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ABSTRACT
Avian migration has fascinated humans for centuries. Insights into the lives of
migrant birds are often elusive; however, recent, standalone technological
innovations have revolutionized our understanding of this complex biological
phenomenon. A future challenge for following these highly mobile animals is the
necessity of bringing multiple technologies together to capture a more complete
understanding of their movements. Here, we designed a proof-of-concept
multi-sensor array consisting of two weather surveillance radars (WSRs), one local
and one regional, an autonomous moon-watching sensor capable of detecting birds
flying in front of the moon, and an autonomous recording unit (ARU) capable of
recording avian nocturnal flight calls. We deployed this array at a field site in central
Oklahoma on select nights in March, April, and May of 2021 and integrated data
from this array with wind data corresponding to this site to examine the influence of
wind on the movements of spring migrants aloft across these spring nights.
We found that regional avian migration intensity is statistically significantly
negatively correlated with wind velocity, in line with previous research. Furthermore,
we found evidence suggesting that when faced with strong, southerly winds, migrants
take advantage of these conditions by adjusting their flight direction by drifting.
Importantly, we found that most of the migration intensities detected by the sensors
were intercorrelated, except when this correlation could not be ascertained because
we lacked the sample size to do so. This study demonstrates the potential for
multi-sensor arrays to reveal the detailed ways in which avian migrants move in
response to changing atmospheric conditions while in flight.

Subjects Biodiversity, Conservation Biology, Ecology, Data Science, Biosphere Interactions
Keywords Avian migration, Data integration, Remote sensing, Weather surveillance radar

INTRODUCTION
Every spring and fall, billions of birds migrate, and yet, despite this enormous number,
large gaps remain in our understanding of avian migration. In fact, avian migration is
challenging to study because migratory birds are small and move across vast spatial and
temporal scales, often at night. To this end, several remote-sensing technologies have
emerged to study the movements of avian migrants (Bridge et al., 2011;McKinnon & Love,
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2018; Robinson et al., 2010). One such technology that has been successfully used to
unravel the complexities of avian migration is weather surveillance radar (WSR),
particularly in the United States, as the spatial and temporal coverage of the U.S. network
of WSRs, called NEXt-GenerationWeather RADar (NEXRAD, orWSR-88D), is extensive.
Additionally, NEXRAD collects data nearly continuously, and these data are openly
accessible. Indeed, WSRs have been used to monitor animal activity (Kelly et al., 2017;
Kelly & Horton, 2016), extrapolate population estimates (Clark et al., 2020), and identify
trends that correlate with land use and climate change (Bridge et al., 2016). However, this
technology suffers from three major shortcomings. Firstly, in most cases, WSRs cannot be
used to identify species aloft. Secondly, although WSRs have been used to estimate mean
flight directions and velocities of migrants (Horton et al., 2016), they cannot detect
individual flight characteristics, including individual flight directions, flight velocities, and
body orientations. Thirdly, NEXRADWSRs have a range bias that makes it challenging to
detect low-flying birds (Buler & Diehl, 2009; Diehl & Larkin, 2005). Therefore, integrating
NEXRAD WSR data with data from other remote sensors that can address these
limitations would enhance our ability to study avian migrants.

To demonstrate the utility of doing so, we designed a proof-of-concept multi-sensor
array. This array consisted of two WSRs (the KTLXWSR from the NEXRAD network and
a portable, dual-polarization X-band WSR called PX-1000 (Cheong et al., 2013)), a novel,
automated observational sensor based on traditional moon-watching called LunAero
(Honeycutt et al., 2020; Honeycutt & Bridge, 2022), and a microphone capable of recording
avian nocturnal flight calls. We deployed this array at the University of Oklahoma Kessler
Atmospheric and Ecological Field Station (KAEFS) on select nights in March, April, and
May of 2021. Data from this array were then integrated with wind data from the National
Centers for Environmental Prediction (NCEP)’s North American Regional Reanalysis
(NARR) to investigate the influence of this abiotic variable on avian migrants in flight.
We chose to include a microphone, a moon-watching sensor, and a portable WSR in our
array because each of these sensors addressed one of the three limitations of NEXRAD
WSRs described above. The microphone, coupled with knowledge of avian species’
nocturnal flight calls, allows us to identify species migrating aloft. LunAero, the
moon-watching sensor, can be used to derive flight directions of individual birds and
provide insights into wind-drift compensation of individual migrants (Honeycutt et al.,
2020;Honeycutt & Bridge, 2022). Finally, PX-1000, the portable WSR, can be used to detect
local migrants flying at low altitudes (Cheong et al., 2013).

With this multi-sensor array, we sought to answer two major questions:

1) Are the avian migration intensities detected by all of the sensors intercorrelated?

2) Could integration of sensor data enable inferences about the influence of wind on avian
migration?

Firstly, we needed to validate the ability of LunAero and PX-1000 to detect birds, as
these are novel sensors. We predicted that the number of individual birds detected by
LunAero would be positively correlated with the regional intensity of avian migration from
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the KTLX radar. We also predicted that the local intensity of avian migration detected by
PX-1000 would be positively correlated with the regional avian migration intensity
detected by the KTLX radar.

Secondly, we wanted to investigate whether we could use data from the multi-sensor
array that we designed and integrate it with wind data from NARR to demonstrate how
such a multi-sensor array could be used to study how birds respond to changing wind
conditions during spring migration. To do so, we set out to verify that the wind directions
and velocities from NARR on the nights in question matched our expectations.
We predicted that most winds, including the fastest ones, would be southerly (blowing
from south to north), as the Great Plains low-level jet (LLJ) provides strong, southerly
winds across our study site in the spring (Wainwright, Stepanian & Horton, 2016). Next,
we wanted to use data from the KTLX radar and NARR to identify the wind conditions
favored by migrants across select nights in the spring. We predicted that they would favor
southerly (tail) winds, as birds migrate from south to north in the spring, in addition to
weaker winds.

Importantly, we wanted to leverage data on individual migrants from LunAero and
integrate it with data from NARR to determine the ways in which wind conditions
influence the flight directions of individual migrants in the spring. We predicted that when
exposed to stronger southerly winds, migrants would adjust their flight directions to drift.
That is, as the velocity of the wind increases, we predicted that the difference between the
direction of the wind and the flight direction of an individual migrant would decrease.
We made this prediction for southerly winds, as the direction of those winds is the same as
that in which birds migrate in the spring. Finally, we wanted to investigate whether we
could integrate avian nocturnal flight call data with data from other sensors to examine
whether different avian species favor different wind conditions during migration.

MATERIALS AND METHODS
Study site
All observations were made fromMarch to May of 2021 in the lower atmosphere above the
University of Oklahoma Kessler Atmospheric and Ecological Field Station (KAEFS)
(34.98!N, 97.52!W). KAEFS encompasses ~146 ha at ~350 m above mean sea level and
features large patches of mixed-grass prairie that provide a full view of the sky.

Temporal sampling
The instruments deployed at KAEFS included an automated moon-watching
apparatus, the PX-1000 x-band radar, and an autonomous recording unit (ARU) to record
audio data. The moon-watching equipment was deployed only within 5 days of a full
moon, and the data were only usable when the sky was clear of clouds. The ARU was
deployed throughout the period surrounding the full moon, and the PX-1000 collected
data continuously for the entire spring. However, the data used in this paper is restricted to
six nights for which we had moon-watching footage. These nights were March 26, March
27, March 28, March 29, April 24, and May 25, 2021. Furthermore, because the ARU did
not detect any migrant species on the nights of March 26 andMarch 28, only ARU data for
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four nights (the nights of March 27, March 29, April 24, and May 25) could be and were
analyzed.

NEXRAD weather surveillance radar (WSR) data
KAEFS is located ~45 km southwest of the nearest NEXRAD weather surveillance radar
(WSR), which is the KTLX radar (35.34!N, 97.28!W). To estimate regional intensity of
avian migration, data from KTLX were accessed from the Amazon Web Service radar
archive (https://registry.opendata.aws/noaa-nexrad/). We opened each radar file using
PyART (Helmus & Collis, 2016), censored weather by removing pixels with a
depolarization ratio less than −12.5 dB (Kilambi, Fabry & Meunier, 2018), limited the
analysis range to within 60 km of the radar, and manually removed clutter from a wind
farm west of the radar site. To create vertical profiles of reflectivity (VPRs), we determined
the altitude of each remaining radar gate center and assigned the corresponding reflectivity
(in cm2/km3) to this altitude. Reflectivities were averaged within 100-m altitudinal bins
(starting at 0 m above mean sea level), yielding a single reflectivity value per bin.
Reflectivities between 400 and 1,300 m above mean sea level (between ~50 and ~950 m
above ground level) were summed and multiplied by 0.1 km to account for altitudinal bin
height, yielding a single reflectivity value per VPR in cm2/km2 (Chilson et al., 2012a,
2012b). Reflectivities for each VPR were then summed for each 1-h period, yielding a single
summed reflectivity value for each combination of date and hour, hereafter referred to as
the regional intensity of avian migration from the KTLX radar for each combination of
date and hour.

Wind data
To examine the influence of wind on nocturnal avian migration, we made use of wind data
from the National Centers for Environmental Prediction (NCEP)’s North American
Regional Reanalysis (NARR) data set. This data set provides weather data based on an
interpolation model for 32 km grid cells that encompass North America. NARR data have
a temporal resolution of 3 h. We downloaded wind data from the NCEP’s Global
Reanalysis page (https://psl.noaa.gov/data/gridded/data.narr.html) and extracted wind
velocity (in meters per second) and direction (in degrees clockwise from north) from the
grid cell overlapping KAEFS (35.18!N, 97.44!W). Each wind profile was integrated across
altitudes by calculating the mean wind velocity and direction between 400 and 1,300 m
above sea level.

Moon-watching (LunAero) data
Moon-watching is a method of quantifying nocturnal bird migration, wherein one uses the
moon as an illumination source to count the silhouettes of birds that fly between the moon
and the observer. Although moonwatching has been employed by researchers on several
continents (Hilgerloh, Weinbecker & Zehtindjiev, 2006; Liechti, Bruderer & Paproth, 1995;
Lowery, 1949; Lowery & Newman, 1966; Nisbet, 1959; Trösch et al., 2005; Weisshaupt,
Maruri & Arizaga, 2016; Zehtindjiev & Liechti, 2003), more widespread use has been
limited by challenges relating to accuracy of the method and the observational rigor
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required when collecting data manually in real time. We used the LunAero automated
moon-watching sensor to observe bird migration by making video recordings of the moon
and identifying bird flight paths using computer vision software (Honeycutt et al., 2020;
Honeycutt & Bridge, 2022).

The analysis workflow for extracting migratory bird information from videos is
summarized below. All analyses were done in the R programming environment (R Core
Team, 2022) and used Stellarium, an open-source planetarium (Zotti et al., 2021). Briefly,
the analysis pathway was as follows:

1) We used computer vision tools available in Rvision (Garnier & Muschelli, 2022), which
is a wrapper for OpenCV (Bradski, 2000) to identify dark pixel clusters (henceforth
contours) in each frame of video using the dynamic thresholding function. The
contours identified by this process included both bird silhouettes and a considerable
amount of noise associated with camera movement and dark features on the moon.
We applied some filtering based on co-occurrence across frames to remove contours
that were likely to be due to moon craters, and we ranked contours according to how
distinct they were from the immediate background (more distinct contours were more
likely to be actual bird silhouettes).

2) The next analysis step examined all of the extracted contours and attempted to assemble
them into linear series of points across a series of video frames. Each contour not
already assigned to a track was compared with all contours from three previous and
three subsequent frames to find potential flight paths. If a series of at least three
contours was detected that met a threshold for linearity, the search for contours was
extended to add to the potential flight path. Any contours added to a flight path were
flagged such that they could not contribute to another flight path. The results of this step
generally yielded a majority of real flight paths, but instances where paths were
assembled from false contours were frequent. These false detections were usually
evident when filtering examining by the linearity of the contours, the number of
contours comprising a path, and the distinctiveness of the contours.

3) To remove false paths, we visually inspected sets of video frames associated with paths
that were questionable as indicated by low contour counts, reduced linearity, and very
faint contours. We also visually inspected distinct contours that were not linked to be a
flight path to ensure that we did not fail to detect any birds.

4) When collecting video footage, we did not ensure that the recorded images were aligned
with true horizontal, which would affect assignment of flight directions. To correct for
potentially rotated video footage, we aligned moon images from our video with
vertically aligned images from the Stellarium software package (Zotti et al., 2021).
The rotation factor required for this alignment was used to adjust the x and y
coordinates of the flight paths to correct for the misalignment of the camera with the
horizontal plane.
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5) We transformed the x and y coordinates to situate them on a horizontal plane parallel to
the earth’s surface and we rotated them such that the direction of each flight path could
be measured in degrees east of north.

PX-1000 weather surveillance radar (WSR) data
The PX-1000 radar was collocated with the moonwatching equipment at KAEFS. The PX-
1000 is a transportable, solid-state, polarimetric radar with independent horizontal and
vertical polarizations. The radar scanned at a frequency of 9,550MHz at elevation angles of
4 to 10 degrees at two-degree increments, while rotating 360 degrees every 20 s. The PX-
1000 recorded data continuously throughout each night of data collection. However, we
used different radar pulse settings in May compared to March and April. In March and
April, we used a pulse duration of 67-microseconds, which is typical for use in scanning
long range targets (e.g., objects more than 5 km away). Using pulse compression, range
resolution of 30 m is obtained with these settings (Kurdzo et al., 2014). The longer pulse
lengths involve emission of more radar energy on average, which makes the radar sensitive
to more distant scatterers, but it limits the extent to which we can resolve reflectivity from
objects that are close to the radar (e.g., within 10 km). In May, a new pulse compression
technique was used that involves simultaneous transmission and reception and increases
sensitivity at close range by ~10 dB (Aquino, Cheong & Palmer, 2021). Mirroring our
method of processing the KTLX radar data, we obtained summed reflectivity values for
each 10-min time period, hereafter referred to as local intensity of avian migration from
the PX-1000 radar for each combination of date and time period.

Nocturnal flight call recorder and detection
We recorded nocturnal flight calls with a pressure zone microphone (Wildtronics Micro
Mic PIP Microphone, Newton Falls, Ohio, USA) attached to an Audiomoth Autonomous
Recording Unit (ARU) (Hill et al., 2019). The microphone and support apparatus were
constructed following the OldBird 21 c Pressure Zone Microphone design developed by
Bill Evans (http://www.oldbird.org/mic/21c.htm). The microphone was positioned at the
apex of an inverted plexiglass pyramid designed to increase the gain of audio recordings.
The pyramid was supported by a plexiglass pedestal that rested inside a plastic two-gallon
bucket with the microphone pointing upward to the sky. The bucket served to minimize
background sounds (e.g., insects) from below. Plastic wrap was taped in place over the
pyramid and pedestal to provide a waterproof cover for the microphone. The Audiomoth
was placed in a waterproof container attached to the bottom of the bucket with the
microphone cord inserted through it.

We recorded avian nocturnal flight calls from March 25, 2021 to May 31, 2021;
however, we restricted our analysis of the ARU data to six nights in March, April, and May
for which there was LunAero data (see Temporal Sampling). Furthermore, because the
ARU did not detect any migrant species on the nights of March 26 and March 28, only
ARU data for four nights (March 27, March 29, April 24, and May 25) could be and were
analyzed. Each day, recording started at 2000 Central Time (0100 UTC) and ended at 0700
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Central Time (1200 UTC). We analyzed audio recordings with the Vesper Audio Analysis
Program (Harold Mills Revision aa3ad038) which processes the audio recordings then
generates spectrograms of brief audio segments that the program identifies as potential
flight calls. Vesper generates these audio segments or “clips” using multiple detectors that
scan the entire audio for specified frequencies and amplitudes.

We examined all of the clips generated by Vesper analysis and assigned them to species
by visually comparing clip spectrograms to reference spectrograms generated from Flight
Calls of Migratory Birds (Evans & O’Brien, 2002), Rosetta Stone to the Warblers
(Farnsworth, 2011), studies of various call complexes (Landsborough, Foote & Mennill,
2019), and personal recordings of known species observed in the field. We used Raven Pro
Software Version 1.6.3 (Cornell University, 2022) to measure length of calls, determine
specific frequencies of calls, measure distance between modulation peaks of certain calls,
and listen to calls and the entirety of the audio recordings when needed. We compiled data
for all species detected and all flight calls. We then filtered out all non-migratory species
and resolved all calls that were likely repeated vocalizations from the same individual into a
single detection based on the timing and relative volume of the recorded vocalization.

Statistical analysis
To validate the ability of the LunAero moon-watching sensor to detect birds, we compared
the number of individual birds detected by LunAero with the regional intensity of avian
migration from the KTLX radar for each of six nights in March, April, and May of 2021
and each hour for which there was data. That is, we calculated both the number of
individual birds detected and the regional migration intensity for each combination of date
and hour, matched these numbers with one another based on the date and hour, and
calculated Pearson’s correlation coefficient as a measure of the strength and direction of
the correlation between these two variables across these nights.

To validate the ability of the PX-1000 radar to detect birds, we compared the local
intensity of avian migration from PX-1000 with the regional intensity of avian migration
from the KTLX radar by matching each migration intensity value of KTLX (for a ~10-min
time period and one of the six nights in March, April, and May of 2021) to the migration
intensity value of PX-1000 closest in time to it (also calculated for a 10-min time period).
Then, we calculated Pearson’s correlation coefficient as a measure of the strength and
direction of the correlation between these two variables across nights.

To showcase how this multi-sensor array could be used to study the influence of wind
on avian migration, we compared regional migration intensity data from KTLX and wind
data from NARR by matching each migration intensity value of KTLX (for a ~10-min time
period and one of the six nights in March, April, and May of 2021) to the wind velocity
value closest in time to the migration intensity value. Then, we calculated Pearson’s
correlation coefficient as a measure of the strength and direction of the correlation between
these two variables across nights.

Finally, to demonstrate the utility of LunAero as a tool to study the individual
movements of birds during migration, we compared flight directions of individual
migrants detected by LunAero with those of winds from NARR by, once again, matching
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each individual bird detection by LunAero with the wind velocity and direction values
closest in time to it. Finally, we calculated Pearson’s correlation coefficient as a measure of
the strength and direction of the correlation between these two variables across nights.

RESULTS
To validate the ability of the LunAero moon-watching sensor to detect birds, we compared
the number of individual birds detected by LunAero with the regional intensity of avian
migration from the KTLX radar. We found that these two variables are positively and
statistically significantly correlated with each other on five nights in March and April of
2021 (r(31) = 0.714, p < 0.001), although the strength of this correlation decreases and the
correlation ceases to be statistically significant with the inclusion of data collected on the
night of May 25, 2021 (between 10 PM and 1 AM) (r(34) = 0.322, p = 0.0553) (Fig. 1).

To validate the ability of PX-1000 to detect birds, we compared the local intensity of
avian migration from PX-1000 with the regional intensity of avian migration from the
KTLX radar. We found that the strength of the positive correlation between these two
measures of migration intensity hinges on the way in which the PX-1000 radar data is
processed. In May, the way in which the PX-1000 data was processed was modified to
increase sensitivity at close range. Consequently, we found that the correlation between the
local migration intensity from PX-1000 and the regional migration intensity from the
KTLX radar is strong and statistically significant for the night of May 25, 2021

Figure 1 Relationship between the number of birds detected by LunAero and the regional avian
migration intensity from KTLX in the atmosphere above KAEFS on select nights in March, April,
and May of 2021. Each data point corresponds to a 1-h period on the night of March 26, March 27,
March 28, March 29, April 24, or May 25, 2021. Each date is associated with a different color.

Full-size DOI: 10.7717/peerj.15622/fig-1
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(r(168) = 0.768, p < 0.001; Fig. 2A) but weak and not statistically significant across five
nights in March and April (r(320) = −0.0977, p = 0.0799; Fig. 2B).

Next, we analyzed wind data from NARR to confirm that the wind conditions on the
nights of March 26, March 27, March 28, March 29, April 24, and May 25, 2021 matched

Figure 2 Relationship between the local avian migration intensity detected by PX-1000 and the
regional avian migration intensity detected by KTLX in the atmosphere above KAEFS in the
spring of 2021. (A) Relationship on the night of May 25, 2021. (B) Relationship on the nights of
March 26, March 27, March 28, March 29, and April 24, 2021. Each data point corresponds to a ~10-min
period, which is the temporal resolution of the KTLX weather surveillance radar (WSR). The regional
migration intensity on the night of May 25, 2021 significantly predicts and explains 59.1% of the variance
in local migration intensity (b ¼ 5.00 ± 0.321, P < 0.001). Full-size DOI: 10.7717/peerj.15622/fig-2
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our expectations. We found that most of the winds were southerly (blowing from south to
north), as expected (Fig. 3). Furthermore, we found that the fastest winds were southerly,
as expected (Fig. 3).

We also used regional avian migration intensity data from the KTLX radar and wind
data from NARR corresponding to these dates in the spring of 2021 to determine the wind
conditions favored by migrant birds across these dates, demonstrating the use of this
multi-sensor array as a tool to study avian migration. We found a statistically significant,
negative correlation between regional migration intensity and wind velocity, suggesting
that migrant birds favor weaker winds (r(490) = −0.259, p < 0.001; Fig. 4).

We also compared the flight directions of individual migrant birds detected by LunAero
with those of winds from NARR to understand the ways in which migrant birds respond to
changing wind conditions across these dates. For southerly winds, we found that as the
velocity of the wind increases, the difference between the direction of the wind and the
flight direction of the individual migrant decreases and that this negative correlation is
statistically significant (r(1153) = −0.284, p < 0.001; Fig. 5A). We did not find a statistically
significant correlation between wind velocity and the difference between wind and flight
directions for northerly winds (r(868) = 0.0686, p = 0.0415; Fig. 5B).

Finally, we used nocturnal flight call recordings to analyze the avian migrant species
composition of the lower atmosphere above the University of Oklahoma Kessler
Atmospheric and Ecological Field Station (KAEFS) on four nights in March, April, and
May of 2021. We recorded the largest number of individual migrants on the night of April

Figure 3 Direction and velocity of the wind in the atmosphere above the Kessler Atmospheric and
Ecological Field Station (KAEFS) on select nights in March, April, and May of 2021. This polar plot
shows wind direction as the angle in degrees clockwise from north and velocity as the distance between
the data point and the origin. Each data point corresponds to a 3-h period for a given date, represented by
a color. This data stems from the National Centers for Environmental Prediction (NCEP)’s North
American Regional Reanalysis (NARR). Full-size DOI: 10.7717/peerj.15622/fig-3
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24 (41 individual birds and 11 species) and the second-largest number of individual
migrants on the night of May 25 (19 individual birds and three species) (Table 1). Notably,
we recorded 14 Upland Sandpipers on the night of April 24 and 17 Swainson’s Thrushes
on the night of May 25 (Table 1). Due to the small sample size of the nocturnal flight call
data, we could not make inferences about the relationship between the number of migrants
recorded and the number of migrants detected by LunAero and the relationship between
nocturnal flight calls and wind conditions during migration.

DISCUSSION
The challenges of studying avian migration have spurred the development of a number of
remote-sensing technologies to detect migrant birds. As each of these technologies have
their strengths and weaknesses, efforts have been made to use them in tandem; however, a
majority of these efforts have been limited to two technologies ((Gauthreaux & Belser,
1998; Larkin, Evans & Diehl, 2002; Weisshaupt, Lehtiniemi & Koistinen, 2021) or to radar
technologies only (Liechti et al., 2019; Nilsson et al., 2018), although researchers have
increasingly been exploring the utility of combining more than two different types of
technologies (Liechti, Bruderer & Paproth, 1995; Weisshaupt et al., 2017)). We designed a
proof-of-concept multi-sensor array, integrating data from multiple technologies to detect
migrants in flight and elucidate the ways in which birds respond to changing wind
conditions during spring migration.

Figure 4 Relationship between regional avian migration intensity detected by KTLX and wind
velocity in the atmosphere above KAEFS on select nights in March, April, and May of 2021. Each
data point corresponds to a ~10-min period, which is the temporal resolution of the KTLX weather
surveillance radar (WSR), for the nights of March 26, March 27, March 28, March 29, April 24, and May
25 of 2021. The wind data stems from the NCEP’s NARR. Full-size DOI: 10.7717/peerj.15622/fig-4
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Figure 5 Difference between the flight direction of individual birds detected by LunAero and the
direction of the wind as a function of wind velocity in the atmosphere above KAEFS in the spring
of 2021. (A) Southerly and (B) northerly winds. Southerly winds are winds with direction angles
between 90 and 270 degrees clockwise from north, while northerly winds are winds with direction angles
between 270 and 0 degrees and between 0 and 90 degrees clockwise from north. The black dots represent
mean differences for discrete wind velocity values. The data correspond to the nights of March 26, March
27, March 28, March 29, April 24, and May 25, 2021. The wind data stems from the NCEP’s NARR.

Full-size DOI: 10.7717/peerj.15622/fig-5
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We found a strong, statistically significant, positive correlation between the number of
birds detected by LunAero and the regional intensity of avian migration detected by the
KTLX radar on five nights in March and April of 2021, validating the ability of LunAero to
detect birds (Fig. 1). However, this correlation decreased and ceased to be statistically
significant with the inclusion of data collected on the night of May 25, 2021 (Fig. 1). It is
unclear why the relationship between these two variables differed on this night. While it is
possible that LunAero is unable to detect birds flying above a certain altitude, we
performed an analysis that suggests that migrant altitude does not explain why LunAero
did not detect many birds on that night. In fact, we calculated the mean altitude at which
birds were detected by the KTLX radar on each of the six night in March, April, and May,
and we found that the mean altitude at which birds were detected on May 25, 2021 was not
the highest (Table 2). It is also possible that the body size of the migrants on the night of
May 25 was smaller, thus making it more challenging for LunAero to detect them. In fact,

Table 1 Avian species and number of individuals detected via nocturnal avian flight calls in the atmosphere above KAEFS on select nights in
March, April, and May of 2021.

Scientific name Common name March 27,
2021

March 29,
2021

April 24,
2021

May 25,
2021

Number of individuals
per species

Protonotaria citrea Prothonotary
Warbler

1 0 0 0 1

Passerculus
sandwichensis

Savannah Sparrow 3 0 4 0 7

Branta canadensis Canada Goose 0 1 0 0 1

Calidris melanotos Pectoral
Sandpiper

0 1 0 0 1

Spizella pallida Clay-colored
Sparrow

0 0 4 0 4

Spizella passerina Chipping Sparrow 0 0 1 1 2

Ammodramus
savannarum

Grasshopper
Sparrow

0 0 5 0 5

Tringa flavipes Lesser Yellowlegs 0 0 1 0 1

Catharus ustulatus Swainson’s
Thrush

0 0 4 17 21

Bartramia
longicauda

Upland Sandpiper 0 0 14 0 14

Pooecetes gramineus Vesper Sparrow 0 0 2 0 2

Zonotrichia
leucophrys

White-crowned
Sparrow

0 0 3 0 3

Cardellina pusilla Wilson’s Warbler 0 0 2 0 2

Zonotrichia albicollis White-throated
Sparrow

0 0 1 0 1

Setophaga petechia Yellow Warbler 0 0 0 1 1

Number of individuals
per day

4 2 41 19 66

Note:
Nocturnal avian flight calls were recorded by an autonomous recording unit (ARU) on the nights of March 27, March 29, April 24, and May 25, 2021.
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evidence suggests that the mean body mass of the assemblage of avian migrants decreases
from April to May (Horton et al., 2018). Still, it appears that on most nights, LunAero can
detect many of these migrants and can be used to study their movements. In fact, LunAero
may be able to detect low-flying migrants that may be challenging to detect using weather
surveillance radars (WSRs). It is also important to note that we used raw counts to estimate
the number of birds detected by LunAero and did not account for the fact that the volume
of the atmosphere sampled by LunAero is dependent on the elevational angle of the moon
(i.e., how close the moon is to the horizon). In fact, LunAero samples a larger volume of the
atmosphere, thus detecting more birds, at lower moon elevational angles (i.e., when the
moon is closer to the horizon) (Lowery, 1949). In the future, we will improve the ability of
LunAero to detect birds by accounting for the contribution of the moon elevational angle.

We also found a strong, statistically significant, positive correlation between the local
migration intensity detected by the PX-1000 radar and the regional migration intensity
detected by the KTLX radar on the night of May 25, 2021, preliminarily validating the
ability of the PX-1000 radar to detect birds (Fig. 2A). The correlation between these two
measures of migration intensity was weak and not statistically significant across five nights
in March and April, but that is because the sensitivity of the PX-1000 radar was lower at
close range in March and April than in May (Fig. 2B). As such, given its current processing
pipeline, the PX-1000 radar could be deployed to fill the gaps left by the NEXRAD
network: where there is no or low spatial NEXRAD coverage or to study the movements of
low-flying migrants that may be challenging to detect using NEXRAD WSRs. Therefore,
the PX-1000 could be used to paint a more comprehensive picture of local-scale
movements of migrants in conjunction with NEXRAD WSRs.

By integrating regional migration intensity data from the KTLX radar with wind data
from NARR, we found evidence suggesting that birds prefer to migrate under weak wind
conditions in the spring (Fig. 4). This finding is consistent with research that suggests that
conditions with low turbulence promote flight efficiency, particularly for smaller avian
species (Bowlin & Wikelski, 2008). Additionally, by integrating flight directional data for
individual migrants from LunAero with wind data from NARR, we found that when
migrating under strong, southerly wind conditions across six nights in March, April, and
May of 2021, birds take advantage of these conditions by adjusting their flight direction to
match that of the wind (Fig. 5A). This finding is consistent with previous research showing

Table 2 Mean altitude at which birds were detected by the KTLX radar on six nights in March, April,
and May of 2021.

Date Mean altitude above mean sea level (m)

March 26, 2021 770.210404

March 27, 2021 537.570479

March 28, 2021 667.877065

March 29, 2021 749.929377

April 24, 2021 689.156399

March 25, 2021 733.208123
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that birds take advantage of favorable wind conditions during migration (Horton et al.,
2016, 2018). Our sample size is low (there were only six nights for which there was
LunAero data), so we cannot extrapolate these results across the entirety of the spring
season (or across spring seasons), but given the fact that our findings match those in the
literature, these analyses function as both another way to partially validate the sensors in
our array and to showcase the potential of multi-sensor arrays to reveal how birds respond
to changing wind conditions during migration.

We were hoping to be able to integrate avian nocturnal flight call data with data from
other sensors in our array; unfortunately, we were unable to collect enough nocturnal flight
call data to do so. We recorded the largest numbers of migrants on the nights of April 24
and May 25, which were also the nights with the highest regional migration intensities
detected by the KTLX radar, and yet, despite this fact, we only recorded 41 and 19
individuals on the nights of April 24 and May 25, respectively. It is possible that the
detection range of the microphone used to record nocturnal flight calls is limited, as
evidence suggests that detection rates of warbler nocturnal flight calls are below 50%
within the first 50 m of elevation and below 25% within the first 100 m with a temperature
of 20 degrees Celsius, a relative humidity of 50%, and a pressure of 1,013.25 hPa (Horton
et al., 2015). Although the detection range of flight calls is limited, they provide unique
insight into species identities that are not possible to infer from other data sources.

Our study demonstrates that multi-sensor arrays can be successfully deployed not only
to detect migrant birds in flight, but to understand the ways in which these birds move in
response to changing environmental conditions. It also sheds light on the challenges that
come with successfully deploying such arrays. The array we designed consisted of four
different sensors whose data were integrated with data from NARR, yielding five different
data sources. As the number of sensors and, thus, the number of data sources increases,
integrating these data becomes more challenging. In fact, the spatial and temporal scales of
these data did not always match. For example, integrating the avian nocturnal flight call
data with the rest of the data was challenging because we only recorded migrant flight calls
on four of six nights, and when we did record such calls, we recorded them infrequently
over the course of those nights. Mismatches in spatial and temporal scales has been
recognized as a major methodological challenge of data integration in macrosystems
ecological research, as mismatched data need to be up- or down-scaled for the extent and/
or resolution to match (Rüegg et al., 2014; Zipkin et al., 2021). Therefore, we recommend
creating pre- and post-integration plans prior to deploying multi-sensor arrays to make
sure that it is possible to integrate the data in the first place and that there is a contingency
plan if the spatial and/or temporal scales of the data change or one or more of the sensors
fails.

Another major challenge of successfully deploying multi-sensor arrays is
interdisciplinary collaboration, as the collection, integration, and analysis of data from
different sources requires the collaboration of people from different disciplines (Rüegg
et al., 2014). In our case, we required knowledge in areas of study as far-ranging as radar
engineering, computer vision, and flight call identification. However, despite the
challenges that come with successfully deploying multi-sensor arrays, doing so within an
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interdisciplinary framework would allow us to advance our understanding of avian
migration at the macrosystem scale (Kelly & Horton, 2016) and should be encouraged.
The sample size of the data retrieved from our array was small, but that is because it was
meant to be a proof-of-concept array deployed within narrow spatial and temporal extents;
increasing the extent and resolution of the data would enhance the power of such an array
to detect movements of migrants over the course of a season within a region across
altitudes. As such arrays expand, it will become increasingly important for
interdisciplinary teams to adopt rigorous data management practices (Rüegg et al., 2014).
As we look to the future, we hope to see multi-sensor arrays being used to provide a more
comprehensive picture of avian migration at local, regional, and continental scales.

CONCLUSIONS
We designed a proof-of-concept multi-sensor array to study nocturnal avian spring
migration in central Oklahoma. This array, which consisted of a NEXRAD weather
surveillance radar (WSR), a portable X-band WSR, a moon-watching sensor (LunAero),
and an autonomous recording unit (ARU), was deployed at the University of Oklahoma
Kessler Atmospheric and Ecological Field Station (KAEFS) on six nights in March, April,
and May of 2021. We verified that the sensors agreed with one another, that is, that the
intensities of avian migration recorded by most of these sensors were intercorrelated.
We were unable to verify that the number of individual birds recorded by the ARU was
consistent with the avian migration intensities detected by the other sensors due to the
small sample size of nocturnal avian flight calls. We also integrated data from this array of
sensors with wind data from the National Centers for Environmental Prediction (NCEP)’s
North American Regional Reanalysis (NARR) to examine the influence of this abiotic
variable on the movements of avian migrants aloft across these six nights in the spring.
We found that the number of birds detected by LunAero increased as wind velocity
decreased, indicating that birds prefer to migrate when winds are weak. In addition, we
found that when exposed to strong, southerly winds across these six nights, avian migrants
took advantage of these conditions by aligning their flight direction with that of the wind
(i.e., drifting). Continued development of the moon-watching sensor would allow us to
study additional features of individual migrants, such as flight velocity and body
orientation, shedding light on the ways in which avian migrants respond to atmospheric
conditions in flight. Ultimately, expanding the temporal and spatial scales at which this
multi-sensor array operates holds promise for the study of avian migration by providing a
fuller picture of this phenomenon in time and space.
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