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Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as
a continuous version of counting. We present a quantum algorithm that estimates the volume of an n-
dimensional convex body within multiplicative error ϵ using Õ (n3 + n2.5/ϵ ) queries to a membership oracle
and Õ (n5+n4.5/ϵ ) additional arithmetic operations. For comparison, the best known classical algorithm uses
Õ (n3.5 + n3/ϵ2) queries and Õ (n5.5 + n5/ϵ2) additional arithmetic operations. To the best of our knowledge,
this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for
speeding up simulated annealing algorithms that might be of independent interest. This framework applies
in the setting of “Chebyshev cooling,” where the solution is expressed as a telescoping product of ratios, each
having bounded variance.We develop several novel techniqueswhen implementing our framework, including
a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement
our quantum algorithms, we also prove that volume estimation requires Ω(

√
n + 1/ϵ ) quantum membership

queries, which rules out the possibility of exponential quantum speedup in n and shows optimality of our
algorithm in 1/ϵ up to poly-logarithmic factors.
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1 INTRODUCTION

Estimating the volume of a convex body is a central challenge in theoretical computer science.
Volume estimation is a basic problem in convex geometry and can be viewed as a continuous
version of counting. Furthermore, algorithms for a generalization of volume estimation—namely,
log-concave sampling—can be directly used to perform convex optimization, and hence can be
widely applied to problems in statistics, machine learning, operations research, and so on. See the
survey [72] for a more comprehensive introduction.

Volume estimation is a notoriously difficult problem. References [9, 26] proved that any deter-

ministic algorithm that approximates the volume of an n-dimensional convex body within a factor
ofno (n) necessarily makes exponentially many queries to a membership oracle for the convex body.
Furthermore, References [25, 39, 40] showed that estimating the volume exactly (deterministically)
is #P-hard, even for explicitly described polytopes.
Surprisingly, volumes of convex bodies can be approximated efficiently by randomized algo-

rithms. Dyer, Frieze, and Kannan [24] gave the first polynomial-time randomized algorithm for
estimating the volume of a convex body in Rn . They present an iterative algorithm that con-
structs a sequence of convex bodies. The volume of the convex body of interest can be written
as the telescoping product of the ratios of the volumes of consecutive convex bodies, and these
ratios are estimated by Markov chain Monte Carlo (MCMC) methods via random walks in-
side these convex bodies. The algorithm in Reference [24] has complexity1 Õ (n23) with multiplica-
tive error ϵ = Θ(1) (the definition of multiplicative error is given in Equation (1.4)). Subsequent
work [7, 23, 38, 48–50, 52] improved the design of the iterative framework and the choice of the ran-
domwalks. The state-of-the-art algorithm for estimating the volume of a general convex body [36]
uses Õ (n3.5) queries to the membership oracle for the convex body (see “Formulation” below) and
Õ (n5.5) additional arithmetic operations.

It is natural to ask whether quantum computers can solve volume estimation even faster than
classical randomized algorithms. Although there are frameworks with potential quantum speedup
for simulated annealing algorithms in general, with volume estimation as a possible applica-
tion [75], we are not aware of any previous quantum speedup for volume estimation. There are
several reasons to develop such a result. First, quantum algorithms for volume estimation can be
seen as performing a continuous version of quantum counting [12, 13], a key algorithmic tech-
nique with wide applications in quantum computing. Second, quantum algorithms for volume
estimation can exploit quantum MCMC methods (e.g., References [57, 63, 74]), and a successful
quantum volume estimation algorithm may illuminate the application of quantum MCMC meth-
ods in other scenarios. Third, there has been recent progress on quantum algorithms for convex
optimization [5, 14], so it is natural to study the closely related task of estimating volumes of
convex bodies.

Formulation. Given a convex set K ⊂ Rn , we consider the problem of estimating its volume:

Vol(K) :=

∫
x ∈K

dx . (1.1)

1Throughout the article, Õ omits factors in poly(logR/r, log 1/ϵ, logn) where R and r are defined in Equation (1.2).
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To get a basic sense about the location of K, we assume that it contains the origin. Furthermore,
we assume that we are given inner and outer bounds on K, namely,

Bn2 (0, r ) ⊆ K ⊆ Bn2 (0,R), (1.2)

where Bn2 (x , l ) is the ball of radius l in �2-norm centered at x ∈ Rn . Denote D := R/r .
We consider the very general setting where the convex body K is only specified by an oracle. In

particular, we have a membership oracle for K that determines whether a given x ∈ Rn belongs to
K. The efficiency of volume estimation is then measured by the number of queries to the member-
ship oracle (i.e., the query complexity) and the total number of other arithmetic operations. Note
that the membership oracle is commonly used in convex optimization research (see, for example,
Reference [29]). This model is not only general but also of practical interest. For instance, when K
is a bounded convex polytope, the membership oracle can be efficiently implemented by checking
if all its linear constraints are satisfied (see Reference [45]).
In the quantum setting, the membership oracle is a unitary operator OK. Specifically, we have

OK |x , 0〉 = |x ,δ[x ∈ K]〉 ∀x ∈ Rn , (1.3)

where δ[P] is 1 if P is true and 0 if P is false.2 In other words, we allow coherent superpositions
of queries to the membership oracle. If the classical membership oracle can be implemented by an
explicit classical circuit, then the corresponding quantum membership oracle can be implemented
by a quantum circuit of about the same size. Therefore, the quantum query model provides a useful
framework for understanding the quantum complexity of volume estimation.

1.1 Contributions

Our main result is a quantum algorithm for estimating volumes of convex bodies:

Theorem 1.1 (Main Theorem). LetK ⊂ Rn be a convex set with Bn2 (0, r ) ⊆ K ⊆ Bn2 (0,R). Assume

0 < ϵ < 1/2. Then there is a quantum algorithm that returns a value �Vol(K) satisfying
1

1 + ϵ
Vol(K) ≤ �Vol(K) ≤ (1 + ϵ ) Vol(K), (1.4)

with probability at least 2/3 using Õ (n3 + n2.5/ϵ ) quantum queries to the membership oracle OK

(defined in Equation (1.3)) and Õ (n5 + n4.5/ϵ ) additional arithmetic operations.

Note that arithmetic operations (e.g., addition, subtraction, multiplication, and division) can
be in principle implemented by a universal set of quantum gates using the Solovay-Kitaev Theo-
rem [22] up to a small overhead. In our quantum algorithm, the number of arithmetic operations
is dominated by n-dimensional matrix-vector products computed in superposition for rounding
the convex body (see Section 4.4).
To the best of our knowledge, this is the first quantum algorithm that achieves quantum speedup

for this fundamental problem, compared to the classical state-of-the-art algorithm [21, 53] that uses
Õ (n3.5+n3/ϵ2) classical queries and Õ (n5.5+n5/ϵ2) additional arithmetic operations.3 Furthermore,
our quantum algorithm not only achieves a quantum speedup in query complexity but also in the
number of arithmetic operations for executing the algorithm. This differs from previous quantum

2Here x can be approximated just as in the classical algorithms, such as with fixed-point numbers. Our algorithmic ap-
proach is robust under discretization (see Section 5), and our quantum lower bound holds even when x is stored with
arbitrary precision (Section 6). We mostly assume for convenience thatOK operates on x ∈ Rn , since this neither presents
a serious obstacle nor conveys significant power.
3This is achieved by applying Reference [36] to preprocess the convex body to be well-rounded (i.e., R/r = O (

√
n)) using

Õ (n3.5) queries and then applying Reference [21] using Õ (n3/ϵ 2) queries to estimate the volume of the (well-rounded)
convex body. The number of additional arithmetic operations has an overhead of O (n2) due to the affine transformation.
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Table 1. Summary of Complexities of Volume Estimation, Where n Is the Dimension of the Convex Body,
ϵ Is the Multiplicative Precision of Volume Estimation, and CMEM Is the Cost of Applying

the Membership Oracle Once

Classical bounds Quantum bounds (this article)

Query complexity Õ (n3.5 + n3/ϵ2) [21, 36], Ω̃(n2) [61] Õ (n3 + n2.5/ϵ ), Ω(
√
n + 1/ϵ )

Total complexity Õ ((n2 +CMEM) · (n3.5 + n3/ϵ2)) [21, 36] Õ ((n2 +CMEM) · (n3 + n2.5/ϵ ))
Total complexity refers to the cost of the of queries plus the number of additional arithmetic operations.

algorithms for convex optimization [5, 14] where only the query complexity is improved, but the
gate complexity is the same as that of the classical state-of-the-art algorithm [41, 42].

However, we prove in Section 6.1 that volume estimation with ϵ = Θ(1) requires Ω(
√
n) quan-

tum queries to the membership oracle, ruling out the possibility of achieving superpolynomial
quantum speedup for volume estimation. Classically, the best-known lower bound on the query
complexity of volume estimation is Ω̃(n2) due to Rademacher and Vempala [61], but there are tech-
nical difficulties to lift it to a quantum lower bound (see Section 1.2.3). For the dependence on 1/ϵ ,
we establish a quantum query lower bound of Ω(1/ϵ ), and the same argument shows a classical
query lower bound of Ω(1/ϵ2) (see Section 6.2). As a result, our quantum algorithm in Theorem 1.1
achieves a provable quadratic quantum speedup in 1/ϵ and is optimal in 1/ϵ up to poly-logarithmic
factors.
Technically, we refine a framework for achieving quantum speedups of simulated annealing al-

gorithms, which might be of independent interest. Our framework applies to MCMC algorithms
with cooling schedules that ensure each ratio in a telescoping product has bounded variance, an
approach known as Chebyshev cooling. Furthermore, we propose several novel techniques when
implementing this framework, including a theory of continuous-space quantum walks with rig-
orous bounds on discretization error, a quantum algorithm for nondestructive mean estimation,
and a quantum algorithm with interlaced rounding and volume estimation of convex bodies (as
described further in Section 1.2 below). In principle, our techniques apply not only to the integral
of the identity function (as in Theorem 1.1), but could also be applied to any log-concave function
defined on a convex body, following the approach in Reference [51].

We summarize our main results in Table 1.

1.2 Techniques

We now summarize the key technical aspects of our work.

1.2.1 Classical Volume Estimation Framework.

Volume estimation by simulated annealing. The volume of a convex body K can be estimated
using simulated annealing. Consider the value

Z (a) :=

∫
K
e−a ‖x ‖2 dx , (1.5)

where ‖x ‖2 :=
√
x21 + · · · + x2n is the �2-norm of x . On the one hand, Z (0) = Vol(K); on the other

hand, because e−‖x ‖2 decays exponentially fast with ‖x ‖2, taking a large enough a ensures that the
vast majority of Z (a) concentrates near 0, so it can be well approximated by integrating on a small
ball centered at 0. Therefore, a natural strategy is to consider a sequence a0 > a1 > · · · > am with
a0 sufficiently large and am close to 0. We consider a simulated annealing algorithm that iteratively
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changes ai to ai+1 and estimates Vol(K) by the telescoping product

Vol(K) ≈ Z (am ) = Z (a0)
m−1∏
i=0

Z (ai+1)

Z (ai )
. (1.6)

In the ith step, a random walk is used to sample the distribution over K with density proportional
to e−ai ‖x ‖2 . Denote one such sample by Xi , and let Vi := e (ai−ai+1 ) ‖Xi ‖2 . Then, we have

E[Vi ] =

∫
K
e (ai−ai+1 ) ‖x ‖2

e−ai ‖x ‖2

Z (ai )
dx =

∫
K

e−ai+1 ‖x ‖2

Z (ai )
dx =

Z (ai+1)

Z (ai )
. (1.7)

Therefore, each ratio Z (ai+1 )
Z (ai )

can be estimated by taking i.i.d. samples Xi , computing the corre-
sponding Vi s, and taking their average.
We can analyze this volume estimation algorithm by considering its behavior at three levels:

(1) High level: The algorithm follows the simulated annealing framework described above,
where the volume is estimated by a telescoping product as in Equation (1.6).

(2) Middle level: The number of i.i.d. samples used to estimate E[Vi ] (a ratio in the telescoping
product given by Equation (1.7)) is small. Intuitively, the annealing schedule should be slow
enough that Vi has small variance.

(3) Low level: The random walk converges fast so that we can take each i.i.d. sample of Vi
efficiently.

Classical volume estimation algorithm. Our approach follows the classical volume estimation
algorithm in Reference [53] (see also Section 4.1). At the high level, it is a simulated annealing
algorithm that considers a cylinder [0, 2R/r ] × K in Rn+1 and a cone C := {x ∈ Rn+1 : x0 ≥
0,
∑n

i=1 x
2
i ≤ x20 }. We denote the intersection of the (n + 1)-dimensional cylinder and (n + 1)-

dimensional cone as an alternative convex body K′. This is called a pencil construction. It shares
the same intuition as above, but replaces the integral Equation (1.5) byZ (a) =

∫
K′
e−ax0 dx , because

it is easier to calculate while can be directly used to estimate Vol(K) when a ≈ 0 by a standard
Monte Carlo approach (see Lemma 4.1).
Without loss of generality, assume that r = 1. Lovász and Vempala [53] proved that if we take

the sequence a0 > · · · > am where a0 = 2n, ai+1 = (1 − 1√
n
)ai , and m = Õ (

√
n), then Z (a0) ≈∫

C
e−a0x0 dx and

Var[V 2
i ] = O (1) · E[Vi ]2, ∀ i ∈ [m], (1.8)

i.e., the variance of Vi is bounded by a constant multiple of the square of its expectation, which is
small when ai and ai+1 are close to each other. Such a simulated annealing schedule is known as
Chebyshev cooling (see also Section 4.3.3). This establishes themiddle-level requirement of the sim-
ulated annealing framework. Furthermore, Reference [53] proves that the product of the average
of Õ (

√
n/ϵ2) i.i.d. samples of Vi for all i ∈ [m] gives an estimate of Vol(K′) within multiplicative

error ϵ with high success probability.
At the low level, Reference [53] uses a hit-and-run walk to sample Xi . In this walk, starting

from a point p, we uniformly sample a line � through p and move to a random point along the
chord �∩K with density proportional to e−ax0 (see Section 2.4 for details). Reference [52] analyzes
the convergence of the hit-and-run walk, proving that it converges to the distribution over K
with density proportional to e−ax0 within Õ (n3) steps, assuming that K is well-rounded (i.e., R/r =
O (
√
n)).

Finally, Reference [53] constructs an affine transformation that transforms a general K to
be well-rounded with Õ (n4) classical queries to its membership oracle, hence removing the
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constraint of the previous steps that K be well-rounded. Because the affine transformation is
an n-dimensional matrix-vector product, this introduces an overhead of O (n2) in the number of
arithmetic operations.
Overall, the algorithm has Õ (

√
n) iterations, where each iteration takes Õ (

√
n/ϵ2) i.i.d. samples,

and each sample takes Õ (n3) steps of the hit-and-run walk. In total, the query complexity is

Õ (
√
n) · Õ (

√
n/ϵ2) · Õ (n3) = Õ (n4/ϵ2). (1.9)

The number of additional arithmetic operations is Õ (n4/ϵ2) · O (n2) = Õ (n6/ϵ2) due to the affine
transformation for rounding the convex body.

1.2.2 Quantum Algorithm for Volume Estimation. It is natural to consider a quantum algorithm
for volume estimation following the classical framework in Section 1.2.1. A naive attempt might be
to develop a quantumwalk that achieves a generic quadratic speedup of the mixing time. However,
this is unfortunately difficult to achieve in general. Quantum walks are unitary processes that do
not converge to stationary distributions in the classical sense. As a result, alternative and indirect
quantum analogues of mixing properties of Markov chains have been proposed and studied (see
Section 1.3.2 for more detail). None of these methods provide a direct replacement for classical
mixing, and we cannot directly apply them in our context.
Instead, we adapt one of the frameworks proposed in Reference [74]. To give a quantum speedup

for volume estimation by this method, we address the following additional technical challenges:

• Quantum walks in continuous space: Quantum walks have mainly been studied in dis-
crete spaces [55, 70], and we need to understand how to define a quantum counterpart of
the hit-and-run walk.
• Quantummean estimation:Quantum counting [12] is a general tool for estimating a prob-
ability p ∈ [0, 1] with quadratic quantum speedup compared to classical sampling. However,
estimating the mean of an unbounded random variable with a quantum version of Cheby-
shev concentration requires more advanced tools.
• Rounding: Classically, rounding a general convex body takes Õ (n4) queries [53], more ex-
pensive than volume estimation of a well-rounded body using Õ (n3/ϵ2) queries [21]. To
achieve an overall quantum speedup, we also need to give a fast quantum algorithm for
rounding convex bodies.
• Error analysis of the quantum hit-and-run walk: We must bound the error incurred
when implementing the quantum walk on a digital quantum computer with finite precision.
Existing classical error analyses (e.g., Reference [28]) do not automatically cover the quan-
tum case.

We develop several novel techniques to resolve these issues:

Theory of continuous-space quantum walks (Section 3). Our first technical contribution is to de-
velop a quantum implementation of the low-level framework, i.e., to replace the classical hit-and-
run walk by a quantum hit-and-run walk. However, although quantum walks in discrete spaces
have been well studied (see, for example, Reference [55, 70]), we are not aware of comparable
results that can be used to analyze spectral properties and mixing times of quantum walks in con-
tinuous space. Here, we describe a framework for continuous-space quantum walks that can be
instantiated to give a quantum version of the hit-and-run walk. In particular, we formally define
such walks and analyze their spectral properties, generalizing Szegedy’s theory [70] to continuous
spaces (Section 3.1). We also show a direct correspondence between the stationary distribution of
a classical walk and a certain eigenvector of the corresponding quantum walk (Section 3.2).
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It is, in principle, possible to directly analyze a discretized version of the hit-and-run walk, and
we carefully consider the effects of discretization in Section 5. However, it is more convenient to
perform the bulk of the analysis in continuous space. Geometric randomwalks such as the hit-and-
run walk are highly non-local and there is a non-zero probability of transition between any two
points in K. Therefore, simple discrete walks such as the graph walk on a grid do not simulate it
well, and a true discretization corresponds to a complete graphwith a complicatedweight structure.
Furthermore, the essential properties of the walk, including its roundedness, conductance, spectral
gap, and convergence, rely on the convexity of K, which has no simple analog in the discrete setting.
A completely discrete analysis would require us to track complicated, but ultimately insignificant,
corrections to each of these parameters, significantly obfuscating the main ideas. For these reasons,
we make the choice to present the main algorithm in the continuous setting and defer the analysis
of discretization issues to Section 5. We note that this choice is consistent with classical literature
on convex geometry, and most of the classical algorithms referenced in this work are analyzed
purely in the continuous setting.

Quantum volume estimation algorithm via simulated annealing (Section 4.2). Having described
a quantum hit-and-run walk, the next step is to understand the high-level simulated annealing
framework. As mentioned above, it is nontrivial to directly prepare stationary states of quantum
walks. In this article, we follow a quantum MCMC framework proposed by Reference [74] that
can prepare stationary states of quantum walks by simulated annealing (see Section 2.2). In
this framework, we have a sequence of slowly varying Markov chains, and the stationary state
of the initial Markov chain can be efficiently prepared. In each iteration, we apply fixed-point
amplitude amplification (more specifically, the π/3-amplitude amplification) of the quantum walk
operator [32] due to Grover to transform the current stationary state to the next one; compared
to classical slowly varying Markov chains, the convergence rate of such quantum procedure is
quadratically better in spectral gap.

Our main technical contribution is to show how to adapt the Chebyshev cooling schedule
in Reference [53] to the quantumMCMC framework in Reference [74] using our quantum hit-and-
run walk. The conductance lower bound together with the classical Õ (n3) mixing time imply that
we can perform one step of π/3-amplitude amplification using Õ (n1.5) queries toOK. Furthermore,
the inner product between consecutive stationary states is a constant. These two facts ensure that
the stationary state in each iteration can be prepared with Õ (n1.5) queries to the membership
oracle OK. The total number of iterations is still Õ (

√
n), as in the classical case.

Quantum algorithm for nondestructive mean estimation (Section 4.3.3). In the next step, we con-
sider how to estimate each ratio in the telescoping product at the middle level. The basic tool is
quantum counting [12], which estimates a probability p ∈ [0, 1] with error ϵ and high success
probability using O (1/ϵ ) quantum queries, a quadratic speedup compared to the classical com-
plexity O (1/ϵ2). However, in our case, we need to estimate the expectation of a random variable
with bounded variance. We use the “quantum Chebyshev inequality” developed in Reference [33],
which truncates the random variable with reasonable upper and lower bounds and then reduces to
quantum counting; see Section 2.3.4 Compared to the classical counterpart, it achieves quadratic
speedup in the dependencies on both variance and multiplicative error.
There is an additional technical difficulty in quantum simulated annealing: classically, it is im-

plicitly assumed that in the (i+1)st iteration, we have samples to the stationary distribution in the

4A related technique is the quantum Monte Carlo method of Montanaro [57]. Here, we use Reference [33] for two rea-
sons: first, it has the advantage of handling multiplicative instead of additive errors, which is appropriate for estimating
the telescoping ratios. Second, its quantum algorithm is based on amplitude estimation and hence can readily be made
nondestructive, as discussed below.
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ith iteration. Applying existing quantum mean estimation techniques to the quantum stationary
state in the ith iteration would ruin that state and make it hard to use in the subsequent (i + 1)st
iteration. To resolve this issue, we estimate the mean nondestructively in the quantum Chebyshev
inequality while keeping its quadratic speedup in the error dependence using a nondestructive
amplitude estimation technique developed in Reference [34]. Nondestructive mean estimation re-
lies on the following observation: applying amplitude estimation on a state |ψ 〉 results with high
probability in the measurement collapsing to one of two states |ψ+〉, |ψ−〉 with constant overlap
withψ . The algorithm repeatedly projects these states onto |ψ 〉: if the projection is successful then
the state is restored, otherwise amplitude estimation can be performed again to obtain |ψ+〉, |ψ−〉
and the projection can be repeated. Due to the constant overlap, poly(log

(
δ−1
)
) repetitions suffice

to ensure that at least one of the projections succeeds with probability δ . It remains to implement
the required projection efficiently: We show how this can be accomplished using quantum walk
operators corresponding to the Markov Chains in the MCMC framework; see Section 4.3.4.
In our quantum volume estimation algorithm, we apply the quantum Chebyshev inequality

under the same compute-uncompute procedure. This gives a quadratic speedup in ϵ−1 when es-
timating the E[Vi ] in Equation (1.7), so that Õ (

√
n/ϵ ) copies of the stationary state suffice (see

Lemma 4.3).

Quantum algorithm for volume estimation with interlaced rounding (Section 4.4). The stationary
states of the quantum hit-and-run walk can be prepared with Õ (n1.5) queries toOK only when the
corresponding density functions are well-rounded, i.e., every level set with probability μ contains a
ball of radius μr and the variance of the density is bounded by R2, where R/r = O (

√
n). (When the

density function is uniform in K, this definition of well-roundedness reduces to that in Footnote 3.
The definition of level sets is the same as in Reference [53].) It remains to show how to ensure that
the convex body is well-rounded.
We follow a classical framework for directly rounding logconcave densities [51]. The round-

ing is interlaced with the volume estimation algorithm, so that in each iteration of the simu-
lated annealing framework, we use some of the samples to calculate an affine transformation
that makes the next stationary state well-rounded. This ensures that the quantum hit-and-run
walk continues to take only Õ (n1.5) queries for each sample. Our algorithm maintains Õ (n) extra
quantum states for rounding, and the quantum hit-and-run walk is used to transform them from
one stationary distribution to the next. In each iteration, we use a nondestructive measurement
to sample the required affine transformation. With Õ (

√
n) iterations this results in an additional

Õ (
√
n) · Õ (n) · Õ (n1.5) = Õ (n3) cost for rounding.

We also show that this framework can be used as a preprocessing step that puts the convex
body itself in well-rounded position (i.e., B2 (0, r ) ⊆ K ⊆ B2 (0,R) with R/r = O (

√
n)) using Õ (n3)

quantum queries. Putting a convex body in well-rounded position implies that several random
walks used in simulated annealing algorithms (including the hit-and-run walk) mix fast without
the need for further rounding. Therefore, as an alternative, we could preprocess the convex body to
be well-rounded and then apply the simulated annealing algorithm to obtain a volume estimation
algorithm that uses Õ (n3 + n2.5/ϵ ) quantum queries.

Error analysis of discretized hit-and-run walks (Section 5). Although we defined quantum hit-and-
run walks abstractly in Section 3, implementing a continuous-space quantum walk on a digital
quantum computers will lead to discretization error, and the error analysis of classical walks in
a discrete space approximating Rn (such as Reference [28]) does not automatically apply to the
quantum counterpart. To ensure that discretization errors do not affect a realistic implementation
of our algorithm, in Section 5, we propose a discretized hit-and-run walk and provide rigorous
bounds on the discretization error.
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Fig. 1. The structure of our quantum volume estimation algorithm. The four purple frames represent the
four novel techniques that we propose, the yellow frame represents the known technique from Reference
[32], and the green frame at the center represents our quantum algorithm.

Summary. Our quantum volume estimation algorithm can be summarized as follows.

(1) High level: The quantum algorithm follows a simulated annealing framework using a quan-
tum MCMC method [74], where the volume is estimated by a telescoping product (as in
Equation (1.6)); the number of iterations is Õ (

√
n).

(2) Middle level:We estimate theE[Vi ] in Equation (1.7), a ratio in the telescoping product, using
the nondestructive version of the quantum Chebyshev inequality [33]. This takes Õ (

√
n/ϵ )

implementations of the quantum hit-and-run walk operators.
(3) Low level: If the convex body K is well-rounded (i.e., R/r = O (

√
n)), then each quantum hit-

and-run walk operator can be implemented using Õ (n1.5) queries to the membership oracle
OK in Equation (1.3).

Finally, we give a quantum algorithm that interlaces rounding and volume estimation of the con-
vex body, using an additional Õ (n2.5) quantum queries to OK in each iteration. Because the affine
transformation is an n-dimensional matrix-vector product, it introduces an overhead of O (n2) in
the number of arithmetic operations (just as in the classical rounding algorithm).
Overall, our quantum volume estimation algorithm has Õ (

√
n) iterations. Each iteration imple-

ments Õ (
√
n/ϵ ) quantum hit-and-run walks, and each quantum hit-and-run walk uses Õ (n1.5)

queries; there is also a cost of Õ (n2.5) for rounding. Thus, the quantum query complexity is

Õ (
√
n) ·
(
Õ (
√
n/ϵ ) · Õ (n1.5) + Õ (n2.5)

)
= Õ (n3 + n2.5/ϵ ). (1.10)

The number of additional arithmetic operations is Õ (n3 + n2.5/ϵ ) · O (n2) = Õ (n5 + n4.5/ϵ ) due to
the affine transformations for interlaced rounding of the convex body.
Figure 1 summarizes our techniques. The volume estimation and interlaced rounding algorithms

are given as Algorithms 3 and 4, respectively, in Section 4.

1.2.3 Quantum Lower Bounds (Section 6). The classical state-of-the-art query lower bound for
volume estimation is a Ω̃(n2) bound for n-dimensional parallelopipeds [61]. Their main tool is
the dispersion of random determinants (of the matrix that characterizes the parallelopiped) and
dispersion of the distance of a random point from a convex body. However, there is no such a
counterpart in the quantum setting.
Nevertheless, we prove that volume estimation requires Ω(

√
n) quantum queries to the mem-

bership oracle, ruling out the possibility of exponential quantum speedup (see Theorem 6.1). We
establish this by a reduction to search: for a hyper-rectangle K =×ni=1[0, 2si ] specified by a binary
string s = (s1, . . . , sn ) ∈ {0, 1}n with |s | = 0 or 1, we prove that a membership query to K can be
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simulated by a query to s . Thus, since Vol(K) = 2 if and only if |s | = 1, the Ω(
√
n) quantum lower

bound on search [10] applies to volume estimation.
In addition, we prove that volume estimation requires Ω(1/ϵ ) quantum queries (see Theo-

rem 6.2), which means that our quantum algorithm is optimal in 1/ϵ up to poly-logarithmic factors.
The idea is to construct a convex body whose volume estimation reduces to the Hamming distance
problem with known tight quantum query complexity [59]. To be more specific, we consider the
n-dimensional unit hypercube and attach “hyperpyramids” to its faces, such that its central axis
passes through the center of the hypercube. We show that adding or deleting any hyperpyramid
of volume 1/2n does not influence the convexity of the convex body, and calculating the volume
of the body reveals the Hamming weight of a binary string that encodes the presence or absence
of the hyperpyramids.

1.3 Related Work

While our article gives the first quantum algorithm for volume estimation, classical volume
estimation algorithms have been well-studied, as we review in Section 1.3.1. Our quantum
algorithm builds upon quantum analogs of Markov chain Monte Carlo methods that we review
in Section 1.3.2.

1.3.1 Classical Volume Estimation Algorithms. There is a rich literature on classical algorithms
for estimating volumes of convex bodies (e.g., see the surveys in References [44, 72]). The general
approach is to consider a sequence of random walks inside the convex body K whose stationary
distributions converge quickly to the uniform distribution on K. Applying simulated annealing to
this sequence of walks (as in Section 1.2), the volume of K can be approximated by a telescoping
product.
The first polynomial-time algorithm for volume estimation was given by Reference [24]. It uses

a grid walk in which the convex body K is approximated by a grid mesh Kgrid of spacing δ (i.e.,
Kgrid contains the points in K whose coordinates are integer multiples of δ ). The walk proceeds
as follows:

(1) Pick a grid point y uniformly at random from the neighbors of the current point x .
(2) If y ∈ Kgrid, then go to y; else, stay at x .

Dyer, Frieze, and Vempala [24] proved that for a properly chosen δ , the grid walk converges
to the uniform distribution on Kgrid in Õ (n23) steps, and that δn |Kgrid | is a good approximation
of Vol(K) (in the sense of Equation (1.4)). Subsequently, more refined analysis of the grid walk
improved its cost to Õ (n8) [7, 23, 49]. However, this is still inefficient in practice.

Intuitively, the grid walk converges slowly, because each step only moves locally in K. Subse-
quent work improved the complexity by considering other types of random walk. These improve-
ments mainly use two types of walk: the hit-and-run walk and the ball walk. In this article, we use
the hit-and-run walk (see also Section 2.4). It is initialized at the original point, and then the walk
proceeds as follows:

(1) Pick a uniformly distributed random line � through the current point p.
(2) Move to a uniformly random point along the chord � ∩ K.

Smith [66] proved that the stationary distribution of the hit-and-run walk is the uniform dis-
tribution on K. Regarding the convergence of the hit-and-run walk, Reference [48] showed that
it mixes in Õ (n3) steps from a warm start (see Definition 4.1) after appropriate preprocessing,
and Reference [52] subsequently proved that the hit-and-run walk mixes rapidly from any interior
starting point (see also Theorem 2.4). Under the simulated annealing framework, the hit-and-run
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Table 2. Summary of Classical Methods for Estimating the Volume of a Convex
Body K ⊂ Rn When ϵ = Θ(1), Where R, r Are the Radii of the Balls Centered at
the Origin That Contain and Are Contained by the Convex Body, Respectively

Method
State-of-the-art

query complexity
Restriction on the convex body

Grid walk Õ (n8) [23] General (R/r = poly(n))

Hit-and-run walk Õ (n4) [51, 53] General (R/r = poly(n))

Ball walk Õ (n3) [20, 21] Well-rounded (R/r = O (
√
n))

walk gives the state-of-the-art volume estimation algorithm with query complexity Õ (n4) [51, 53].
Our quantum volume estimation algorithm can be viewed as a quantization of this classical hit-
and-run algorithm.
Given a radius parameter δ , the ball walk is defined as follows:

(1) Pick a uniformly random point y from the ball of radius δ centered at the current point x .
(2) If y ∈ K, then go to y; else, stay at x .

Lovász and Simonovits [50] proved that the ball walk mixes in Õ (n6) steps. Kannan et al. [38]
subsequently improved the mixing time to Õ (n3) starting from a warm start, giving a total query
complexity of Õ (n5) for the volume estimation problem.
The analysis of the ball walk relies on a central conjecture in convex geometry, the Kannan-

Lovász-Simonovits (KLS) conjecture (see Reference [44]). The KLS conjecture states that the
Cheeger constant of any log-concave density is achieved to within a universal, dimension-
independent constant factor by a hyperplane-induced subset. Here the Cheeger constant ψ is the
minimum ratio between the measure of the boundary of a subset and the measure of the subset or
its complement, whichever is smaller. In the special case when the convex body is well-rounded
(i.e., R/r = O (

√
n)), Cousins and Vempala [20, 21] proved the KLS conjecture for Gaussian distri-

butions. Thus, they established a volume estimation algorithm with query complexity Õ (n3) in
the well-rounded case. The state-of-the-art algorithm for rounding convex bodies has complexity
Õ (n3ψ 2) [36], and in that work the authors used the best known upper bound ψ = O (n1/4) [43]
at that time. Combined with Reference [21], this results in a classical algorithm for n-dimensional
volume estimation with multiplicative error ϵ using Õ (n3.5 + n3/ϵ2) queries.

More recently, a breakthrough on the KLS conjecture by Chen [16] showed that ψ = O (do (1) ).
Chen’s result improves the convex body rounding bound Õ (n3ψ 2) in Reference [36] to Õ (n3+o (1) ),
resulting in a classical algorithm for volume estimation with query complexity Õ (n3+o (1) + n3/ϵ2)
(again using [21]). This breakthrough appeared after the initial version of our article was com-
pleted, but straightforwardly improves our analysis. In particular, both Theorem 2.7 of Refer-
ence [36] and Theorem 2.5 below come from the observation that the walks converge in Õ (n2ψ 2)
steps (see also Reference [38]), which means that in Lemma 4.8 the number of calls to the quan-
tum walk operators in each iteration is essentially Õ (nψ ). Therefore, Chen’s result improves
Lemma 4.8 by a factor of n0.5−o (1) , implying that our quantum algorithm has query complexity
Õ (n2.5+o (1) + n2+o (1)/ϵ ), which is still better than the classical counterpart.

Table 2 summarizes classical algorithms for volume estimation.

1.3.2 Quantum Markov Chain Monte Carlo Methods. The performance of MCMC methods is
determined by the rate of convergence to their stationary distributions (i.e., the mixing time). Sup-
pose we have a reversible, ergodic Markov chain with unique stationary distribution π . Let πk
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denote the distribution obtained by applying the Markov chain for k steps from some arbitrary ini-
tial state. It is well-known (see, for example, Reference [46]) that O ( 1Δ log(1/(ϵ minx π (x )))) steps
suffice to ensure ‖πk − π ‖1 ≤ ϵ , where Δ is the spectral gap of the Markov chain.
Many authors have studied quantum analogs of Markov chains (in both continuous [27] and

discrete [1, 4, 70] time) and their mixing properties. While a quantumwalk is a unitary process and
hence does not converge to a stationary distribution, one can define notions of quantum mixing
time by choosing the number of steps at random or by adding decoherence [1, 3, 4, 15, 17, 62, 63],
and compare them to the classical mixing time. Note that distribution sampled by such a process
may or may not be the same as the stationary distribution π of the corresponding classical Markov
process, depending on the structure of the process and the notion of mixing. It is also natural to ask
how efficiently we can prepare a quantum state close to |π 〉 := ∑x

√
πx |x〉, which can be viewed

as a “quantum sample” from π . However, it is unclear how to do this efficiently in general, even
in cases where a corresponding classical Markov process mixes quickly; in particular, a generic
quantum algorithm for this task could be used to solve graph isomorphism [2, Section 8.4].
It is also possible to achieve quantum speedup of MCMCmethods by not demanding speedup of

the mixing time of each separate Markov chain, but only for the procedure as a whole. In particular,
MCMCmethods are often implemented by simulated annealing algorithms where the final output
is a telescoping product of values at different temperatures. From this perspective, Somma et al. [11,
67, 68] used quantum walks to accelerate classical simulated annealing processes by exploiting
the quantum Zeno effect, using measurements implemented by phase estimation of the quantum
walk operators of these Markov chains. References [71, 77] also introduced how to implement
Metropolis sampling on quantum computers.
Our quantum volume estimation algorithm is most closely related to work of Wocjan and

Abeyesinghe [74], which achieves complexity Õ (1/
√
Δ) for preparing the final stationary distribu-

tion of a sequence of slowly varyingMarkov chains, where Δ is the minimum of their spectral gaps.
Their quantum algorithm transits between the stationary states of consecutive Markov chains by
π/3-amplitude amplification [32], which is implemented by amplitude estimation with Õ (1/

√
Δ)

implementations of the quantum walk operators of these Markov chains (see Section 2.2 for more
details).
Our simulated annealing procedure preserves the slowly varying property, so we adopt the

framework of Reference [74] in our algorithm for volume estimation (see Section 4.3.2).We develop
several novel techniques (described in Section 1.2) that allow us to implement the steps of this
framework efficiently. Note that the slowly varying property also facilitates other frameworks
that give efficient adiabatic [2] or circuit-based [60] quantum algorithms for generating quantum
samples of the stationary state.
Previous work has mainly applied these quantum simulated annealing algorithms to estimat-

ing partition functions of discrete systems. Given an inverse temperature β > 0 and a classical
Hamiltonian H : Ω → R, where Ω is a finite space, the goal is to estimate the partition function

Z (β ) :=
∑
x ∈Ω

e−βH (x ) (1.11)

within multiplicative error ϵ > 0. Wocjan et al. [75] gave a quantum algorithm that achieves
quadratic quantum speedup with respect to both mixing time and accuracy.
The classical algorithm that Reference [75] quantizes uses Õ (log |Ω |) annealing steps to ensure

that each ratio Z (βi+1)/Z (βi ) is bounded. In fact, it is possible to relax this requirement and use a
cooling schedule with only Õ (

√
log |Ω |) steps such that the variance of each ratio is bounded, so

its mean can be well-approximated by Chebyshev’s inequality; this is exactly the Chebyshev cool-
ing technique [69] introduced in Section 1.2 (see also Section 4.3.3). Montanaro [57] improved
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upon [75] using Chebyshev cooling. Harrow and Wei [34] further quadratically improved the
spectral gap dependence of the estimation of the partition function. More recently, Arunachalam
et al. [19] further simplifies the Chebyshev cooling schedule and proposed faster quantum algo-
rithms for estimating Gibbs partition functions, and Cornelissen and Hamoudi [19] proposed a
sublinear-time quantum algorithm for approximating partition functions.

1.4 Open Questions

This work leaves several natural open questions for future investigation. In particular:

• Can we improve the complexity of our quantum volume estimation algorithm? Possible im-
provements might result from designing a shorter simulated annealing schedule, giving bet-
ter analysis of the conductance of the hit-and-runwalk, or even using other types of walks. In
particular, an important step of our quantum algorithm is convex body rounding, where we
quantize the classical algorithm by Lovasz and Vempala [53] with query complexity Õ (n4),
but the state-of-the-art result in Reference [36] has query complexity Õ (n3.5). It is natural
to ask whether their algorithm fits into the interlaced structure of Algorithm 4 and achieves
even better quantum query/gate complexities. Another natural direction is to combine our
approach with recent quantum algorithms using shorter annealing schedules [6, 8, 19, 34].
One might also improve volume estimation using quantum algorithms for logconcave sam-
pling, such as those recently proposed in Reference [18].
• Our algorithm directly quantizes a classical framework that has many moving pieces: the
pencil construction, rounding the convex body, geometric random walks, and Monte Carlo
estimation of the telescoping ratios. A natural question is whether quantum algorithms with
better complexity can be obtained by using a simpler framework, or by combining some of
these parts. For example, our treatment differs from that of Lovasz and Vempala [53] in that
the rounding of the convex body is interlaced with the simulated annealing. This allows us
to obtain a Õ (n3) overhead from rounding, whereas a direct quantization of Reference [53]
would result in a Õ (n3.5) overhead (which is not better than the best classical algorithm).
• Can we prove better quantum query lower bounds on volume estimation? Note that classi-
cally there is an Ω̃(n2) query lower bound [61].
• Can we give faster quantum algorithms for volume estimation in some special circum-
stances? For instance, volume estimation of well-rounded convex bodies only takes Õ (n3)
classical queries [21] (see also Section 1.3.1), and the volume of polytopes withm faces can be
estimated with only Õ (mn2/3) classical queries [45]. Specifically, it is natural to ask whether
the ball walk in Reference [21] or the Riemannian Hamiltonian Monte Carlo (RHMC)

method in Reference [45] can be implemented by continuous-space quantum walks (and
their discretizations).
• Can we apply our simulated annealing framework to solve other problems? As a concrete
example, it may be of interest to check whether our framework can recover the results of
Reference [34] on estimating partition functions in counting problems.

Organization. We review necessary background in Section 2. We describe the theory of
continuous-space quantum walks in Section 3. In Section 4, we first review the classical state-
of-the-art volume estimation algorithm in Section 4.1, and then we give our quantum algorithm
for estimating volumes of well-rounded convex bodies in Section 4.2. The proofs of our quantum
algorithms are given in Section 4.3, and the quantum algorithm for rounding convex bodies is
given in Section 4.4. The details of our discretized hit-and-run walk are given in Section 5, and we
conclude with our quantum lower bound on volume estimation in Section 6.
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2 PRELIMINARIES

We summarize necessary tools used in this article as follows.

2.1 Classical and Quantum Walks

A Markov chain over a finite state space Ω is a sequence of random variables X0,X1, . . . such that
for each i ∈ N, the probability of transition to the next state y ∈ Ω,

Pr
[
Xi+1 = y | Xi = x ,Xi−1 = xi−1, . . . ,X0 = x0

]
= Pr
[
Xi+1 = y | Xi = x

]
=: px→y ,

only depends on the present state x ∈ Ω. The Markov chain can be represented by the transi-
tion probabilities px→y satisfying

∑
y px→y = 1. For each i ∈ N, we denote by πi the distribu-

tion over Ω with density πi (x ) = Pr[Xi = x] for all x ∈ Ω. A stationary distribution π satisfies∑
x ∈Ω px→yπ (x ) = π (y). A Markov chain is reversible if it has a stationary distribution π such that

π (x )px→y = π (y)py→x for all x ,y ∈ Ω. The conductance of a reversible Markov chain is defined as

Φ := inf
S⊆Ω

∑
x ∈S
∑
y∈Ω\S π (x )px→y

min{∑x ∈S π (x ),
∑

x ∈Ω\S π (x )}
. (2.1)

Intuitively, we partition Ω into two sets, S and Ω\S. The conductance characterizes the infimum of
the ratio between the probability of transitioning from S to Ω \ S under the stationary distribution
π and the smaller of the probability mass of S and Ω \ S under π .

The theory of discrete-time quantum walks has also been well developed. Given a classical
reversible Markov chain on Ω with transition probability p, we define a unitary operator Up on
C
|Ω | ⊗ C |Ω | such that

Up |x〉|0〉 = |x〉|px 〉, where |px 〉 :=
∑
y∈Ω

√
px→y |y〉. (2.2)

The quantum walk is then defined as

Wp := S
(
2Up (IΩ ⊗ |0〉〈0|)U †p − IΩ ⊗ IΩ

)
, (2.3)

where IΩ is the identity map on C |Ω | and S :=
∑

x,y∈Ω |x ,y〉〈y,x | = S† is the swap gate on C |Ω | ⊗
C
|Ω | . This is the standard definition of discrete-time quantum walks due to Szegedy [70].
To understand the quantum walk, it is essential to analyze the spectrum ofWp . First, observing

that Wp = S (2Π − I ) where Π = Up (IΩ ⊗ |0〉 〈0|)U †p =
∑

x ∈Ω |x〉 〈x | ⊗ ��px 〉 〈px �� projects onto
the span of the states |x〉 ⊗ ��px 〉, we consider the eigenvector |λ〉 of ΠSΠ with eigenvalue λ. We

have ΠSΠ =
∑

x,y∈Ω Dxy |x〉
〈
y�� ⊗ ��px 〉 〈py ���, where Dxy :=

√
px→ypy→x . SinceWp |λ〉 = S |λ〉 and

WpS |λ〉 = 2λS |λ〉− |λ〉, the subspace span{|λ〉 , S |λ〉} is invariant underWp . The eigenvalues ofWp

within this subspace are λ ± i
√
1 − λ2 = e±i arccos λ . For more details, see Reference [70].

The phase gap arccos λ ≥
√
2(1 − λ) ≥

√
2δ , where δ is the spectral gap ofD. Therefore, applying

phase estimation using O (1/
√
δ ) calls toWp suffices to distinguish the state corresponding to the

stationary distribution of the classical Markov chain from the other eigenvectors.

2.2 Quantum Speedup of MCMC Sampling Via Simulated Annealing

Consider a Markov chain with spectral gap Δ and stationary distribution π . Classically, it takes
Θ( 1Δ log(1/ϵπmin))) steps to sample from a distribution π̃ such that ‖π̃ − π ‖ ≤ ϵ , where πmin :=
mini πi . Quantumly, Reference [74] proved the following result about a sequence of slowly varying
Markov chains:

Theorem 2.1 ([74, Theorem 2]). Let p1, . . . ,pr be the transition probabilities of r Markov

chains with stationary distributions π1, . . . ,πr , spectral gaps δ1, . . . ,δr , and quantum walk operators
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W1, . . . ,Wr , respectively; let Δ := min{δ1, . . . ,δr }. Assume that |〈πi |πi+1〉|2 ≥ p for some 0 < p < 1
and all i ∈ [r −1], and assume that we can efficiently prepare the state |π1〉 (where each |πi 〉 is a quan-
tum sample defined as in Section 1.3.2). Then, for any 0 < ϵ < 1, there is a quantum algorithm that

produces a quantum state |π̃r 〉 such that ‖|π̃r 〉 − |πr 〉‖ ≤ ϵ , using Õ (r/(p
√
Δ)) steps of the quantum

walk operatorsW1, . . . ,Wr , where the Õ omits poly-logarithmic terms in r , 1/ϵ , and 1/p
√
Δ.5

Their quantum algorithm produces the states |π1〉, . . . , |πr 〉 sequentially, and can do so rapidly if
consecutive states have significant overlap and the walks mix rapidly. Intuitively, this is achieved
by amplitude amplification. However, to avoid overshooting, the article uses a variant of standard
amplitude amplification, known as π/3-amplitude amplification [32], that we now review.
Given two states |ψ 〉 and |ϕ〉, we let Πψ := |ψ 〉〈ψ |, Π⊥

ψ
:= I −Πψ , Πϕ := |ϕ〉〈ϕ |, and Π⊥

ϕ
:= I −Πϕ .

Define the unitaries

Rψ := ωΠψ + Π
⊥
ψ , Rϕ := ωΠϕ + Π

⊥
ϕ , where ω = ei

π
3 . (2.4)

Given |〈ψ |ϕ〉|2 ≥ p, it can be shown that |〈ϕ |RψRϕ |ψ 〉|2 ≥ 1− (1−p)3. Recursively, one can establish
the following:

Lemma 2.1 ([74, Lemma 1]). Let |ψ 〉 and |ϕ〉 be two quantum states with |〈ψ |ϕ〉|2 ≥ p for some

0 < p ≤ 1. Define the unitaries Rψ ,Rϕ as in Equation (2.4) and the unitariesUm recursively as follows:

U0 = I , Um+1 = Um Rψ U †m Rϕ Um . (2.5)

Then, we have

|〈ϕ |Um |ψ 〉|2 ≥ 1 − (1 − p)3m , (2.6)

and the unitaries in {Rψ ,R†ψ ,Rϕ ,R
†
ϕ
} are used at most 3m times in Um .

Takingm = �log3 (ln(1/ϵ )/p)�, the inner product between |ϕ〉 and Um |ψ 〉 in Equation (2.6) is at

least 1 − ϵ , and we use 3m = O (log(1/ϵ )/p) unitaries from the set {Rψ ,R†ψ ,Rϕ ,R
†
ϕ
}.

To establish Theorem 2.1 by Lemma 2.1, it remains to construct the unitaries Ri := ω |πi 〉〈πi | +
(I − |πi 〉〈πi |). In Reference [74], this is achieved by phase estimation of the quantum walk oper-
atorWi with precision

√
Δ/2. Recall that if a classical Markov chain has spectral gap δ , then the

corresponding quantum walk operator has phase gap of at least 2
√
δ (see Section 2.1). Therefore,

phase estimation with precision
√
Δ/2 suffices to distinguish between |πi 〉 and other eigenvectors

ofWi . As a result, we can take

Ri = PhaseEst(Wi )
†
(
I ⊗
(
ω |0〉〈0| + (I − |0〉〈0|)

))
PhaseEst(Wi ). (2.7)

2.3 Quantum Chebyshev Inequality

Assume we are given a unitaryU such that

U |0〉|0〉 = √p |0〉|ϕ〉 + |0⊥〉, (2.8)

where |ϕ〉 is a normalized pure state and (〈0| ⊗ I ) |0⊥〉 = 0. If we measure the output state, then
we get 0 in the first register with probability p; by the Chernoff bound, it takes Θ(1/ϵ2) samples
to estimate p within ϵ with high success probability. However, there is a more efficient quantum

5Note that this is quadratically worse in 1/p than the Grover’s algorithm [31] with complexityO (1/
√
p ). This is because we

use a simple fixed-point quantum search algorithm, i.e., π /3-amplitude amplification [32], that does not require knowing
p in advance. Notice that there exist other fixed-point quantum search algorithms that preserve the O (1/

√
p ) speedup

(e.g., Reference [76] and Reference [73, Chapter 6]), but in our quantum algorithm, the simpler algorithm suffices as p =
Θ(1) (see Lemma 4.2).
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Fig. 2. The quantum circuit for amplitude estimation.

algorithm, called amplitude estimation [12], that estimates the value of p using only O (1/ϵ ) calls
toU :

Theorem 2.2 ([12, Theorem 12]). Given U satisfying Equation (2.8), the amplitude estimation

algorithm in Figure 2 outputs an angle θ̃p ∈ [−π ,π ] such that p̃ := sin2 (θ̃p ) satisfies

|p̃ − p | ≤
2π
√
p (1 − p)
M

+
π 2

M2
, (2.9)

with success probability at least 8/π 2, usingM calls toU and U †.

Here QFT denotes the quantum Fourier transform over ZM and Q := −US0U
†S1 where S0 and S1

are reflections about |0〉 and the target state, respectively, following the pattern of Grover search.
The controlled-Q gate denotes the operation

∑M−1
j=0 |j〉〈j | ⊗ Q j . In fact, it was shown in the proof

of Reference [12, Theorem 12] that the state after applying the circuit in Figure 2 is

eiθp
√
2
|θ̃p〉|Ψ+〉 −

e−iθp
√
2
| − θ̃p〉|Ψ−〉, (2.10)

where θp ∈ [0,π ] such that p = sin2 (θp ), and θ̃p ∈ [0,π ] is a random variable such that p̃ =

sin2 (θ̃p ), and |Ψ±〉 are two eigenvectors of Q. Measuring the first register either gives θ̃p or −θ̃p
with probability 1/2, but since sin2 (θ̃p ) = sin2 (−θ̃p ) = p̃, this does not influence the success of
Theorem 2.2.

In Equation (2.9), if we takeM = �2π ( 2
√
p

ϵ
+ 1√

ϵ
)� = O (1/ϵ ), then we get

|p̃ − p | ≤
2π
√
p (1 − p)
2π

ϵ +
π 2

4π 2
ϵ2 ≤ ϵ

2
+
ϵ

4
≤ ϵ . (2.11)

Furthermore, the success probability 8/π 2 can be boosted to 1 − ν by executing the algorithm
Θ(log 1/ν ) times and taking the median of the estimates.
Amplitude estimation can be generalized from estimating a single probability p ∈ [0, 1] to esti-

mating the expectation of a random variable. Assume thatU is a unitary acting on CS ⊗C |Ω | such
that

U |0〉|0〉 =
∑
x ∈Ω

√
px |ψx 〉|x〉, (2.12)

where S ∈ N and {|ψx 〉 : x ∈ Ω} are unit vectors in CS . Let

μU :=
∑
x ∈Ω

pxx , σ 2
U :=

∑
x ∈Ω

px (x − μU )2 (2.13)

denote the expectation and variance of the random variable, respectively. Several quantum algo-
rithms have given speedups for estimating μU . Specifically, Reference [57] showed how to estimate
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μU within additive error ϵ by Õ (σU /ϵ ) calls to U and U †. Given an upper bound H and a lower
bound L > 0 on the random variable, Reference [47] showed how to estimate μU with multiplica-
tive error ϵ using Õ (σU /ϵμU · H/L) calls to U and U †. More recently, Reference [33] mutually
generalized these results and proposed a significantly better quantum algorithm:

Theorem 2.3 ([33, Theorem 3.5]). There is a quantum algorithm that, given a quantum sampler

U as in Equation (2.12), an integer ΔU , a value H > 0, and two reals ϵ,δ ∈ (0, 1), outputs an estimate

μ̃U . If ΔU ≥
√
σ 2
U
+ μ2

U
/μU and H > μU , then |μ̃U − μU | ≤ ϵμU with probability at least 1 − δ , and

the algorithm uses Õ (ΔU /ϵ · log3 (H/μU ) log(1/δ )) calls to U and U †.

The quantum algorithm works as follows. First, assume Ω ⊆ [L,H ] for given real numbers
L,H ≥ 0, there is a basic estimation algorithm (denoted BasicEst) that estimates H−1μU up to
ϵ-multiplicative error:

ALGORITHM 1: BasicEst: the basic estimation algorithm.

Input: A quantum samplerU acting on CS ⊗ C |Ω | , interval [L,H ], precision parameter ϵ ∈ (0, 1),
failure parameter δ ∈ (0, 1).

Output: ϵ-multiplicative approximation of H−1μU .
1 Use controlled rotation to implement a unitary RL,H acting on C |Ω | ⊗ C2 such that for all x ∈ Ω,

RL,H |x〉|0〉 =
⎧⎪⎪⎨⎪⎪⎩
|x〉(
√
1 − x

H |0〉 +
√

x
H |1〉) if L ≤ x < H

|x〉|0〉 otherwise
;

2 Let V = (IS ⊗ RL,H ) (U ⊗ I2) and Π = IS ⊗ IΩ ⊗ |1〉〈1|;
3 for i = 1, . . . ,Θ(log(1/δ )) do

4 Compute p̃i by Theorem 2.2 withU ← V , S1 ← 2Π − I , andM ← Θ(1/(ϵ
√
H−1μU ));

5 Return p̃ = median{p̃1, . . . , p̃Θ(log(1/δ )) }.

However, usually the bounds L and H are not explicitly given. In this case, Reference [33] con-
sidered the truncated mean μ<b defined by replacing the outcomes larger than b with 0. The article
then runs Algorithm 1 (BasicEst) to estimate μ<b/b. A crucial observation is that

√
b/μ<b is smaller

than ΔU for large values of b, and it becomes larger than ΔU when b ≈ μU Δ
2
U . As a result, by re-

peatedly running BasicEstwith ΔU quantum samples, and applyingO (log(H/L)) steps of a binary
search on the values of b, the first non-zero value is obtained when b/Δ2

U ≈ μU . In Reference

[33], more precise truncation means are used to improve the precision of the result to Õ (1/ϵ ) and
remove the dependence on L.
Note that the quantum algorithm for Theorem 2.3 only relies on BasicEst. This is crucial when

we estimate the mean of our simulated annealing algorithm in different iterations nondestructively
(see Section 4.2 for more details).

2.4 Hit-and-run Walk

As introduced in Section 1.3.1, there are various random walks that mix fast in a convex body K,
such as the grid walk [24] and the ball walk [21, 50]. In this article, we mainly use the hit-and-run
walk [48, 52, 66]. It is defined as follows. Initially, the walk starts at the original point 0 (the centers
of the balls with radius r and R in Equation (1.2)). In each iteration:

(1) Pick a uniformly distributed random line � through the current point p.
(2) Move to a uniform random point along the chord � ∩ K.
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For any two points p,q ∈ K, we let �(p,q) denote the length of the chord in K through p and q.
Then the transition probability of the hit-and-run walk is determined by the following lemma:

Lemma 2.2 ([48, Lemma 3]). At a step of the hit-and-run walk algorithm with current point u, the
density function of the distribution of the next point x ∈ K is

pu (x ) =
2

nvn
· 1

�(u,x ) |x − u |n−1 , (2.14)

wherevn := π
n
2 /Γ(1+ n

2 ) is the volume of the n-dimensional unit ball. In other words, the probability

that the next point is in a (measurable) set A ⊆ K is

Pu (A) =

∫
A

2

nvn
· 1

�(u,x ) |x − u |n−1 dx . (2.15)

In general, we can also define a hit-and-runwalkwith a given density. Let f be a density function
in Rn . For any points u,v ∈ Rn , we let

μf (u,v ) :=

∫ 1

0
f ((1 − t )u + tv ) dt . (2.16)

For any line �, let �+ and �− be the endpoints of the chord �∩K (with + and − assigned arbitrarily).
The density f specifies the following hit-and-run walk:

(1) Pick a uniformly distributed random line � through the current point p.

(2) Move to a random point x along the chord � ∩ K with density f (x )
μf (�−, �+ )

.

Let πK denote the uniform distribution over K. Smith [66] proved that the stationary distribution
of the hit-and-run walk with uniform density is πK. Furthermore, Lovász and Vempala [52] proved
that the hit-and-run walk mixes rapidly from any initial distribution:

Theorem 2.4 ([52, Theorem 1.1]). Let K be a convex body that satisfies Equation (1.2): B2 (0, r ) ⊆
K ⊆ B2 (0,R). Let σ be a starting distribution and let σ (m) be the distribution of the current point

afterm steps of the hit-and-run walk in K. Let ϵ > 0, and suppose that the density function dσ/dπK
is upper bounded byM except on a set S with σ (S) ≤ ϵ/2. Then for any

m > 1010
n2R2

r 2
ln

M

ϵ
, (2.17)

the total variation distance between σ (m) and πK is less than ϵ .

Theorem 2.4 can also be generalized to exponential distributions on K, using the definition of
level sets:

Definition 2.1. Given a probability density f supported on K, the level set of f of probability p
is defined as the set

Lp :=
{
x : f (x ) ≥ fp

}
(2.18)

for a value fp ∈ R such that
∫
x ∈Lp

f (x ) dx = p.

Theorem 2.5 ([52, Theorem 1.3]). Let K ⊂ Rn be a convex body and let f be a density supported

on K that is proportional to e−a
T x for some vector a ∈ Rn . Assume that the level set of f of probability

1/8 contains a ball of radius r , and Ef ( |x−zf |2) ≤ R2, where zf is the centroid of f . Let σ be a starting

distribution and let σm be the distribution for the current point afterm steps of the hit-and-run walk
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applied to f . Let ϵ > 0, and suppose that the density function dσ
dπf

is upper bounded by M except on

a set S with σ (S ) ≤ ϵ
2 . Then for

m > 1030
n2R2

r 2
ln5

MnR

rϵ
,

the total variation distance between σm and πf is less than ϵ .

Roughly speaking, the proofs of Theorem 2.4 and Theorem 2.5 have two steps. First, for any
random walk on a continuous domain Ω with transition probability p and stationary distribution
π , we define its conductance (which generalizes the discrete case in Equation (2.1)) as

Φ := inf
S⊆Ω

∫
S

∫
Ω/S

dx dy πxpx→y

min{
∫
S
dx πx ,

∫
Ω/S

dx πx }
. (2.19)

It is well-known that the mixing time of this randomwalk is proportional to 1/Φ2 up to logarithmic
factors. This is captured by the following proposition:

Proposition 2.1 ([50, Corollary 1.5]). Let M := supS⊆Ω
σ (S)
π (S) where σ is the initial distribution.

Then for every S ⊆ Ω,

���σ (k ) (S) − π (S)��� ≤ √M (1 − 1

2
Φ2
)k
. (2.20)

Furthermore, the conductance in Proposition 2.1 can be relaxed to that of sets with a fixed small
probability p:

Proposition 2.2 (Adapted from Reference [50, Corollary 1.6]). LetM := supS⊆Ω
σ (S)
π (S) . If the

conductance for all connected, measurable set A ⊆ Ω such that π (A) = p ≤ 1/2 is at least Φp , then

for all S ⊆ Ω, we have

���σ (k ) (S) − π (S)��� ≤ 2Mp + 2M
(
1 − 1

2
Φ2
p

)k
. (2.21)

Intuitively, conductance can directly characterize the convergence of the random walk to its sta-
tionary distribution. Specifically, the second term on the right-hand side of Equation (2.21) goes
to 0 when k = Ω(1/Φ2

p ).
Second, Reference [52] proved a lower bound on the conductance of the hit-and-run walk with

exponential density:

Proposition 2.3 ([52, Theorem 6.9]). Let f be a density in Rn proportional to e−a
T x whose

support is a convex body K of diameter d . Assume that B2 (0, r ) ⊆ K. Then for any subset S with

πf (S) = p ≤ 1/2, the conductance of the hit-and-run walk satisfies

ϕ (S ) ≥ r

1013nd ln(nd/rp)
. (2.22)

Proposition 2.1 and Proposition 2.3 imply Theorem 2.4 and Theorem 2.5, respectively; complete
proofs are given in Reference [52].
For the conductance of the hit-and-run walk with a uniform distribution, Reference [52] estab-

lished a stronger lower bound that is independent of p:

Proposition 2.4 ([52, Theorem 4.2]). Assume that K has diameter d and contains a unit ball.

Then the conductance of the hit-and-run in K with uniform distribution is at least 1
224nd .
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3 THEORY OF CONTINUOUS-SPACE QUANTUM WALKS

In this section, we develop the theory of continuous-space, discrete-time quantum walks.
Specifically, we generalize the discrete-time quantum walk of Szegedy [70] to continuous space.

Let n ∈ N and suppose Ω is a continuous subset of Rn (we say that Ω is continuous if for any
x ,y ∈ Ω there is a continuous function fx,y : [0, 1] → Ω such that fx,y (0) = x and fx,y (1) = y). A
probability transition density p on Ω is a continuous function p : Ω × Ω → [0,+∞) such that∫

Ω
dy p (x ,y) = 1 ∀x ∈ Ω. (3.1)

We also write px→y := p (x ,y) for the transition density from x to y. Together, Ω and p specify a
continuous-space Markov chain that we denote (Ω,p) throughout the article.
For background on the mathematical foundations of quantum mechanics over continuous state

spaces, see Reference [65, Chapter 1]. In this section, we treat quantum states as square integrable
functions f : Ω → R in L2 (Ω) if

∫
Ω
dx | f (x ) |2 < ∞. The inner product 〈·, ·〉 on L2 (Ω) is defined by

〈f ,д〉 :=
∫
Ω
dx f (x )д(x ) ∀ f ,д ∈ L2 (Ω). (3.2)

Note that by the Cauchy-Schwarz inequality, we have

|〈f ,д〉|2 ≤
(∫

Ω
dx | f (x ) |2

) (∫
Ω
dx |д(x ) |2

)
< ∞; (3.3)

the norm of an f ∈ L2 (Ω) is subsequently defined as ‖ f ‖ :=
√
〈f , f 〉. The pure states in Ω corre-

spond to functions in the set

St(Ω) :=
{
f : Ω → R

����
∫
Ω
dx | f (x ) |2 = 1

}
. (3.4)

The computational basis elements |y〉 for all y ∈ Ω correspond to Dirac delta functions δ (x −y)
centered aty, where δ (x ) = 0 for all x � 0, and

∫
Rn

δ (x ) dx = 1. Delta functions are not members of

the Hilbert space L2 (Ω); however, we interpret them in the following sense: For any y ∈ intϵ (Ω),
we consider a normalized Gaussian with width ϵ , given by δy,ϵ (x ) ∝ 1

(2πϵ 2 )n/2
e−‖x−y ‖

2/2ϵ 2 for

x ∈ Ω and 0 for x � Ω. It is clear that δy,ϵ ∈ L2 (Ω) and its behavior approaches that of the
delta function. In the remainder of the section statements such as A = B are to be interpreted
as limϵ→0 |Aϵ − Bϵ | = 0 where Aϵ ,Bϵ are obtained from A,B by replacing every occurrence of a
computational basis vector |y〉 by δy,ϵ .6 Integrals over L2 (Ω) are computed pointwise. It can be
verified that ∫

Ω
dx |x〉〈x | = I (3.5)

and

〈x |x ′〉 = δ (x − x ′), ∀x ,x ′ ∈ Ω. (3.6)

6As in most treatments of continuous quantum mechanics, we shall not be fully rigorous with respect to operations such
as interchanging orders of limits. We have two reasons to believe that pathological cases do not occur. First, the states that
occur during the algorithm correspond to probability distributions that are obtained during classical geometric random
walks. Second, we show in Section 5.1 that our algorithm can also be executed discretely; we work in the continuous
setting only for ease of analysis.
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3.1 Continuous-spaceQuantum Walk

Given a transition density function p, the quantum walk is characterized by the following states:

|ϕx 〉 := |x〉 ⊗
∫
Ω
dy
√
px→y |y〉 ∀x ∈ Rn . (3.7)

Since px→y is a normalized probability density function, |ϕx 〉 ∈ L2 (Ω). Now, denote

U :=

∫
Ω
dx |ϕx 〉(〈x | ⊗ 〈0|), Π :=

∫
Ω
dx |ϕx 〉〈ϕx |, S :=

∫
Ω

∫
Ω
dx dy |x ,y〉〈y,x |. (3.8)

Notice thatU is an isometry on L2 (Ω) ⊗ |0〉, Π is the projection onto span{|ϕx 〉}x ∈Rn , because

Π2 =

∫
Ω

∫
Ω
dx dx ′ |ϕx 〉〈ϕx |ϕx ′ 〉〈ϕx ′ | =

∫
Ω

∫
Ω
dx dx ′ δ (x − x ′) |ϕx 〉〈ϕx ′ | = Π, (3.9)

and S is the swap operator for the two registers. A single step of the quantum walk is defined as
the unitary operator

W := S (2Π − I ). (3.10)

The first main result of this subsection is the following theorem:

Theorem 3.1. Let

D :=

∫
Ω

∫
Ω
dx dy

√
px→ypy→x |x〉〈y | (3.11)

denote the discriminant operator of p. Let Λ be the set of eigenvalues of D, so that D =
∫
Λ
dλ λ |λ〉〈λ |.

Then the eigenvalues of the quantum walk operatorW in Equation (3.10) are ±1 and λ± i
√
1 − λ2 for

all λ ∈ Λ.
Notice that in Equation (3.11), D is real and symmetric, and thus its spectral decomposition

exists. We defer the proof of Theorem 3.1 to Appendix A.

3.2 Stationary Distribution

Classically, the density π = (πx )x ∈Ω corresponding to the stationary distribution of a Markov
chain (Ω,p) satisfies ∫

Ω
dx πx = 1;

∫
Ω
dy py→xπy = πx ∀x ∈ Ω. (3.12)

In other words, we can naturally define a transition operator as

P :=

∫
Ω

∫
Ω
dx dy py→x |x〉〈y |, (3.13)

and the stationary density π satisfies Pπ = π . The Markov chain (Ω,p) is reversible if there exists
a classical density σ = (σx )x ∈Ω such that

py→xσy = px→yσx ∀x ,y ∈ Ω. (3.14)

(This is called the detailed balance condition.) Notice that for all x ∈ Ω,∫
Ω
dy py→xσy =

∫
Ω
dy px→yσx = σx

∫
Ω
dy px→y = σx ; (3.15)

therefore, we must have Pσ = σ , i.e., σ is a stationary density of P . In this article, we focus on
Markov chains (Ω,p) that are reversible and have a unique stationary distribution (i.e., σ = π ).
Such assumptions are natural for Markov chains in practice, including the Metropolis-Hastings
algorithm, simple random walks on graphs, and so on.
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We point out that if π is the classical stationary density of a reversible Markov chain (Ω,p), then

|πW 〉 :=
∫
Ω
dx
√
πx |ϕx 〉 (3.16)

is the unique eigenvalue-1 eigenstate of the quantum walk operatorW restricted to the subspace
spanλ∈Λ{T |λ〉, ST |λ〉}. First, a simple calculation shows that

W |πW 〉 = S (2Π − I ) |πW 〉 (3.17)

= S |πW 〉 (3.18)

=

( ∫
Ω

∫
Ω
dx dy |x ,y〉〈y,x |

) ( ∫
Ω

∫
Ω
dx dy

√
πypy→x |y,x〉

)
(3.19)

=

∫
Ω

∫
Ω
dx dy

√
πypy→x |x ,y〉 (3.20)

=

∫
Ω

∫
Ω
dx dy

√
πxpx→y |x〉|y〉 (3.21)

=

∫
Ω
dx
√
πx |x〉

( ∫
Ω
dy
√
px→y |y〉

)
(3.22)

=

∫
Ω
dx
√
πx |ϕx 〉 (3.23)

= |πW 〉, (3.24)

where Equation (3.18) follows from |πW 〉 ∈ spanx ∈Ω{|ϕx 〉}, Equation (3.19) follows from the defini-
tion of S in Equation (3.8), Equation (3.21) follows from Equation (3.14), and Equation (3.21) follows
from the definition of |ϕx 〉 in Equation (3.7). Thus, |πW 〉 is an eigenvector ofW with eigenvalue 1.
However, since (Ω,p) is reversible, P is similar to D: If we denote Dπ :=

∫
Ω
dx
√
πx |x〉〈x |, then

DπDD
−1
π =

( ∫
Ω
dx
√
πx |x〉〈x |

) ( ∫
Ω

∫
Ω
dx dy

√
px→ypy→x |x〉〈y |

) ( ∫
Ω
dy
√
π−1y |y〉〈y |

)

=

∫
Ω

∫
Ω
dx dy

√
πxπ

−1
y px→ypy→x |x〉〈y | (3.25)

=

∫
Ω

∫
Ω
dx dy py→x |x〉〈y | (by Equation (3.14)) (3.26)

= P . (3.27)

As a result, D and P have the same set of eigenvalues. Furthermore, Lemma A.1 implies that all
eigenvalues of P have norm at most 1, and the proof of Theorem 3.1 shows that |πW 〉 is the unique
eigenvector with this eigenvalue within spanλ∈Λ{T |λ〉, ST |λ〉}.
The state

|π 〉 :=
∫
Ω
dx
√
πx |x〉 (3.28)

represents a quantum sample from the density π ; in particular, measuring |π 〉 in the computational
basis gives a classical sample from π . Furthermore, the unitary operator in Equation (3.8) satisfies

U † |πW 〉 =
( ∫

Ω
dx |x〉|0〉〈ϕx |

) ( ∫
Ω
dx
√
πx |ϕx 〉

)
=

∫
Ω
dx
√
πx |x〉|0〉 = |π 〉|0〉, (3.29)

so we haveU |π 〉|0〉 = |πW 〉.
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4 QUANTUM SPEEDUP FOR VOLUME ESTIMATION

In this section, we present and analyze our quantum algorithm for volume estimation. First, we re-
view the classical state-of-the-art volume estimation algorithm in Section 4.1.We then describe our
quantum algorithm for estimating the volume of well-rounded convex bodies (i.e., R/r = O (

√
n))

with query complexity Õ (n2.5/ϵ ) in Section 4.2, with detailed proofs given in Section 4.3. Finally,
we remove the well-rounded condition by giving a quantum algorithm with interlaced rounding
and volume estimation with additional cost Õ (n2.5) in each iteration in Section 4.4.

4.1 Review of Classical Algorithms for Volume Estimation

The state-of-the-art classical algorithm for volume estimation uses Õ (n4 +n3/ϵ2) classical queries,
where Õ (n4) queries are used to construct the affine transformation that makes convex body well-
rounded [53] and Õ (n3/ϵ2) queries are used to estimate the volume of the well-rounded convex
body (after the affine transformation) [21].
We now review the algorithm of Reference [53] for estimating volumes of well-rounded convex

bodies. This algorithm estimates the volume of a convex body obtained by the following pencil

construction. Define the cone

C :=
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2i ≤ x20

}
, (4.1)

where x j denotes the jth coordinate of x . Let K′ be the intersection of the cone C and a cylinder
[0, 2D] × K, i.e.,

K′ := ([0, 2D] × K) ∩ C (4.2)

(recall D = R/r ). Without loss of generality, we renormalize to r = 1, so that B2 (0, 1) ⊆ K ⊆
B2 (0,D). Since D Vol(K) ≤ Vol(K′) ≤ 2D Vol(K), with the knowledge of Vol(K′), we can estimate
Vol(K) with multiplicative error ϵ by generating O (1/ϵ2) sample points from the uniform distri-
bution on [0, 2D] × K and then counting how many of them fall into K′. Such an approximation
succeeds with high probability by a Chernoff-type argument (see Section 4.3.1 for a formal proof).
Lovász and Vempala [53] considers simulated annealing under the pencil construction. For any

a > 0, define

Z (a) :=

∫
K′
e−ax0 dx . (4.3)

It can be shown that for any a ≤ ϵ/D,

(1 − ϵ ) Vol(K′) ≤ Z (a) ≤ Vol(K′). (4.4)

However, it is shown in Reference [53, Section 2.3] that for any a ≥ 2n and ϵ > (3/4)n ,

(1 − ϵ )
∫
C
e−ax0 dx ≤ Z (a) ≤

∫
C
e−ax0 dx . (4.5)

This suggests using a simulated annealing procedure for estimating Vol(K′). Specifically, if we
select a sequence a0 > a1 > · · · > am for which a0 = 2n and am ≤ ϵ/D, then we can estimate
Vol(K′) by

Z (am ) = Z (a0)
m−1∏
i=0

Z (ai+1)

Z (ai )
. (4.6)

(Note that this procedure uses an increasing sequence of temperatures 1/ai , unlike standard sim-
ulated annealing in which temperature is decreased.)
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Let πi be the probability distribution over K′ with density proportional to e−aix0 , i.e., dπi (x ) =
e−ai x0
Z (ai )

dx . Let Xi be a random sample from πi , and let (Xi )0 be its zeroth coordinate (x0 in Equation

(4.1)); define Vi := e (ai−ai+1 )(Xi )0 . We have

Eπi [Vi ] =

∫
K′
e (ai−ai+1 )x0 dπi (x ) =

∫
K′
e (ai−ai+1 )x0

e−aix0

Z (ai )
dx =

Z (ai+1)

Z (ai )
. (4.7)

Furthermore, if the simulated annealing schedule satisfies ai+1 ≥ (1 − 1√
n
)ai , then Vi satisfies

(see Reference [53, Lemma 4.1])

Eπi [V
2
i ]

Eπi [Vi ]
2
≤
( a2i+1
ai (2ai+1 − ai )

)n+1
< 8 ∀ i ∈ [m], (4.8)

i.e., the variance ofVi is bounded by a constant multiple of the square of its expectation. Thus, this
simulated annealing procedure constitutes Chebyshev cooling (see also Section 4.3.3), ensuring its
correctness (see Proposition 4.1).
Algorithm 2 presents this approach in detail. Note that sampling from π0 in Line 2 is straightfor-

ward: select a random positive real number x0 from the distribution with density e−2nx and choose
a uniformly random point (v1, . . . ,vn ) from the unit ball. If X = (x0,x0v1, . . . ,x0vn ) � K′, then
try again; else return X . Equation (4.5) ensures that we succeed with probability at least 1 − ϵ for
each sample.

ALGORITHM 2: Volume estimation of well-rounded K with Õ (n4/ϵ2) classical queries [53].

Input: Membership oracle OK of K; R such that B2 (0, 1) ⊆ K ⊆ B2 (0,R); R = O (
√
n), i.e., K is

well-rounded.
Output: ϵ-multiplicative approximation of Vol(K).

1 Setm = 2�
√
n ln(n/ϵ )�, k = 512

ϵ 2
√
n ln(n/ϵ ), δ = ϵ2n−10, and ai = 2n(1 − 1√

n
)i for i ∈ [m];

2 Take k samples X (1)
0 , . . . ,X

(k )
0 from π0;

3 for i ∈ [m] do

4 Take k samples from πi with error parameter δ and starting points X (1)
i−1, . . . ,X

(k )
i−1, giving points

X
(1)
i , . . . ,X

(k )
i ;

5 Compute Vi =
1
k

∑k
j=1 e

(ai−ai+1 )(X (j )
i )0 ;

6 Return n!vn (2n)−(n+1)V1 · · ·Vm as the estimate of the volume of K′, where vn := π
n
2 /Γ(1 + n

2 ) is the
volume of the n-dimensional unit ball.

4.2 Quantum Algorithm for Volume Estimation

As introduced in Section 1.2, our quantum algorithm has four main improvements that contribute
to the quantum speedup of Algorithm 2:

(1) We replace the classical hit-and-run walk in Section 2.4 by a quantum hit-and-run walk,
defined using the framework of Section 3. Classically, the hit-and-run walk mixes in Õ (n3)
steps in a well-rounded convex body given a warm start (see Theorem 2.4). Quantumly,
we can use the quantum hit-and-run walk operator to prepare its stationary state given a
warm start state using only Õ (n1.5) queries to the membership oracle for the well-rounded
convex body.

(2) We replace the simulated annealing framework in Algorithm 2 by the quantum MCMC
framework described in Section 2.2. Classically, we sample from πi in the ith iteration by
running the classical hit-and-run walk starting from the samples taken in the (i − 1)st it-
eration. Quantumly, we prepare the quantum sample |πi 〉 in the ith iteration by applying
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π/3-amplitude amplification to a quantum sample produced in the (i − 1)st iteration, where
the unitaries in the π/3-amplitude amplification are implemented by phase estimation of the
quantum hit-and-run walk operators as in Equation (2.7).

(3) We use the quantum Chebyshev inequality (see Section 2.3) to give a quadratic quantum
speedup in ϵ−1 when taking the average e (ai−ai+1 )(X̄i )0 in Line 5 of Algorithm 2. However, we

must be cautious, because the resulting pointsX (1)
i , . . . ,X

(k )
i in Line 4 follow the distribution

πi , which varies in different iterations of simulated annealing. Instead, our quantum algo-
rithm must be nondestructive: it must still have a copy of |πi 〉 after estimating the average
e (ai−ai+1 )(X̄i )0 , so that we can map this state to |πi+1〉 by π/3-amplitude amplification for the
next iteration. This is achieved in Section 4.3.3.

(4) In Section 4.4, we show how the densities can be transformed to be well-rounded by an affine
transformation at each stage of the algorithm. This is to ensure that the hit-and-run walk
mixes fast assuming the densities πi to be sampled from are well-rounded (see Theorem 2.5).
The high-level idea is to sample points from density πi and compute an affine transformation
Si+1 that rounds πi and the next densityπi+1 (see Lemma 4.11). To sample these points, we use
π/3-amplitude amplification to map the states corresponding to the uniform distributions
for one stage to those for the next. The affine transformation can be computed coherently
using nondestructive mean estimation, with Õ (n2.5) quantum queries in each iteration.

Algorithm 3 is our quantum volume estimation algorithm that satisfies our main theorem:

Theorem 1.1 (Main Theorem). LetK ⊂ Rn be a convex set with Bn2 (0, r ) ⊆ K ⊆ Bn2 (0,R). Assume

0 < ϵ < 1/2. Then there is a quantum algorithm that returns a value �Vol(K) satisfying
1

1 + ϵ
Vol(K) ≤ �Vol(K) ≤ (1 + ϵ ) Vol(K), (1.4)

with probability at least 2/3 using Õ (n3 + n2.5/ϵ ) quantum queries to the membership oracle OK

(defined in Equation (1.3)) and Õ (n5 + n4.5/ϵ ) additional arithmetic operations.

The proof of Theorem 1.1 is organized as follows. We first assume that in each iteration, Si+1
puts πi+1 in isotropic position, i.e., the densities are promised to be well-rounded. The rest of
this subsection presents an overview of the proof of Theorem 1.1 (including a quantum circuit
in Figure 3), and proofs details are given in Section 4.3. In Section 4.4, we show how the well-
roundedness be maintained at an additional cost of Õ (n2.5) quantum queries in each iteration.
Following the discussion in Section 1.2, our proof can be described at three levels:

High level (the simulated annealing framework). In Section 4.3.1, we show how to estimate Vol(K)
given an estimate of the volume of the pencil construction, Vol(K′):

Lemma 4.1. If we have access to 
Vol(K′) such that

1

1 + ϵ/2
Vol(K′) ≤
Vol(K′) ≤ (1 + ϵ/2) Vol(K′), (4.9)

with probability at least 0.7, then we can return a value �Vol(K) such that

1

1 + ϵ
Vol(K) ≤ �Vol(K) ≤ (1 + ϵ ) Vol(K) (4.10)

holds with probability at least 2/3, using Õ (n2.5/ϵ ) quantum queries to the membership oracle OK.

In Section 4.3.2, we prove that the inner product between stationary states of consecutive sim-
ulated annealing steps is at least a constant:
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ALGORITHM 3: Volume estimation of convex K with Õ (n3 + n2.5/ϵ ) quantum queries.

Input: Membership oracle OK for K; R = O (
√
n) such that B2 (0, 1) ⊆ K ⊆ B2 (0,R).

Output: ϵ-multiplicative approximation of Vol(K).
1 Setm = Θ(

√
n log(n/ϵ )) to be the number of iterations of simulated annealing and ai = 2n(1 − 1√

n
)i for

i ∈ [m]. Let πi be the probability distribution over K′ with density πi (x ) proportional to e−aix0 (here x0
is the zeroth coordinate of x , as in Equation (4.1));

Set error parameters δ , ϵ ′ = Θ(ϵ/m2), ϵ1 = ϵ/2m; let k = Θ̃(
√
n/ϵ ) be the number of copies of stationary

states for applying the quantum Chebyshev inequality; let l = Θ̃(n) be the number of copies of
stationary states needed to obtain the affine transformation Si ;

Prepare k + l (approximate) copies of |π0〉, denoted |π̃ (1)
0 〉, . . . , |π̃

(k+l )
0 〉 (Lemma 4.4);

2 for i ∈ [m] do
3 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with parameters ϵ1,δ to

estimate the expectation Eπi [Vi ] (in Equation (4.7)) as Ṽi (Lemma 4.9 and Figure 4). The

post-measurement states are denoted |π̂ (1)
i−1〉, . . . , |π̂

(k )
i−1〉;

4 Use the l copies of the state |πi−1〉 to nondestructively obtain the affine transformation Si that

rounds πi−1 and πi (Section 4.4). The post-measurement states are denoted |π̂ (k+1)
i−1 〉, . . . , |π̂

(k+l )
i−1 〉;

5 Apply π/3-amplitude amplification with error ϵ ′ (Section 2.2 and Lemma 4.8) and affine

transformation Si to map |Si π̂ (1)
i−1〉, . . . , |Si π̂

(k+l )
i−1 〉 to |Si π̃

(1)
i 〉, . . . , |Si π̃

(k+l )
i 〉, using the quantum

hit-and-run walk;

6 Invert Si to get k + l (approximate) copies of the stationary distribution |πi 〉 for use in the next

iteration;

7 Compute an estimate 
Vol(K′) = n!vn (2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where vn is the volume of

the n-dimensional unit ball;

8 Use 
Vol(K′) to estimate the volume of K as �Vol(K) (Section 4.3.1).

Lemma 4.2. Let |πi 〉 be the stationary distribution state of the quantumwalkWi for i ∈ [m] defined
in Equation (3.28). For n ≥ 2, we have 〈πi |πi+1〉 > 1/3 for i ∈ [m − 1].

This allows π/3-amplitude amplification to transform the stationary state of one Markov
chain to that of the next. The total number of iterations of π/3-amplitude amplification is thus
Õ (
√
n), which equals to the number of iterations of the classical volume estimation algorithm by

Reference [53].

Middle level (each telescoping ratio). In Section 4.3.3, we describe how we apply the quantum
Chebyshev inequality (Theorem 2.3) to the Chebyshev cooling schedule.

Lemma 4.3. Given Õ (log(1/δ )/ϵ ) copies of the quantum states |πi−1〉, there exists a quantum al-

gorithm that outputs an estimate of Eπi [Vi ] (in Equation (4.7)) with relative error less than ϵ with

probability at least 1 − O (δ ) using Õ (C log(1/δ )/ϵ ) oracle calls, where C oracle calls are required

to implement a sampler for |πi 〉. Moreover, this quantum algorithm is nondestructive, i.e., the initial

copies of quantum states |πi−1〉 are restored after the computation with probability at least 1 −O (δ ).

Because the relative error in each iteration for estimating the volume via Chebyshev cooling is
Θ(ϵ/m) = Θ̃(ϵ/

√
n), Lemma 4.3 implies that O (log(1/δ )/(ϵ/

√
n)) = Õ (

√
n/ϵ ) copies of the station-

ary state suffice for the simulated annealing framework.7

7Notice that in the quantum Chebyshev inequality by Hamoudi andMagniez, they did not distinguish the number of copies
of the initial state from the number of quantum samples [33, Theorem 5.3]. In fact, their proof uses onlyO (log(1/δ )) copies
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Fig. 3. The quantum circuit for Algorithm 3 (assuming well-roundedness). Here UCB,i is the circuit of the
quantum Chebyshev inequality (Theorem 2.3) in the ith iteration and Ui,l is π/3-amplitude amplification
from |πi 〉 to |πi+1〉.

Low level (the quantum hit-and-runwalk). In Section 4.3.4, we give a careful analysis of the errors
coming from the quantum Chebyshev inequality as well as the π/3-amplitude amplification:

Lemma 4.4. For ϵ1 < 1, given Õ (log(1/δ )/ϵ1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉−|πi−1〉‖ ≤ ϵ1,
there exists a quantum procedure (using π/3-amplitude amplification and the quantum Chebyshev

inequality) that outputs a Ṽi such that |Ṽi − Eπi [Vi ]| ≤ ϵ1Eπi [Vi ] (where Eπi [Vi ] is defined in

Equation (4.7)) with success probability 1 − δ 4 using Õ (n3/2 log(1/δ )/ϵ1 + n3/2 log(1/ϵ ′)) calls to
the membership oracle and returns Õ (log(1/δ )/ϵ1) copies of final states |π̃i 〉 such that ‖|π̃i 〉− |πi 〉‖ =
O (ϵ1 + δ + ϵ

′).

Having the four lemmas above from all the three levels, we establish Theorem 1.1 as follows.

Proof of Theorem 1.1. We prove the correctness and analyze the cost separately.

Correctness. By Lemma 4.1, it suffices to compute the volume of the pencil construction K′ to rel-
ative error ϵ/2with probability at least 0.7 to compute the volume of thewell-rounded convex body
K. This is computed as a telescoping sum ofm = O (

√
n logn/ϵ ) products of the formZ (ai+1)/Z (ai ).

The random variable Vi is an unbiased estimator for Z (ai+1)/Z (ai ), i.e., Eπi [Vi ] = Z (ai+1)/Z (ai ).
Consider applying Lemma 4.4 m times with sufficiently small δ , ϵ ′ ≤ ϵ/12m2 and ϵ1 = ϵ/3m.

of the initial state |πi−1〉 in Lemma 4.3, which reduces the total number of copies of the stationary states in the simulated
annealing framework to O (log(1/δ )). Nevertheless, this does not change the total query and time complexities of our
quantum algorithms, because the total number of calls to the quantum sampler remains the same.
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This will promise that ϵ1 + δ + ϵ ′ ≤ ϵ/2m. At each iteration i , we have a state |π̃i−1〉 such that
‖|π̃i−1〉 − |πi−1〉‖ ≤ O (ϵ/4m). Thus, each telescoping sum can be computed with a relative error of
ϵ/2m, resulting in a relative error of less than ϵ/2 for the final volume. The probability of success
for each iteration is at least 1− δ 4 = 1−Θ(ϵ4/4m8). Thus, the probability of success for the whole
algorithm is at least 1−Θ(ϵ4/4m7) = 1−Õ (ϵ11/n3.5), which is greater than 0.7 for a large enough n.

Cost. Ignoring the cost of obtaining the affine transformation to round the logconcave den-
sities to be sampled (assuming that all the relevant densities are well rounded), we have from
Lemma 4.4, the number of calls to the membership oracle in each iteration of Algorithm 3 is
Õ (n3/2 log(1/δ )/ϵ1 + n3/2 log(1/ϵ ′)) = Õ (n2/ϵ ). The total number of oracle calls is thus Õ (n2.5/ϵ ).
The argument for correctness above applies for well-rounded logconcave densities. This is ensured
by maintaining Θ̃(n) states that are used to round the densities in each iteration (Algorithm 4).
By Proposition 4.4, this procedure uses Õ (n2.5) calls to the membership oracle in each iteration,
resulting in a final query complexity of Õ (n3 + n2.5/ϵ ). Since the affine transformation is an
n-dimensional matrix-vector product, the number of additional arithmetic operations is hence
O (n2) · Õ (n3 + n2.5/ϵ ) = Õ (n5 + n4.5/ϵ ). �

4.3 Proofs of Lemmas in Section 4.2

We now prove the lemmas in Section 4.2 that establish Theorem 1.1.

4.3.1 From the Pencil Construction to the Original Convex Body. Here, we prove

Lemma 4.1. If we have access to 
Vol(K′) such that

1

1 + ϵ/2
Vol(K′) ≤
Vol(K′) ≤ (1 + ϵ/2) Vol(K′), (4.9)

with probability at least 0.7, then we can return a value �Vol(K) such that

1

1 + ϵ
Vol(K) ≤ �Vol(K) ≤ (1 + ϵ ) Vol(K) (4.10)

holds with probability at least 2/3, using Õ (n2.5/ϵ ) quantum queries to the membership oracle OK.

Proof. We follow the same notation in Section 4.1; i.e., without loss of generality, we assume
that r = 1 and denote D = R/r = R. Since R and r are both given, D is a known value. The pencil
construction is

K′ := ([0, 2D] × K) ∩
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2i ≤ x20

}
. (4.11)

By the definition of D, for any (x1, . . . ,xn ) ∈ K, we have
∑n

i=1 x
2
i ≤ D2, so [D, 2D] × K ⊆ K′.

This implies that D Vol(K) ≤ Vol(K′) ≤ 2D Vol(K). In other words, letting ξK := Vol(K′)
2D Vol(K) , we have

0.5 ≤ ξK ≤ 1.
Classically, we consider a Monte Carlo approach to approximating Vol(K): We take k (approxi-

mately) uniform samples x1, . . . ,xk from [0, 2D] × K, and if k ′ of them are in K′, then we return
k ′

k
·
Vol(K′). For each i ∈ [k], δ[xi ∈ K′] is a Bernoulli random variable with expectation ξK = Θ(1).

Any Bernoulli random variable has variance O (1). Therefore, by Chebyshev’s inequality, taking
k = O (1/ϵ2) suffices to ensure that

Pr
[����k ′k − ξK���� ≤ ϵξK

2

]
≥ 0.99. (4.12)

Quantumly, we adopt the same Monte Carlo approach, but we implement two steps using quan-
tum techniques:
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• We take an approximately uniform sample from K ′ = [0, 2D] × K via the quantum hit-
and-run walk. To obtain a quantum stationary state, we use a similar idea as in Reference
[24] to construct a sequence of m = �n log2 (2D)� convex bodies. Let K̂0 := Bn+12 (0, 1) and

K̂i := 2i/nBn+12 (0, 1) ∩ K′ for i ∈ [m]. As the length of the pencil is 2D, K̂m = K′. The state

|π0〉 corresponding to K̂0 is easy to prepare. It is straightforward to verify that 〈πi |πi+1〉 ≥ c

for some constant c , as Vol(K̂i+1) ≤ 2Vol(K̂i ). To utilize the quantum speedup for MCMC
framework (Theorem 2.1), it remains to lower bound the phase gap of the quantum walk
operator for K̂i . It can be shown that the mixing property of the hit-and-run walk in Theo-
rem 2.5 implies that the phase gap of the quantum walk operator is Ω̃(n−1.5); see the proof
of Lemma 4.8. Thus, by Theorem 2.1, |πm〉 can be prepared using Õ (n) · Õ (n1.5) = Õ (n2.5)
quantum queries to OK.
• We estimate ξK with multiplicative error ϵ/2 using the quantum Chebyshev inequality (The-
orem 2.3) instead of its classical counterpart. This means thatO (1/ϵ ) executions of quantum
sampling in the first step suffice.

Overall, Õ (n2.5/ϵ ) quantum queries to OK suffice to ensure that we obtain an estimate of ξK
withinmultiplicative error ϵ/2with success probability at least 0.99. Since (4.9) ensures that
Vol(K′)
estimates Vol(K′) up tomultiplicative error ϵ/2with probability at least 0.7,


Vol(K′)
2DξK

estimates Vol(K)
up to multiplicative error ϵ/2 + ϵ/2 = ϵ with success probability 0.99 · 0.7 > 2/3. �

4.3.2 Inner Product between Stationary States of Consecutive Steps. We now show that the inner
product between stationary states of consecutive steps is at least a constant. More precisely, we
have the following:

Lemma 4.2. Let |πi 〉 be the stationary distribution state of the quantumwalkWi for i ∈ [m] defined
in Equation (3.28). For n ≥ 2, we have 〈πi |πi+1〉 > 1/3 for i ∈ [m − 1].

Proof. Recall that the stationary distribution πi of step i has density proportional to e−aix0 as

discussed in Section 4.1. The corresponding stationary distribution state is |πi 〉 =
∫
K′
dx
√

e−ai x0
Z (ai )

|x〉.
Lovász and Vempala [53, Lemma 3.2] proved that an+1Z (a) is log-concave (noting that the dimen-
sion of K′ is n + 1). This implies that√

an+1i Z (ai )
√
an+1i+1 Z (ai+1) ≤

(ai + ai+1
2

)n+1
Z
(ai + ai+1

2

)
. (4.13)

Now, we have

〈πi |πi+1〉 =
∫
K′
dx

exp
(
−ai+ai+1

2 x0
)

√
Z (ai )

√
Z (ai+1)

(4.14)

≥
(
2
√
ai
√
ai+1

ai + ai+1

)n+1 ∫
K′
dx exp

(
−ai+ai+1

2 x0
)

Z
(
ai+ai+1

2

) (4.15)

=

(
2
√
ai
√
ai+1

ai + ai+1

)n+1
(4.16)

=

���
2
√
ai
√
ai (1 − 1√

n
)

ai + ai (1 − 1√
n
)

����
n+1

=

���
2
√
1 − 1√

n

2 − 1√
n

����
n+1

, (4.17)
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where the inequality follows from Equation (4.13). Whenn = 2 orn = 3, the above inequality holds.

When n ≥ 4, to lower bound the above quantity, we use the fact that
√
1 − 1/

√
n ≥ 1 − 1

2
√
n
− 1

2n .

Hence, for n ≥ 2, we have

〈πi |πi+1〉 ≥ 
��
2 − 1√

n
− 1

n

2 − 1√
n

���
n+1

=

��1 −

1
n

2 − 1√
n

���
n+1

≥ 
��1 −
1

(2 − 1√
2
)n

���
n+1

>
1

3

as claimed. �

4.3.3 Chebyshev Cooling and Nondestructive Mean Estimation. Now, we briefly review the clas-
sical framework for Chebyshev cooling and discuss how to adapt it to quantum algorithms. Sup-
pose we want to compute the expectation of a product

V =
m∏
i=1

Vi (4.18)

of independent random variables. The following theorem of Dyer and Frieze [23] upper bounds
the number of samples from Vi that suffices to estimate E[V ] with bounded relative error.

Proposition 4.1 ([23, Section 4.1]). Let V1, . . . ,Vm be independent random variables such that
E[V 2

i ]

E[Vi ]2
≤ B for all i ∈ [m]. Let X (1)

j , . . . ,X
(k )
j be k samples of Vj for j ∈ [m], and define X j =

1
k

∑k
�=1X

(�)
j . Let V =

∏m
j=1Vj and X =

∏m
j=1X j . Then, taking k = 16Bm/ϵ2 ensures that

Pr
[
(1 − ϵ )E[V ] ≤ X ≤ (1 + ϵ )E[V ]

]
≥ 3

4
. (4.19)

With standard techniques, the probability can be boosted to 1 − δ with a log(1/δ ) overhead.
In applications such as volume estimation [52] and estimating partition functions [69], the sam-

ples are produced by a randomwalk. Let the mixing time for each randomwalk be at mostT . Then
the total complexity for estimating E[V ] with success probability 1 − δ is Õ (TBm log(1/δ )/ϵ2).
Replacing the random walk with a quantum walk can potentially improve the mixing time; see
Section 1.3.2 for relevant literature. In particular, Montanaro [57] proposed a quantum algorithm
for the simulated annealing framework with complexity Õ (TBm log(1/δ )/ϵ ), which has a qua-
dratic improvement in precision. Note that the dependence on T was not improved, as multiple
copies of quantum states were prepared for the mean estimation (which uses measurements). In
this article, we use the quantum Chebyshev inequality (see Theorem 2.3) to estimate the expec-
tation of Vi in a nondestructive manner, which, together with Theorem 2.1, achieves complexity
Õ (
√
TBm log(1/δ )/ϵ ).

Recall that the random variables Vi (determined by the cooling schedule) satisfy Equation (4.8).
The following lemma uses this property of the simulated annealing procedure to show that the
quantumChebyshev inequality can be used to estimate themean ofVi on the distribution πi , which

gives an estimate of the ratio Z (ai+1 )
Z (ai )

in the volume estimation algorithm. We first show that our
random variables can be made to satisfy the conditions of Theorem 2.3, and then we outline how
the corresponding circuit can be implemented. A detailed error analysis is deferred to Section 4.3.4.
To make the mean estimation nondestructive, we use the following theorem, originally posited by
Harrow andWei [34, Theorem 6].We cite below a version proved byCornelissen andHamoudi [19],
which fixes some potential issues with the original presentation, arising from assumptions on the
output of amplitude estimation.
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Theorem 4.1 ([19, Proposition B.2]). Given state |ψ 〉 and reflections Rψ = 2|ψ 〉〈ψ | − I and

R = 2P − I , and any η > 0, there exists a quantum algorithm that outputs ã, an approximation to

a = 〈ψ |P |ψ 〉, so that

|ã − a | ≤
√
a(1 − a)
M

+
1

M2
, (4.20)

with probability at least 1 − η, andO (log(1/η)M ) uses of Rψ and R. Moreover, the algorithm restores

the stateψ with probability at least 1−η. Finally, if a ≤ 1/(4M2), then ã = 0 with probability at least
1 − η.

Lemma 4.3. Given Õ (log(1/δ )/ϵ ) copies of the quantum states |πi−1〉, there exists a quantum al-

gorithm that outputs an estimate of Eπi [Vi ] (in Equation (4.7)) with relative error less than ϵ with

probability at least 1 − O (δ ) using Õ (C log(1/δ )/ϵ ) oracle calls, where C oracle calls are required

to implement a sampler for |πi 〉. Moreover, this quantum algorithm is nondestructive, i.e., the initial

copies of quantum states |πi−1〉 are restored after the computation with probability at least 1 −O (δ ).

Proof. We apply the quantumChebyshev inequality (Theorem 2.3). For the random variablesVi ,

we let μi denote their mean and σ 2
i their variance. From Equation (4.8),

√
σ 2
i + μ2i /μi ≤

√
8 < 3. For

a small constant c , we use log(1/δ )/c2 copies of |πi−1〉 to create copies of |πi 〉 using π/3-amplitude
amplification. We now use a quantum circuit that given |x〉|0〉 computes |x〉|eaix0−ai−1x0〉, and then
apply a circuit Umedian that computes the median of all the ancilla registers:

Umedian |0〉|a1〉 · · · |as 〉 = |median{a1, . . . ,as }〉|a1〉 · · · |as 〉. (4.21)

By the classical Chebyshev inequality, we measure μ̂i such that |μ̂i − μi | ≤ cμi with probability at
least 1−δ . Thus, the probability that μ̂i/(1−c ) < μ is less than δ . TakingH = μ̂i/(1−c ), our variables
satisfy the conditions of the quantum Chebyshev inequality. To output an estimate of the mean
with relative error at most ϵ , the quantum Chebyshev inequality now requires Õ (log(1/δ )/ϵ ) calls
to a sampler for the state |πi 〉, which we construct using π/3-amplitude amplification on copies of
|πi−1〉. By the union bound, the probability of failure of the whole procedure is O (δ ).
To be more specific, we replaceU |0〉 in BasicEst (Algorithm 1) byUi−1,l |πi−1〉 (whereUi−1,l is the

circuit transforming the l th copy of |πi−1〉 to |πi 〉), and replace Q by −Ui−1,l (Πi−1−Π⊥i−1)U
†
i−1,l (Πi −

Π⊥i ) (where Πi = |πi 〉〈πi | and Π⊥i = I − Πi for all i ∈ [m]). The quantum circuit for nonde-
structive BasicEst is shown in Figure 4. Here, we run Θ(log(1/δ )) executions of amplitude estima-
tion (Figure 2) in parallel. Note that by Equation (2.10), each amplitude estimation returns a state
e iθp√

2
|θ̃p〉 − e−iθp√

2
| − θ̃p〉. We use an ancilla register and apply the unitary

Usin2 |θ〉|0〉 := |θ〉| sin2 θ〉, (4.22)

because sin2 (θ̃p ) = sin2 (−θ̃p ) = p̃, the ancilla register becomes |p̃〉, where p̃ estimates p well as
claimed in Theorem 2.2. We then take the median of such Θ(log(1/δ )) executions using Equation
(4.21), and finally run the inverse ofUsin2 gates and amplitude estimations. The correctness follows
from the proof of Theorem 2.3 in Reference [33].
To assure non-destructiveness, we replace every application of Quantum Amplitude Estimation

with Nondestructive Mean Estimation as in Theorem 4.1. The resulting guarantees on the error
are the same as with the original amplitude estimation algorithm. To ensure an overall success
probability of 1−O (δ ), it suffices to perform each instance of Nondestructive Amplitude Estimation
with success probability 1 − Õ (δ ). Note that since we estimate an unweighted mean, 2P − I with
P = H |0〉〈0|H can be implemented as HR0H , where R0 is a reflection around the |0〉 state. Finally,
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Fig. 4. The quantum circuit for nondestructive BasicEst.

we show in Corollary 4.1 that Rπi (the reflection around |πi 〉) can be implemented using the same
number of oracle calls and gates as that required to sample πi (up to polylogarithmic factors). �

A detailed error analysis is given in the next subsection (see Lemma 4.9).

4.3.4 Error Analysis. In this section, we analyze the error incurred by both the quantum Cheby-
shev inequality (Line 3) and π/3-amplitude amplification (Line 5) in Algorithm 3.

Lemma 4.4. For ϵ1 < 1, given Õ (log(1/δ )/ϵ1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉−|πi−1〉‖ ≤ ϵ1,
there exists a quantum procedure (using π/3-amplitude amplification and the quantum Chebyshev

inequality) that outputs a Ṽi such that |Ṽi − Eπi [Vi ]| ≤ ϵ1Eπi [Vi ] (where Eπi [Vi ] is defined in

Equation (4.7)) with success probability 1 − δ 4 using Õ (n3/2 log(1/δ )/ϵ1 + n3/2 log(1/ϵ ′)) calls to
the membership oracle and returns Õ (log(1/δ )/ϵ1) copies of final states |π̃i 〉 such that ‖|π̃i 〉− |πi 〉‖ =
O (ϵ1 + δ + ϵ

′).

We first show that π/3-amplitude amplification can be used to rotate |πi 〉 into |πi−1〉 with error
ϵ ′ using Õ (log(1/ϵ )) oracle calls. This procedure is used as a subroutine in a mean estimation
circuit that estimates the mean of the random variable Vi using multiple approximate copies of
|πi−1〉. We ensure that the measurement probabilities are highly peaked so that the state is not
disturbed very much. Finally, π/3-amplitude estimation is used again to rotate the approximate
copies of the state |πi−1〉 to approximate copies of the state |πi 〉.

Large effective spectral gap. Consider an ergodic, reversible Markov chain (Ω,p) with transition
matrix P and a unique stationary distributionwith density π . Leta(x ) be a probabilitymeasure over
Ω such that the Markov chain mixes to its stationary distribution with a corresponding probability
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density π (x ) within a total variation distance of ϵ within t steps. Furthermore, let a(x ) be a warm
start for π (x ) (see Definition 4.1). From the definition of the transition matrix P (x ,y) = 〈x |P |y〉 =
py→x .

The discriminant matrix D defined in Equation (3.11) is related to the transition matrix as P =
DπDD

−1
π , as shown in Equation (3.27). For a hit-and-run walk, the transition matrix P represents

a convolution with an L2 normalized function (corresponding to the square root of the density
px→y ). Bounded subsets of L2 (Ω) are, therefore, mapped by P to other bounded subsets, and hence
P is compact. Since D is connected to P by a similarity relation, D is a compact Hermitian operator
over L2 (Ω) and thus has a countable set of real eigenvalues λi and corresponding orthonormal
eigenvectors (eigenfunctions) vi ∈ L2 (Ω). Orthonormality implies that

∫
Ω
vi (x )vj (x ) dx = δi, j .

Notice that

PDπvi = DπD (vi ) = λjDπvi ; (4.23)

thus, fi = Dπvi is an eigenvector of P ′ with eigenvalue λi . The eigenvectors fi may not be orthog-
onal under the standard inner product on L2 (Ω). However, we can define an inner product

〈f ,д〉π := 〈D−1π f ,D−1π д〉 =
∫
Ω

f (x )д(x )

π (x )
dx (4.24)

over the space L2 (Ω). It is easy to see that 〈fi , fj 〉π = 〈vi ,vj 〉 = δi, j . A corresponding norm can be

defined as ‖ f ‖π =
√
〈f , f 〉π .

It can be verified that
√
π (x ) is an eigenfunction of D with eigenvalue 1. Thus, the stationary

state π (x ) is an eigenfunction of the transition operator P with eigenvalue 1. Since P is stochastic,
this is the leading eigenvalue. The eigenvalues of P are thus 1, λ1, λ2, . . . with corresponding eigen-
functions π (x ), f2 (x ), f3 (x ), . . . . From the orthonormality of the f under 〈·, ·〉π , for any function д
in L2 (Ω), we have

д =
∞∑
i=1

〈д, fi 〉π fi = 〈д,π 〉π +
∞∑
i=2

〈д, fi 〉π fi (4.25)

=

(∫
Ω

д(x )π (x )

π (x )
dx

)
π +

∞∑
i=2

〈д, fi 〉π fi (4.26)

=

(∫
Ω
д(x ) dx

)
π +

∞∑
i=2

〈д, fi 〉π fi . (4.27)

Since a is a probability density, a = π +
∑∞

i=2〈a, fi 〉π fi . After t steps of the Markov chain M on a,
we obtain the state P ta = π +

∑∞
i=2 λ

t
i 〈a, fi 〉π fi . Since the walk mixes to total variation distance ϵ ,

we have ‖P ta − π ‖1 ≤ ϵ . Furthermore, since a is a warm start,

‖P ta − π ‖π = ‖P t (a − π )‖π =
∫
Ω
P t (a(x ) − π (x )) · P

t (a(x ) − π (x ))
π (x )

dx (4.28)

≤
∫
Ω

���P t (a(x ) − π (x ))��� · �����P
t (a(x ) − π (x ))

π (x )

����� dx (4.29)

≤
∫
Ω

���P t (a(x ) − π (x ))��� ·O (1) dx (4.30)

≤ O (1) · ‖P t (a − π )‖1 (4.31)

= O (1) · ‖P ta − π ‖1 = O (ϵ ). (4.32)

Consequently, ‖∑∞i=2 λti 〈a, fi 〉π fi ‖π = O (ϵ ) and from the orthonormality of f , 〈a, fi 〉πλti = O (ϵ ).
If 1 > λi ≥ 1 − 1

Ω(t ) , then λti = Ω(1) and 〈a, fi 〉π = O (ϵ ).
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The above analysis indicates that if a probability density a (that is a warm start) mixes in t steps
under a Markov chain (Ω,p), then it has small overlap with each of the “bad” eigenfunctions (with
spectral gap less than 1

Ω(t ) ). Thus, P effectively has a large spectral gap when it acts on a.
Corresponding to a, consider the quantum states

|a〉 :=
∫
Ω

√
a(x ) |x〉 dx , |ϕa〉 :=

∫
Ω

∫
Ω

√
axpx→y |x〉|y〉 dx dy. (4.33)

For an eigenvector vi of D (with eigenvalue λi ), define the state |vi 〉 :=
∫
Ω
vi (x ) dx =

∫
Ω

fi (x )√
π (x )

dx .

Then the walk operatorW has the corresponding eigenvector |ui 〉 = (I − (λi − i
√
1 − λ2i )S )T |vi 〉

following the proof of Theorem 3.1. LetCi := λi−i
√
1 − λ2i ; then 〈ϕa |ui 〉 = 〈ϕa |T |vi 〉−Ci 〈ϕa |ST |ui 〉.

Furthermore,

〈ϕa |T |vi 〉 = 〈a |vi 〉 =
∫
Ω

√
a(x ) fi (x )√
π (x )

dx , (4.34)

and

〈ϕa |ST |vi 〉 =
(∫

Ω

√
axpx→y〈y |〈x |

) (∫
Ω

√
vx ′px ′→y′ |x ′〉|y ′〉

)
(4.35)

=

∫
Ω

√
ax

( ∫
Ω

√
px→ypy→xvi (y) dy

)
dx (4.36)

=

∫
Ω

√
ax (Dvi ) (x ) dx (4.37)

= λi

∫
Ω

√
axvi (x ) dx (4.38)

= λi 〈a |vi 〉. (4.39)

We have 〈ϕa |ui 〉 = (1 − λiCi )〈a |vi 〉 and, therefore,

|〈ϕa |ui 〉| = (1 − λiCi )〈a |vi 〉 =
√
(1 − λ2i )2 + (1 − λi )2〈a |vi 〉 ≤ 2|〈a |vi 〉|. (4.40)

In addition,

〈a |vi 〉 =
∫
Ω

√
a(x ) fi (x )√
π (x )

dx =

∫
Ω

√
π (x )

a(x )

a(x ) fi (x )

π (x )
dx . (4.41)

The above discussion establishes the following proposition indicating that if a distribution with
density a(x ) mixes fast and the stationary distribution with density π (x ) has a bounded L2-norm
with respect to a(x ), then the quantum walk operatorW acting on the subspace spanned by |π 〉
and |a〉 has a large effective spectral gap.

Proposition 4.2. LetM = (Ω,p) be an ergodic reversible Markov chain with a transition operator

P and unique stationary state with a corresponding density π ∈ L2 (Ω). Let {(λi , fi )} be the set of
eigenvalues and eigenfunctions of P , and let |ui 〉 be the eigenvectors of the corresponding quantum

walk operatorW . Let a ∈ L2 (Ω) be a probability density that is a warm start for π and mixes up

to total variation distance ϵ in t steps of M . Furthermore, assume that
∫
Ω

π (x )
a (x ) π (x )dx ≤ c for some
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constant c . Define

|a〉 =
∫
Ω

√
a(x ) |x〉 dx , (4.42)

|ϕa〉 =
∫
Ω

√
a(x )

∫
Ω

√
px→y |x〉|y〉 dx dy. (4.43)

Then 〈ϕa |ui 〉 = O (ϵ1/2) for all i such that 1 > λi ≥ 1 − 1
Ω(t ) .

Proof. Define S = {x | π (x )
a (x ) ≥

√
c
ϵ
}. Because

∫
Ω

π (x )2

a (x )2
a(x )dx =

∫
Ω

π (x )
a (x ) π (x )dx ≤ c , Markov’s

inequality implies that
∫
S
a(x )dx ≤ ϵ .

We now define the quantum state |a′〉 such that 〈x |a′〉 = 〈x |a〉 if x � S and 〈a |x ′〉 = 0 otherwise,
and |ϕa′ 〉 = T |a′〉. Then,

‖|ϕa〉 − |ϕa′ 〉‖ =
����
∫
S

√
a(x )T |x〉 dx

���� =
√∫

Ω
a(x ) dx =

√
ϵ . (4.44)

From Equations (4.40) and (4.41), if 1 > λi ≥ 1 − 1
O (t ) , then

|〈ϕa′ |ui 〉| ≤
����2
∫
Ω

√
π (x )

a(x )

a(x ) fi (x )

π (x )
dx

���� ≤ 2c1/4〈a, fi 〉π
ϵ1/4

≤ 2c1/4ϵ3/4. (4.45)

Finally,

〈ϕa |ui 〉 = 〈ϕa′ |ui 〉 + 〈ϕa − ϕa′ |ui 〉 ≤ 2c1/4ϵ3/4 +
√
ϵ = O (

√
ϵ ) (4.46)

if 1 > λi ≥ 1 − 1
Ω(t ) . Hence, the result follows. �

Warmness of πi+1 with respect to πi . We show that density πi mixes to πi+1 under the walkWi+1

and vice versa. To apply Theorem 2.5, we show that the two distributions are warm with respect
to each other.
The L2-norm of a distribution with density π1 ∈ L2 (Ω) with respect to another with density

π2 ∈ L2 (Ω) is defined as

‖π1/π2‖ = EX∼π1
[
π1 (X )

π2 (X )

]
=

∫
Ω

π1 (x )

π2 (x )
π1 (x ) dx . (4.47)

Definition 4.1 (Warm Start). A density π1 ∈ L2 (Ω) is said to be a warm start for π2 ∈ L2 (Ω) if
the L2-norm ‖π1/π2‖ is bounded by a constant.

We have the following results on the L2-norms of πi+1 and πi :

Lemma 4.5 ([53, Lemma 4.4]). The L2-norm of the probability distribution with density πi =
e−ai x0
Z (ai )

with respect to that with density πi+1 =
e−ai+1x0
Z (ai+1 )

is at most 8.

Lemma 4.6. The L2-norm of the probability distribution with density πi+1 =
e−ai+1x0
Z (ai+1 )

with respect

to that with density πi =
e−ai x0
Z (ai )

is at most e .

Proof. Since anZ (a) is a log-concave function [53, Lemma 3.2], we have

EX∼πi+1

[
πi+1 (X )

πi (X )

]
=

∫
K′
e (ai−ai+1 )x0e−ai+1x0dx

∫
K′
e−aix0dx∫

K′
e−ai+1x0dx

∫
K′
e−ai+1x0dx
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=
Z (2ai+1 − ai )Z (ai )

Z (ai+1)2
(definition of Z ) (4.48)

≤
(

a2i+1
ai (2ai+1 − ai )

)n
(logconcavity of anZ (a)) (4.49)

≤

���
(
1 − 1√

n

)2
1 − 2√

n

����
n

(definition of ai ) (4.50)

≤
(
1 +

2

n

)n
< e2, (4.51)

where Equation (4.51) holds, because 1 + 1
n
− 2√

n
≤ (1 + 2

n
) (1 − 2√

n
) as long as n ≥ 16. �

Error analysis of π/3-amplitude amplification. Consider a simulated annealing procedure that
follows a sequence of Markov chains M1,M2, . . . with stationary states μ1, μ2, . . . . Consider an
alternative walk operator of the form

W ′
i = U

†
i SUiRAU

†
i SUiRA , (4.52)

where RA denotes the reflection about the subspace A := span{|x〉|0〉 : x ∈ K} and S is the

swap operator. We have Ui |x〉|0〉 =
∫
y∈K

√
p (i )x→y |x〉|y〉 dy where p (i ) is the transition probability

corresponding to the ith chain.
TheW ′

i operator is related to the walk operatorWi = S (2Πi − I ) via conjugation by Ui , i.e.,

Wi = UiW
′
i U
†
i . Thus,W

′
i has the same eigenvalues asWi , and if |uj 〉 is an eigenvector ofWi with

eigenvalue λj , then |v〉 = U †i |uj 〉 is an eigenvector ofW ′
i with the same eigenvalue λj . For any clas-

sical distribution f , we define | f 〉 =
∫
Ω

√
f (x ) |x〉 dx and |ϕ (i )

f
〉 =
∫
Ω

√
f (x ) |x〉

∫
Ω

√
p (i )x→y |y〉 dy dx .

Since |ϕ (i )
πi 〉 is a stationary state ofWi with eigenvalue 1, it follows that |πi 〉|0〉 is an eigenvalue of

Wi with eigenvalue 1.
In each stage of the volume estimation algorithm, we sample from a state with density πi (x ) =

e−ai x0
Z (ai )

. Each such distribution is the stationary state of a hit-and-run walk with the corresponding
target density. Thus, the corresponding state |πi 〉 is the stationary state of the corresponding walk
operatorsWi andW ′

i . BothWi andWi′ can be implemented using a constant number ofUi gates.
From Lemma 4.2, we know that the inner product 〈πi |πi+1〉 between the states at any stage of

the algorithm is at least 1
3 . This implies that the inner product between |πi 〉|0〉 and |πi+1〉|0〉 is also

at least 1
3 . In the following, we abuse notation by sometimes writing only |πi 〉 to denote |πi 〉|0〉, as

it is easy to tell from context whether the ancilla register should be present.
Lemma 2.1 in Section 2.2 indicates that π/3-amplitude amplification can be used to rotate the

state |πi 〉 to |πi+1〉 if we can implement the rotation unitaries

Ri = ω |πi 〉〈πi | + (I − |πi 〉〈πi |) and Ri+1 = ω |π1+1〉〈πi+1 | + (I − |πi+1〉〈πi+1 |) .

To implement these rotations, we use the fact that πi and πi+1 are the eigenvectors of the operators
W ′

i andW ′
i+1 with eigenvalue 1, respectively. We show the following lemmas, which are adapted

variants of Lemma 2 and Corollary 2 in Reference [74]:

Lemma 4.7. LetW be a unitary operator with a unique leading eigenvector |ψ0〉 with eigenvalue 1.
Denote the remaining eigenvectors by |ψj 〉 with corresponding eigenvalues e2πiξ j . For any Δ ∈ (0, 1]
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Fig. 5. The quantum phase estimation circuit. HereW is a unitary operator with eigenvector |ψj 〉; in π/3-
amplitude estimation it is the quantum walk operatorW ′i in Equation (4.52).

and ϵ2 < 1/2, define a := log(1/Δ) and c := log
(
1/
√
ϵ2
)
. There exists a quantum circuit V that uses

ac ancilla qubits and invokes the controlled-W gate 2ac times such that

V |ψ0〉|0〉⊗ac = |ψ0〉|0〉⊗ac (4.53)

and

V |ψj 〉|0〉⊗ac =
√
1 − ϵ2 (j ) |ψj 〉|χj 〉 +

√
ϵ2 (j ) |ψj 〉|0〉⊗ac , (4.54)

where |χj 〉 is orthogonal to |0〉⊗ac for all |ψj 〉 such that ξ j ≥ Δ, and ϵ2 (j ) ≤ ϵ2 for all j.

Proof. Consider a quantum phase estimation circuit U with a ancilla qubits that invokes the
controlled-W gate 2a times (see Figure 5). The phase estimation circuit first creates an equal super-
position over a ancilla qubits using Hadamard gates. For k = 0, . . . ,a−1, we apply a controlled-W k

operator to the input register, controlled by the (a − k )th register. Finally, the inverse quantum
Fourier transform is applied on the ancilla registers. Then,

U |ψj 〉|0〉⊗a = |ψj 〉 ⊗ QFT† 
� 1
√
2a

2a−1∑
m=0

e2πimξ j |m〉�� (4.55)

= |ψj 〉 ⊗
1

2a

2a−1∑
m,m′=0

e2πim(ξ j−m
′/2a ) |m′〉. (4.56)

The amplitude corresponding to |0〉 on the ancilla registers is

aj,0 :=
1

2a

2a−1∑
m=0

e2πimξ j =
1 − e2πi2a ξ j
2a (1 − e2πiξ j )

(4.57)

for j � 0, and a0,0 = 1. If j � 0, then

|aj,0 | =
���� 1 − e2πi2a ξ j
2a (1 − e2πiξ j )

���� ≤ ���� 1

2a−1 (1 − e2πiξ j )
���� ≤ 1

2a+1 |ξ j |
. (4.58)

Thus, |aj,0 | ≤ 1
2 if ξ j ≥ Δ. Using c copies of the circuit (resulting in ac ancilla registers and 2ac

controlled-W gates), the amplitude for 0 in all the ancilla registers if ξ j ≥ Δ is at most 1
2c =

√
ϵ . �

Corollary 4.1. LetW be a unitary operator with a unique leading eigenvector |ψ0〉 with eigen-

value 1. Denote the remaining eigenvectors by |ψj 〉 with corresponding eigenvalues e2πiξ j . For any

Δ ∈ (0, 1] and ϵ2 < 1/2, define a := log(1/Δ) and c := log
(
1/
√
ϵ2
)
. For any constant α ∈ C, there
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exists a quantum circuit R̃ that uses ac ancilla qubits and invokes the controlled-W gate 2a+1c times

such that

R̃ |ψ0〉|0〉⊗ac = (R |ψ0〉) |0〉⊗ac (4.59)

(where R = α |ψ0〉〈ψ0 | − (I − |ψ0〉〈ψ0 |)) and

‖R̃ |ψj 〉|0〉⊗ac − (R |ψj 〉) |0〉⊗ac ‖ ≤
√
ϵ2 (4.60)

for j � 0 such that ξ j ≥ Δ.

Proof. Let R̃ := V † (I ⊗Q )V whereV is the quantum circuit in Lemma 4.7 andQ := α |0〉〈0| ⊗ac +
(I − |0〉〈0| ⊗ac ). Then, we have

R̃ |ψ0〉|0〉⊗ac = V † (I ⊗ Q ) |ψ0〉|0〉⊗ac = α |ψ0〉|0〉⊗ac = R |ψ0〉|0〉⊗ac . (4.61)

For j � 0 such that ξ j ≥ Δ,

R̃ |ψj 〉|0〉⊗ac = V † (I ⊗ Q ) (
√
1 − ϵ2 |ψj 〉|χj 〉 +

√
ϵ2 |ψj 〉|0〉⊗ac ) (4.62)

= V † (
√
1 − ϵ2 |ψj 〉|χj 〉 +

√
ϵ2α |ψj 〉|0〉⊗ac ) (4.63)

= V † ( |ψj 〉 ⊗ (
√
1 − ϵ2 |χj 〉 +

√
ϵ2 |0〉⊗ac ) +

√
ϵ2 (α − 1) |ψj 〉|0〉⊗ac ) (4.64)

= |ψj 〉|0j 〉 +V †
√
ϵ2 (α − 1) |ψj 〉|0〉⊗ac . (4.65)

Thus, ‖R̃ |ψj 〉|0〉⊗ac − (R |ψj 〉) |0〉⊗ac ‖ ≤ ‖V †
√
ϵ2 (α − 1) |ψj 〉|0〉⊗ac ‖ ≤

√
ϵ2. �

Finally, we prove the following lemma for analyzing the error incurred by π/3-amplitude am-
plification in our quantum volume estimation algorithm:

Lemma 4.8. Starting from |πi 〉, we can obtain a state |π̃i+1〉 such that ‖|πi+1〉 − |π̃i+1〉‖ ≤ ϵ using

Õ (n3/2 log(1/ϵ )) calls to the controlled walk operatorsW ′
i ,W

′
i+1. This results in Õ (n3/2 log(1/ϵ )) calls

to the membership oracle OK.

Proof. From Theorem 2.5, Lemma 4.5, and Lemma 4.6, we find that

• πi (x ) mixes up to total variation distance ϵ1 inO (n3 log5 n
ϵ1
) steps of the Markov chainMi+1,

and
• πi+1 (x ) mixes up to total variation distance ϵ1 inO (n3 log5 n

ϵ1
) steps of the Markov chainMi .

From Proposition 4.2, we find the following:

• |πi 〉 = |π ′i 〉 + |e1〉 where |π ′i 〉 lies in the space of eigenvectors |v (i+1)
j 〉 of W ′

i+1 such that

λ(i+1)j = 1 or λ(i+1)j ≤ 1 − 1
O (n3 log5 (n/ϵ1 ))

, and ‖|e1〉‖ ≤ ϵ1; and

• |πi+1〉 = |π ′i+1〉 + |e2〉 where |π ′i+1〉 lies in the space of eigenvectors |v (i )
j 〉 ofW ′

i such that

λ(i )j = 1 or λ(i )j ≤ 1 − 1
O (n3 log5 (n/ϵ1 ))

, and ‖|e2〉‖ ≤ ϵ1.

Note that |πi 〉 and |πi+1〉 are simply the leading eigenvectors ofWi andWi+1, respectively. Thus,
both |πi 〉 and |πi+1〉 lie ϵ1 close to the “good” subspaces corresponding toW ′

i (respectively,W ′
i+1),

which are spanned by eigenvectors |v (i )
j 〉 (respectively, |v

(i+1)
j 〉) with eigenvalues e2πiξ

(i )
j (respec-

tively, e2πiξ
(i+1)
j ) such that ξ (i )j = 0 or ξ (i )j ≥

1
O (n3/2 log5/2 (n/ϵ1 ))

. Each state that occurs during π/3-

amplitude amplification to rotate |πi 〉 to |πi+1〉 or vice versa is a linear combination of |πi 〉 and
|πi+1〉 and is thus also close to the good subspaces ofW ′

i andW ′
i+1.
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Applying Corollary 4.1 with Δ = 1
n3/2 ln5/2 (n/ϵ1 )

and ϵ2 = ϵ21 , we can implement a quantum opera-

tors R̃i , R̃i+1 such that ‖Ri − R̃i ‖ ≤ 2ϵ1 and ‖Ri+1− R̃i+1‖ ≤ 2ϵ1, usingO (n3/2 log5/2 (n/ϵ1) log(1/ϵ1))
calls to the controlled-W ′

i and controlled-W ′
i+1 operators, respectively.

The above shows how to approximately implement Ri and Ri+1. If these operators could be
implemented perfectly, then Lemma 2.1 and Lemma 4.2 show that we can prepare a state |π̃i+i 〉
such that 〈πi+1 |π̃i+1〉 ≤ 1−(2/3)3m by applyingm recursive levels of π/3-amplitude amplification to
|πi 〉, using 3m calls toRi ,R

†
i ,Ri+1,R

†
i+1. Since ‖πi+1−π̃i+1‖ =

√
2(1 − 〈πi+1 |π̃i+1〉), afterO (log(1/ϵ2))

calls to the rotation gates, we obtain a final state with error ϵ2. However, each rotation gate can
cause an error of ϵ1 by itself. By makingO (n3/2 log5/2 (n/ϵ1) log(1/ϵ1) log(1/ϵ2)) calls to controlled-
W ′

i and controlled-W
′
i+1 operators, we obtain a final error ofO (ϵ1 log(1/ϵ2)+ϵ2). Choosing ϵ2 = ϵ/2

and ϵ1 = ϵ/(2 ln(2/ϵ )) gives the result. �

Error analysis for the quantumChebyshev inequality. Wealso analyze the error from the quantum
Chebyshev inequality (Theorem 2.3), giving a robust version of Lemma 4.3.

Lemma 4.9. Suppose we have Õ (log(1/δ )/ϵ ) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤
ϵ . Then the quantum Chebyshev inequality can be used to output Ṽi such that |Ṽi − Eπi [Vi ]| ≤
O (ϵ )Eπi [Vi ] with success probability 1 − δ 4 using Õ (n3/2 log(1/δ )/ϵ ) calls to the membership oracle.

The output state |π̂i−1〉 satisfies ‖|π̂i−1〉 − |πi−1〉‖ = O (ϵ + δ ).

Proof. The error-free version of this lemma was proven in Lemma 4.3. Here, we focus on the
error analysis. The quantum Chebyshev inequality uses an implementation of US0U

†Si where U
is a unitary operator satisfying U |πi−1〉 = |πi 〉. From Lemma 4.8, using log(1/ϵ2) iterations of
π/3-amplitude amplification (Ulog 1/ϵ2 in Equation (2.5)) instead of U induces an error of ϵ2 and
uses O (n3/2 log(1/ϵ2)) oracle calls. Using approximate phase estimation as in Corollary 4.1 and
Lemma 4.8, Πi−1 and Πi can be implemented up to error ϵ3 using O (n3/2 log(1/ϵ3)) oracle calls.
Thus, each block corresponding to Theorem 2.2 induces an error of O (ϵ2 + ϵ3), and the final state
before the median is measured has an error of O (ϵ + ϵ2 + ϵ3). Therefore, using O (log(1/δ1)/ϵ )
copies of |π̃i−1〉 returns a sample Ṽi such that |Ṽi − Eπi [Vi ]| ≤ O (ϵ2 + ϵ3 + ϵ )Eπi [Vi ] with success
probability 1 − δ1. Performing a measurement with success probability 1 − δ1 implies that the
posterior state has an overlap

√
1 − δ1 with the initial state. This induces an error of magnitude at

most
√
2(1 −

√
1 − δ1) = O (δ 1/41 ).

The measurement on the log(1/δ )/c copies of |π̃i−1〉 used to estimate μ̂ has relative error at most
c with probability 1−δ . This causes an errorO (δ 1/41 ) in addition to the error ϵ2 from π/3-amplitude
amplification.
Finally, note that the basic amplitude estimation circuit (analyzed in Theorem 2.2) is a subroutine

of the quantum Chebyshev inequality (Theorem 2.3), and uncomputing the block corresponding
to Theorem 2.2 induces an error ofO (ϵ2 + ϵ3), giving an overall error ofO (ϵ2 + ϵ3 + ϵ + δ 1/4). The
result follows by taking ϵ2 = ϵ3 = ϵ and δ1 = δ 4. �

We finally prove Lemma 4.4 here.

Proof. Lemma 4.9 is used to estimate the mean with ϵ = ϵ1 and leaves a posterior state |π̂i−1〉
such that ‖|π̂i−1〉− |πi−1〉‖ = O (ϵ1+ δ ). We can then use π/3-amplitude amplification to rotate this
state into |π̃i 〉, adding error O (ϵ ′) at the cost of O (n3/2 log(1/ϵ ′)). This completes the proof. �

4.4 Quantum Algorithms for Rounding Logconcave Densities

We first define roundedness of logconcave density functions as follows:

Definition 4.2. A logconcave density function f is said to be c-rounded if
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(1) The level set of f of probability 1/8 contains a ball of radius r ;

(2) Ef
(
|x − zf |

)
≤ R2, where zf is the centroid of f , i.e., zf := Ef (x );

and R/r ≤ c
√
n.

In the previous section, we assumed that the distributions πi sampled during the hit-and-run
walk are O (1)-rounded (i.e., well-rounded). From Theorem 2.5, this implies that the hit-and-run
walk for the distribution πi mixes from a warm start in time Õ (n3). In this subsection, we show
how the distributions πi can be transformed to satisfy this condition.

Following the classical discussion in Reference [51], we actually show a stronger condition: the
distributions are transformed to be in “near-isotropic” position. A density function f is said to be
in isotropic position if

Ef [x] = 0 and Ef [xx
T ] = I . (4.66)

The latter equation is equivalent to
∫
Rn

(uTx )2 f (x ) dx = |u |2 for every vector u ∈ Rn . We say that
K is near-isotropic up to a factor of c if

1

c
≤
∫
Rn

(uT (x − zf ))2 f (x ) dx ≤ c (4.67)

for every unit vector u ∈ Rn .
The following lemma shows that logconcave density functions in isotropic position are also

O (1)-rounded:

Lemma 4.10 ([54, Lemma 5.13]). Every isotropic logconcave density is (1/e )-rounded.

The following lemma shows that any logconcave density function can be put into isotropic po-
sition by applying an affine transformation, generalizing the same result for uniform distributions
by Rudelson [64]:

Lemma 4.11 ([51, Lemma 2.2]). Let f be a logconcave function in Rn such that there is no linear

subspace S ⊆ Rn such that
∫
S f (x ) dx > 1/2, and let X 1, . . . ,Xk be independent random points

from the corresponding distribution. There is a constant C0 such that if k > C0t
3 lnn, then the trans-

formation д(x ) = T −1/2x , where

X̄ =
1

k

k∑
i=1

X i , T =
1

k

k∑
i=1

(X i − X̄ ) (X i − X̄ )T (4.68)

puts f in 2-isotropic position with probability at least 1 − 1/2t .
From Lemma 4.11, k = �C0n ln

5 n� = Θ̃(n) samples from a logconcave density f suffice to put
it into near-isotropic position. However, efficiently obtaining samples from a density πi requires
it to be well-rounded to start with. To overcome this difficulty, we interlace the rounding with the
stages of the volume estimation algorithm where in each stage, we obtain an affine transformation
that puts the density to be sampled in the next stage into isotropic position. The density π0 is very
close to an exponential distribution (since it is concentrated inside the convex body) and can hence
be sampled without resorting to a random walk.
To show that samples from πi can be used to transform πi+1 into isotropic position, we use the

following lemma:

Lemma 4.12 ([37, Lemma 4.3]). Let f and д be logconcave densities over K with centroids zf and

zд , respectively. Then for any u ∈ Rn ,

Ef [(u · (x − zf ))2] ≤ 16Ef

[
f

д

]
Eд[(u · (x − zд ))2]. (4.69)
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We now have the following proposition:

Proposition 4.3. If affine transformation Si puts πi in near-isotropic position, then it also puts

πi+1 in near-isotropic position.

Proof. Let Si put πi in 2-isotropic position. Applying Lemma 4.12 with f = πi+1,д = πi , we
have that for any unit vector u ∈ Rn ,

Eπi+1 [(u · (x − zπi+1 ))2] ≤ 16Eπi+1

[
πi+1
πi

]
Eπi [(u · (x − zπi ))2] ≤ 32e2, (4.70)

since Eπi+1 [
πi+1
πi

] ≤ e2 from Lemma 4.6. Again applying Lemma 4.12

1

2
≤ Eπi [(u · (x − zπi ))2] ≤ Eπi

[
πi
πi+1

]
Eπi+1 [(u · (x − zπi+1 ))2] (4.71)

Eπi [
πi
πi+1

] ≤ 8 from Lemma 4.5. Therefore,

1

2
≤ 128e2Eπi+1 [(u · (x − zπi+1 ))2]. (4.72)

Thus, Eπi+1 is also put in near-isotropic position. �

We finally have the main result of this section:

Proposition 4.4. At each stage i of Algorithm 4, the affine transformation puts the distribution

πi+1 in near-isotropic position using an additional Õ (n2.5) quantum queries to OK .

Proof. Since π0 is nearly an exponential distribution, it can be sampled without using a random
walk and thus the proposition is true for i = 0. Assume that the proposition is true for 1, 2, . . . ,k .
Then an affine transformation can be found to put πk in near-isotropic position. Thus, a classical
hit-and-run walk starting from πk−1 converges to πk in Õ (n3) steps. By the analysis in Section 4.3.4,
a quantum sample |πk−1〉 can be rotated to |πk 〉 using Õ (n1.5) quantum queries. Õ (n) such samples
suffice to compute the covariance matrix T in Equation (4.68), which puts πk in 2-isotropic
position. By Proposition 4.3, this also puts πk+1 in near-isotropic position. This concludes the
proof. �

Rounding the convex body as a preprocessing step. Consider applying only the rounding part of
Algorithm 4. By Proposition 4.4, the final affine transformation puts the density πm ∝ e−amx0 in
near-isotropic position. Since am ≤ ϵ2/n, we have

(1 − ϵ2)EK′[|X − X̄ |]2 ≤
∫
K′

e−amx0 |x − x̄ |2
Z (am )

dx ≤ 2n; (4.73)

thus, EK′[|X − X̄ |]2 ≤ 2n/(1 − ϵ2). From Reference [51, Lemma 3.3], all but an ϵ-fraction of the
body is contained inside a ball of radiusO (

√
n). Combined with our assumption that B2 (0, 1) ⊆ K′,

this shows that Sm+1 puts the convex body K′ in well-rounded position.

5 IMPLEMENTATION OF THE QUANTUM HIT-AND-RUN WALK

Due to the precision of representing real numbers, the implementation of volume estimation algo-
rithms in practice requires to walk in a discrete domain that is a subset ofRn . It is known that walks
only taking local steps within a short distance (such as the grid walk and the ball walk) can be dis-
cretized with good approximation by dividing Rn into small hypercubes and walking on their cen-
ters (see, e.g., Reference [28]), but such error analysis does not automatically apply to hit-and-run
walks for which we did not find existing classical discretizations. We emphasize the discretization
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ALGORITHM 4: Volume estimation of convex K with interlaced rounding.

Input: Membership oracle OK for K.
Output: ϵ-multiplicative approximation of Vol(K).

1 Setm = Θ(
√
n log(n/ϵ )) to be the number of iterations of simulated annealing and ai = 2n(1 − 1√

n
)i for

i ∈ [m]. Let πi be the probability distribution over K′ with density proportional to e−aix0 ;
Set error parameters δ , ϵ ′ = Θ(ϵ/m2), ϵ1 = ϵ/2m; let k = Θ̃(

√
n/ϵ ) be the number of copies of stationary

states for applying the quantum Chebyshev inequality; let l = Θ̃(n) be the number of copies of
stationary states needed to obtain the affine transformation Si ; Prepare k + l (approximate) copies of

|π0〉, denoted |π̃ (1)
0 〉, . . . , |π̃

(k+l )
0 〉;

for i ∈ [m] do
2 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with parameters ϵ1,δ to

estimate the expectation Eπi [Vi ] (in Equation (4.7)) as Ṽi (Lemma 4.9 and Figure 4). The

post-measurement states are denoted |π̂ (1)
i−1〉, . . . , |π̂

(k )
i−1〉;

3 Use the l copies of the state |πi−1〉 to nondestructively8 obtain the affine transformation

Si = T =
1
l

∑l
q=1 (X

q − X̄ ) (Xq − X̄ )T where the Xq are samples from the density πi−1 and

X̄ = 1
l

∑l
q=1 X

q . The post-measurement states are denoted |π̂ (k+1)
i−1 〉, . . . , |π̂

(k+l )
i−1 〉;

4 Apply π/3-amplitude amplification with error ϵ ′ (Section 2.2 and Lemma 4.8) and affine

transformation Si to map |Si π̂ (1)
i−1〉, . . . , |Si π̂

(k+l )
i−1 〉 to |Si π̃

(1)
i 〉, . . . , |Si π̃

(k+l )
i 〉, using the quantum

hit-and-run walk;

5 Invert Si to get k + l (approximate) copies of the stationary distribution |πi 〉 for use in the next

iteration;

6 Compute an estimate 
Vol(K′) = n!vn (2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where vn is the volume of

the n-dimensional unit ball;

7 Use 
Vol(K′) to estimate the volume of K as �Vol(K) (Section 4.3.1).

in contrast to most classical treatments for two reasons: (1) Quantum algorithms are typically pre-
sented in a circuit model, in contrast to the RAM model used by classical algorithms. Continuous
variables in the circuit model correspond to registers of infinite size, preventing a clear analysis of
the resources of the algorithm in terms of gate count. Specifically, to obtain the performance of the
algorithm in reality, wemust show that poly(log(1/ϵ )) bit registers suffice. (2) Standardmethods of
preparing walk operators corresponding to classical Markov Chains (see, for example, Reference
[70]) rely on the sparsity of the transition matrix. In the case of geometric random walks sparsity
is not well-defined in the continuous case and may not hold even for discretizations (for example,
the hit-and-run walk has a non-zero transition density to any point in the convex body.) The effi-
cient preparation of quantum states corresponding to classical distributions is not always a trivial
operation, and there has been research [35] about preparing common distributions for quantum
Monte Carlo methods. Most existing general procedures come without provable guarantees on the
resources required for sufficiently accurate samples; we provide here a simple analysis for the cost
of implementing the hit-and-run walk via the Grover-Rudolph method [30].

In this section, we introduce a discretized quantum hit-and-run walk and give an explicit analy-
sis of its implementation. The basic idea of the discretization is to represent the coordinates with

8Similar to Lemma 4.3, we do not directly measure the states; instead, we use a quantum circuit to (classically) compute the
affine transformation Si and apply it to the convex body coherently for the next iteration. Note that the quantum register
holding the affine transformation will be in some superposition, but by using O (logn) copies and taking the mean (as in
Lemma 4.3), the amplitude of the correct affine transformation will be arbitrarily close to 1.
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rational numbers. We approximate K by a set of discretized points in K and define a Markov chain
on these points (see Section 5.1). We use a two-level discretization: the hit-and-run process is
performed with a coarser discretization and then a point in a finer discretization of the coarse
grid is chosen uniformly at random as the actual point to jump to. This ensures that the starting
and ending points (in the coarser discretization) of one jump are far from the boundary so that
a small perturbation does not change the length of the chord induced by the two points signifi-
cantly. Then in Section 5.2, the discrete conductance can be bounded by bounding the distance
between the discrete and continuous transition probabilities as well as the distance between the
discrete and continuous subset measures. In Section 5.3, we prove that the quantum gate complex-
ity of implementing the discretized quantum hit-and-run walk is Õ (n), the same overhead as for
implementing classical hit-and-run walks.

5.1 Discretization of the Hit-and-run Walk

For a convex body K ⊆ Rn , we let Kϵ denote the set of vectors in K whose coordinates can be
represented by some fixed-point representation using log(1/ϵ ) bits. (Note that this ϵ is different
from the multiplicative error in the problem definition. However, this ϵ is not the dominating error
and the overhead is only logarithmic.) We call Kϵ an ϵ-discretization of K. The finite set Kϵ provides
an ϵ-net for K. We also define (Rn )ϵ as a ϵ-discretization of Rn .
We consider a Markov chain whose states are the points in Kϵ . For any v ∈ Rn , we define the ϵ-

box bϵ (v ) := {x ∈ Rn : x (i ) ∈ [v (i )−ϵ/2,v (i )+ϵ/2], ∀i ∈ [n]}. Let Kϵ be the continuous set formed
by the ϵ-boxes of the points in Kϵ , i.e., Kϵ =

⋃
x ∈Kϵ bϵ (x ). For two distinct points u,v ∈ Rn , we de-

note by �uv the line through them. For a line � ⊆ Rn , let �(Kϵ ) be the segment of � contained in Kϵ ,
i.e., �(Kϵ ) = {x ∈ � : x ∈ Kϵ }. In addition, foru ∈ �, we define �(Kϵ ,u, ϵ

′) as the ϵ ′-discretization of
�(Kϵ ) starting from u, i.e., �(Kϵ ,u, ϵ

′) = {x ∈ �(Kϵ ) : |x − u | = kϵ ′ for some k ∈ {0, 1, . . .}}. Anal-
ogous to the distribution πf for the continuous-space case, we define its corresponding discrete
distribution π̂f with π̂f (S) =

∑
x ∈S f (x )/

∑
x ∈(Rn )ϵ f (x ).

To implement the hit-and-run walk (see Section 2.4), we sample a uniformly random direction
from a point u. We achieve this by sampling n coordinates according to the standard normal distri-
bution from the corresponding coordinate of u and normalizing the new point to have unit length;
the uniformity of such sampling is well known; see, for example, References [56, 58]. (A one-line
proof is that this distribution is invariant under orthogonal transformations, but the uniform dis-
tribution on the n-dimensional unit sphere Bn is the unique distribution that satisfies this property.
Although the Gaussian distributions we sample from are discretized, the invariance under orthogo-
nal transformations holds approximately, so we have approximate uniformity.) Let this normalized
point be v , so that the sampled direction is �uv . Note that the coordinate we sample from is dis-
crete. The directions we can sample form a discrete set denoted L(u, ϵ ′), where ϵ ′ is the precision
for sampling directions.
Now, we compute the probability that a specific direction is sampled. After the normalization

procedure described in the above paragraph, the sampled point u will “snap” to a point in (Rn )ϵ ,
i.e., v . Consider

⋃
v :bϵ ′ (v )∩Bn�∅ bϵ (v ), where Bn is the n-dimensional unit sphere. We use the (n −

1)-dimensional volume (surface area) of this body to approximate that of Bn , with up to a
√
2

enlargement factor due to the fact that ϵ-boxes have sharp corners. Thus, the number of points
that v can snap to is in the range [n Vol(Bn )/ϵn−1,

√
2n Vol(Bn )/ϵn−1], which is also the range of

|L(u, ϵ ′) |. To make the lines in L(u, ϵ ′) cover every ϵ-box on the boundary of
√
nBn (so that it is

possible to sample all the points in Kϵ ), we need ϵ ′ ≤ ϵ/
√
n.

Let L := |L(u, ϵ ′) |. We label the lines in L(u, ϵ ′) as {�1, . . . , �L } (ordered arbitrarily). For each
i ∈ [L], letvi be the point after normalization. Intuitively,vi approximates a point on the “surface”
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Fig. 6. Constructing a hyperpyramid. The inner circle represents the unit ball and the outer circle represents
the ball of radius

√
n. The grids represents the ϵ ′-discretization of Rn ; each grid is an ϵ ′-box. The shaded

boxes are points where a direction “snaps” to after normalization, and the dashed edges of bϵ ′ (vi ) is its
“outer face.” The hyperpyramid Pi is represented by a circular sector.

of the unit ball around u (see Figure 6). There are hyperfaces of bϵ ′ (vi ) that are out-facing and not
adjacent to any ϵ ′-box in

⋃
v :bϵ ′ (v )∩Bn�∅ bϵ (v ) (as an illustration, see dashed edges in Figure 6).

For all points v ′′ in these hyperfaces, the line segments from u through v ′′ of length
√
n form

a set, which we refer to as a hyperpyramid, denoted by Pi . The apex of each hyperpyramid is u,
and the base of each hyperpyramid is a subset of the hyperspherical surface. Intuitively, the bases
of P1, . . . , PL form a partition of the “surface” of the ball of radius

√
n around u, and therefore,

{P1, . . . , PL } forms a partition of the ball of radius
√
n around u.

5.2 Conductance Lower Bound on the Discretized Hit-and-run Walk

The discretized hit-and-run walk on Kϵ described above can be summarized as Algorithm 5.
Note that we have used a two-level discretization of K, as illustrated in Figure 7. The first level

is a coarser discretization K√ϵn1/4 and the second level is a finer discretization Kϵ . We first choose
a temporary point v ′′ in K√ϵn1/4 . Then, we choose a point v uniformly at random in b√ϵn1/4 (v ′′) ∩
(Rn )ϵ to jump to. The purpose of this two-level discretization is to avoid having a small change of
the original point u cause a huge difference in �uv (Kϵ ) (when u is very close to the boundary).

We first compute the transition probability of the discretized hit-and-run walk. The following
lemma states a lower bound on the transition probability of the discretized hit-and-runwalk, which
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Fig. 7. A demonstration of the two-level discretization ofK. The thicker grid represents the coarser discretiza-
tion K√ϵn1/4 and the thinner grid represents the finer discretization Kϵ . When v ′′ is chosen from K√ϵn1/4 ,

an actual point v to jump is chosen uniformly at random in b√ϵn1/4 (v ′′) ∩ (Rn )ϵ marked by the points in

the shaded region.

ALGORITHM 5: One step of the discretized hit-and-run walk.

Input :Current point u ∈ Kϵ .
1 Uniformly sample a line � ∈ L(u, ϵ ) by independently sampling n coordinates around u according to the

standard normal distribution and then normalizing to unit length;

2 Sample a point v ′ in �(Kϵ ,u, ϵ ′) according to f ;

3 Let v ′′ ∈ K√ϵn1/4 that is closest to v ′;

4 Output a uniform sample v in b√ϵn1/4 (v ′′) ∩ (Rn )ϵ .

will be used to establish the relationship between the transition probabilities of discretized and
continuous hit-and-run walks as in Equation (5.17). This relationship eventually leads to a lower
bound on the conductance of the discretized hit-and-run walk as in Theorem 5.1.

Lemma 5.1. The transition probabilities defined by Algorithm 5 satisfy

Puv ≥
∑

v ′ ∈�(Kϵu,ϵ ′), �∈L(x,ϵ ):
�(Kϵ ,u,ϵ ′)∩b√ϵn1/4 (v )�∅

ϵn−1 (
√
ϵ )n f (v ′)

√
2n1+n/4 Vol(Bn ) (

√
n)n−1μ̂f (�(Kϵ ,u, ϵ ′))

, (5.1)

where for any S ⊆ Rn , we define

μ̂f (S) :=
∑
x ∈S

f (x ). (5.2)
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Proof. First note that the probability of a line � ∈ L(u, ϵ ) being sampled is at least
ϵn−1√

2n Vol(Bn )(
√
n)n−1

. Along �, the probability of sampling v ′ is f (v ′)/μ̂f (�(Kϵ ,u, ϵ
′)), and the prob-

ability of choosing v in b√ϵn1/4 (v ′′) ∩ Kϵ is (
√
ϵ )n/nn/4. �

According to the definition in Equation (2.1), the conductance of any subset S ⊆ Kϵ is

ϕ (S) =

∑
u ∈S
∑
v ∈Kϵ \S Puv π̂f (u)

min{π̂f (S), π̂f (Kϵ \ S)}
, (5.3)

where π̂f is defined as π̂f (A) =
∑

x ∈A f (x ). The conductance of the Markov chain is then

ϕ = min
S⊆Kϵ

ϕ (S). (5.4)

Now, we prove the main theorem of this section, which shows that the conductance of the
discretized hit-and-run walk does not differ significantly from that of the continuous hit-and-run
walk.

Theorem 5.1. Let Kϵ be the discretization of convex body K that contains a unit ball and is con-

tained in a ball with radius R ≤
√
n. Let the density function be f (x ) = e−a

T x having support Kwhere

a = (1, 0, . . . , 0). Let ϵ ′ ≤
√
ϵn−3/4. For S ⊆ Kϵ such that π̂f (S) ≤ 1/2, we have

ϕ (S) ≥ 1

1016n
√
n ln
(
2n
√
n

π̂f (S)

) − ϵ . (5.5)

Proof. This proof closely follows that of Reference [52, Theorem 6.9]. We first consider the
transition probability for the continuous hit-and-run walk in K. For u,v ∈ K, recall that

P ′u (bϵ (v )) =
2

n Vol(Bn )

∫
bϵ (v )

f (x ) dx

μf (u,x ) |x − u |n−1
, (5.6)

where μf (u,x ) is a shorthand for μf (�ux (Kϵ )). We compare P ′u (b√ϵn1/4 (v )) with Puv for u ∈ Kϵ

and v ∈ K√ϵn1/4 . To this end, we use μ̂f to approximate μf : for each �, we have

ϵ ′μ̂f (�(Kϵ ,u, ϵ
′)) ≤ eϵ

′
μf (�(Kϵ )). (5.7)

Consider each hyperpyramid Pi defined in Section 5.1 whose associated line through its apex is �i
and �i (Kϵ ,u, ϵ

′) ∩ b√ϵn1/4 (v ) � ∅. Note that the distance between each u ∈ Kϵ and the boundary

of Kϵ is at least ϵ/2. Inside each hyperpyramid, the length of the chords through u can differ by a
factor at most 2. For each � ⊂ Pi , μ̂f (�i (Kϵ ,u, ϵ

′)) ≤ 2eϵ
′
μ̂f (�(Kϵ ,u, ϵ

′)). Together with Equation
(5.7), it follows that

ϵ ′μ̂f (�i (Kϵ ,u, ϵ
′)) ≤ 2e2ϵ

′
μf (�(Kϵ )) (5.8)

for all � ⊂ Pi . Define ci := |�i (Kϵ ,u, ϵ
′) ∩ b√ϵn1/4 (v ) | (the number of points in this set) and di :=

|�i (Kϵ ) ∩ b√ϵn1/4 (v ) | (the length of this line). Note that ci ≤ di/ϵ
′. We further partition Pi into

ci sets Qi,1, . . . ,Qi,ci along the direction of �i so that the distance between the hyperplanes that
separate adjacent sets is at most ϵ ′. For each j ∈ [ci ], we have

ϵn−1 f (v ′)

n Vol(Bn ) (
√
n)n−1μ̂f (�i (Kϵ ,u, ϵ ′))

=
ϵn−1 f (v ′)ϵ ′ |v ′ − u |n−1

ϵ ′n Vol(Bn ) (
√
n)n−1μ̂f (�i (Kϵ ,u, ϵ ′)) |v ′ − u |n−1

≥
f (v ′) Vol(Qi, j ∩ b√ϵn1/4 (v ))

2ϵ ′n Vol(Bn )μ̂f (�i (Kϵ ,u, ϵ ′)) |v ′ − u |n−1
, (5.9)
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where we have used the fact that the distance between adjacent Qi, j and Qi, j+1 can be bounded
from below by |Qi, j ∩ �i |/(1 + ϵ ′/2) ≥ |Qi, j ∩ �i |/2.
Now, we consider the integration in Qi, j ∩b√ϵn1/4 (v ). We use f (v ) to approximate f (v ′),which

causes a relative error at most e
√
ϵn1/4

, and use |v ′ − u |n−1 to approximate |x − u |n−1 for all x ∈
Qi, j ∩ b√ϵn1/4 (v ), which causes a relative error at most e provided ϵ ′ ≤

√
ϵn−3/4 (noting that the

distance between x and u is at most
√
ϵn1/4). We have∫

Qi, j∩b√ϵn1/4 (v )

f (x ) dx

n Vol(Bn )μf (u,x ) |x − u |n−1

≤ 2e
√
ϵn1/4+2ϵ ′+1 f (v ′)

ϵ ′n Vol(Bn )μ̂f (�i (Kϵ ,u, ϵ ′)) |v ′ − u |n−1

∫
Qi, j∩b√ϵn1/4 (v )

dx (5.10)

=
2e
√
ϵn1/4+2ϵ ′+1 f (v ′) Vol(Qi, j ∩ b√ϵn1/4 (v ))

ϵ ′n Vol(Bn )μ̂f (�i (Kϵ ,u, ϵ ′)) |v ′ − u |n−1
, (5.11)

where the inequality follows from Equation (5.8). Let i1, . . . , it be the indices such that Pi j ∩
b√ϵn1/4 (v ) � ∅ for j ∈ [t]. We use

⋃
j ∈[t ] Pi j ∩ b√ϵn1/4 (v ) as a partition to approximate b√ϵn1/4 (v ),

which causes a relative error at most (1 + ϵ )n for Vol(b√ϵn1/4 (v )). We have∫
b√

ϵn1/4 (v )

f (x ) dx

μf (u,x ) |x − u |n−1
≤ (1 + ϵ )n

∑
j ∈[t ]

∫
b√

ϵn1/4 (v )∩Pij

f (x ) dx

μf (u,x ) |x − u |n−1
.

Hence,

(
√
ϵ )n

nn/4
P ′u (b

√
ϵn1/4 (v ))

=
2(
√
ϵ )n

n1+n/4 Vol(Bn )

∫
b√

ϵn1/4 (v )

f (x ) dx

μf (u,x ) |x − u |n−1
(5.12)

≤ 2(
√
ϵ )n (1 + ϵ )n

n Vol(Bn )

∑
j ∈[t ]

∫
b√

ϵn1/4 (v )∩Pij

f (x ) dx

μf (u,x ) |x − u |n−1
(5.13)

=
2(
√
ϵ )n (1 + ϵ )n

n Vol(Bn )

∑
j ∈[t ]

∑
k ∈[cij ]

∫
b√

ϵn1/4 (v )∩Qij ,k

f (x ) dx

μf (u,x ) |x − u |n−1
(5.14)

≤
∑
j ∈[t ]

∑
k ∈[cij ]

4(1 + ϵ )ne
√
ϵn1/4+2ϵ ′+1 (

√
ϵ )n f (v ′) Vol(Qi, j ∩ b√ϵn1/4 (v ))

ϵ ′n Vol(Bn )μ̂f (�i j (Kϵ ,u, ϵ ′)) |u −v ′|n−1
(5.15)

≤ 4(1 + ϵ )ne
√
ϵn1/4+2ϵ ′+1

∑
j ∈[t ]

∑
k ∈[cij ]

2ϵn−1 (
√
ϵ )n f (v ′)

n Vol(Bn ) (
√
n)n−1μ̂ (�i j (Kϵ ,u, ϵ ′))

(5.16)

= 4(1 + ϵ )ne
√
ϵn1/4+2ϵ ′+1Puv ≤ e5+2ϵ

′
Puv , (5.17)

where the second inequality follows from Equation (5.11), and the last inequality holds when ϵ ≤
1/n.

For u ∈ Kϵ and v ∈ K√ϵn1/4 , we approximate
∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ) by ϵnPuv . Note that

for allu ′ ∈ bϵ (u), we have |u ′−v |n ≤ e |u−v |n . Also, the lengths of �uv and �u′v can differ by at most
a factor of 2. As a result, π̂f (�u′v (Kϵ ,u, ϵ

′) ≤ 2π̂f (�uv (Kϵ ,u
′, ϵ ′). It follows that Puv ≥ Pu′v/(2e ).
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Therefore, ∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ) ≤

∫
x ∈bϵ (u )

2e5+2ϵ
′
nn/4

(
√
ϵ )n

Pxv dπf (x ) (5.18)

≤ 2e5+2ϵ
′+ϵnn/4

(
√
ϵ )n

Puv π̂f (u)ϵ
n . (5.19)

Next, for the relationship between π̂f and πf , we consider the sets Kϵ ∩ K, Kϵ \ K, and K \ Kϵ

separately. Without loss of generality, assume π̂f (S) ≤ π̂f (Kϵ \ S). We partition S as S1 ∪ S2, where
S1 = {x ∈ S : bϵ (x ) ⊆ K} and S2 = S \ S1. We also define S1 :=

⋃
x ∈S1 bϵ (x ) and S2 :=

⋃
x ∈S2 bϵ (x ).

For S1, we use f (v ) to approximate f (x ) for all x ∈ bϵ (v ); it follows that

π̂f (S1) ≤ e2ϵπf (S1) and πf (S1) ≤ e2ϵ π̂f (S1). (5.20)

For S2, we have

π̂f (S2) ≤ 2e2ϵπf (S2 ∩ K). (5.21)

Combining the above inequalities, we have

π̂f (S) = π̂f (S1) + π̂f (S2) ≤ e2ϵπf (S1) + 2e
2ϵπf (S2 ∩ K) ≤ 3πf (K ∩ S). (5.22)

Now, we bound the numerator of the conductance:
∑
u ∈S
∑
v ∈Kϵ \S Puv π̂f (u). For u ∈ S and v ∈

K \ S, we consider four cases. First, when bϵ (u),bϵ (v ) ⊆ K, we have

Puv π̂f (u) ≥
(
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ). (5.23)

Second, when bϵ (u) ⊆ K and bϵ (v ) � K, we have

Puv π̂f (u) ≥
(
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ) (5.24)

≥ (
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v ) ∩ K) dπf (x ). (5.25)

Third, when bϵ (u) � K and bϵ (v ) ⊆ K, we have

Puv π̂f (u) ≥
(
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ) (5.26)

≥ (
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )∩K

P ′u (b
√
ϵn1/4 (v )) dπf (x ). (5.27)

Fourth, when bϵ (u) � K and bϵ (v ) � K, we have

Puv π̂f (u) ≥
(
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )

P ′u (b
√
ϵn1/4 (v )) dπf (x ) (5.28)

≥ (
√
ϵ )n

2e5+2ϵ ′+ϵnn/4

∫
x ∈bϵ (u )∩K

P ′u (b
√
ϵn1/4 (v ) ∩ K) dπf (x ). (5.29)

We also need to consider the set K \ Kϵ . There exists a small subset E ⊆ K \ Kϵ such that πf (E) ≤
ϵπf (S). We need to consider the transition from E to ⊆ K \ Kϵ \ E: We have

∫
x ∈E P

′
x (K \ Kϵ \
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E) dπf (x ) ≤ πf (E) ≤ ϵπf (S). Putting everything together, we have∑
u ∈S

∑
v ∈Kϵ \S

Puv π̂f (u) +

∫
x ∈E∩K

P ′x (K \ Kϵ \ E) dπf (x )

≥ 1

2e5+2ϵ ′+ϵ

∫
x ∈S∩K∪E

P ′x (K \ (S ∩ K ∪ E)) dπf (x ), (5.30)

which further implies that∑
u ∈S

∑
v ∈Kϵ \S

Puv π̂f (u) ≥
1

2e5+2ϵ ′+ϵ

∫
x ∈S∩K∪E

P ′x (K \ (S ∩ K ∪ E)) dπf (x ) − ϵπf (S)

≥ 1

2e5+2ϵ ′+ϵ

∫
x ∈S∩K∪E

P ′x (K \ (S ∩ K ∪ E)) dπf (x ) − ϵeϵ π̂f (S). (5.31)

By Proposition 2.3, we have

ϕ (S) =

∑
u ∈S
∑
v ∈Kϵ \S Puv π̂f (u)

π̂f (S)
(5.32)

≥ 1

2e5+2ϵ ′+ϵ

∫
x ∈S∩K∪E P

′
x (K \ (S ∩ K ∪ E)) dπf (x )

π̂f (S)
− ϵ

2e4+2ϵ ′
(5.33)

≥ 1

6e5+2ϵ ′+ϵ

∫
x ∈S∩K∪E P

′
x (K \ (S ∩ K ∪ E)) dπf (x )

πf (S ∩ K) + πf (E)
− ϵ

2e5+2ϵ ′
(5.34)

≥ 1

1014e5+2ϵ ′+ϵn
√
n ln
(

n
√
n

πf (S∩K)

) − ϵ

2e5+2ϵ ′
(5.35)

≥ 1

1014e5+2ϵ ′+ϵn
√
n ln
(

n
√
n

(1−e−ϵ /2)eϵ π̂f (S)

) − ϵ

2e5+2ϵ ′
, (5.36)

where the second inequality follows from Equation (5.22), and the third inequality follows from
Proposition 2.3. The above inequality can then be simplified to

ϕ (S) ≥ 1

1016n
√
n ln
(
2n
√
n

π̂f (S)

) − ϵ, (5.37)

which is exactly the claim in Theorem 5.1. �

The mixing time for the discrete hit-and-run walk can be bounded by the following corollary.

Corollary 5.1. Let Kϵ be the discretization of convex body K that contains a unit ball and is

contained in a ball with radius R ≤
√
n. Let the density function be f (x ) = e−a

T x having support K
where a = (1, 0, . . . , 0). Let ϵ ′ ≤

√
ϵn−3/4. Let the initial distribution be σ and the distribution after

m steps be σm . If
∑

x ∈Kϵ
σ (x )
π̂f (x )

σ (x ) ≤ M , then after

m ≥ 1033n3 ln2
Mn
√
n

ϵ
ln

M

ϵ
(5.38)

steps, we have dTV (σ
m , π̂f ) ≤ ϵ .

Proof. First note that, since
∑

x ∈Kϵ
σ (x )
π̂f (x )

σ (x ) ≤ M , the set S = {x : σ (x )
π̂f (X ) >

2M
ϵ
} has measure

σ (S) ≤ ϵ/2. Then a random point in Kϵ can be thought of as being generated with probability
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1−ϵ/2 from a distribution σ ′ satisfying σ ′ (S′)
π̂f (S′)

≤ 2M/ϵ for any subset S′ ⊆ Kϵ and with probability

ϵ/2 from some other distribution. As a consequence of Theorem 5.1, for any such subset S′ with
π̂f (S′) = p, the conductance of S′ is at least

Φp =
1

1016n
√
n ln
(
2n
√
n/p
) − ϵ . (5.39)

For the purpose of analysis, we use p = ϵ 2

8M . When ϵ is reasonably small (say, ϵ ≤
1

2·1016n
√
n ln(Mn

√
n/ϵ )

), the ϵ term in the conductance bound can be ignored with an additional 1/2

factor. Then, we have Φp ≥ 1
2·1016n

√
n ln(2n

√
n/p)

. By the condition that σ ′(S′) ≤ (2M/ϵ )π̂f (S′), as

well as the way a random point in Kϵ is generated, Proposition 2.2 implies that

dTV (σ
(m), π̂f ) ≤

ϵ

2
+

(
1 − ϵ

2

) 
�ϵ2 + 4M

ϵ

�1 −

Φ2
p

2
��
m�� . (5.40)

Therefore, after the claimed number of steps, the total variation distance is at most ϵ . �

As the uniform distribution is a special case of a log-concave distribution, the proof of Theo-
rem 5.1 also applies to this case. More specifically, we use Proposition 2.4 in Equation (5.35), which
yields the following stronger corollary.

Corollary 5.2. Let Kϵ be the discretization of a convex body K that contains a unit ball and is

contained in a ball with radius R ≤
√
n. Let ϵ ′ ≤

√
ϵn−3/4. The conductance of the hit-and-run walk

in Kϵ with uniform distribution satisfies

ϕ ≥ 1

226n
√
n
− ϵ . (5.41)

Note that Corollary 5.2 is stronger than Theorem 5.1, because Equation (5.41) is independent of
S ⊆ Kϵ . This corollary is informative and is not used in this article.

5.3 Implementing theQuantum Walk Operators

We now describe how to implement the discretized quantum walk. Following Equation (1.2), con-
sider a convex body K such that B2 (0, r ) ⊆ K ⊆ B2 (0,R). Each stage of the volume estimation
algorithm involves a hit-and-run walk over the convex body with target density e−ax0 . To use
techniques from Reference [74] to obtain a speedup in mixing time, we implement the quantum
walk operatorW corresponding to an ϵ-discretized version of this walk Algorithm 5.

Let |x〉 be the register for the state of the walk, andU be a unitary that satisfiesU |x〉|0〉 = |x〉|px 〉
for all |x〉 (recall that |px 〉 =

∑
y∈Kϵ

√
px→y |y〉 where px→y is the probability of a transition from x

to y). Since the state of the hit-and-run walk is given by points on an ϵ-grid that can be restricted

to B2 (0,R), there are ( 2R
ϵ
)n possible values of x and thus |x〉 can be represented using n log

(
2R
ϵ

)
qubits. In the rest of the section, we abuse notation by letting x refer to both a point on the grid
and its corresponding bit representation. Then the quantum walk operator [74] can be realized as

W ′ = U †SURAU
†SURA , (5.42)

where RA is the reflection around the subspace A = span{|x〉|0〉 | x ∈ Kϵ } and S is the swap
operator. It thus remains to implement the operatorU .
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Continuous case. We first explain a continuous version of the implementation before explaining
how it can be discretized. Given an input |x〉, consider n real ancilla registers, each in the state∫ 1

0
|z〉 dz. Given a pair of uniformly distributed random variables ξ1, ξ2, the Box-Muller transform

ϕ1 =

√
−2δ 2 ln ξ1 cos 2πξ2, (5.43)

ϕ2 =

√
−2δ 2 ln ξ1 sin 2πξ2 (5.44)

yields two variables ϕ1,ϕ2 that are distributed according to a univariate normal distribution with
mean 0 and variance δ 2. Thus, applying the unitary mapping

|ξ1〉|ξ2〉 �→ ���√−4 ln ξ1 cos 2πξ2〉���√−4 ln ξ1 sin 2πξ2〉 (5.45)

to
∫ 1

0
|z〉 dz⊗

∫ 1

0
|z〉 dz yields the state

∫
R

1√
4π
e−z

2/4 |z〉 dz⊗
∫
R

1√
4π
e−z

2/4 |z〉 dz. Withn such registers,

we have the state ∫
Rn

1
√
4π

e−(
∑n
i=1 z

2
i /4) |z〉 dz. (5.46)

We now compute the unit vector (direction) corresponding to each x in a different ancilla register,
and uncompute the Gaussian registers. Since 1√

4π
e−(
∑n
i=1 x

2
i /4) is independent of the direction of the

vector z, we obtain a uniform distribution over all the directions on the n-dimensional sphere Sn

given by √√
nπn/2

Γ
(
n + 1

2

) ∫
Sn
|u〉 du . (5.47)

Corresponding to each direction u, the line {x + tu : t ∈ R} intersects the convex body K at two
points with parameters t1, t2. These points as well as the length l (u) = |t1 − t2 | can be determined
within error ϵ usingO (log 1

ϵ
) calls to the membership oracle. We must now map each direction |u〉

to a superposition proportional to
∫ t2
t1

ea
T (x+tu )/2 |x + tu〉 dt =

∫ t2
t1

ea0 (x0+tu0 )/2 |x + tu〉 dt . Since the
exponential distribution is efficiently integrable, this can be easily effected by making a variable

change starting from the state
∫ 1

0
|z〉 dz. The normalization factor is

A :=

√
a0u0

e−a0x0 (e−a0t1 − e−a0t2 ) . (5.48)

Consider the variable change f : [0, 1] → [t1, t2] such that df −1 (t )
dt = Aea0 (x0+tu0 )/2, f (0) = t1,

f (1) = t2. Applying f to
∫ 1

0
|z〉 dz produces

∫ t2
t1

Aea0 (x0+tu0 )/2 |t〉 dt , which can be transformed to∫ t2
t1

ea0 (x0+tu0 )/2 |x + tu〉 dt with an operation controlled on the input register x . This produces the
appropriate superposition over points corresponding to each direction.

Discrete case. The operator U can be implemented in a discrete setting using a similar process
to the continuous case with two main changes:

• Instead of a continuous uniform variable
∫ 1

0
|z〉 dz, we use a discrete uniform distribution.

We can create a uniform distribution on a grid with spacing ϵ as follows. We take n sets
of ancilla registers, each consisting of log(1/ϵ ) registers initialized to the state 0. We apply
Hadamard gates to each of these registers, giving the superposition

⊗n
i=1

√
ϵ
∑1/ϵ−1

zi=0
|zi 〉.

Each |z〉 can be mapped to |zϵ〉, producing the required uniform distribution over the grid.
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• Applying a bijective mapping to a discrete uniform distribution simply relabels the states, so
the change of variable methods used in the continuous setting cannot be used to construct
the Gaussian and exponential superpositions. We use instead the Grover-Rudolph method
[30] that prepares states with amplitudes corresponding to efficiently integrable probability
distributions. Exponential distributions can be analytically integrated, and an n-dimensional
Gaussian variable is a product of n univariate standard normal distributions, each of which
can be efficiently integrated by Monte Carlo methods.

Given a point u ∈ Kϵ and a line l (u, ϵ ) to be approximately uniformly sampled, we determine
the range of points in l (Kϵ ,u, ϵ

′) using binary search with the membership oracle and prepare an
exponential superposition as described above. We apply a unitary mapping to compute the closest
point v ′′ ∈ K√ϵn1/4 . Finally, corresponding to each point v ′′, we generate a uniform distribution

over an ϵ grid in b√ϵn1/4 ∩ (Rn )ϵ by applying the Hadamard transform to log
(
n1/4/

√
ϵ
)
qubits.

Overall, this implementation of the discretized quantum hit-and-run walk operator gives the
following.

Theorem 5.2. The gate complexity of implementing an operator Ũ such that ‖Ũ − U ‖ = O (ϵ )

where U |x〉|0〉 = |x〉∑y∈Kϵ
√
px→y |y〉 is Õ (n log

(
1
ϵ

)
). The corresponding quantum walk operatorW

can be implemented using a constant number of calls to U .

6 QUANTUM LOWER BOUNDS FOR VOLUME ESTIMATION

6.1 A Quantum Lower Bound in n

In this subsection, we prove the following quantum query lower bound in n for volume
estimation:

Theorem 6.1. Suppose 0 < ϵ <
√
2 − 1. Estimating the volume of K with multiplicative precision

ϵ requires Ω(
√
n) quantum queries to the membership oracle OK defined in Equation (1.3).

Proof. We prove Theorem 6.1 by reduction from the Hamming weight problem. In Reference
[59] by Nayak and Wu, it is shown that if we are given an oracle Os : |i,b〉 �→ |i,b ⊕ si 〉 for an
input n-bit string s = (s1, . . . , sn ) ∈ {0, 1}n , and given the promise that the Hamming weight of s
is either 0 or 1, it takes Ω(

√
n) quantum queries to decide which is the case.

To establish an Ω(
√
n) lower bound for volume estimation, for an n-bit string s ∈ {0, 1}n with

Hamming weight |s |Ham ≤ 1, we consider the convex body K =×ni=1[0, 2si ]. The volume of K is
2 |s |Ham ∈ {1, 2}, and membership in K is determined by the function

mems (x ) :=
⎧⎪⎨⎪⎩

1 if for each i ∈ [n], 0 ≤ xi ≤ 2si ,

0 otherwise.
(6.1)

The corresponding membership oracleOK (defined in Equation (1.3)) can be simulated by querying
Os using Algorithm 6.

We now prove that for any positive integer k and s ∈ {0, 1}n with |s |Ham ≤ 1, if there is a k-query
algorithm that computes the volume with access to mems , then there is a k-query algorithm for
deciding whether |s |Ham > 0 with access toOs . We first show that Algorithm 6 simulates the oracle
mems . In the for loop of Line 1, we know that yi = 1 if and only if 1 < xi ≤ 2, which is inside the
convex body if si = 1. The case |y |Ham > 1 implies that there exist two distinct coordinates i, j such
that xi ,x j > 1, which implies that x lies outside the convex body. Now, we are left with the cases
|y |Ham = 1 or 0. In Line 9, yi = 1 implies 1 < xi ≤ 2, which lies in the convex body if and only if
si = Os (i ) = 1. Also, |y | = 0 implies that for every coordinate i , 0 ≤ xi ≤ 1, which lies in the body
for all s .
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ALGORITHM 6: Simulating mems with one query to Os .

Input: A vector x = (x1, . . . ,xn ) ∈ Rn .
Output: mems (x ).

1 for i = 1, . . . ,n do

2 if xi > 2 or xi < 0 then
3 Return 0;

4 Set yi = 1 if xi > 1 and 0 otherwise;

5 if |y |Ham > 1 then
6 Return 0;

7 else

8 if |y |Ham = 1 then
9 Find i such that yi = 1. Return Os (i );

10 else

11 Return 1.

Finally, if there is a k-query algorithm that computes an estimate �Vol(K) of the volume of K up

to multiplicative precision 0 < ϵ <
√
2 − 1, then s = �log2 �Vol(K)�, where �·� returns the nearest

integer. This immediately gives a k-query algorithm that decides whether |s |Ham = 0 or 1. Since
there is an Ω(

√
n) quantum query lower bound for this task, the Ω(

√
n) lower bound on volume

estimation follows. �

6.2 An Optimal Quantum Lower Bound in 1/ϵ

In this subsection, we prove:

Theorem 6.2. Suppose 1/n ≤ ϵ ≤ 1/3. Estimating the volume of K with multiplicative precision ϵ
requires Ω(1/ϵ ) quantum queries to the membership oracle OK defined in Equation (1.3).

Comparing with Theorem 1.1, this shows that our quantum algorithm for volume estimation is
optimal in 1/ϵ up to poly-logarithmic factors.
The proof constructs a convex body whose volume encodes the Hamming weight of a string. A

membership oracle for this convex body can be implemented by querying the bits of the string.
Then the tight lower bound of Nayak andWu on the quantum query complexity of approximating
the Hamming weight [59] implies a lower bound on the query complexity of volume estimation.
We construct the convex body by attaching hyperpyramids to the faces of then-dimensional unit

hypercube. The axis of each hyperpyramid is aligned with the axis of the face of the hypercube it
corresponds to, and the height of the hyperpyramid is 1/2. More concretely, if the unit hypercube
is Hn := [−1/2, 1/2]n , then the two hyperpyramids on the face perpendicular to the ith axis are

Pi,+ :=
{
x : xi ≥ 1/2, |xk | + |xi | ≤ 1 ∀k ∈ [n]/{i}

}
, (6.2)

Pi,− :=
{
x : xi ≤ −1/2, |xk | + |xi | ≤ 1 ∀k ∈ [n]/{i}

}
. (6.3)

We denote the convex body with all hyperpyramids attached by

Cn := Hn ∪
( n⋃
i=1

(Pi,+ ∪ Pi,−)
)
. (6.4)

For illustration, the three-dimensional convex body C3 is shown in Figure 8.
We first prove:

Lemma 6.1. Cn is convex for all n ∈ N.
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Fig. 8. The convex body C3.

Proof. It suffices to show that if x ,y ∈ Cn and α ∈ [0, 1], then αx + (1−α )y ∈ Cn . We consider
three cases:

Case 1: x ,y ∈ Hn . This case is straightforward as Hn is convex, hence αx + (1 − α )y ∈ Hn ⊂ Cn .

Case 2: x ∈ ⋃n
i=1 (Pi,+ ∪ Pi,−),y ∈ Hn . Let i∗ ∈ [n] such that x ∈ Pi∗,+ ∪ Pi∗,−. Then by Equations

(6.2) and (6.3), |xi∗ | ≥ 1/2 and |xi | + |xi∗ | ≤ 1 ∀i ∈ [n] \ {i∗}, which implies |xi | ≤ 1/2 ∀i ∈ [n] \ {i∗}.
Also note that y ∈ Hn implies |yi | ≤ 1/2 ∀i ∈ [n]. Therefore,

|αxi + (1 − α )yi | ≤ α |xi | + (1 − α ) |yi | ≤
α

2
+
1 − α
2
=

1

2
∀ i ∈ [n]/{i∗}. (6.5)

If |αxi∗ + (1 − α )yi∗ | ≤ 1/2, then αx + (1 − α )y ∈ Hn ⊆ Cn . If |αxi∗ + (1 − α )yi∗ | > 1/2, then

|αxi∗ + (1 − α )yi∗ | + |αxi + (1 − α )yi | ≤ α ( |xi∗ | + |xi |) + (1 − α ) ( |yi∗ | + |yi |) (6.6)

≤ α + (1 − α ) = 1 ∀ i ∈ [n] \ {i∗}. (6.7)

Therefore, by Equations (6.2) and (6.3), we have αx + (1−α )y ∈ Pi∗,+ ∪Pi∗,− ⊂ Cn . In any case, we
always have αx + (1 − α )y ∈ Cn .

Case 3: x ,y ∈ ⋃n
i=1 (Pi,+ ∪ Pi,−). Let i∗, j∗ ∈ [n] such that x ∈ Pi∗,+ ∪ Pi∗,− and y ∈ Pj∗,+ ∪ Pj∗,−.

If i∗ = j∗, then the proof is identical to that of Case 2, and we omit the details here. It remains to
consider the case i∗ � j∗. Then, we have |xi |, |yi | ≤ 1/2 ∀i ∈ [n] \ {i∗, j∗}. In addition,

|αxi∗ + (1 − α )yi∗ | + |αx j∗ + (1 − α )yj∗ | ≤ α ( |xi∗ | + |x j∗ |) + (1 − α ) ( |yj∗ | + |yi∗ |)
≤ α + (1 − α ) = 1 (6.8)

by Equations (6.2) and (6.3). This means that at most one of |αxi∗ + (1−α )yi∗ | and |αx j∗ + (1−α )yj∗ |
can be more than 1/2. If neither of them is more than 1/2, then αx + (1−α )y ∈ Hn ⊂ Cn . If exactly
one of them is more than 1/2, say |αxi∗ + (1 − α )yi∗ | > 1/2 and |αx j∗ + (1 − α )yj∗ | ≤ 1/2, then
αx + (1 − α )y ∈ Pi∗,+ ∪ Pi∗,− ⊂ Cn . In any case, we always have αx + (1 − α )y ∈ Cn . �

We use the following lower bound on the quantum query complexity of approximating the
Hamming weight:

Proposition 6.1 ([59]). Suppose we are given the quantum oracle Os |i〉|0〉 = |i〉|si 〉 ∀i ∈ [n] for
some s ∈ {0, 1}n . Let 0 ≤ l < l ′ ≤ n be two integers, Δ = |l − l ′ |, andm ∈ {l , l ′} such that | n2 −m | is
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maximized. Then the quantum query complexity of determining whether s has Hamming weight at

most l or at least l ′ is Θ(
√
n/Δ +

√
m(n −m)/Δ).

Now, we can prove Theorem 6.2.

Proof. Given a binary string s ∈ {0, 1}n , we consider the convex body

Cs := Hn ∪
( ⋃
i : si=1

(Pi,+ ∪ Pi,−)
)
. (6.9)

By Lemma 6.1 and the fact that each hyperpyramid is the intersection of Cn and the convex spaces
{x : xi ≥ 1/2} or {x : xi ≥ 1/2}, Cs is also convex. Furthermore, a query to the membership
oracle in Equation (1.3) for Cs can be implemented using one query to the binary string oracleOs :
queries to points outside Cn or insideHn are trivially answered with 0 and 1, respectively, whereas
queries to points in Pi,+ ∪ Pi,− should return si . Also note that for each i ∈ [n], the volume of the
hyperpyramid Pi,+ is

Vol(Pi,+) =

∫ 1/2

0
(1 − 2t )n−1dt = 1

2n
, (6.10)

since the intersection of Pi,+ and {x : xi = 1/2 + t } is an (n − 1)-dimensional hypercube with side-
length 1− 2t and hence volume (1− 2t )n−1. By symmetry, we also have Vol(Pi,−) =

1
2n . Therefore,

Vol(Cs ) = Vol(Hn ) +
∑
i :si=1

(
Vol(Pi,+) + Vol(Pi,−)

)
(6.11)

= 1 + |s |Ham ·
2

2n
= 1 +

|s |Ham
n
. (6.12)

In other words, estimating the volume of Cs with multiplicative error ϵ is equivalent to the Ham-
ming distance problem with Δ = 4ϵn. Taking m = n

2 + Δ in Proposition 6.1, we find that the
quantum query complexity of estimating the volume of Cs is at least

Ω 
�
√

n

ϵn
+

√
n2/4 − ϵ2n2

ϵn
�� = Ω

( 1
ϵ

)
(6.13)

for any 1/n ≤ ϵ ≤ 1/3. �

Remark 6.3. The same proof strategy implies a classical lower bound of Ω(1/ϵ2) for volume
estimation if we replace Proposition 6.1 by its folklore classical counterpart. In particular, this
shows that our quantum algorithm in Theorem 1.1 achieves a provable quadratic quantum speedup
in 1/ϵ .

Remark 6.4. Although the proofs of both theorems consider well-rounded convex bodies, this
assumption can be simply waived by assuming known multiplicative rescaling factors c1, . . . , cn
along all the n directions. The proofs follow from the same arguments.

APPENDIX

A PROOF DETAILS FOR THE THEORY OF CONTINUOUS-SPACE QUANTUM WALKS

In this Appendix, we prove Theorem 3.1, restated below:

Theorem 3.1. Let

D :=

∫
Ω

∫
Ω
dx dy

√
px→ypy→x |x〉〈y | (3.11)
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denote the discriminant operator of p. Let Λ be the set of eigenvalues of D, so that D =
∫
Λ
dλ λ |λ〉〈λ |.

Then the eigenvalues of the quantum walk operatorW in Equation (3.10) are ±1 and λ± i
√
1 − λ2 for

all λ ∈ Λ.

We first prove the following lemma:

Lemma A.1. For any λ ∈ Λ, we have |λ | ≤ 1.

Proof. Since λ is an eigenvalue of D, we have D |λ〉 = λ |λ〉. As a result, we have

|λ |δ (0) = |λ |〈λ |λ〉 (A.1)

= |〈λ |D |λ〉| (A.2)

=
����
∫
Ω

∫
Ω
dx dy

√
py→xpx→y〈λ |x〉〈y |λ〉

���� (A.3)

≤

√(∫
Ω

∫
Ω
dx dy py→x |〈y |λ〉|2

) ( ∫
Ω

∫
Ω
dx dy px→y |〈λ |x〉|2

)
(by Cauchy-Schwarz)

(A.4)

=

√(∫
Ω
dy |〈y |λ〉|2

) ( ∫
Ω
dx |〈λ |x〉|2

)
(by

∫
Ω
dy px→y = 1) (A.5)

=

∫
Ω
dx 〈λ |x〉〈x |λ〉 (A.6)

= 〈λ |
( ∫

Ω
dx |x〉〈x |

)
|λ〉 (by Equation (3.5)) (A.7)

= δ (0). (A.8)

Hence, the result follows. �

Proof of Theorem 3.1. Define an isometry

T :=

∫
Ω
dx |ϕx 〉〈x | =

∫
Ω

∫
Ω
dx dy

√
px→y |x ,y〉〈x |. (A.9)

Then,

TT † =

∫
Ω

∫
Ω
dx dy |ϕx 〉〈x |y〉〈ϕy | =

∫
Ω
dx |ϕx 〉〈ϕx | = Π, (A.10)

and

T †T =

∫
Ω

∫
Ω
dx dy |x〉〈ϕx |ϕy〉〈y | (A.11)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω
dx dy da db 〈x |y〉〈a |b〉

√
px→apy→b |x〉〈y | (A.12)

=

∫
Ω

∫
Ω
dx da px→a |x〉〈x | (A.13)

=

∫
Ω
dx |x〉〈x | (A.14)

= I . (A.15)
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Furthermore,

T †ST =

∫
Ω

∫
Ω
dx dy |x〉〈ϕx |S |ϕy〉〈y | (A.16)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω
dx dy da db 〈x ,a |S |y,b〉

√
px→apy→b |x〉〈y | (A.17)

=

∫
Ω

∫
Ω
dx da

√
px→apa→x |x〉〈a | (A.18)

= D. (A.19)

As a result, for any λ ∈ Λ, we have

WT |λ〉 = S (2Π − I )T |λ〉 = (2STT †T − ST ) |λ〉 = (2ST − ST ) |λ〉 = ST |λ〉. (A.20)

Similarly, we have

WST |λ〉 = S (2Π − I )ST |λ〉 (A.21)

= (2STT †ST − S2T ) |λ〉 = (2STD −T ) |λ〉 = (2λS − I )T |λ〉.
By Lemma A.1, |λ | ≤ 1. As a result, we have

W
(
I − (λ + i

√
1 − λ2)S

)
T |λ〉 =WT |λ〉 − (λ + i

√
1 − λ2)WST |λ〉 (A.22)

= ST |λ〉 − (λ + i
√
1 − λ2) (2λS − I )T |λ〉 (A.23)

=
(
S − (λ + i

√
1 − λ2) (2λS − I )

)
T |λ〉 (A.24)

= (λ + i
√
1 − λ2)

(
I − (λ + i

√
1 − λ2)S

)
T |λ〉; (A.25)

in other words, λ + i
√
1 − λ2 is an eigenvalue ofW with eigenvector (I − (λ + i

√
1 − λ2)S )T |λ〉.

Similarly, we have

W
(
I − (λ − i

√
1 − λ2)S

)
T |λ〉 = (λ − i

√
1 − λ2)

(
I − (λ − i

√
1 − λ2)S

)
T |λ〉, (A.26)

i.e., λ − i
√
1 − λ2 is an eigenvalue ofW with eigenvector (I − (λ − i

√
1 − λ2)S )T |λ〉.

Finally, note that for any vector |u〉 in the orthogonal complement of the space
spanλ∈Λ{T |λ〉, ST |λ〉},W simply acts as −S , since

Π = TT † =

∫
Λ
dλT |λ〉〈λ |T †, (A.27)

which projects onto spanλ∈Λ{T |λ〉}. In this orthogonal complement subspace, the eigenvalues are
±1, because S2 = I . �
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