)}\right).$$

169 Furthermore, the same bound holds even if C does not have perfect completeness. If C has
 170 an adaptive decoder, the same bound holds with β replaced by $\beta/2^{q-1}$. Formally, there exists

171 a constant $c_2 = c_1(q, \delta, \beta/2^{q-1}, \rho)$ such that

$$172 \quad 173 \quad m = \exp\left(c_2 \cdot n^{\Omega_\rho(\beta^2/(q2^{2q}))}\right).$$

174 Our reduction shown in the proof of Theorem 2, together with the impossibility results
 175 of standard *linear* or *affine* 2-query Insdel LDCs from [14] show a further impossibility result
 176 for linear and for affine 2-query Insdel RLDCs. A linear code of length m is defined over a
 177 finite field \mathbb{F} and it is a linear subspace of the vector space \mathbb{F}^m , while an affine code is an
 178 affine subspace of \mathbb{F}^m .

179 We then consider *weak* Insdel RLDCs that only satisfy the first two properties (perfect
 180 completeness and relaxed decoding). In contrast with Theorem 3, we construct weak Insdel
 181 RLDCs with constant locality $q = O(1)$ and length $m = n^{1+\gamma}$ for some constant $\gamma \in (0, 1)$.
 182 To the best of our knowledge, this is the first positive result in the constant-query regime
 183 and the Insdel setting. However, the existence of a constant-query standard Insdel LDC (or
 184 even a constant-query strong Insdel RLDC) with any rate remains an open question. Finally,
 185 it is easy to see that our exponential lower bound for weak Hamming RLDCs with locality
 186 $q = 2$ still applies in the Insdel setting, since Insdel errors are more general than Hamming
 187 error. Thus, in the Insdel setting we discover the same “phase transition”-type phenomena
 188 as for Hamming RLDCs.

189 **► Theorem 4.** *For any $\gamma > 0$ and $\varepsilon \in (0, 1/2)$, there exist constants $\delta \in (0, 1/2)$ and
 190 $q = q(\delta, \varepsilon, \gamma)$, and non-adaptive weak $(q, \delta, 1/2 + \varepsilon)$ -Insdel RLDCs $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ with
 191 $m = O(n^{1+\gamma})$.*

192 We remark that in the Hamming setting, [7] shows that the first two properties of
 193 Definition 1 imply the third property for codes with constant query complexity and which
 194 can withstand a constant fraction of errors. Our results demonstrate that, in general, unlike
 195 in the Hamming case, the first two properties do not imply the third property for Insdel
 196 RLDCs from Definition 1. Indeed, while for strong Insdel RLDCs we have $m = \exp(n^{\Omega(1/q)})$
 197 for codes of locality q , there exists $q = O(1)$ for which we have constructions of weak Insdel
 198 RLDCs with $m = n^{1+\gamma}$. This observation suggests that there are significant differences
 199 between Hamming RLDCs and Insdel RLDCs.

200 We note that our construction of weak Insdel RLDCs can be modified to obtain strong
 201 Insdel Relaxed Locally Correctable Codes (Insdel RLCCs). Informally, an Insdel RLCC
 202 is a code for which codeword entries can be decoded to the correct value or \perp with high
 203 probability, even in the presence of insdel errors (see the full version for a formal definition
 204 of RLCC). We have the following corollary.

205 **► Corollary 5.** *For any $\gamma > 0$ and $\varepsilon \in (0, 1/2)$, there exist constants $\delta \in (0, 1/2)$ and
 206 $q = q(\delta, \varepsilon, \gamma)$, and non-adaptive strong $(q, \delta, 1/2 + \varepsilon, 1/2)$ -Insdel RLCCs $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$
 207 with $m = O(n^{1+\gamma})$.*

208 1.2 Overview of techniques

209 1.2.1 Exponential Lower Bound for Weak Hamming RLDCs with $q = 2$

210 To simplify the presentation, we assume a non-adaptive decoder in this overview. While the
 211 exact same arguments do not directly apply to adaptive decoders², with a bit more care they
 212 can be adapted to work in those settings.

² For standard LDCs Katz and Trevisan [55] observed that an adaptive decoder could be converted into a non-adaptive decoder by randomly guessing the output y_j of the first query j to learn the second query

213 At a high level we prove our lower bound by transforming any non-adaptive 2-query weak
214 Hamming RLDC for messages of length n and δ fraction of errors into a standard 2-query
215 Hamming LDC for messages of length $n' = \Omega(n)$, with slightly reduced error tolerance of $\delta/2$.
216 Kerenidis and de Wolf [56] proved that any 2-query Hamming LDC for messages of length n
217 must have codeword length $m = \exp(\Omega(n))$. Combining this result with our transformation,
218 it immediately follows that any 2-query weak Hamming RLDC must also have codeword
219 length $m = \exp(\Omega(n))$. While our transformation does not need the third property (success
220 rate) of a strong RLDC, we crucially rely on the property of *perfect completeness*, and that
221 the decoder only makes $q = 2$ queries.

222 Let $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a weak $(2, \delta, 1/2 + \varepsilon)$ -RLDC. For simplicity (and without
223 loss of generality), let us assume the decoder Dec works as follows. For message x and
224 input $i \in [n]$, the decoder non-adaptively makes 2 random queries $j, k \in [m]$, and outputs
225 $f_{j,k}^i(y_j, y_k) \in \{0, 1, \perp\}$, where y_j, y_k are answers to the queries from a received word y ,
226 and $f_{j,k}^i: \{0, 1\}^2 \rightarrow \{0, 1, \perp\}$ is a deterministic function. When there is no error, we have
227 $y_j = C(x)_j$ and $y_k = C(x)_k$.

228 We present the main ideas below, and refer the readers to Section 4 for full details.

229 1.2.1.1 Fixable codeword bits

230 The starting point of our proof is to take a closer look at those functions $f_{j,k}^i$ with \perp entries
231 in their truth tables. It turns out that when $f_{j,k}^i$ has at least one \perp entry in the truth table,
232 $C(x)_j$ can be fixed to a constant by setting either $x_i = 0$ or $x_i = 1$, and same for $C(x)_k$. To
233 see this, note that the property of perfect completeness forces $f_{j,k}^i$ to be 0 or 1 whenever
234 $x_i = 0$ or $x_i = 1$ and there is no error. Thus if neither $x_i = 0$ nor $x_i = 1$ fixes $C(x)_j$, then
235 there must be two entries of 0 and two entries of 1 in the truth table of $f_{j,k}^i$, which leaves no
236 space for \perp (see Claim 13). Thus, when there is at least one \perp entry in the truth table of
237 $f_{j,k}^i$, we say that $C(x)_j$ and $C(x)_k$ are *fixable* by x_i .

238 This motivates the definition of the set S_i , which contains all indices $j \in [m]$ such that
239 the codeword bits $C(x)_j$ are fixable by x_i ; and the definition of T_j , the set of all indices
240 $i \in [n]$ such that $C(x)_j$ is fixable by the message bits x_i . It is also natural to pay special
241 attention to queries j, k that are not both contained in S_i , since in this case the function $f_{j,k}^i$
242 never outputs \perp .

243 1.2.1.2 The query structure

244 In general, a query set $\{j, k\}$ falls into one of the following three cases: (1) both j, k lie
245 inside S_i ; (2) both j, k lie outside of S_i ; (3) one of them lies inside S_i and the other lies
246 outside of S_i . It turns out that case (3) essentially never occurs for a decoder with perfect
247 completeness. The reason is that when, say, $j \in S_i$ and $k \notin S_i$, one can effectively pin down
248 every entry in the truth table of $f_{j,k}^i$ by using the perfect completeness property, and observe
249 that the output of $f_{j,k}^i$ does not depend on y_k at all (see Claim 14). Thus in this case we can
250 equivalently view the decoder as only querying y_j where $j \in S_i$, which leads us back to case

k. Now we non-adaptively query the received codeword for both y_j and y_k . If our guess for y_j was
correct then we continue simulating the adaptive decoder. Otherwise, we simply guess the output x_i .
If the adaptive decoder succeeds with probability at least $p \geq 1/2 + \varepsilon$ then the non-adaptive decoder
succeeds with probability $p' \geq 1/4 + p/2 \geq 1/2 + \varepsilon/2$. Unfortunately, this reduction does not preserve
perfect completeness as required by our proofs for relaxed 2-query Hamming RLDCs i.e., if $p = 1$ then
 $p' = 3/4$.

251 (1). In what follows, we denote by E_1 the event that case (1) occurs, and by E_2 the event
 252 that case (2) occurs.

253 **1.2.1.3 The transformation by polarizing conditional success probabilities**

254 We now give a high level description of our transformation from a weak RLDC to a standard
 255 LDC. Let y be a string which contains at most $\delta m/2$ errors from the codeword $C(x)$. We
 256 have established that the success probability of the weak RLDC decoder on y is an average
 257 of two conditional probabilities

258
$$\Pr[\text{Dec}(i, y) \in \{x_i, \perp\}] = p_1 \cdot \Pr[\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_1] + p_2 \cdot \Pr[\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_2],$$

260 where $p_1 = \Pr[E_1]$ and $p_2 = \Pr[E_2]$. Let us assume for the moment that S_i has a small size,
 261 e.g., $|S_i| \leq \delta m/2$. The idea in this step is to introduce additional errors to the S_i -portion
 262 of y , in a way that drops the conditional success probability $\Pr[\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_1]$ to
 263 0 (see Lemma 15). In particular, we modify the bits in S_i to make it consistent with the
 264 encoding of any message \hat{x} with $\hat{x}_i = 1 - x_i$. Perfect completeness thus forces the decoder to
 265 output $1 - x_i$ conditioned on E_1 . Note that we have introduced at most $\delta m/2 + |S_i| \leq \delta m$
 266 errors in total, meaning that the decoder should still have an overall success probability of
 267 $1/2 + \varepsilon$. Furthermore, now the conditional probability $\Pr[\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_2]$ takes all
 268 credits for the overall success probability. Combined with the observation that Dec never
 269 outputs \perp given E_2 , this suggests the following natural way to decode x_i in the sense of a
 270 standard LDC: sample queries j, k according to the conditional probability given E_2 (i.e.,
 271 both j, k lie outside S_i) and output $f_{j,k}^i(y_j, y_k)$. This gives a decoding algorithm for standard
 272 LDC, with success probability $1/2 + \varepsilon$ and error tolerance $\delta m/2$ (see Lemma 16), modulo
 273 the assumption that $|S_i| \leq \delta m/2$.

274 **1.2.1.4 Upper bounding $|S_i|$**

275 The final piece in our transformation from weak RLDC to standard LDC is to address the
 276 assumption that $|S_i| \leq \delta m/2$. This turns out to be not true in general, but it would still
 277 suffice to prove that $|S_i| \leq \delta m/2$ for $n' = \Omega(n)$ of the message bits i . If we could show
 278 that $|T_j|$ is small for most $j \in [m]$, then a double counting argument shows that $|S_i|$ is
 279 small for most $i \in [n]$. Unfortunately, if we had $C(x)_j = \bigwedge_{i=1}^n x_i$ for $m/2$ of the codeword
 280 bits j then we also have $|T_j| = n$ for $m/2$ codeword bits and $|S_i| \geq m/2 \geq \delta m/2$ for all
 281 message bits $i \in [n]$. We address this challenge by first arguing that any weak RLDC for
 282 n -bit messages can be transformed into another weak RLDC for $\Omega(n)$ -bit messages for which
 283 we have $|T_j| \leq 3 \ln(8/\delta)$ for all but $\delta m/4$ codeword bits. The transformation works by fixing
 284 some of the message bits and then eliminating codeword bits that are fixed to constants.
 285 Intuitively, if some $C(x)_j$ is fixable by many message bits, it will have very low entropy
 286 (e.g., $C(x)_j$ is the AND of many message bits) and hence contain very little information
 287 and can (likely) be eliminated. We make this intuition rigorous through the idea of random
 288 restriction: for each $i \in [n]$, we fix $x_i = 0$, $x_i = 1$, or leave x_i free, each with probability $1/3$.
 289 The probability that $C(x)_j$ is not fixed to a constant is at most $(1 - 1/3)^{|T_j|} \leq \delta/8$, provided
 290 that $|T_j| \geq 3 \ln(8/\delta)$. After eliminating codeword bits that are fixed to constants, we show
 291 that with probability at least $1/2$ at most $\delta m/4$ codeword bits $C(x)_j$ with $|T_j| \geq 3 \ln(8/\delta)$
 292 survived³. Note that with high probability the random restriction leaves at least $n/6$ message

³ We are oversimplifying a bit for ease of presentation. In particular, the random restriction process may cause a codeword bit $C(x)_j$ to be fixable by a new message bit x_i that did not belong to T_j before the

293 bits free. Thus, there must exist a restriction which leaves at least $n/6$ message bits free
 294 ensuring that $|T_j| \geq 3 \ln(8/\delta)$ for at most $\delta m/4$ of the remaining codeword bits $C(x)_j$. We
 295 can now apply the double counting argument to conclude that $|S_i| \leq \delta m/2$ for $\Omega(n)$ message
 296 bits, completing the transformation.

297 1.2.1.5 Adaptive decoders

298 For possibly adaptive decoders, we are going to follow the same proof strategy. The new
 299 idea and main difference is that we focus on the first query made by the decoder, which is
 300 always non-adaptive. We manage to show that the first query determines a similar query
 301 structure, which is the key to the transformation to a standard LDC. More details can be
 302 found in Section 4.2.

303 1.2.2 Lower Bounds for Strong Insdel RLDCs

304 We recall that a strong Insdel RLDC C is a weak Insdel RLDC which satisfies an additional
 305 property: for every $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^{m'}$ such that $\text{ED}(C(x), y) \leq \delta \cdot 2m$, there exists
 306 a set $I_y \subseteq [n]$ of size $|I_y| \geq \rho n$ such that for every $i \in I_y$, we have $\Pr[\text{Dec}(i, y) = x_i] \geq \alpha$. In
 307 other words, for ρ -fraction of the message bits, the decoder can correctly recover them with
 308 high probability, just like in a standard Insdel LDC. Towards obtaining a lower bound on the
 309 codeword length m , a natural idea would be to view C as a standard Insdel LDC just for that
 310 ρ -fraction of message bits, and then apply the exponential lower bound for standard Insdel
 311 LDCs from [14]. This idea would succeed if the message bits correctly decoded with high
 312 probability were the same for all potential corrupted codewords y . However, it could be the
 313 case that $i \in I_y$ for some strings y , whereas $i \notin I_{y'}$ for other strings y' . Indeed, allowing the
 314 set I_y to depend on y is the main reason why very short constant-query Hamming RLDCs
 315 exist.

316 We further develop this observation to obtain our lower bound. We use an averaging
 317 argument to show the existence of a *corruption-independent* set I of message bits with
 318 $|I| = \Omega(n)$, which the decoder can recover with high probability. To this end, we need to open
 319 the “black box” of the lower bound result of Blocki et al. [14]. The proof in [14] starts by
 320 constructing an error distribution \mathcal{E} with several nice properties, and deduce the exponential
 321 lower bound based solely on the fact that the Insdel LDC should, on average (i.e., for a
 322 uniformly random message x), correctly recover each bit with high probability under \mathcal{E} . One
 323 of the nice properties of \mathcal{E} is that it is oblivious to the decoding algorithm Dec . Therefore,
 324 it makes sense to consider the average success rate against \mathcal{E} , i.e., $\Pr[\text{Dec}(i, y) = x_i]$, where
 325 $i \in [n]$ is a uniformly random index, $x \in \{0, 1\}^n$ is a uniformly random string, and y is a
 326 random string obtained by applying \mathcal{E} to $C(x)$. By replacing \perp with a uniformly random bit
 327 in the output of Dec , the average success rate is at least $\rho\alpha + (1 - \rho)\alpha/2 = (1 + \rho)\alpha/2$, since
 328 there is a ρ -fraction of indices for which Dec can correctly recover with probability α , and
 329 for the remaining $(1 - \rho)$ -fraction of indices the random guess provides an additional success
 330 rate of at least $\alpha/2$. Assuming α is sufficiently close to 1, which we can achieve by repeating
 331 the queries independently for a constant number of times and doing something similar to a
 332 majority vote, the average success rate against \mathcal{E} is strictly above 1/2. Therefore, there exist
 333 a constant fraction of indices for which the success rate against \mathcal{E} is still strictly above 1/2,

restriction – We thank an anonymous reviewer for pointing this out to us. Nevertheless, for our purpose it is sufficient to eliminate codeword bits that initially have a large $|T_j|$. See the formal proof for more details.

334 and the number of queries remains a constant. This is sufficient for the purpose of applying
 335 the argument in [14] to get an exponential lower bound.

336 1.2.3 Constant-Query Weak Insdel RLDC

337 Our construction of a constant query weak Insdel RLDC uses code concatenation and two
 338 building blocks: a weak Hamming RLDC (as the outer code) with constant query complexity,
 339 constant error-tolerance, and codeword length $k = O(n^{1+\gamma})$ for any $\gamma > 0$ [7], and the
 340 Schulman-Zuckerman [69] (from now on denoted by SZ) Insdel codes⁴ (as the inner code).
 341 We let $C_{\text{out}}: \{0,1\}^n \rightarrow \{0,1\}^k$ and $C_{\text{in}}: [k] \times \{0,1\} \rightarrow \{0,1\}^t$ denote the outer and inner
 342 codes, respectively. Our final concatenation code C will have codewords in $\{0,1\}^m$ for
 343 some m (to be determined shortly), will have constant query complexity, and will tolerate a
 344 constant fraction of Insdel errors.

345 1.2.3.1 Code construction

346 Given a message $x \in \{0,1\}^n$, we first apply the outer code to obtain a Hamming codeword $y =$
 347 $y_1 \circ \dots \circ y_k = C_{\text{out}}(x)$ of length k , where each $y_i \in \{0,1\}$ denotes a single bit of the codeword.
 348 Then for each index i , we compute $c_i = C_{\text{in}}(i, y_i) \in \{0,1\}^t$ as the encoding of the message
 349 (i, y_i) via the inner code. Finally, we output the codeword $C(x) := c_1 \circ 0^t \circ c_2 \circ \dots \circ 0^t \circ c_k$,
 350 where 0^t denotes a string of t zeros (which we later refer to as a buffer). Note that the
 351 inner code is a constant-rate code, i.e., $t = O(\log(k))$, and has constant error-tolerance
 352 $\delta_{\text{in}} \in (0, 1/2)$. Thus, the final codeword has length $m := (2t - 1)k = O(k \log(k))$ bits. For
 353 any constant $\gamma > 0$ we have a constant query outer code with length $k = O(n^{1+\gamma})$. Plugging
 354 this into our construction we have codeword length $m = O(n^{1+\gamma} \log n)$ which is $O(n^{1+\gamma'})$ for
 355 any constant $\gamma' > \gamma$.

356 1.2.3.2 Decoding algorithm: intuition and challenges

357 Intuitively, our relaxed decoder will simulate the outer decoder. When the outer decoder
 358 requests y_i , the natural approach would be to find and decode the block c_i to obtain (i, y_i) .
 359 There are two challenges in this approach. First, if there were insertions or deletions, then we
 360 do not know where the block c_i is located; moreover, searching for this block can potentially
 361 blow-up the query complexity by a multiplicative $\text{polylog}(m)$ factor [13, 68]. Second, even
 362 if we knew where c_i were located, because $t = O(\log k)$ and we want the decoder to have
 363 constant locality, we cannot afford to recover the entire block c_i .

364 We address the first challenge by attempting to locate block c_i under the optimistic
 365 assumption that there are no corruptions. If we detect any corruptions, then we may
 366 immediately abort and output \perp since our goal is only to obtain a weak Insdel RLDC.
 367 Assuming that there were no corruptions, we know exactly where the block c_i is located, and
 368 we know that c_i can only take on two possible values: it is either the inner encoding of $(i, 0)$
 369 or the inner encoding of $(i, 1)$. If we find anything inconsistent with the inner encoding of
 370 either $(i, 0)$ or $(i, 1)$, then we can immediately output \perp .

371 Checking consistency with the inner encodings of $(i, 0)$ and $(i, 1)$ is exactly how we
 372 address the second challenge. In place of reading the entire block c_i , we instead only need
 373 to determine whether (1) c_i is (close to) the inner encoding of $(i, 0)$, (2) c_i is (close to) the
 374 inner encoding of $(i, 1)$, or (3) c_i is not close to either string. In either case (1) or case

⁴ In particular, these are classical/non-local codes.

14:10 On RLDCs for Hamming and Insdel Errors

375 (2), we simply output the appropriate bit, and in case (3), we simply output \perp . Thus, our
 376 Insdel RLDC decoder simulates the outer decoder. Whenever the outer decoder request
 377 y_i , we determine the expected location for c_i , randomly sub-sample a constant number of
 378 indices from this block and compare with the inner encodings of $(i, 0)$ and $(i, 1)$ at the
 379 corresponding indices. To ensure perfect completeness, we always ensure that *at least one*
 380 of the sub-sampled indices is for a bit where the inner encodings of $(i, 0)$ and $(i, 1)$ differ.
 381 If there are no corruptions, then whenever the simulated outer decoder requests y_i we will
 382 always respond with the correct bit. Perfect completeness of our Insdel RLDC now follows
 383 immediately from the perfect completeness of the outer decoder. Choosing a constant number
 384 of indices to sub-sample ensures that the locality of our weak Insdel RLDC decoder is a
 385 constant multiplicative factor larger than the outer decoder, which gives our Insdel RLDC
 386 decoder constant locality overall.

387 1.2.3.3 Analysis of the decoding algorithm

388 The main technical challenge is proving that our Insdel RLDC still satisfies the second
 389 condition of Definition 1, when the received word is not a correct encoding of the message
 390 x . Recall that $c_i = C_{\text{in}}(i, y_i)$, and suppose $\tilde{c}_i \neq c_i$ is the block of the received word that we
 391 are going to check for consistency with the inner encodings of $(i, 0)$ and $(i, 1)$. Then, the
 392 analysis of our decoder falls into three cases. In the first case, if \tilde{c}_i is not too corrupted (i.e.,
 393 $\text{ED}(\tilde{c}_i, c_i)$ is not too large), then we can argue that the decoder outputs the correct bit y_i or
 394 \perp with good probability. In the second case, if \tilde{c}_i has high edit distance from both $C_{\text{in}}(i, 0)$
 395 and $C_{\text{in}}(i, 1)$, then we can argue that the decoder outputs \perp with good probability. The
 396 third case is the most difficult case, which we describe as “dangerous”. We say that the block
 397 \tilde{c}_i is *dangerous* if the edit distance between \tilde{c}_i and $C_{\text{in}}(i, 1 - y_i)$ is not too large; i.e., \tilde{c}_i is
 398 close to the encoding of the opposite bit $1 - y_i$.

399 The key insight to our decoding algorithm is that as long as the number of dangerous
 400 blocks \tilde{c}_i is upper bounded, then we can argue the overall probability that our decoder
 401 outputs y_i or \perp satisfies the relaxed decoding condition of Definition 1. Intuitively, we
 402 can we think of our weak Insdel RLDC decoder as running the outer decoder on a string
 403 $\tilde{y} = \tilde{y}_1 \circ \dots \circ \tilde{y}_k$, where each $\tilde{y}_i \in \{0, 1, \perp\}$ and the outer decoder has been modified to output
 404 \perp whenever it queries for y_i and receives \perp . Observe that if δ_{out} is the error-tolerance of the
 405 outer decoder, then as long as the set $|\{i : \tilde{y}_i \neq \perp \wedge \tilde{y}_i \neq y_i\}| \leq \delta_{\text{out}}k$, the modified outer
 406 decoder, on input $j \in [n]$, will output either the correct value x_j or \perp with high probability
 407 (for appropriate choices of parameters). Intuitively, if a block is “dangerous” then we can
 408 view $\tilde{y}_i = 1 - y_i$, and otherwise we have $\tilde{y}_i \in \{y_i, \perp\}$ with reasonably high probability. Thus,
 409 as long as the number of “dangerous” block is at most $\delta_{\text{out}}k/2$, then our relaxed Insdel
 410 decoder will satisfy the second property of Definition 1 and output either x_j or \perp with high
 411 probability for any $j \in [n]$.

412 1.2.3.4 Upper bounding the number of dangerous blocks

413 To upper bound the number of “dangerous” blocks we utilize a matching argument based on
 414 the longest common sub-sequence (LCS) between the original codeword and the received
 415 (corrupted) word. Our matching argument utilizes a key feature of the SZ Insdel code. In
 416 particular, the Hamming weight (i.e., number of non-zero symbols) of every substring c'
 417 of an SZ codeword is at least $\lfloor |c'|/2 \rfloor$. This ensures that the buffers 0^t cannot be matched
 418 with large portions of any SZ codeword. We additionally leverage a key lemma (full version,
 419 Lemma 9) which states that the edit distance between the codeword $C_{\text{in}}(i, 1 - y_i)$ and *any*

420 substring of length less than $2t$ of the uncorrupted codeword $C(x)$ has relative edit distance
 421 at least $\delta_{\text{in}}/2$. We use these two properties, along with key facts about the LCS matching,
 422 to yield an upper bound on the number of dangerous blocks, completing the analysis of our
 423 decoder.

424 **1.2.3.5 Extension to relaxed locally correctable codes for insdel errors**

425 Our construction also yields a strong Insdel Relaxed Locally Correctable Code (RLCC) with
 426 constant locality if the outer code is a weak Hamming RLCC. First, observe that bits of
 427 the codeword corresponding to the 0^t buffers are very easy to predict without even making
 428 any queries to the corrupted codeword. Thus, if we are asked to recover the j 'th bit of
 429 the codeword and j corresponds to a buffer 0^t , we can simply return 0 without making
 430 any queries to the received word. Otherwise, if we are asked to recover the j 'th bit of the
 431 codeword and j corresponds to block c_i , we can simulate the Hamming RLCC decoder (as
 432 above) on input i to obtain y_i (or \perp). Assuming that $y_i \in \{0, 1\}$, we can compute the
 433 corresponding SZ encoding of (i, y_i) and obtain the original value of the block c_i and then
 434 recover the j 'th bit of the original codeword. The analysis of the RLCC decoder is analogous
 435 to the RLDC decoder. See Section 6 in the full version for details on both our weak Insdel
 436 RLDC and strong Insdel RLCC constructions.

437 ▶ **Remark 6.** The “adaptiveness” of our constructed Insdel RLDC/RLCC decoder is identical
 438 to that of the outer Hamming RLDC/RLCC decoder. In particular, the weak Hamming
 439 RLDC of Ben-Sasson et al. [7] has a non-adaptive decoder, making our final decoder non-
 440 adaptive as well. Similarly, we use a weak Hamming RLCC due to Asadi and Shinkar [3] for
 441 our Insdel LCC, which is also a non-adaptive decoder.

442 **2 Open Questions**

443 **Exact “phase-transition” thresholds**

444 Our results show that both in the Hamming and Insdel setting there is a constant q such
 445 that every q -query RLDC requires super-polynomial codeword length, while there exists
 446 a $(q + 1)$ -query RLDC of polynomial codeword length. Finding the precise q remains an
 447 intriguing open question. Further, a more refined understanding of codeword length for
 448 RLDCs making 3, 4, 5 queries is another important question, which has lead to much progress
 449 in the understanding of the LDC variants.

450 **Constant-query strong Insdel RLDCs/RLCCs**

451 While we do construct the first weak RLDCs in the Insdel setting, the drawback of our
 452 constructions is the fact that our codes do not satisfy the third property of Definition 1.
 453 Building strong Insdel RLDCs remains an open question. We note that our lower bounds
 454 imply that for a constant number of queries, such codes (if they exist) must have exponential
 455 codeword length.

456 **Applications of local Insdel codes**

457 As previously mentioned, Hamming LDCs/RLDCs have so far found many applications
 458 such as private information retrieval, probabilistically checkable proofs, self-correction, fault-
 459 tolerant circuits, hardness amplification, and data structures. Are there analogous or new
 460 applications of the Insdel variants in the broader computing area?

461 **Lower bounds for Hamming RLDCs/LDCs**

462 Our 2-query lower bound for Hamming RLDCs crucially uses the perfect completeness
 463 property of the decoder. An immediate question is whether the bound still holds if we
 464 allow the decoder to have imperfect completeness. We also note that the argument in our
 465 exponential lower bounds for 2-query Hamming RLDCs fail to hold for alphabets other than
 466 the binary alphabet, and we leave the extension to larger alphabet sizes as an open problem.
 467 Another related question is to understand if one can leverage perfect completeness and/or
 468 random restrictions to obtain improved lower bounds for $q \geq 3$ -query standard Hamming
 469 LDCs. Perfect completeness has been explicitly used before to show exponential lower bounds
 470 for 2-query LCCs [11].

471 **2.1 Further discussion about related work**472 **Insdel codes**

473 The study of error correcting codes for insertions and deletions was initiated by Levenshtein
 474 [59]. While progress has been slow because constructing codes for insdel errors is strictly
 475 more challenging than for Hamming errors, strong interest in these codes lately has led to
 476 many exciting results [19, 21–25, 41–43, 45–49, 51, 61, 63, 69] (See also the excellent surveys of
 477 [50, 64, 66, 71]).

478 **Insdel LDCs**

479 [67] gave private-key constructions of LDCs with $m = \Theta(n)$ and locality $\text{polylog}(n)$. [16]
 480 extended the construction from [67] to settings where the sender/decoder do not share
 481 randomness, but the adversarial channel is resource bounded. [12] applied the [13] compiler
 482 to the private key Hamming LDC of [67] (resp. resource bounded LDCs of [16]) to obtain
 483 private key Insdel LDCs (resp. resource bounded Insdel LDCs) with constant rate and
 484 $\text{polylog}(n)$ locality.

485 Insdel LDCs have also been recently studied in *computationally bounded channels*, in-
 486 troduced in [60]. Such channels can perform a bounded number of adversarial errors, but
 487 do not have unlimited computational power as the general Hamming channels. Instead,
 488 such channels operate with bounded resources. As expected, in many such limited-resource
 489 settings one can construct codes with strictly better parameters than what can be done
 490 generally [31, 44, 65, 70]. LDCs in these channels under Hamming error were studied in
 491 [15, 16, 52–54, 67]. [12] applied the [13] compiler to the Hamming LDC of [16] to obtain a
 492 constant rate Insdel LDCs with $\text{polylog}(n)$ locality for resource bounded channels. The work
 493 of [26] proposes the notion of locally decodable codes with randomized encoding, in both
 494 the Hamming and edit distance regimes, and in the setting where the channel is oblivious
 495 to the encoded message, or the encoder and decoder share randomness. For edit error they
 496 obtain codes with $m = O(n)$ or $m = n \log n$ and $\text{polylog}(n)$ query complexity. However, even
 497 in settings with shared randomness or where the channel is oblivious or resource bounded,
 498 there are no known constructions of Insdel LDCs with constant locality.

499 Locality in the study of insdel codes was also considered in [49], which constructs explicit
 500 synchronization strings that can be locally decoded.

501 **2.2 Organization**

502 The remainder of the paper is organized as follows. We give general preliminaries and recall
 503 some prior results used in our results in Section 3. Due to space limit, we only present the

504 proof of Theorem 2 in Section 4. The readers are pointed to the full version for proofs of
 505 Theorem 3, Theorem 4 and Corollary 5.

506 **3 Preliminaries**

507 For natural number $n \in \mathbb{N}$, we let $[n] := \{1, 2, \dots, n\}$. We let “ \circ ” denote the standard string
 508 concatenation operation. For a string $x \in \{0, 1\}^*$ of finite length, we let $|x|$ denote the
 509 length of x . For $i \in [|x|]$, we let $x[i]$ denote the i -th bit of x . Furthermore, for $I \subseteq [|x|]$, we
 510 let $x[I]$ denote the subsequence $x[i_1] \circ x[i_2] \circ \dots \circ x[i_\ell]$, where $i_j \in I$ and $\ell = |I|$. For two
 511 strings $x, y \in \{0, 1\}^n$ of length n , we let $\text{HAM}(x, y)$ denote the *Hamming Distance* between
 512 x and y ; i.e., $\text{HAM}(x, y) := |\{i \in [n] : x_i \neq y_i\}|$. Similarly, we let $\text{ED}(x, y)$ denote the *Edit
 513 Distance* between x and y ; i.e., $\text{ED}(x, y)$ is the minimum number of insertions and deletions
 514 needed to transform string x into string y . We often discuss the *relative Hamming Distance*
 515 (resp., *relative Edit Distance*) between x and y , which is simply the Hamming Distance
 516 normalized by n , i.e., $\text{HAM}(x, y)/n$ (resp., the Edit Distance normalized by $|x| + |y|$, i.e.,
 517 $\text{ED}(x, y)/(|x| + |y|)$). Finally, the *Hamming weight* of a string x is the number of non-zero
 518 entries of x , which we denote as $\text{wt}(x) := |\{i \in [|x|] : x_i \neq 0\}|$.

519 For completeness, we recall the definition of a classical locally decodable code, or just a
 520 *locally decodable code*.

521 **► Definition 7 (Locally Decodable Codes).** *A (q, δ, α) -Locally Decodable Code $C: \Sigma^n \rightarrow \Sigma^m$ is
 522 a code for which there exists a randomized decoder that makes at most q queries to the received
 523 word y and satisfies the following property: for every $i \in [n]$, if y is such that $\text{dist}(y, C(x)) \leq \delta$
 524 for some unique $C(x)$, then the decoder, on input i , outputs x_i with probability $\geq \alpha$. Here, the
 525 randomness is taken over the random coins of the decoder, and dist is a normalized metric.*

526 *If dist is the relative Hamming distance, then we say that the code is a Hamming LDC;
 527 similarly, if dist is the relative edit distance, then we say that the code is an Insdel LDC.*

528 We recall the general 2-query Hamming LDC lower bound [6, 56].

529 **► Theorem 8 ([6, 56]).** *For constants $\delta, \varepsilon \in (0, 1/2)$ there exists a constant $c = c(\delta, \varepsilon) \in (0, 1)$
 530 such that if $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ is a $(2, \delta, 1/2 + \varepsilon)$ Hamming LDC then $m \geq 2^{cn-1}$.*

531 In our weak Insdel RLDC construction, we utilize a weak Hamming RLDC due to [7].

532 **► Lemma 9 ([7]).** *For constants $\varepsilon, \delta \in (0, 1/2)$ and $\gamma \in (0, 1)$, there exists a constant
 533 $q = O_{\delta, \varepsilon}(1/\gamma^2)$ and a weak $(q, \delta, 1/2 + \varepsilon)$ -Hamming RLDC $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ with
 534 $m = O(n^{1+\gamma})$. Moreover, the decoder of this code is non-adaptive.*

535 Our construction additionally utilizes the well-known Schulman-Zuckerman Insdel codes
 536 [69].

537 **► Lemma 10 (Schulman-Zuckerman (SZ) Code [69]).** *There exists constants $\beta \geq 1$ and $\delta > 0$
 538 such that for large enough values of $t > 0$, there exists a code $C: \{0, 1\}^t \rightarrow \{0, 1\}^{\beta t}$ capable of
 539 decoding from δ -fraction of Insdel errors and the additional property that for every $x \in \{0, 1\}^t$
 540 and $y = C(x)$, every substring y' of y with length at least 2 has Hamming weight $\geq \lfloor |y'|/2 \rfloor$.*

541 Our strong Insdel RLCC construction relies on a weak Hamming RLCC. We utilize the
 542 following weak Hamming RLCC implicit in [3].

543 **► Lemma 11 (Implied by Theorem 1 of [3]).** *For every sufficiently large $q \in \mathbb{N}$ and $\varepsilon \in (0, 1/2)$,
 544 there is a constant δ such that there exists a weak $(q, \delta, 1/2 + \varepsilon)$ -relaxed Hamming Locally
 545 Correctable Code $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ with $m = n^{1+O(1/q)}$. Moreover, the decoder of this
 546 code is non-adaptive.*

4 Lower Bounds for 2-Query Hamming RLDCs

We prove Theorem 2 in this section. As a reminder, a weak (q, δ, α) -RLDC satisfies the first two conditions in Definition 1, and non-adaptive means the decoder makes queries according to a distribution which is independent of the received string y . Here we are interested in the case $q = 2$ and $\alpha = 1/2 + \varepsilon$.

To avoid overloading first-time readers with heavy notations, we first present a proof of the lower bound for *non-adaptive* decoders, i.e., decoders with a query distribution independent of the received string. This proof will be easier to follow, while the crucial ideas behind it remain the same. The proof for the most general case is presented in the last subsection, with an emphasis on the nuances in dealing with adaptivity.

4.1 A Warm-up: the lower bound for non-adaptive decoders

In the following, we fix a relaxed decoder Dec for C . In this subsection, we assume that Dec is non-adaptive, and that it has the first two properties specified in Definition 1. To avoid technical details, we also assume Dec always makes exactly 2 queries (otherwise add dummy queries to make the query count exactly 2).

Given an index $i \in [n]$ and queries j, k made by $\text{Dec}(i, \cdot)$, in the most general setting the output could be a random variable which depends on i and y_j, y_k , where y_j, y_k are the answers to queries j, k , respectively. An equivalent view is that the decoder picks a random function f according to some distribution and outputs $f(y_j, y_k)$. Let $\text{DF}_{j,k}^i$ be the set of all decoding functions $f: \{0,1\}^2 \rightarrow \{0,1, \perp\}$ which are selected by $\text{Dec}(i, \cdot)$ with non-zero probability when querying j, k . We partition the queries into the following two sets

$$F_i^0 := \left\{ \{j, k\} \subseteq [m] : \forall f \in \text{DF}_{j,k}^i \text{ the truth table of } f \text{ contains no } \perp \right\},$$

$$F_i^{\geq 1} := \left\{ \{j, k\} \subseteq [m] : \exists f \in \text{DF}_{j,k}^i \text{ the truth table of } f \text{ contains at least 1 } \perp \right\}.$$

Notations

Given a string $w \in \{0,1\}^m$ and a subset $S \subseteq [m]$, we denote $w[S] := (w_i)_{i \in S} \in \{0,1\}^{|S|}$. Given a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$, and $\sigma \in \{0,1\}^n$, we write $f|_{x_i=\sigma}$ to denote the restriction of f to the domain $\{\mathbf{x} \in \{0,1\}^n : x_i = \sigma\}$. For a sequence of restrictions, we simply write $f|_{(x_{j_1}, \dots, x_{j_k})=(\sigma_1, \dots, \sigma_k)}$, or $f_{J|\sigma}$ where $J = [n] \setminus \{j_1, \dots, j_k\}$ and $\sigma = (\sigma_1, \dots, \sigma_k)$. Note that $f_{J|\sigma}$ is a Boolean function over the domain $\{0,1\}^J$.

We will identify the encoding function of C as a collection of m Boolean functions

$$\mathcal{C} := \{C_1, \dots, C_m : \forall j \in [m], C_j: \{0,1\}^n \rightarrow \{0,1\}\}.$$

Namely, $C(x) = (C_1(x), C_2(x), \dots, C_m(x))$ for all $x \in \{0,1\}^n$.

For $j \in [m]$, we say C_j is *fixable* by x_i if at least one of the restrictions $C_j|_{x_i=0}$ and $C_j|_{x_i=1}$ is a constant function. Denote

$$S_i := \{j \in [m] : C_j \text{ is fixable by } x_i\}, \quad T_j := \{i \in [n] : C_j \text{ is fixable by } x_i\},$$

and $w_j := |T_j|$. Let

$$W := \{j \in [m] : w_j \geq 3 \ln(8/\delta)\}.$$

For $i \in [n]$ define the sets $S_{i,+} := S_i \cap W$, and $S_{i,-} := S_i \cap \overline{W}$.

589 Let $J \subseteq [n]$ and $\rho \in \{0, 1\}^{\bar{J}}$. A code $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ restricted to $\mathbf{x}_{\bar{J}} = \rho$, denoted
590 by $C_{J|\rho}$, is specified by the following collection of Boolean functions

$$591 \quad 592 \quad \mathcal{C}_{J|\rho} := \left\{ C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} : j \in [m], C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not a constant function} \right\}.$$

593 Namely, we restrict each function C_j in \mathcal{C} to $\mathbf{x}_{\bar{J}} = \rho$, and eliminate those that have become
594 constant functions. $C_{J|\rho}$ encodes n' -bit messages into m' -bit codewords, where $n' = |J|$ and
595 $m' = |\mathcal{C}_{J|\rho}| \leq m$.

596 We note that the local decoder Dec for C can also be used as a local decoder for $C_{J|\rho}$,
597 while preserving all the parameters. This is because, Dec never needs to really read a
598 codeword bit which has become a constant function under the restriction $J|\rho$.

599 The lemma below will be useful later in the proof. It shows that a constant fraction of
600 the message bits can be fixed so that most codeword bits C_j with large w_j become constants.

601 **Lemma 12.** *There exist a set $J \subseteq [n]$ and assignments $\rho \in \{0, 1\}^{\bar{J}}$ such that $|J| \geq n/6$,
602 and $|W \setminus A| \leq \delta m/4$, where $A \subseteq W$ collects all codeword bits $j \in W$ such that $C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho}$ is a
603 constant function.*

604 **Proof.** Let J be a random subset formed by selecting each $i \in [n]$ independently with
605 probability $1/3$. For each $j \in \bar{J}$, set $\rho_j = 0$ or $\rho_j = 1$ with probability $1/2$. We have $\mathbb{E}[|J|] =$
606 $n/3$, and hence the Chernoff bound shows that $|J| < n/6$ with probability $\exp(-\Omega(n))$.
607 Furthermore, for each $j \in W$, $C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho}$ becomes a constant function except with probability
608 $\delta/8$. This is because for each $i \in T_j$, $C_j \upharpoonright_{x_i=0}$ or $C_j \upharpoonright_{x_i=1}$ is a constant function, and either
609 case happens with probability $1/3$. Therefore

$$610 \quad 611 \quad \Pr \left[C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not constant} \right] \leq \left(1 - \frac{1}{3}\right)^{|T_j|} < e^{-|T_j|/3} \leq \frac{\delta}{8},$$

612 where the last inequality is due to $w_j = |T_j| \geq 3 \ln(8/\delta)$, since $j \in W$.

613 By linearity of expectation and Markov's inequality, we have

$$614 \quad \Pr \left[\sum_{j \in W} \mathbf{1} \left\{ C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not constant} \right\} \geq \frac{\delta}{4} |W| \right] \\ 615 \quad \leq \frac{\mathbb{E} \left[\sum_{j \in W} \mathbf{1} \left\{ C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not constant} \right\} \right]}{\delta |W|/4} \\ 616 \quad = \frac{\sum_{j \in W} \Pr \left[C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not constant} \right]}{\delta |W|/4} \\ 617 \quad \leq \frac{\delta/8 \cdot |W|}{\delta |W|/4} \leq \frac{1}{2}.$$

618 Applying a union bound gives

$$619 \quad 620 \quad \Pr \left[(|J| < n/6) \vee \left(\sum_{j \in W} \mathbf{1} \left\{ C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho} \text{ is not constant} \right\} \geq \frac{\delta}{4} |W| \right) \right] \\ 621 \quad \leq \exp(-\Omega(n)) + \frac{1}{2} < 1.$$

622 Finally, we can conclude that there exist $J \subseteq [n]$ and $\rho \in \{0, 1\}^{\bar{J}}$ such that $|J| \geq n/6$, and
623 $C_j \upharpoonright_{\mathbf{x}_{\bar{J}}=\rho}$ becomes a constant function for all but $\delta/4$ fraction of $j \in W$. \blacktriangleleft

14:16 On RLDCs for Hamming and Insdel Errors

625 Let $J \subseteq [n]$ and $\rho \in \{0, 1\}^{\overline{J}}$ be given by the Lemma 12, and consider the restricted code
626 $C_{J|\rho}$. By rearranging the codeword bits, we may assume $J = [n']$ where $n' = |J| \geq n/6$.

627 Let $A \subseteq [m]$ be the set of codeword bits which get fixed to constants under $J|\rho$. We
628 denote $W' := W \setminus A$, $S'_i := S_i \setminus A$, $S'_{i,-} := S_{i,-} \setminus A$, and $S'_{i,+} := S_{i,+} \setminus A$. Note that
629 $|W'| = |W \setminus A| \leq \delta m/4$, and thus $|S'_{i,+}| = |S_{i,+} \cap W'| \leq \delta m/4$ for all $i \in [n']$. We emphasize
630 that S'_i does not necessarily contain all codeword bits fixable by x_i in the restricted code
631 $C_{J|\rho}$, as fixing some message bits may cause more codeword bits to be fixable by x_i .

632 We first show that the queries of C must have certain structures. The following claim
633 characterizes the queries in $F_i^{\geq 1}$.

634 \triangleright **Claim 13.** Suppose $\{j, k\} \in F_i^{\geq 1}$. Then we must have $j, k \in S_i$.

635 **Proof.** Let $\{j, k\} \in F_i^{\geq 1}$. Suppose for the sake of contradiction that $j \notin S_i$. This implies
636 there are partial assignments $\sigma_{00}, \sigma_{01}, \sigma_{10}, \sigma_{11} \in \{0, 1\}^{n-1}$ such that

$$637 \quad C_j(\mathbf{x}_{-i} = \sigma_{00}, x_i = 0) = 0, \quad C_j(\mathbf{x}_{-i} = \sigma_{01}, x_i = 1) = 0, \\ 638 \quad C_j(\mathbf{x}_{-i} = \sigma_{10}, x_i = 0) = 1, \quad C_j(\mathbf{x}_{-i} = \sigma_{11}, x_i = 1) = 1,$$

640 where \mathbf{x}_{-i} is defined as $(x_t : t \in [n] \setminus \{i\})$.

641 Let $C_{00}, C_{01}, C_{10}, C_{11}$ be encodings of the corresponding assignments mentioned above.
642 Since the relaxed decoder has perfect completeness, when $\text{Dec}(i, \cdot)$ is given access to C_{00} or
643 C_{10} it must output $x_i = 0$. Note that the j -th bit is different in C_{00} and C_{10} . Similarly,
644 when $\text{Dec}(i, \cdot)$ is given access to C_{01} or C_{11} it must output $x_i = 1$. However, this already
645 takes up 4 entries in the truth table of any decoding function $f \in \text{DF}_{j,k}^i$, leaving no space for
646 any “ \perp ” entry. This contradicts with the assumption $\{j, k\} \in F_i^{\geq 1}$. \blacktriangleleft

647 Here is another way to view Claim 13 which will be useful later: Suppose $\{j, k\}$ is a query
648 set such that $j \notin S_i$ (or $k \notin S_i$), then $\{j, k\} \in F_i^0$. In other words, conditioned on the event
649 that some query is not contained in S_i , the decoder never outputs \perp .

650 The following claim characterizes the queries in F_i^0 .

651 \triangleright **Claim 14.** Suppose $\{j, k\} \in F_i^0$, and $j \in S_i$. Then one of the following three cases occur:
652 (1) $k \in S_i$, (2) $C_j = x_i$, or (3) $C_j = \neg x_i$.

653 **Proof.** Since $j \in S_i$, we may, without loss of generality, assume that $C_j \upharpoonright_{x_i=0}$ is a constant
654 function. Let us further assume it is the constant-zero function. The proofs for the other
655 cases are going to be similar.

656 Denote by $f(y_j, y_k)$ the function returned by $\text{Dec}(i, \cdot)$ conditioned on reading $\{j, k\}$. Any
657 function $f \in \text{DF}_{j,k}^i$ takes values in $\{0, 1\}$ since $\{j, k\} \in F_i^0$. Suppose case (1) does not occur,
658 meaning that $C_k \upharpoonright_{x_i=0}$ is not a constant function. Then there must be partial assignments
659 $\sigma_{00}, \sigma_{01} \in \{0, 1\}^{n-1}$ such that

$$660 \quad C_k(x_i = 0, \mathbf{x}_{-i} = \sigma_{00}) = 0, \quad C_k(x_i = 0, \mathbf{x}_{-i} = \sigma_{01}) = 1.$$

662 Let C_{00} and C_{01} be the encodings of the corresponding assignments mentioned above. Due
663 to perfect completeness of Dec , it must always output $x_i = 0$ when given access to C_{00} or
664 C_{01} . That means $f(0, 0) = f(0, 1) = 0$.

665 Now we claim that $C_j \upharpoonright_{x_i=1}$ must be the constant-one function. Otherwise there is a
666 partial assignment $\sigma_{10} \in \{0, 1\}^{n-1}$ such that

$$667 \quad C_j(x_i = 1, \mathbf{x}_{-i} = \sigma_{10}) = 0.$$

669 Let C_{10} be the encoding of this assignment. On the one hand, due to perfect completeness
 670 $\text{Dec}(i, \cdot)$ should always output $x_i = 1$ when given access to C_{10} . On the other hand, $\text{Dec}(i, \cdot)$
 671 outputs $f((C_{10})_j, 0) = f(0, 0) = 0$. This contradiction shows that $C_j \upharpoonright_{x_i=1}$ must be the
 672 constant-one function. Therefore $C_j = x_i$, i.e., case (2) occurs.

673 Similarly, when $C_j \upharpoonright_{x_i=0}$ is the constant-one function, we can deduce that $C_j = \neg x_i$, i.e.,
 674 case (3) occurs. \blacktriangleleft

675 We remark that Claim 13 and Claim 14 jointly show that for any query set $\{j, k\}$ made
 676 by $\text{Dec}(i, \cdot)$ there are 2 essentially different cases: (1) both j, k lie inside S_i , and (2) both
 677 j, k lie outside S_i . The case $j \in S_i, k \notin S_i$ ($k \in S_i, j \notin S_i$, resp.) means that k (j , resp.) is
 678 a dummy query which is not used for decoding. Furthermore, conditioned on case (2), the
 679 decoder never outputs \perp .

680 Another important observation is that all properties of the decoder discussed above hold
 681 for the restricted code $C_{J|\rho}$, with S_i replaced by S'_i . This is because $C_{J|\rho}$ uses essentially
 682 the same decoder, except that it does not actually query any codeword bit which became a
 683 constant.

684 For a subset $S \subseteq [m]$, we say “ $\text{Dec}(i, \cdot)$ reads S ” if the event “ $j \in S$ and $k \in S$ ” occurs
 685 where $j, k \in [m]$ are the queries made by $\text{Dec}(i, \cdot)$. The following lemma says that conditioned
 686 on $\text{Dec}(i, \cdot)$ reads some subset S , there is a way of modifying the bits in S that flips the
 687 output of the decoder.

688 **► Lemma 15.** *Let $S \subseteq [m]$ be a subset such that $\Pr[\text{Dec}(i, \cdot) \text{ reads } S] > 0$. Then for
 689 any string $s \in \{0, 1\}^m$ and any bit $b \in \{0, 1\}$, there exists a string $z \in \{0, 1\}^m$ such that
 690 $z[[m] \setminus S] = s[[m] \setminus S]$, and*

691
$$\Pr[\text{Dec}(i, z) = 1 - b \mid \text{Dec}(i, \cdot) \text{ reads } S] = 1.$$

693 **Proof.** Let $x \in \{0, 1\}^n$ be a string with $x_i = 1 - b$. Let $z \in \{0, 1\}^m$ be the string satisfying

694
$$z[S] = C(x)[S], \quad z[[m] \setminus S] = s[[m] \setminus S].$$

696 Since Dec has perfect completeness, we have

697
$$1 = \Pr[\text{Dec}(i, C(x)) = x_i \mid \text{Dec}(i, \cdot) \text{ reads } S] = \Pr[\text{Dec}(i, z) = 1 - b \mid \text{Dec}(i, \cdot) \text{ reads } S].$$
 \blacktriangleleft

700 The next lemma is a key step in our proof. It roughly says that there is a local decoder
 701 for x_i in the standard sense as long as the size of S_i is not too large.

702 **► Lemma 16.** *Suppose $i \in [n]$ is such that $|S_i| \leq \delta m/2$. Then there is a $(2, \delta/2, 1/2 + \varepsilon)$ -
 703 local decoder D_i for i . In other words, for any $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^m$ such that
 704 $\text{HAM}(C(x), y) \leq \delta m/2$, we have*

705
$$\Pr[D_i(y) = x_i] \geq \frac{1}{2} + \varepsilon,$$

707 and D_i makes at most 2 queries into y .

708 **Proof.** Let $i \in [n]$ be such that $|S_i| \leq \delta m/2$. The local decoder D_i works as follows. Given
 709 $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^m$ such that $\text{HAM}(C(x), y) \leq \delta m/2$, D_i obtains a query set Q
 710 according to the query distribution of $\text{Dec}(i, \cdot)$ conditioned on $Q \subseteq [m] \setminus S_i$. Then D_i finishes
 711 by outputting the result returned by $\text{Dec}(i, \cdot)$.

14:18 On RLDCs for Hamming and Insdel Errors

712 Denote by E_i the event “ $\text{Dec}(i, \cdot)$ reads $[m] \setminus S_i$ ”, i.e., both two queries made by $\text{Dec}(i, \cdot)$ lie
 713 outside S_i . In order for the conditional distribution to be well-defined, we need to argue that
 714 E_i occurs with non-zero probability. Suppose this is not the case, meaning that $Q \cap S_i \neq \emptyset$
 715 for all possible query set Q . Let $z \in \{0, 1\}^m$ be the string obtained by applying Lemma 15
 716 with $S = S_i$, $s = C(x)$ and $b = x_i$. Claim 13 and Claim 14 jointly show that either $Q \subseteq S_i$,
 717 or the decoder’s output does not depend on the answers to queries in $Q \setminus S_i$. In any case,
 718 the output of $\text{Dec}(i, z)$ depends only on $z[S_i]$. However, by the choice of z we now have a
 719 contradiction since

$$720 \quad \frac{1}{2} + \varepsilon \leq \Pr [\text{Dec}(i, z) \in \{x_i, \perp\}] = \Pr [\text{Dec}(i, z) \in \{x_i, \perp\} \mid \text{Dec}(i, \cdot) \text{ reads } S_i] = 0,$$

722 where the first inequality is due to $\text{HAM}(C(x), z) \leq |S_i| < \delta m$ and the relaxed decoding
 723 property of Dec .

724 By definition of D_i , it makes at most 2 queries into y . Its success rate is given by

$$725 \quad \Pr [D_i(y) = x_i] = \Pr [\text{Dec}(i, y) = x_i \mid E_i].$$

727 Therefore it remains to show that

$$728 \quad \Pr [\text{Dec}(i, y) = x_i \mid E_i] \geq \frac{1}{2} + \varepsilon.$$

730 Let z be the string obtained by applying Lemma 15 with $S = S_i$, $s = y$ and $b = x_i$. From
 731 previous discussions we see that conditioned on $\overline{E_i}$ (i.e., the event E_i does not occur), the
 732 output of $\text{Dec}(i, z)$ only depends on $z[S_i]$. Therefore

$$733 \quad \Pr [\text{Dec}(i, z) \in \{x_i, \perp\} \mid \overline{E_i}] = 1 - \Pr [\text{Dec}(i, z) = 1 - x_i \mid \overline{E_i}] = 0. \quad (1)$$

735 We also have that z is close to $C(x)$ since

$$736 \quad \text{HAM}(z, C(x)) \leq \text{HAM}(z, y) + \text{HAM}(y, C(x)) \leq |S_i| + \delta m/2 \leq \delta m.$$

738 Thus, the relaxed decoding property of Dec gives

$$739 \quad \Pr [\text{Dec}(i, z) \in \{x_i, \perp\}] \geq \frac{1}{2} + \varepsilon.$$

741 On the other hand, we also have

$$\begin{aligned} 742 \quad & \Pr [\text{Dec}(i, z) \in \{x_i, \perp\}] \\ 743 \quad & = \Pr [\text{Dec}(i, z) \in \{x_i, \perp\} \mid \overline{E_i}] \cdot \Pr [\overline{E_i}] + \Pr [\text{Dec}(i, z) \in \{x_i, \perp\} \mid E_i] \cdot \Pr [E_i] \\ 744 \quad & = \Pr [\text{Dec}(i, z) \in \{x_i, \perp\} \mid \overline{E_i}] \cdot \Pr [\overline{E_i}] + \Pr [\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_i] \cdot \Pr [E_i] \\ & \quad (z[[m] \setminus S_i] = y[[m] \setminus S_i]) \\ 745 \quad & = \Pr [\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_i] \cdot \Pr [E_i] \quad (\text{Equation (1)}) \\ 746 \quad & \leq \Pr [\text{Dec}(i, y) \in \{x_i, \perp\} \mid E_i]. \end{aligned}$$

748 Note that by Claim 13, conditioned on E_i , $\text{Dec}(i, \cdot)$ never outputs “ \perp ”. We thus have

$$749 \quad \Pr [\text{Dec}(i, y) = x_i \mid E_i] \geq \frac{1}{2} + \varepsilon.$$

752 We remark once again that the above lemma holds for the restricted code $C_{J|\rho}$, with S_i
 753 replaced by S'_i .

754 Below we prove an exponential lower bound for non-adaptive 2-query Hamming RLDCs.

755 **► Proposition 17.** *Let $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a non-adaptive weak $(2, \delta, 1/2 + \varepsilon)$ -RLDC.
 756 Then $m = 2^{\Omega_{\delta, \varepsilon}(n)}$.*

757 **Proof.** Let $C_{J|\rho}: \{0, 1\}^{n'} \rightarrow \{0, 1\}^{m'}$ be the restricted code where $J|\rho$ is given by Lemma 12,
 758 and $A \subseteq [m]$ be the set of codeword bits which get fixed to constants. We also let $S'_i := S_i \setminus A$,
 759 $S'_{i,-} = S_{i,-} \setminus A$, $S'_{i,+} = S_{i,+} \setminus A$.

760 Denote $T'_j := \{i \in [n'] : j \in S'_i\}$. Since $S'_i \subseteq S_i$ for each i , we also have $T'_j \subseteq T_j$ for each
 761 j . In particular, for each $j \notin W' \subseteq W$, we have $|T'_j| \leq |T_j| \leq 3 \ln(8/\delta)$. Therefore

$$762 \mathbb{E}_{i \in [n']} [|S'_{i,-}|] = \frac{1}{n'} \sum_{i=1}^{n'} |S'_{i,-}| = \frac{1}{n'} \sum_{j \in [m'] \setminus W'} |T'_j| \leq 3 \ln(8/\delta) \cdot \frac{m'}{n'}.$$

764 Therefore by Markov's inequality,

$$765 \Pr_{i \in [n']} [|S'_{i,-}| > \delta m'/4] \leq \frac{12 \ln(8/\delta)}{\delta n'} = O_\delta \left(\frac{1}{n'} \right).$$

767 In other words, there exists $I \subseteq [n']$ of size $|I| \geq n' - O_\delta(1)$ such that $|S'_{i,-}| \leq \delta m'/4$ for
 768 all $i \in I$. For any such $i \in I$, we have $|S'_i| = |S'_{i,-}| + |S'_{i,+}| \leq \delta m'/4 + \delta m'/4 = \delta m'/2$. By
 769 Lemma 16, we can view $C_{J|\rho}$ as a $(2, \delta/2, 1/2 + \varepsilon)$ -LDC for message bits in I (for instance,
 770 we can arbitrarily fix the message bits outside I), where $|I| > n' - O_\delta(1) = \Omega(n)$. Finally,
 771 the statement of the proposition follows from Theorem 8. \blacktriangleleft

772 4.2 Lower bounds for adaptive 2-Query Hamming RLDCs

773 Now we turn to the actual proof, which still works for possibly adaptive decoders. Let C be
 774 a weak $(2, \delta, 1/2 + \varepsilon)$ -RLDC with perfect completeness. We fix a relaxed decoder Dec for
 775 C . Without loss of generality, we assume Dec works as follows: on input $i \in [n]$, $\text{Dec}(i, \cdot)$
 776 picks the first query $j \in [m]$ according to a distribution \mathcal{D}_i . Let $b \in \{0, 1\}$ be the answer to
 777 this query. Then Dec picks the second query $k \in [m]$ according to a distribution $\mathcal{D}_{i;j,b}$, and
 778 obtains an answer $b' \in \{0, 1\}$. Finally, Dec outputs a random variable $X_{i;j,b,k,b'} \in \{0, 1, \perp\}$.

779 We partition the support of \mathcal{D}_i into the following two sets:

$$780 F_i^0 := \{j \in \text{supp}(\mathcal{D}_i) : \forall b, b' \in \{0, 1\}, k \in \text{supp}(\mathcal{D}_{i;j,b,k,b'}), \Pr[X_{i;j,b,k,b'} = \perp] = 0\},$$

$$781 F_i^{>0} := \{j \in \text{supp}(\mathcal{D}_i) : \exists b, b' \in \{0, 1\}, k \in \text{supp}(\mathcal{D}_{i;j,b,k,b'}), \Pr[X_{i;j,b,k,b'} = \perp] > 0\}.$$

783 We will still apply the restriction guaranteed by Lemma 12 to C . The sets S_i , T_j , W ,
 784 $S_{i,-}$, $S_{i,+}$ (are their counterparts for $C_{J|\rho}$) are defined in the exact same way.

785 The following claim is adapted from Claim 13.

786 **► Claim 18.** $(\text{supp}(\mathcal{D}_i) \setminus S_i) \subseteq F_i^0$.

787 **Proof.** Let $j \in \text{supp}(\mathcal{D}_i) \setminus S_i$ and we will show $j \in F_i^0$. By the definition of S_i , $j \notin S_i$ means
 788 that there are partial assignments $\sigma_{00}, \sigma_{01}, \sigma_{10}, \sigma_{11} \in \{0, 1\}^{n-1}$ such that

$$789 C_j(\mathbf{x}_{-i} = \sigma_{00}, x_i = 0) = 0, \quad C_j(\mathbf{x}_{-i} = \sigma_{01}, x_i = 1) = 0,$$

$$790 C_j(\mathbf{x}_{-i} = \sigma_{10}, x_i = 0) = 1, \quad C_j(\mathbf{x}_{-i} = \sigma_{11}, x_i = 1) = 1,$$

14:20 On RLDCs for Hamming and Insdel Errors

792 where \mathbf{x}_{-i} is defined as $(x_t : t \in [n] \setminus \{i\})$.

793 Let $C_{00}, C_{01}, C_{10}, C_{11}$ be encodings of the corresponding assignments mentioned above.

794 Consider an arbitrary query $k \in \text{supp}(\mathcal{D}_{i;j,0})$, and let b'_1, b'_2 be the k -th bit of C_{00} and C_{01} , respectively. We note that $X_{i;j,0,k,b'_1}$ is the output of $\text{Dec}(i, C_{00})$ conditioned on the queries j, k , and $X_{i;j,0,k,b'_2}$ is the output of $\text{Dec}(i, C_{01})$ conditioned on the queries j, k . Due to perfect completeness of Dec , we have

$$798 \quad \Pr[X_{i;j,0,k,b'_1} = 0] = 1, \quad \Pr[X_{i;j,0,k,b'_2} = 1] = 1.$$

800 Therefore, it must be the case that $b'_1 \neq b'_2$, which implies that $\Pr[X_{i;j,0,k,b'} = \perp] = 0$ for any $801 b' \in \{0, 1\}$.

802 An identical argument shows that $\Pr[X_{i;j,1,k,b'} = \perp] = 0$ for any $k \in \text{supp}(\mathcal{D}_{i;j,1})$ and $803 b' \in \{0, 1\}$. Thus we have shown $j \in F_i^0$. \blacktriangleleft

804 We remark that the above claim also implies $F_i^{>0} \subseteq S_i$, since $\text{supp}(\mathcal{D}_i)$ is a disjoint union of F_i^0 and $F_i^{>0}$. In other words, conditioned on the event that the first query j is not contained in S_i , the decoder never outputs \perp .

805 The next claim is adapted from Claim 14.

806 \triangleright **Claim 19.** Let $j \in \text{supp}(\mathcal{D}_i) \cap S_i$. For any $b \in \{0, 1\}$ one of the following three cases occurs:

- 807 1. $\text{supp}(\mathcal{D}_{i;j,b}) \subseteq S_i$;
- 808 2. For any $k \in \text{supp}(\mathcal{D}_{i;j,b}) \setminus S_i$, $\Pr[X_{i;j,b,k,0} = b] = \Pr[X_{i;j,b,k,1} = b] = 1$;
- 809 3. For any $k \in \text{supp}(\mathcal{D}_{i;j,b}) \setminus S_i$, $\Pr[X_{i;j,b,k,0} = 1 - b] = \Pr[X_{i;j,b,k,1} = 1 - b] = 1$.

810 **Proof.** Since $j \in S_i$, we may, without loss of generality, assume that $C_j \upharpoonright_{x_i=0}$ is a constant function. Let us further assume $C_j \upharpoonright_{x_i=0} \equiv 0$. The proofs for the other cases are going to be similar.

811 Suppose $\text{supp}(\mathcal{D}_{i;j,0}) \not\subseteq S_i$, and let $k \in \text{supp}(\mathcal{D}_{i;j,0}) \setminus S_i$. By the definition of S_i , $k \notin S_i$ means that there are partial assignments $\sigma_{00}, \sigma_{01} \in \{0, 1\}^{n-1}$ such that

$$812 \quad C_k(x_i = 0, \mathbf{x}_{-i} = \sigma_{00}) = 0, \quad C_k(x_i = 0, \mathbf{x}_{-i} = \sigma_{01}) = 1.$$

813 Let C_{00} and C_{01} be the encodings of the corresponding assignments mentioned above. We note that $X_{i;j,0,k,0}$ and $X_{i;j,0,k,1}$ are the outputs of $\text{Dec}(i, C_{00})$ and $\text{Dec}(i, C_{01})$, respectively, conditioned on the queries j, k . Due to perfect completeness of Dec , we must have

$$814 \quad \Pr[X_{i;j,0,k,0} = 0] = \Pr[X_{i;j,0,k,1} = 0] = 1,$$

815 since both C_{00} and C_{01} encode messages with $x_i = 0$.

816 Now we claim that $C_j \upharpoonright_{x_i=1} \equiv 1$ must hold. Otherwise there is a partial assignment $817 \sigma_{10} \in \{0, 1\}^{n-1}$ such that

$$818 \quad C_j(x_i = 1, \mathbf{x}_{-i} = \sigma_{10}) = 0.$$

819 Let C_{10} be the encoding of this assignment, and let $b' \in \{0, 1\}$ be the k -th bit of C_{10} . On the one hand, $X_{i;j,0,k,b'}$ is the output $\text{Dec}(i, C_{10})$ conditioned on the queries j, k , and we have just established

$$820 \quad \Pr[X_{i;j,0,k,b'} = 0] = 1.$$

821 On the other hand, $\text{Dec}(i, C_{10})$ should output $x_i = 1$ with probability 1 due to perfect completeness. This contradiction shows that $C_j \upharpoonright_{x_i=1} \equiv 1$.

837 Similarly, suppose $\text{supp}(\mathcal{D}_{i;j,1}) \not\subseteq S_i$ and let $k \in \text{supp}(\mathcal{D}_{i;j,1}) \setminus S_i$, meaning that there are
838 partial assignments $\sigma_{10}, \sigma_{11} \in \{0,1\}^{n-1}$ such that

839 $C_k(x_i = 1, \mathbf{x}_{-i} = \sigma_{10}) = 0, \quad C_k(x_i = 1, \mathbf{x}_{-i} = \sigma_{11}) = 1.$

841 Let C_{10} and C_{11} be the corresponding encodings, and note that $X_{i;j,1,k,0}$ and $X_{i;j,1,k,1}$ are the
842 outputs of $\text{Dec}(i, C_{10})$ and $\text{Dec}(i, C_{11})$, respectively, conditioned on the queries j, k . Perfect
843 completeness of Dec implies

844 $\Pr[X_{i;j,1,k,0} = 1] = \Pr[X_{i;j,1,k,1} = 1] = 1,$

846 since both C_{10} and C_{11} encode messages with $x_i = 1$.

847 So far we have shown that for any $b \in \{0,1\}$ such that $\text{supp}(\mathcal{D}_{i;j,b}) \not\subseteq S_i$, it holds that

848 $\forall k \in \text{supp}(\mathcal{D}_{i;j,b}) \setminus S_i, \quad \Pr[X_{i;j,b,k,0} = b] = \Pr[X_{i;j,b,k,1} = b] = 1,$

850 provided that $C_j \upharpoonright_{x_i=0} \equiv 0$. In case of $C_j \upharpoonright_{x_i=0} \equiv 1$, we can use an identical argument to
851 deduce that for any $b \in \{0,1\}$ such that $\text{supp}(\mathcal{D}_{i;j,b}) \not\subseteq S_i$, it holds that

852 $\forall k \in \text{supp}(\mathcal{D}_{i;j,b}) \setminus S_i, \quad \Pr[X_{i;j,b,k,0} = 1 - b] = \Pr[X_{i;j,b,k,1} = 1 - b] = 1.$

854

855 Here is another way to view Claim 19: conditioned on the event that the first query j is
856 contained in S_i , either the second query k is also contained in S_i , or the output $X_{i;j,b,k,b'}$ is
857 independent of the answer b' to query k . In either case, the decoder's output depends solely
858 on the S_i -portion of the received string.

859 Once again, the conclusions of Claim 18 and Claim 19 hold for $C_{J|\rho}$, with S_i replaced by
860 S'_i .

861 Finally, we are ready to prove Theorem 2. We recall the Theorem below.

862 ► **Theorem 2.** *Let $C: \{0,1\}^n \rightarrow \{0,1\}^m$ be a weak adaptive $(2, \delta, 1/2 + \varepsilon)$ -RLDC. Then
863 $m = 2^{\Omega_{\delta, \varepsilon}(n)}$.*

864 **Proof.** The proof is almost identical to the one for Proposition 17. First, we can show that
865 there exists $I \subseteq [n']$ of size $|I| \geq n' - O_\delta(1) = \Omega(n)$ such that $|S'_{i,-}| \leq \delta m/4$ for all $i \in I$,
866 and hence $|S'_i| = |S'_{i,-}| + |S'_{i,+}| \leq \delta m/2$. Second, similar to the proof of Lemma 16, for each
867 $i \in I$ we can construct a decoder D_i for x_i as follows. D_i restarts $\text{Dec}(i, \cdot)$ until it makes a
868 first query $j \in [m'] \setminus S'_i$. Then D_i finishes simulating $\text{Dec}(i, \cdot)$ and returns its output. With
869 the help of Claim 18 and Claim 19, the same analysis in Lemma 16 shows that D_i never
870 returns \perp , and that the probability of returning x_i is at least $1/2 + \varepsilon$. Finally, the theorem
871 follows from Theorem 8.

872 ———— **References** —————

873 1 Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, and Peter Manohar. A near-cubic
874 lower bound for 3-query locally decodable codes from semirandom csp refutation. *Electron.*
875 *Colloquium Comput. Complex.*, 2022. URL: <https://eccc.weizmann.ac.il/report/2022/101/>.

876 2 Alexandr Andoni, Thijs Laarhoven, Ilya P. Razenshteyn, and Erik Waingarten. Optimal
877 hashing-based time-space trade-offs for approximate near neighbors. In *SODA*, pages 47–66,
878 2017.

880 3 Vahid R. Asadi and Igor Shinkar. Relaxed locally correctable codes with improved parameters.
 881 In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, *48th International Colloquium*
 882 *on Automata, Languages, and Programming, ICALP 2021*, volume 198 of *LIPICS*, pages
 883 18:1–18:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

884 4 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
 885 polylogarithmic time. In *STOC*, pages 21–31, 1991.

886 5 James L. Banal, Tyson R. Shepherd, Joseph Berleant, Hellen Huang, Miguel Reyes, Cheri M.
 887 Ackerman, Paul C. Blainey, and Mark Bathe. Random access dna memory using boolean
 888 search in an archival file storage system. *Nature Materials*, 20:1272–1280, 2021. doi:10.1101/
 889 2020.02.05.936369.

890 6 Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality for
 891 matrix-valued functions with applications to quantum computing and ldcs. In *FOCS*, pages
 892 477–486. IEEE Computer Society, 2008.

893 7 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
 894 pcps of proximity, shorter pcps, and applications to coding. *SIAM J. Comput.*, 36(4):889–974,
 895 2006. A preliminary version appeared in the Proceedings of the 36th Annual ACM Symposium
 896 on Theory of Computing (STOC).

897 8 Arnab Bhattacharyya, L. Sunil Chandran, and Suprovat Ghoshal. Combinatorial lower
 898 bounds for 3-query ldcs. In *ITCS*, volume 151 of *LIPICS*, pages 85:1–85:8. Schloss Dagstuhl -
 899 Leibniz-Zentrum für Informatik, 2020.

900 9 Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, and Amir Shpilka. Tight lower bounds for
 901 linear 2-query lccs over finite fields. *Comb.*, 36(1):1–36, 2016.

902 10 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant
 903 lccs and ltcs. *ACM Trans. Comput. Theory*, 9(2):7:1–7:17, 2017.

904 11 Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for 2-query lccs over
 905 large alphabet. *Approximation, Randomization, and Combinatorial Optimization. Algorithms*
 906 *and Techniques*, 2017.

907 12 Alexander R. Block and Jeremiah Blocki. Private and resource-bounded locally decodable
 908 codes for insertions and deletions. In *2021 IEEE International Symposium on Information*
 909 *Theory (ISIT)*, pages 1841–1846, 2021. doi:10.1109/ISIT45174.2021.9518249.

910 13 Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and Minshen
 911 Zhu. Locally decodable/correctable codes for insertions and deletions. In *FSTTCS*, volume
 912 182 of *LIPICS*, pages 16:1–16:17, 2020.

913 14 Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and Minshen Zhu.
 914 Exponential lower bounds for locally decodable and correctable codes for insertions and
 915 deletions. In *2021 IEEE 62nd Annual Symposium on Foundations of Computer Science*
 916 (*FOCS*), pages 739–750, 2022. doi:10.1109/FOCS52979.2021.00077.

917 15 Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. Relaxed locally
 918 correctable codes in computationally bounded channels. *IEEE Transactions on Information*
 919 *Theory*, 67(7):4338–4360, 2021. doi:10.1109/TIT.2021.3076396.

920 16 Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On Locally Decodable Codes
 921 in Resource Bounded Channels. In Yael Tauman Kalai, Adam D. Smith, and Daniel
 922 Wichs, editors, *1st Conference on Information-Theoretic Cryptography (ITC 2020)*, volume
 923 163, pages 16:1–16:23, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
 924 Informatik. URL: <https://drops.dagstuhl.de/opus/volltexte/2020/12121>, doi:10.4230/
 925 LIPICS. ITC. 2020. 16.

926 17 Manuel Blum and Sampath Kannan. Designing programs that check their work. *J. ACM*,
 927 42(1):269–291, 1995.

928 18 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
 929 to numerical problems. *J. Comput. Syst. Sci.*, 47(3):549–595, 1993.

930 19 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
 931 codes for correcting multiple deletions. *IEEE Trans. Inf. Theory*, 64(5):3403–3410, 2018.

932 20 Victor Chen, Elena Grigorescu, and Ronald de Wolf. Error-correcting data structures. *SIAM J. Comput.*, 42(1):84–111, 2013.

933 21 Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and Xin Li. Efficient linear and affine codes for correcting insertions/deletions. In *SODA*, pages 1–20. SIAM, 2021.

934 22 Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchronization strings: Highly efficient deterministic constructions over small alphabets. In Timothy M. Chan, editor, *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 2185–2204. SIAM, 2019.

935 23 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols, and almost optimal binary codes for edit errors. In Mikkel Thorup, editor, *FOCS*, pages 200–211, 2018.

936 24 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block edit errors with transpositions: Deterministic document exchange protocols and almost optimal binary codes. In *ICALP*, volume 132 of *LIPICS*, pages 37:1–37:15, 2019.

937 25 Kuan Cheng and Xin Li. Efficient document exchange and error correcting codes with asymmetric information. In *SODA*, pages 2424–2443. SIAM, 2021.

938 26 Kuan Cheng, Xin Li, and Yu Zheng. Locally decodable codes with randomized encoding. *CoRR*, abs/2001.03692, 2020. URL: <https://arxiv.org/abs/2001.03692>.

939 27 Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with nearly-linear block length and constant query complexity. In Shuchi Chawla, editor, *Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020*, pages 1395–1411. SIAM, 2020.

940 28 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. *J. ACM*, 45(6):965–981, 1998.

941 29 Gil Cohen and Tal Yankovitz. Relaxed locally decodable and correctable codes: Beyond tensoring. *Electron. Colloquium Comput. Complex.*, TR22-045, 2022. URL: <https://eccc.weizmann.ac.il/report/2022/045>, arXiv:TR22-045.

942 30 Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algorithms with applications to coding, testing, and privacy. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 1651–1665. SIAM, 2021.

943 31 Yan Ding, Parikshit Gopalan, and Richard Lipton. Error correction against computationally bounded adversaries. Manuscript, 2004.

944 32 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. *SIAM J. Comput.*, 40(4):1154–1178, 2011.

945 33 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Superquadratic lower bound for 3-query locally correctable codes over the reals. *Theory Comput.*, 13(1):1–36, 2017.

946 34 Klim Efremenko. 3-query locally decodable codes of subexponential length. *SIAM J. Comput.*, 41(6):1694–1703, 2012.

947 35 Anna Gál and Andrew Mills. Three-query locally decodable codes with higher correctness require exponential length. *ACM Trans. Comput. Theory*, 3(2):5:1–5:34, 2012.

948 36 William I. Gasarch. A survey on private information retrieval (column: Computational complexity). *Bulletin of the EATCS*, 82:72–107, 2004.

949 37 Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds for linear locally decodable codes and private information retrieval. *Comput. Complex.*, 15(3):263–296, 2006.

950 38 Tom Gur and Oded Lachish. A lower bound for relaxed locally decodable codes. *arXiv preprint arXiv:1904.08112*, 2019.

951 39 Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. *SIAM J. Comput.*, 50(2):788–813, 2021.

952 40 Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes. *Theory Comput.*, 16:1–68, 2020.

983 41 Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
 984 codes for list-decoding from insertions and deletions. In Konstantin Makarychev, Yury
 985 Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, *STOC*, pages
 986 524–537. ACM, 2020.

987 42 Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and online models.
 988 In Artur Czumaj, editor, *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on*
 989 *Discrete Algorithms*, pages 625–643. SIAM, 2018.

990 43 Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary deletion
 991 channel. *IEEE Trans. Inf. Theory*, 65(4):2171–2178, 2019.

992 44 Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for computationally
 993 simple channels. *J. ACM*, 63(4):35:1–35:37, September 2016. URL: <http://doi.acm.org/10.1145/2936015>, doi:10.1145/2936015.

995 45 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
 996 regimes. *IEEE Transactions on Information Theory*, 63(4):1961–1970, 2017.

997 46 Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
 998 In David Zuckerman, editor, *FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019*,
 999 pages 334–347, 2019.

1000 47 Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time insertion-
 1001 deletion codes and $(1+\epsilon)$ -approximating edit distance via indexing. In Moses Charikar and
 1002 Edith Cohen, editors, *STOC*, pages 697–708. ACM, 2019.

1003 48 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for insertions
 1004 and deletions approaching the singleton bound. In Hamed Hatami, Pierre McKenzie, and
 1005 Valerie King, editors, *STOC*, pages 33–46. ACM, 2017.

1006 49 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit construc-
 1007 tions, local decoding, and applications. In Ilias Diakonikolas, David Kempe, and Monika
 1008 Henzinger, editors, *STOC*, pages 841–854. ACM, 2018.

1009 50 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for
 1010 insertions and deletions – a survey, 2021. [arXiv:2101.00711](https://arxiv.org/abs/2101.00711).

1011 51 Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchronization strings: List
 1012 decoding for insertions and deletions. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
 1013 Marx, and Donald Sannella, editors, *ICALP*, volume 107 of *LIPICS*, pages 76:1–76:14, 2018.

1014 52 Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In *Advances in*
 1015 *Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Proceedings*,
 1016 pages 126–143, 2008.

1017 53 Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. Public key
 1018 locally decodable codes with short keys. In *14th International Workshop, APPROX, and 15th*
 1019 *International Workshop, RANDOM, Proceedings*, pages 605–615, 2011.

1020 54 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
 1021 codes. *Inf. Comput.*, 243:178–190, 2015.

1022 55 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
 1023 correcting codes. In *STOC*, pages 80–86, 2000.

1024 56 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
 1025 codes via a quantum argument. *J. Comput. Syst. Sci.*, 69(3):395–420, 2004.

1026 57 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
 1027 and locally testable codes with sub-polynomial query complexity. *J. ACM*, 64(2):11:1–11:42,
 1028 2017.

1029 58 Swastik Kopparty and Shubhangi Saraf. Guest column: Local testing and decoding of high-rate
 1030 error-correcting codes. *SIGACT News*, 47(3):46–66, 2016.

1031 59 Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions and
 1032 reversals. *Soviet Physics Doklady*, 10(8):707–710, 1966. Doklady Akademii Nauk SSSR, V163
 1033 No4 845-848 1965.

1034 60 Richard J. Lipton. A new approach to information theory. In *STACS*, pages 699–708, 1994.

1035 61 Shu Liu, Ivan Tjuawinata, and Chaoping Xing. On list decoding of insertion and deletion
1036 errors. *CoRR*, abs/1906.09705, 2019. URL: <http://arxiv.org/abs/1906.09705>.

1037 62 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
1038 interactive proof systems. *J. ACM*, 39(4):859–868, 1992.

1039 63 Jiri Matousek Marcos Kiwi, Martin Loebl. Expected length of the longest common subsequence
1040 for large alphabets. *Advances in Mathematics*, 197(2):480–498, 2005.

1041 64 Hugues Mercier, Vijay K. Bhargava, and Vahid Tarokh. A survey of error-correcting codes for
1042 channels with symbol synchronization errors. *IEEE Communications Surveys and Tutorials*,
1043 12, 2010.

1044 65 Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction
1045 against computationally bounded noise. In *Theory of Cryptography, Second Theory of Cryptography
1046 Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings*,
1047 pages 1–16, 2005.

1048 66 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
1049 channels. *Probability Surveys*, 6:1–3, 07 2008.

1050 67 Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. In
1051 *ICALP*, pages 387–398, 2007.

1052 68 Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decodable codes for edit distance.
1053 In Anja Lehmann and Stefan Wolf, editors, *Information Theoretic Security*, pages 236–249,
1054 Cham, 2015. Springer International Publishing.

1055 69 L. J. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
1056 and transpositions. *IEEE Transactions on Information Theory*, 45(7):2552–2557, 1999.

1057 70 Ronen Shaltiel and Jad Silbak. Explicit list-decodable codes with optimal rate for computationally
1058 bounded channels. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and
1059 Techniques, APPROX/RANDOM*, pages 45:1–45:38, 2016.

1060 71 N.J.A. Sloane. On single-deletion-correcting codes. *arXiv: Combinatorics*, 2002.

1061 72 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
1062 XOR lemma (abstract). In *CCC*, page 4, 1999.

1063 73 Luca Trevisan. Some applications of coding theory in computational complexity. *CoRR*,
1064 cs.CC/0409044, 2004.

1065 74 Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes
1066 and private information retrieval. In *ICALP*, volume 3580 of *Lecture Notes in Computer
1067 Science*, pages 1424–1436. Springer, 2005.

1068 75 David P. Woodruff. New lower bounds for general locally decodable codes. Technical report,
1069 Weizmann Institute of Science, Israel, 2007.

1070 76 David P. Woodruff. A quadratic lower bound for three-query linear locally decodable codes
1071 over any field. *J. Comput. Sci. Technol.*, 27(4):678–686, 2012.

1072 77 S. M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and error-free
1073 dna-based data storage. *Scientific Reports*, 7:2045–2322, 2017. doi:<https://doi.org/10.1038/s41598-017-05188-1>.

1075 78 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. *J. ACM*,
1076 55(1):1:1–1:16, 2008.

1077 79 Sergey Yekhanin. Locally decodable codes. *Foundations and Trends in Theoretical Computer
1078 Science*, 6(3):139–255, 2012.