
Interactive Demonstration of EVA
Gaurav Tarlok Kakkar

Georgia Institute of Technology
gkakkar7@gatech.edu

Aryan Rajoria
Bennett University

e19cse319@bennett.edu.in

Myna Prasanna Kalluraya
Georgia Institute of Technology

mkalluraya6@gatech.edu

Ashmita Raju
Georgia Institute of Technology

ashmita.raju@gatech.edu

Jiashen Cao
Georgia Institute of Technology

jiashenc@gatech.edu

Kexin Rong
Georgia Institute of Technology

krong@gatech.edu

Joy Arulraj
Georgia Institute of Technology

arulraj@gatech.edu

ABSTRACT
In this demonstration, we will present EVA, an end-to-end AI-
Relational database management system. We will demonstrate the
capabilities and utility of EVA using three usage scenarios: (1) EVA
serves as a backend for an exploratory video analytics interface
developed using S�������� and R����, (2) EVA seamlessly inte-
grates with the Python and Data Science ecosystems by allowing
users to access EVA in a Python notebook alongside other popular
libraries such as P����� andM���������, and (3) EVA facilitates
bulk labeling with L���� S�����, a widely-used labeling frame-
work. By optimizing complex vision queries, we illustrate how EVA
allows a wide range of application developers to harness the recent
advances in computer vision.

PVLDB Reference Format:
Gaurav Tarlok Kakkar, Aryan Rajoria, Myna Prasanna Kalluraya, Ashmita
Raju, Jiashen Cao, Kexin Rong, and Joy Arulraj. Interactive Demonstration
of EVA. PVLDB, 16(12): 4082 - 4085, 2023.
doi:10.14778/3611540.3611626

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/georgia-tech-db/evadb.

1 INTRODUCTION
Over the last decade, advances in computer vision [7, 17] have

sparked signi�cant interest among domain scientists and indus-
try practitioners in integrating vision models into their applica-
tions. However, deploying vision pipelines in practice comes with
e�ciency and usability challenges [19], such as the high compu-
tational cost of running deep learning models, and the need for
low-level imperative programming across multiple libraries (e.g.,
P����� [14], O���CV [3], P�T���� [15]). To address these chal-
lenges, researchers have proposed a wide range of video database
management systems (VDBMSs) [2, 6, 11, 12] that support declara-
tive SQL-like queries over videos.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611626

/* Movie Emotion Analysis */
SELECT id, EmotionClassification(Crop(data , bbox))
FROM MOVIE SAMPLE "5s" CROSS APPLY

UNNEST(FaceDetection(data)) AS Face(bbox , conf)
WHERE id > 1000 AND conf > 0.8
ORDER BY Similarity(Feature("tom_cruise.png"),

Feature(Crop(data , Face.bbox))
LIMIT 10;

Listing 1: Illustrative EVAQL query

Limitations of Existing Systems. These systems have two key
limitations:

1. Usability. First, they have limited support for user-de�ned
functions (UDFs). Users cannot easily de�ne custom UDFs that
wrap around deep learning models. Users also cannot compose
multiple UDFs in a single query to accomplish complex tasks.
Consider the query shown in Listing 1, where the user seeks
to examine the emotions of T�� C����� in the latest T�� G��
movie. To achieve this, the user �rst applies a FaceDetection
UDF to extract the face from the video and then uses a Feature
UDF tomeasure similarity of the detected face against an image
of T�� C�����. Finally, an E������C������������� UDF is
used to classify the emotions. The user can also specify the
sampling rate of the video to apply the UDFs every 5 seconds.
We seek to support such complex queries in EVA [10].

2. E�ciency. Another limitation of existing VDBMSs is that
they primarily focus on optimizing individual queries in isola-
tion, which leads to missed optimization opportunities across
exploratory queries [19].

Our Approach. EVA [10] seeks to address these limitations by
simplifying the process of adding UDFs, supporting queries that in-
voke multiple UDFs, and optimizing exploratory query workloads.
EVA allows users to de�ne bespoke UDFs based on their require-

ments, and compose them with existing UDFs and operators to
construct complex queries (§ 2.1). For example, the F���D�����
���� and E������C�������������models can be used to construct
an emotion detection query. Users may easily import third-party
Python packages in UDFs to support complex logic. This improves
the extensibility and usability of EVA.
To improve the e�ciency of query execution, EVA uses a Cascades-

style query optimizer (§ 2.2) that jointly optimizes for accuracy and

4082

https://doi.org/10.14778/3611540.3611626
https://github.com/georgia-tech-db/evadb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611626
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3611540.3611626&domain=pdf&date_stamp=2023-08-01

Parser

(EVA Query Language)

Query Optimizer

(Cascades-style)

Execution Engine

(Derived Models, Ray, PyTorch, AQP)

Storage Engine

(Video + Derived Data Structures)

EVA

LOAD VIDEO “movies/*.mp4” INTO MOVIES;

SELECT id, FaceDetector(data).bboxes

FROM MOVIES;

Input Query Output

Figure 1: Architecture of EVA

cost. EVA also supports a distributed E�������� E����� acrossmul-
tiple GPUs, powered by R��, to reduce query processing time [10].
Usage Scenarios. To demonstrate the capabilities and utility of
EVA, we focus on three di�erent scenarios in this demo:

1. EVA-UI. In the �rst scenario, we present EVA�UI, an easy-to-
use visual interface for performing exploratory video analytics.
EVA�UI allows users to explore visual data and gain insights
through an intuitive user interface. The EVA�UI frontend is
backed by the EVA backend.

2. Integration with Data Science Ecosystem. In the second
scenario, we illustrate how EVA seamlessly integrates with
the Python and Data Science (DS) ecosystems. We will demon-
strate how the Python APIs provided by EVA allow users to
access EVA in a Python notebook and use it alongside other
popular libraries such as P����� and M���������. This work-
�ow empowers users to perform video analytics e�ciently
and with ease.

3. Integration with LabelStudio. Lastly, we discuss how EVA
complements L���� S�����, a widely-used labeling frame-
work. Through this integration, EVA reduces labeling time
by allowing users to label multiple frames at a time (i.e., bulk
labeling). EVA supports a similarity search UDF that allows
users to propagate one label to multiple similar images, there-
fore reducing the overall labeling time. We note that we make
no modi�cations in the L���� S����� framework. This sce-
nario highlights how existing Python libraries may leverage a
VDBMS to take advantage of recent advances in the vision for
analyzing unstructured data.

In all of the scenarios, we will let the attendees modify queries,
UDFs, and observe the performance impact of using EVA.

2 SYSTEM OVERVIEW
In this section, we present an overview of the EVAVDBMS (Fig. 1).

EVA has four components : parser, optimizer, execution and storage
engine. The key design choice of EVA is to provide a SQL interface
to users, with a client-server architecture compliant with the DB-
API 2.0 speci�cation [13]. The SQL interface is already widely used
by many other database systems and is easy to extend. It plays a
key role to allow users to integrate EVA with their applications in
di�erent scenarios. We provide more details in § 2.1 about the SQL
interface. We also brie�y describe the internals of the other three
components of the system in § 2.2.
2.1 EVA Query Language (EVAQL)
EVA’s parser supports a query language tailored for exploratory

video analytics, called EVAQL.
Loading Data. EVA allows users to load both unstructured data
(e.g., videos and images) and structured data. The following query
loads a video into EVA:

/* Loading a video into the table */
LOAD VIDEO "videos /*.mp4" INTO VIDEO_DATA;

This will automatically create a table named VIDEO_DATA, which
includes the following columns: (1) ��, (2) ����, (3) �����_��, (4)
�����_�����_��, and (5) �����_����. These columns represent
the frame identi�er, the frame’s content, and the video to which
the frame belongs.
User-De�ned Functions. EVAQL is designed to simplify the pro-
cess of de�ning user-de�ned functions (UDFs) that cater to the
requirements of di�erent applications in the VDBMS. It supports a
wide range of UDFs that take diverse types of inputs (e.g., video
meta-data or raw frames etc.) and outputs (e.g., labels, bounding
boxes, etc.).
Users have the option to import their own custom-built UDFs

from source, or quickly import an UDF that wraps around a deep
learningmodel fromwidely-used frameworks (e.g.,H������F��� [18],
P�T����). We next discuss these two options in more detail.
UDF from Source. EVA enables users to de�neUDFs using Python
function decorators, allowing them to migrate their deep learning
models to EVA with minimal code changes.

Configuring a UDF with decorators
class ImageClassificationUDF:

@setup(cachable=True , batchable=True ,
udf_type="ImageClassification")

def setup(self): # prepare the UDF

@forward(
input_signatures =[PyTorchTensor(

type=NdArrayType.FLOAT32 ,
dimensions =(1 ,3 ,540 ,540))],

output_signatures =[PandasDataframe(
columns =["label"],
column_types =[NdArrayType.STR

])]
)
def forward(self): # do inference

Using the decorator-based syntax, users de�ne the input and out-
put signatures of their models along with other properties of the
UDF. These properties include whether or not EVA should cache
the results of the UDF, or whether the UDF supports batch mode
execution. The following query registers the UDF in EVA:

/* Registering a User-Defined Function */
CREATE UDF ImageClassificationUDF
TYPE ImageClassification
IMPL '/udfs/image_classification.py'

Here, TYPE speci�es the intended logical type of the UDF (e.g.,
ImageClassi�cation or ObjectDetection). IMPL indicates the path
of the UDF implementation.
UDF from HuggingFace. EVA provides out-of-the-box support
for H������F��� tasks and models. Users may quickly de�ne such
UDFs using EVAQL, as illustrated in the following query:

/* Registering an ObjectDetectorModel */
CREATE UDF FbObjectDetector TYPE HuggingFace
PROPERTIES ('task'='object-detection ',

'model '='facebook/detr-resnet-50')

This command adds a UDF that performs object detection using
the facebook/detr-resnet-50 model.

4083

1

5

2

3

4 6

Figure 2: EVA�UI: A visual interface for exploratory video analytics backed by EVA.

2.2 Other Components
Query Optimizer. The EVA’s O�������� is based on the Cas-
cades query optimization framework [9] and applies a series of
rules for rewriting the query and performs cost-based optimization
to generate a physical query plan. It focuses on minimizing query
processing time while meeting the accuracy constraint (which is
often not an option in a typical relational DBMS). To guide im-
portant optimization decisions, the O�������� runs vision models
on a subset of frames while processing an ad-hoc query [4]. To
accelerate exploratory video analytics [19], EVA materializes the
results of the expensive UDFs and reuses them while processing
subsequent queries.
Execution Engine. The E�������� E����� in EVA is responsible
for evaluating the query plan generated by the O��������, and it
leverages heterogeneous computational units such as CPUs and
GPUs. The E�������� E����� relies on deep learning frameworks,
like P�T����, for model inference. EVA leverages R�� to support
distributed query execution. It splits the video data into partitions
and uses multiple GPUs for model inference to reduce query pro-
cessing time. Additionally, EVA supports parallel processing of
complex query predicates.
Storage Engine. Lastly, the S������ E����� directly stores videos
and images in a compressed format. It manages structured data us-
ing Parquet [1] format on disk, and uses the Arrow [16] in-memory
columnar format for processing data.

3 DEMONSTRATION
We next describe the three scenarios in the EVA demo. The �rst

scenario presents EVA�UI that o�ers a user-friendly interface for
interactive exploration of video datasets (§ 3.1). In the second sce-
nario, we demonstrate how EVA can be easily used in data science
notebooks (§ 3.2). Lastly, in § 3.3, we demonstrate how EVA can
serve as a back-end database in other applications, such as L��
��� S����� (§ 3.3). We use the movie dataset [5], the cat and dog
dataset [8], and a video feed from a static camera to demonstrate
the capabilities of EVA. In each scenario, attendees will be given
the opportunity to modify the queries and UDFs.

Refining the predicate to get most relevant results
query = """SELECT * FROM LicensePlateVideo

JOIN LATERAL
LicensePlateExtractor(Crop(data, [250, 750, 750, 900])) AS X(label, x, y)

WHERE label LIKE "[A-Z]{1,3}[0-9]{1,2}[A-Z]{1,2}[0-9]{1,4}";
"""
cursor.execute(query)
res = cursor.fetch_all()
res.as_pandas()

Region of Interest

Fuzzy Match

Pandas Output

df = res.as_pandas()
annotate_license_video(df, "video.mp4")

Using Matplotlib to plot output from the EVA query

Figure 3: Integration with Data Science Ecosystem

3.1 Scenario 1: EVA�UI
We utilize S�������� �1.14.0 and R���� v15.0 to design the user

interface of EVA�UI, which is depicted in Fig. 2. A typical work�ow
involves six stages: 1 Uploading a video dataset in the form of an
mp4 directory on a local machine or AWS bucket and assigning
a name to it. 2 Selecting the desired dataset from the dropdown
menu. 3 Displaying all videos in the dataset in a panel for easy visu-
alization. The user can view the output by switching to the output
tab. 4 Choosing the desired task to perform, such as FaceDetec-
tion, with the ability to specify model parameters, including height,
width, and con�dence. Users can also set a sampling rate (e.g., every
2 secs) to reduce computation. 5 Creating a multistage query, for
example by performing a similarity search on detected faces from
stage one. 6 Executing the query by clicking the Run button.
Using this intuitive visual interface, users can execute a complex

query, like the query in Listing 1, without learning EVAQL. We note
that the user can incrementally add the second stage after com-
pleting the �rst stage. EVA uses UDF caching [19] to automatically
utilize the materialized results from the �rst stage, avoiding the
need to rerun the model.
EVA�UI also supports two other work�ows. First, users can select

a region of interest by drawing one or more bounding boxes over
the video frames before executing a task, further reducing the
computational cost. Users can also associate speci�c vision tasks

4084

Label Example Image1 Similarity Search2 Bulk Propogation3

Figure 4: Integration with L���� S����� to facilitate bulk labeling

with each region. For example, in a video of a tra�c camera, the user
can specify one region of interest for a crosswalk and one for the
road and detect persons on the crosswalk while a car is also on the
road. Second, EVA�UI supports semantic known entity search, where
users can logically provide the coordinates of di�erent objects in
the query. For example, they may specify that they want to �nd a
car in the left half of the frame and a person in the right half. The
backend EVA runs object detection and uses spatial predicates to
locate the relevant frames in the dataset.
3.2 Scenario 2: Integration with DS Ecosystem
In their daily work�ows, data scientists often need to store their

data in a data system and process it using custom UDFs. To sup-
port this work�ow, EVA is available as a Python package in the
pip package repository. Data scientists can easily import the EVA
package in their data science notebooks.
EVA takes care of data storage and query execution, so that the

domain scientists may focus more on data analysis. EVA works
well with widely-used data science libraries (e.g., P����� for post-
processing,M��������� for visualization, and deep learning frame-
works like H������F��� and P�T����).
To demonstrate the utility of EVA in this scenario, we will show-

case the following steps to the audience: 1 pip install EVA and
import it into the notebooks, 2 load unstructured data such as
videos or images from various sources (e.g., local �lesystem, AWS,
or YouTube) into EVA in the notebook, 3 register a custom UDF
written in Python, or import models from popular libraries such as
H������F��� or P�T����, and 4 execute a query with multiple
UDFs, and obtain the query results as a Pandas dataframe, that is
subsequently visualized using M���������.
Fig. 3 illustrates this usage scenario of EVA. Here, EVA is being

used to extract the license plate information from a video feed
captured by a static camera at an intersection using an OCR model.
The user speci�es a region of interest and performs fuzzy matching
against a target license plate to handle minor model errors.
3.3 Scenario 3: Integration with L���� S�����
In the last scenario, we will focus on how EVA complements

L���� S�����, a popular open-source data labeling framework that
enables users to create and manage high-quality labeled datasets
for training machine learning models. One of the main challenges
with data labeling is the manual e�ort involved, especially when it
comes to labeling large image or video datasets.
In this usage scenario, we illustrate how L���� S����� may use

EVA as a backend data system for similarity search. This allows EVA
to power bulk label propagation in L���� S�����, so that similar

images or objects can be labeled together to reduce human labeling
e�ort. EVA handles the storage and retrieval of labeled images,
while also supporting a similarity searchUDF for propagating labels
to similar images.
Fig. 4 illustrates the bulk labeling work�ow enabled in L����

S�����, with EVA serving as the backend database system. This
example focuses on a labeling task for training an image classi�ca-
tion model (cats vs dogs). Images are pre-loaded into L���� S�����.
Initially, 1 the user manually assigns a label to an image (e.g., user
labels a dog image). Subsequently, 2 the user utilizes a similarity
search UDF based on an o�-the-shelf feature extractor (e.g., R�����)
to �nd the top-K similar images (e.g., K = 10) using EVA. Finally,
3 the user propagates the label of the initial dog image to all the
similar images, using the L���� S����� user-interface, thereby
saving labeling time.

REFERENCES
[1] 2022-07-01. Apache Parquet. https://parquet.apache.org/.
[2] Favyen Bastani and et al. 2020. MIRIS: Fast Object Track Queries in Video. In

SIGMOD. 1907–1921.
[3] Gary Bradski. 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for

the Professional Programmer 25, 11 (2000), 120–123.
[4] Jiashen Cao et al. 2022. FiGO: Fine-Grained Query Optimization in Video Ana-

lytics. In SIGMOD. 559–572.
[5] Keith Curtis et al. 2020. HLVU: A New Challenge to Test Deep Understanding of

Movies the Way Humans do. In Proceedings of the 2020 International Conference
on Multimedia Retrieval. 355–361.

[6] Maureen Daum and et al. 2022. VOCAL: Video Organization and Interactive
Compositional AnaLytics. In CIDR.

[7] Je� Dean et al. 2018. A new golden age in computer architecture: Empowering
the machine-learning revolution. MICRO 38, 2 (2018), 21–29. Publisher: IEEE.

[8] Jeremy Elson et al. 2007. Asirra: a CAPTCHA that exploits interest-aligned
manual image categorization. CCS 7, 366–374.

[9] G. Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[10] Gaurav Tarlok Kakkar et al. 2023. EVA: An End-to-End Exploratory Video
Analytics System. In Proceedings of the Seventh Workshop on Data Management
for End-to-End Machine Learning. 1–5.

[11] Daniel Kang et al. 2019. BlazeIt: Optimizing Declarative Aggregation and Limit
Queries for Neural Network-Based Video Analytics. Proc. VLDB Endow. 13 (2019),
533–546.

[12] Daniel Kang et al. 2022. VIVA: An End-to-End System for Interactive Video
Analytics. In CIDR.

[13] Marc-André Lemburg. 2001. Python Database API Speci�cation v2.0. PEP 249.
https://peps.python.org/pep-0249/

[14] Pandas. 2020.pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134
[15] Adam Paszke and et al. 2019. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. InNeurIPS.
[16] Neal Richardson and et al. 2022. arrow: Integration to Apache Arrow .

https://arrow.apache.org/docs/r/.
[17] Olga Russakovsky and et al. 2015. Imagenet large scale visual recognition

challenge. IJCV 115, 3 (2015), 211–252. Publisher: Springer.
[18] Thomas Wolf and et al. 2020. Transformers: State-of-the-art natural language

processing. In EMNLP. 38–45.
[19] Zhuangdi Xu et al. 2022. EVA: A Symbolic Approach to Accelerating Exploratory

Video Analytics with Materialized Views. In SIGMOD. 602–616.

4085

https://peps.python.org/pep-0249/
https://doi.org/10.5281/zenodo.3509134

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 EVA Query Language (EVAQL)
	2.2 Other Components

	3 DEMONSTRATION
	3.1 Scenario 1: EVA-UI
	3.2 Scenario 2: Integration with DS Ecosystem
	3.3 Scenario 3: Integration with Label Studio

	REFERENCES

