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ABSTRACT
The presence of income inequality is an important problem to demographers, policy makers, economists,
and social scientists. A causal link has been hypothesized between income inequality and income segre-
gation, which measures how much households with similar incomes cluster. The information theory index
is used to measure income segregation, however, critics have suggested the divergence index instead.
Motivated by this, we construct both indices using American Community Survey (ACS) estimates of features
of the income distribution. Since the elimination of the decennial census long form, methods of computing
these indicesmust beupdated to interpolateACSestimates andaccount for survey error.Wepropose anovel
model-based method to do this which improves on previous approaches by using more types of estimates,
andbyprovidinguncertaintyquantification.Weapply thismethod toestimateU.S. census tract-level income
distributions, and in turn use these to construct both income segregation indices. We findmajor differences
between the two indices and find evidence that the information index underestimates the relationship
between income inequality and income segregation. The literature suggests interventions designed to
reduce income inequality by reducing income segregation, or vice versa, so using the information index
implicitly understates the value of these interventions. Supplementary materials for this article, including
a standardized description of the materials available for reproducing the work, are available as an online
supplement.
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1. Introduction

Sociologists theorize that peer or neighborhood effects of
income segregation can exacerbate the impacts of income
inequality (Reardon and Bischoff 2011, and references
therein)—households are segregated by income to the extent
that households with similar incomes live near each other.
To study this, Reardon (2011) and Reardon and Bischoff
(2011) develop the rank-order information theory index of
income segregation in metro areas, which essentially compares
the metro area income distribution to the census tract-level
income distributions for each tract in the metro area. They
then fit various regression models to the index using decennial
census data. More recently, Roberto (2015) notes that the
information theory index can give results that conflict with
our intuitions about the meaning of income segregation, and
suggests an alternative index based on the Kullback–Leibler
(KL) divergence, called the divergence index.

Both of these indices require as inputs tract-level income
distributions for each census tract within a given metro area.
The Reardon and Bischoff (2011) analysis relied on decennial
census data, which provides detailed distributional information
at the tract level and has no associated survey error. Since the
elimination of the decennial census long form, this information
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is no longer available, and instead data usersmust rely onAmer-
ican Community Survey (ACS) estimates with associated stan-
dard errors. The ACS provides fairly detailed information about
tract-level income distributions in the form of bin estimates;
that is, estimates of the proportion or number of households
in a given census tract with an income in a small number of
income bins. For example, Table A.1 in Appendix A of the
supplementary materials contains 2015 ACS 5-year period bin
estimates for several census tracts in Boone County, MO.

Our goal is to use these and other estimates of features of
the tract-level income distributions to estimate each tract-level
income distribution. Then, in turn, we use these distributions
to construct both income segregation indices and reproduce a
portion of the Reardon and Bischoff (2011) analysis using both
indices and more recent ACS data. Specifically, we assess the
degree to which the Gini index, a measure of income inequality,
predicts income segregation as measured by both indices at the
household level, and at the household-race level. The regressions
we fit to study this relationshipmust account for the uncertainty
in the ACS estimates we use as covariates, as well as in the
estimated indices we use as responses. We fit error-in-variables
(EIV) regressions to account for this uncertainty and find that
the two indices substantially disagree about the relative ranking
ofU.S.metro areas in terms of income segregation. Additionally,
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we find that the information theory index tends to understate
the relationship between income inequality and income segre-
gation relative to the divergence index. Ultimately, understat-
ing the negative effects of having a low income may impact
the degree to which desegregation with respect to income
could solve problems of inequality (e.g., see https://www.census.
gov/library/stories/2018/10/opportunity-atlas.html and the ref-
erences therein).

Our methodological contribution is to construct tract-level
income distributions using only ACS estimates of features of
those distributions. Many authors use a method called the
“Pareto-linear procedure” (PRLN) to construct these distribu-
tions using bin estimates, typically as an intermediate step to
obtain an estimate of the Gini index, for example, Jargowsky
(1996), Nielsen and Alderson (1997), Hipp (2007a, 2007b),
Moller, Alderson, and Nielsen (2009), Hipp et al. (2013), and
Braithwaite (2015), among others. PRLN assumes that income
is uniformly distributedwithin bins that include or are below the
median, and Pareto distributed in bins above the median, with
some exceptions to handle special cases. The methodology is
well-established, and is effective for incomedistributions (Miller
1966; Aigner and Goldberger 1970; Kakwani and Podder 1976;
Spiers 1977; Henson and Welniak 1980; Welniak 1988).

However, PRLN suffers from several limitations, especially
with respect to our problem. First, PRLN does not quantify
uncertainty about the income distribution—it only provides a
point estimate. Thus, confidence intervals and standard errors
are not available for estimates of the Gini index or segregation
indices based on PRLN. Second, PRLN is only able to use bin
estimates. The ACS provides many other estimates of features
of the income distribution including quantiles, income shares,
and the Gini index. Taking these into account should result in
more accurate estimates of the income distribution of interest.
Third, PRLN does not take into account the standard error
associated with the estimates that it does use. This is under-
standable given that PRLN was designed to be used with decen-
nial census data. However, if data users ignore the standard
errors in ACS data, their analyses will understate uncertainty
(to the extent they quantify uncertainty at all) and potentially
be biased.

We solve these three issues with PRLN by taking a latent
density estimation approach based on PRLN, which we call
latent PRLN (L-PRLN). This approach is able to take into
account multiple diverse types of estimates associated with
a given distribution, and naturally accounts for the inherent
uncertainty associated with the estimates used by the model.
These estimates are estimates of functionals of the latent tract-
level income distributions, so our model borrows elements
from functional data analysis (FDA)—see for example, Ramsay
and Silverman (2005), Ferraty and Vieu (2006), and Kokoszka
and Reimherr (2017) for overviews. However, our case differs
from the usual FDA case because the latent functions we are
attempting to estimate are probability distribution functions
(PDFs), or equivalently any function that uniquely determines
the latent probability distribution such as a cumulative distri-
bution function (CDF) or quantile function. This puts con-
straints on the latent function that are not typical for FDA,
and necessarily implies a different modeling strategy. There
are several small area estimation (SAE) approaches concerned

with estimation of income and other related quantities (such
as poverty or per capita household expenditures etc.) Never-
theless, these are typically unit-level models that directly use
income (or other proxy variable) (e.g., see Battese, Harter, and
Fuller 1988; Elbers, Lanjouw, and Lanjouw 2003; Marchetti,
Tzavidis, and Pratesi 2012; Molina and Rao 2010; Tarozzi and
Deaton 2009; Tzavidis et al. 2008, among others) or area-
level models (e.g., see Fay III and Herriot 1979) that use a
direct estimator of income as the model inputs. In contrast,
our model uses features of the income distribution as the
model inputs rather than income (or another proxy variable)
directly. Specifically, we can not fit the SAE models previously
listed based on the information that encompasses our model
inputs.

Similarly, our approach is also related to the literature on
density estimation. Themost popular approach is kernel density
estimation (e.g. Scott 2015), but this approach does not directly
apply to our setting since we do not have observations drawn
from the distribution of interest. Another approach is log splines
(Kooperberg and Stone 1992; Stone 1994), which is subject to
the same criticism for our problem. In essence, however, our
model is fundamentally inspired by PRLN and can bemotivated
from that perspective. The choice of PRLN as a starting point
for our model was in part based on computational convenience
as well as its semiparametric specification. Nevertheless, other
parametric alternatives could also be considered, for example,
see Singh andMaddala (1976) andDagum (1977) among others.
However, purely parametric approaches may be less flexible
across a broad array of applications.

The remainder of the article is organized as follows. In Sec-
tion 2 we begin by describing the ACS and available estimates
of features of the income distribution, then in Section 2.1 we
describe PRLN, and use it to motivate L-PRLN in Section 2.2.
In Section 3 we compare L-PRLN and PRLN in a pair of tests.
First, in Section 3.1 we conduct a simulation study where we
repeatedly sample from a fixed synthetic population and fit both
models to each sample. Second, in Section 3.2we fit bothmodels
to ACS data and compare model-based estimates to held-out
direct estimates of various features of the income distributions.
Next, in Section 4, we return to the income segregation index
problem. Here we describe both indices, estimate both of them
using ACS data, then use both in a partial reproduction of the
analysis of Reardon and Bischoff (2011) using more recent ACS
data. Finally, in Section 5, we discuss our results and conclude.
Supplementary material includes several appendices referenced
in the article.

2. American Community Survey andModel
Motivation

The U.S. Census Bureau administers the ACS to produce a
variety of annually released data products used by public and
private institutions. There are two main types of data products.
First, ACS estimates of various quantities are tabulated and pub-
lished for several geographies, including census tracts, counties,
states, and national. Second, raw data files in the form of Public-
Use Microdata Samples (PUMS) are released to the public.
The PUMS are organized into PUMAs (Public-Use Microdata
Areas), and they contain a weighted sample of households and
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of residents living in each PUMA; more detailed location infor-
mation about these residents and households is not available due
to disclosure limitations. Each PUMA is designed to contain
around 100,000 people, and census tracts are nested within
PUMAs.

The PUMS sample in a given PUMA for a given period is
a subset of the full ACS sample for that same area and period,
and the sample weights in the PUMS are not the same as
the weights used to construct the ACS estimates (U.S. Census
Bureau 2017a). Both the ACS estimates and PUMS are currently
published based on one and five years of the survey, known
as 1-year and 5-year period estimates and PUMS, respectively.
Though areal units with less than 65,000 people only have
published 5-year period estimates, in previous years areal units
with at least 20,000 people also had published 3-year period
estimates (U.S. Census Bureau 2014).

At the PUMA level, the PUMS provides detailed distribu-
tional information about a wide variety of variables measured
on households and individuals. At the tract level, however, only
a set of specific estimates are available. Many variables only
have basic summary statistics published, such as means. Some
variables, such as household income or age of householder, have
more detailed information available, though not necessarily
the information a data user is interested in. In 2015 the ACS
published the following 5-year tract-level income distribution
period estimates: mean income, median income, Gini index
of income, the 20th, 40th, 60th, 80th, and 95th percentiles of
income, income shares of each quintile and the top 5% of the
income distribution, and the proportion of households with
incomes in 12 income bins defined by the following breaks:
$5000, $10,000, $15,000, $20,000, $25,000, $35,000, $50,000,
$75,000, $100,000, $150,000, and $200,000 (U.S. Census Bureau
2017d, 2017e, 2017f, 2017g, 2017h). Each tract-level estimate
also has a corresponding margin of error (MOE) so that
estimate ± MOE determines a 90% confidence interval, and
MOE/1.645 is the standard error of the estimate.

2.1. The Pareto-Linear Procedure

The fundamental problem is to estimate a density π using
estimates of various features of that density. PRLN does this by
only using the bin estimates. Let k = 1, 2, . . . ,K index bins, and
let κ1 = 0 < κ2 < · · · < κK < κK+1 = ∞, denote the
bin boundaries, which we will refer to as knots. Then the PRLN
density is given by

π(x) =
K∑

k=1
pkfk(x). (PRLN density) (1)

where pk is the probability associated with bin k, and fk is the
probability density within bin k, with support (κk, κk+1], except
in the uppermost bin where fK has the support (κK ,∞). Let k∗
denote the index of largest knot below the median according to
the bin estimates. Then the PRLN density defines the fks via

fk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

κk+1−κk
× 1(κk < x ≤ κk+1) if k ≤ k∗ ,

αkκ
αk
k x−αk−1

1−
(

κk
κk+1

)αk × 1(κk < x ≤ κk+1) if k∗ < k < K ,

αkκ
αK
k x−αk−1 × 1(κK < x) if k = K .

(2)

The unknown parameters of the model, which need to be
estimated, are the knot probabilities, p = (p1, p2, . . . , pK), as
well as the Pareto parameters, α = (αk∗+1,αk∗+2, . . . ,αK).

PRLN estimates the pk’s with the associated bin estimates,
which we will denote by bk for k = 1, 2, . . . ,K. Then PRLN
estimates the Pareto parameters as follows. Let Bk = ∑K

i=k bi
for k = 1, 2, . . . ,K. The initial PRLN estimate for αk is given by

α̂k = log(Bk/Bk−1)/ log(κk/κk−1).

If α̂k ≤ 1, then in the truncated Pareto bins, PRLN reverts to
a uniform distribution. In the uppermost bin, which is untrun-
cated Pareto distributed, PRLN instead tries to use α̂K−1, that is,
the α̂ from the bin just below it, as long as that bin was truncated
Pareto distributed. If α̂K−1 ≤ 1, then it tries to use α̂K−2, and
so on, until it reaches the last Pareto distributed bin. If it runs
out of Pareto bins in this manner, then PRLN assumes that the
uppermost bin is a point mass at the lower bound.

The PRLN density a judicious choice because there is not
much information about the income distribution between the
boundaries of the bins defining the bin estimates. This makes it
difficult to estimate a large number of pk’s, or a larger number
of parameters associated with the fk’s. The chosen knots help to
minimize the number of pk’s as much as possible, and by assum-
ing uniform distributions within the lower bins, PRLN further
reduces the number of parameters to estimate. Additionally,
since income distributions are known to have approximately
Pareto right tails the Pareto bins are likely to fit well.

2.2. L-PRLN: A Semiparametric Latent DensityModel

Despite its effectiveness, PRLN suffers from three major flaws
for our purposes. It cannot quantify uncertainty and only pro-
vides point estimates, it cannot take into account all available
estimates of features of the income distribution, and it does not
take into account the standard error associated with the ACS
estimates. Our key innovation to solve these problems is to treat
the density as latent, and the published estimates as estimations
of functionals of that density with some associated error.

Let u = 1, 2, . . . ,U index the available published estimates,
for example, from the ACS, let qu denote the estimate and Su its
standard error, and let Qu(·) denote the functional that takes a
probability distribution and returns the value of the estimand for
that distribution. For example, if qu is an estimate of the mean,
Qu(π) = Eπ [X]. Typically a central limit theorem applies for
the estimates, so we assume

qu|π , Su ind∼ N(Qu(π), S2u) (data model) (3)

for u = 1, 2, . . . ,U. The estimate errors are correlated, but
these correlations are not available in the ACS, and in general
are rarely publicly available. When they are available, (3) can
be modified appropriately to take into account the full error
covariance matrix.

Next, we need a model for π . In theory, the class of densities
used by log spline density estimation (Stone 1994) or kernel
density estimation (Scott 2015) could be used here, but a funda-
mental constraint is that we need to be able to compute Qu(π)

quickly formany differentQus, including, for example, themean
of the density. Instead we use the PRLN density defined in (1)
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and (2). As long as αK > 1, then the CDF, quantile function,
mean, income shares, and Gini coefficient of the PRLN density
are all available in closed form. If αK > 2 then additionally
the variance is available in closed form. See Appendix B, sup-
plementary materials for formulas for each of these functionals.

By treating the PRLN density as latent, we are able to solve
all three limitations of PRLN. We easily take into account the
standard errors and propagate that uncertainty into our esti-
mates of the latent population and any distributional features of
interest. Additionally, we are able to take into account a much
wider variety of available estimates of features of the income
distribution.

2.3. Estimation and Interpolation

To construct estimates of any feature of the distribution of
interest, including interpolating between the endpoints of the
bins, we will use the Bayesian posterior predictive distribution
for the latent population in the area of interest. This allows us to
construct a posterior distribution for any distributional feature
of interest—even when the feature is an intractable integral
with respect to π—so long as it can be easily computed for a
finite population and we can easily simulate from π conditional
on its parameters. Additionally, it allows us to partially take
into account the fact that the latent population is finite. We
can even relax the finite population requirement so long as the
distributional feature can be easily computed as a function of the
model parameters.

We first must sample from the posterior of θ to be able to
sample from the posterior predictive distribution. We do this
using the No-U-Turn Sampler (NUTS; Hoffman and Gelman
2014), a variant ofHamiltonianMonteCarlo (HMC;Neal 2011).
One reason for this choice is that conditional conjugacy in a
Gibbs sampler is hopeless due to the form of the Qus. Addi-
tionally, NUTS tends to be more robust and efficient than other
MCMCoptions evenwhen conjugacy relationships are available
(Betancourt and Girolami 2015). We use the software package
Stan (Gelman, Lee, and Guo 2015; Stan Development Team
2016) to perform NUTS. NUTS requires the log-posterior and
thus log-likelihood be available in closed form, up to an additive
constant. The log-likelihood is implied by (3) with the Qus
defined in Appendix B, supplementary materials.

To construct the posterior predictive distribution of the latent
population, let N denote an estimate of the population of the
area of interest, for example, from the ACS. Let i = 1, 2 . . . ,N
index the latent population, let Yi denote the ith latent income,
and let θ denote the full vector of unknown parameters. Then
for each posterior sample θ (m), m = 1, 2, . . . ,M we generate
the latent population via

Y(m)
i |θ (m) iid∼ πθ (m) (posterior predictive distribution) (4)

for i = 1, 2, . . . ,N and m = 1, 2, . . . ,M. This is easily
performed in a two step process. First, generate the bin the
observation belongs to using (p(m)

1 , . . . , p(m)
K ) where pk denotes

the probability of bin k. Then conditional on bin k being chosen,
Y(m)
i is generated from the density within that bin, fk, condi-

tional on θ , or more precisely the elements of θ that determine
fk. Then the posterior distribution of any feature of the latent

distribution of income can be obtained as a function of Y(m) =
(Y(m)

1 ,Y(m)
2 , . . . ,Y(m)

N ) form = 1, 2, . . . ,M.
In principle, the standard error of N can be taken into

account by treating the true size of the population as an
unknown, denoted by η, with estimate N and standard errorH.
Then for each draw from the MCMC sampler, a new value of η
can be drawn via

η(m) iid∼ N(N,H2).

Subsequently, Y(m)
i can be drawn via (4) for i = 1, 2, . . . , η(m).

We do not use this approach here and, instead, treat the tract-
level population estimates as the truth since it is unlikely to have
a major impact on the results, but in cases where the population
estimates are near zero and their standard errors are large, itmay
be worthwhile.

2.4. Inverted Quantile Estimates

To be able to use gradient based estimation methods such
as NUTS, we use the delta method to “invert” the quantile
data model. Suppose q is an estimate of the τ th quantile,
�−1(τ ), with standard error S. We originally assumed that q ∼
N(�−1(τ ), S2). Using the deltamethodwe obtain (5) as the data
model for the corresponding inverted quantile estimate, τ ,

τ |π , q, S ∼ N

(
�(q),

[
S

π(q)

]2)
. (5)

Since π depends on several unknown parameters, NUTS is
more difficult because it creates hard to eliminate divergences
(see e.g., Betancourt and Girolami 2015). So we plug in an
estimate of π(q) using a modification of the original PRLN. See
Section 2.1 for a description of PRLN’s estimation process. We
modify PRLN in two ways. First, our initial estimate of αk is

α̂k = log
(

Bk + 0.0001
Bk−1 + 0.0001

)/
log(κk/κk−1)

to prevent bins estimates of zero fromcausing problems. Second,
instead of using a point mass as a last resort in the uppermost
bin, we instead use α̂K = 1.0001. This is more realistic, and
should result in a more accurate standard error, for example, for
τ = 0.95. Note that for quantiles which are in bins that are uni-
form distributed, our plug-in estimate is π̂(q) = bk∗/(κk∗+1 −
κk∗) where k∗ is the index of the closest knot from below to q,
and bk∗ is the corresponding bin estimate.

2.5. Priors

To complete the model, we need to choose priors for the pks
and the αks. An extremely “uninformative” prior for p can cause
problems for MCMC, so we opt for a weakly informative prior.
Note also that the bins are not designed so that we would expect
them to be equally probable a priori. Thus, we center p on the
ACS 5-year period bin estimates for the entire United States,
from the same year as the tract-level estimates, using a Dirichlet
prior. Let g denote the country-level estimates, and let t denote
a scale hyperparameter, then we assume

p ∼ Dirichlet(g/t).
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The value of t encodes the level of prior certainty that g is
the true value of p. A value of t ≥ 1 is ideal since we do
not necessarily expect g to be close to p with a high degree
of certainty, but this must be balanced against computational
considerations. When an element of p is close to zero in the
posterior, this can cause problems for NUTS. See Section 5 for
a discussion of this issue. As a result, we use a value of t = 1/10
which regularizes p away from zero.

For the αk’s, we restrict the prior mass to be above one so that
the untruncated Pareto distribution in the rightmost bin has a
well-defined mean. Note that αk > 2 is necessary to ensure a
well-defined variance if a user wants to include estimates of the
second moment of the income distribution in the data model.
Nevertheless, we assume that the αk’s are iid truncated normal
distributed as

αk
iid∼ N(2, 12)1(αk > 1).

In practice we have found using PRLN that the tail bins tend to
have estimated αk’s between around one and three, with smaller
values in bins further in the right tail. In general, there is not
much information in the data to learn the Pareto parameters,
so this prior provides some useful regularization to help with
model estimation.

3. Evaluation of L-PRLN

As mentioned above, the goal of the L-PRLN methodology
as presented here is to provide estimates of income segrega-
tion indices and their uncertainty for ACS data, taking into
account the survey errors and multiple data sources. Although
the standard PRLN methodology cannot account for multiple
and uncertain data sources, and only provides point estimates,
it is useful to see how the L-PRLN approach compares to
PRLN when considering only point estimates of income dis-
tributions. Thus, we consider two specific cases. First, in Sec-
tion 3.1, we design a simulation study using a synthetic popu-
lation generated over the Boone County, MO PUMA (Public-
use Micro Area) and its census tracts. We repeatedly sam-
ple from this population and create synthetic tract-level ACS
estimates, which we use to fit both PRLN and L-PRLN, and
then evaluate them based on predictions of various features
of the tract-level distributions. Then, in Section 3.2, we use
our modeling framework to estimate U.S. census tract-level
income distributions using 2015 ACS 5-year period estimates
associated with features of tract-level income distributions,
and compare these to held out estimates to evaluate PRLN
and L-PRLN.

Both of these exercises are designed to make a “fair” compar-
ison between PRLN and L-PRLN. That is, recall that compared
to PRLN, L-PRLN is able to use more of the available estimates,
account for the uncertainty in those estimates, and provide
uncertainty quantification. These are necessary properties to
solve our income segregation problem. However, it is important
to emphasize that here we compare the performance of L-PRLN
to PRLN based only on point estimates, and restrict L-PRLN to
use amuchmore limited subset of the estimates than it is capable
of incorporating.

3.1. Simulation Study

We construct a synthetic population for our simulation study,
and repeatedly sample from it using a stratified random sample
based on the strata defined by the 2014 PUMS. We do not fully
describe how the synthetic population is generated here; instead,
see Appendix C of the supplementary materials for a detailed
description. Additionally, the R code (R Core Team 2020) used
to generate the population is included in the supplementary
materials. Figure A.2 in the supplementary materials contains
maps of the true tract-level means, medians, and standard devi-
ations of income for the synthetic population.

Similar to the real ACS, approximately 10% of the population
is sampled without replacement, and the sample size of each
stratum is proportional to its sample size in the PUMS. Then the
synthetic ACS estimates are created using the sample and asso-
ciated weights in each tract, and the associated standard errors
are created using successive difference replication (Judkins 1990;
Fay and Train 1995), the method used in the ACS (U.S. Census
Bureau 2017b, 2017c). We construct bin estimates, median esti-
mates, andmean estimates in order to fit themodels.We use the
same 12 bin estimates that are available in the ACS, defined by
the following breaks: $5000, $10,000, $15,000, $20,000, $25,000,
$35,000, $50,000, $75,000, $100,000, $150,000, and $200,000.
We also construct each fifth percentile estimate (5th, 10th, etc.)
as well as the Gini index so that we can compare them tomodel-
based estimates of the same quantities.

Then we fit L-PRLN using Rstan (Stan Development Team
2016) to do MCMC via NUTS with four chains, and after a
warm-up of 4000 iterations per chain for tuning and burn-in,
a further 4000 iterations per chain were kept as draws from
the posterior distribution. Both the mean and the median of
the posterior predictive distribution for each percentile were
taken as model-based estimates. Additionally, we fit PRLN on
the synthetic bin estimates. This yields four estimates of each
percentile: the mean and median of the L-PRLN posterior pre-
dictive distribution, constructed as in Section 2.3; the PRLN
estimate; and the direct estimate. We computed the following
four metrics for all four estimates: root mean square error
(RMSE), mean absolute deviation (MAD), root mean square
percentage error (RMSPE), and mean absolute percentage error
(MAPE). All four metrics were computed over all iterations of
the simulation study and all tracts of the synthetic population
simultaneously.

Tables 1 and 2 display each of these metrics, expressed as
a percentage of the same metric for the corresponding direct
estimates. For example, PRLN had an RMSE for the 5th per-
centile 0.60% lower than that of the direct estimate, while it
had a MAD for the 5th percentile 1.55% higher than that of
the direct estimate. Note that the direct estimates are what our
hypothetical data user would like the ACS to publish, but they
are not available.

In the lower portion of the income distribution, the PRLN
estimate does the best according to most metrics, while the L-
PRLN posterior median outperforms the posterior mean. In the
middle of the distribution this completely reverses: PRLN does
the worst, and the posterior mean outperforms the posterior
median. In the upper portion of the distribution but still under
the 90th percentile, PRLN does the best again, but the posterior
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Table 1. Percentage difference in a variety of metrics between several estimates and the direct estimates for the first half of the income distribution.

Estimator P5 P10 P15 P20 P25 P30 P35 P40 P45 P50

MAD P. Mean 8.58 15.38 17.86 15.24 14.80 11.08 −2.00 −10.45 −11.25 −7.21
P. Median 6.67 10.64 12.02 10.20 11.20 9.51 0.91 −6.27 −8.25 −5.63
PRLN 1.55 −1.41 −2.31 −4.80 −2.94 −1.80 −3.03 −4.81 −4.00 −1.15

MAPE P. Mean 3.90 12.99 15.37 12.14 13.17 10.51 −0.43 −7.98 −9.96 −6.44
P. Median 3.50 8.40 9.60 6.86 9.98 8.44 2.25 −4.01 −6.84 −4.69
PRLN −0.83 −1.35 −2.22 −5.62 −2.42 −2.39 −2.73 −4.29 −3.92 −1.02

RMSE P. Mean 7.61 17.94 23.53 20.07 13.43 7.09 −4.98 −11.71 −12.43 −9.78
P. Median 6.43 12.86 17.14 15.59 11.05 7.20 −1.60 −7.32 −9.29 −7.77
PRLN −0.60 −2.98 −2.36 −3.94 −3.75 −2.95 −4.41 −4.76 −3.88 −2.17

RMSPE P. Mean 2.67 14.64 19.55 16.63 12.91 8.11 −1.35 −7.34 −9.91 −8.22
P. Median 2.73 9.82 13.43 11.81 10.24 7.64 1.43 −3.27 −6.74 −6.05
PRLN −3.34 −2.59 −2.10 −4.31 −3.28 −3.18 −3.83 −4.03 −3.68 −1.97

NOTE: The estimates considered include the original Pareto-linear procedure (PRLN) the posterior predictive mean from L-PRLN (P. Mean), and the posterior predictive
median from L-PRLN (P. Median). Negative numbers indicate that the method is doing better than the direct estimates.

Table 2. Percentage difference in a variety ofmetrics between several estimates and the direct estimates for the last half of the income distribution and the Gini coefficient.

Estimator P55 P60 P65 P70 P75 P80 P85 P90 P95 Gini

MAD P. Mean −3.95 −0.08 −0.60 0.91 2.56 7.38 3.52 −1.61 −1.71 14.58
P. Median −2.49 1.85 1.75 −0.08 5.03 10.49 6.25 0.87 5.07 12.14
PRLN −1.79 −3.17 −6.32 −4.27 −2.77 −0.00 −2.60 0.45 38.89 9.46

MAPE P. Mean −4.26 −0.75 −0.84 −0.12 1.17 5.93 2.84 −1.68 −1.85 15.19
P. Median −2.80 0.92 1.96 −1.20 3.91 8.59 5.46 0.85 4.93 12.68
PRLN −1.71 −2.85 −5.62 −3.59 −3.43 −0.95 −2.62 0.10 37.59 9.71

RMSE P. Mean −5.62 −2.61 −2.26 −2.66 −3.00 1.48 −2.48 −6.52 −8.79 10.55
P. Median −3.52 −0.20 −0.40 −2.50 −1.25 4.08 0.26 −3.66 −3.91 9.17
PRLN −2.12 −3.63 −5.70 −5.04 −4.68 −2.34 −4.08 5.25 57.91 8.96

RMSPE P. Mean −5.95 −3.69 −2.89 −4.17 −4.57 −0.47 −3.56 −6.66 −9.26 11.19
P. Median −4.05 −1.53 −0.66 −3.90 −2.53 1.70 −1.11 −3.82 −4.36 9.74
PRLN −2.05 −3.12 −4.51 −4.03 −5.43 −3.53 −4.34 3.76 53.92 9.35

NOTE: The estimates considered include the original Pareto-linear procedure (PRLN) the posterior predictive mean from L-PRLN (P. Mean), and the posterior predictive
median from L-PRLN (P. Median). Negative numbers indicate that the method is doing better than the direct estimates.

mean still outperforms the posterior median. In the 90th per-
centile, the posterior mean performs the best, while PRLN
performs the worst. In the 95th percentile the same pattern
holds, but PRLN performs disastrously bad. This is because if
PRLN cannot guarantee an estimate for an α that is greater than
one in the top bin, it assumes the bin is a point mass on the
bin minimum. See Section 2.1 for details. This can drastically
hurt PRLN’s predictions in the upper tail, which we see here. L-
PRLN does not have this problem since each α is constrained
to be greater than one and is regularized away from one by
the prior.

So in general, the best performing point-estimate depends
on which region of the income distribution the data-user cares
about. For the middle of the distribution or the far right tail, L-
PRLN is superior, but everywhere else PRLN is superior. PRLN
performs the best for the Gini coefficient, with the posterior
median outperforming the posterior mean. For other measures
of inequality and other functionals of the income distributions,
which estimate performs best will depend on how much they
load on different regions of the income distribution. Note that
this comparison deliberately limited L-PRLN by preventing it
from using all of the available estimates—estimates that PRLN
cannot use.

It is also important to emphasize that L-PRLN provides
uncertainty estimates, which are unavailable in PRLN. As an
illustration, Table 3 presents the coverage rates of 95% credible
intervals for every 5th percentile, as well as the Gini coefficient.

Table3. Coverage ratesof 95%credible intervals fromthe tract levelmodel for each
quantity of interest, averaged over tracts.

Estimand Population PRLN Estimand Population PRLN

P5 0.92 0.86 P55 0.79 0.60
P10 0.90 0.81 P60 0.79 0.62
P15 0.89 0.78 P65 0.82 0.69
P20 0.90 0.75 P70 0.80 0.71
P25 0.90 0.74 P75 0.80 0.72
P30 0.89 0.73 P80 0.81 0.73
P35 0.88 0.71 P85 0.85 0.76
P40 0.87 0.69 P90 0.85 0.79
P45 0.85 0.65 P95 0.88 0.75
P50 0.82 0.63 Gini 0.95 0.84

NOTE: Coverage rates are computed taking the true population value as the ref-
erence value (Population), and taking the PRLN estimate as the reference value
(PRLN).

Two coverage rateswere computed, onewith the true population
as reference values and onewith the PRLNestimates as reference
values. The first comparison shows that L-PRLN’s intervals
slightly undercover the truth; that is, the 95% credible intervals
cover about 80%–90% of the time, but with better coverage
in the lower portion of the income distribution. Note that L-
PRLN has better coverage precisely where its point estimates
do the worst. The second comparison shows that the PRLN
measures in the lower part of the distribution are largely con-
tained in the L-PRLN’s 95% credible intervals. More precisely,
L-PRLN’s estimate and PRLN’s estimate for a given percentile
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were statistically indistinguishable at least 60% of the time. This
is an underestimate since it does not account for uncertainty in
the PRLN estimates, but the statistical properties of PRLN are
unknown.

3.2. Application to the American Community Survey

We fit PRLN and L-PRLN to 2015 ACS 5-year period estimates
of features of tract-level income distributions for all tracts in
five separate PUMAs: PUMA 821 in Colorado (a wealthy rural
PUMA south of Denver), PUMA 3502 in Illinois (a wealthy
PUMA in the northern portion of Chicago), PUMA 600 in
Missouri (Boone County, MO, a college town and rural outly-
ing areas), PUMA 600 in Montana (a sparsely populated rural
PUMA), and 3706 in New York (a poor urban PUMA in New
York City). Figure A.3 in the supplementary materials contains
maps of each PUMA and each of their Census tracts, shaded
according to the 2015 ACS 5-year period estimate of median
household income.

We fit the models using each of the bin estimates described
in Section 2, as well as the mean and median estimates. We
held out estimates of the 20th, 40th, 60th, 80th, and 95th per-
centile, as well as the Gini coefficient to validate the models.
To fit each model we used Rstan (Stan Development Team
2016) to do MCMC via NUTS with four chains, a warm-up of
4000 iterations per chain for tuning and burn-in, and a further
4000 iterations per chain were kept as draws from each model’s
posterior distribution.

For L-PRLN, we construct the posterior predictive mean and
median for each estimand, as in Section 2.3. We compare each
of these estimates as well as estimates from PRLN to each of the
held out estimates using the same four metrics as in Section 3.1:
RMSE, RMSPE, MAD, and MAPE, all computed across tracts.
Tables D.1 –D.5 of the supplementary materials contain these
metrics for each of the five PUMAs we considered. Note that
for some tracts, some of the held out estimates were missing—
particularly the 95th percentile, and mainly in the IL PUMA.

For most estimands in most tracts, and according to most
metrics, L-PRLN does about the same or slightly worse than
PRLN. The main exceptions are in either tail of the distribution,
where for some tracts the difference between PRLN and L-
PRLN ismoremagnified. L-PRLN especially has trouble relative
to PRLN in the lower tail. On the other hand, L-PRLN often
performs better than PRLN for the Gini coefficient, and in
particular in the IL PUMA it performs much better for the
95th percentile and consequently for the Gini coefficient. This is
due to the phenomenon discussed in Section 3.1, where PRLN
sometimes significantly incorrectly estimates the distribution
in the upper bin. Additionally, in the CO PUMA, the L-PRLN
outperforms PRLN in the middle of the distribution.

4. Income Segregation Indices

Now we turn to our motivating problem: estimating income
segregation indices using ACS data. Households are segregated
by income to the extent that households with similar incomes
choose to live near each other. Tomeasure this, Reardon (2011);

Reardon and Bischoff (2011) construct the rank-order informa-
tion theory index. The basic idea of the index is to construct
an entropy measure of the income distribution for an entire
metro area, and then construct the samemeasure for the income
distributions for each census tract in the metro area. Then the
index is a weighted sumof the relative differences in this entropy
measure between each tract and the metro area.

Formally, let Fi(y) denote the CDF of income for census tract
i, where i = 1, 2, . . . , I indexes all census tracts in a given metro
area. Thenwe assume that the income distribution for themetro
area, denoted by F(y) = ∑I

i=1 wiFi(y), is a population weighted
mixture of the tract-level income distributions, where wi is the
proportion of the metro area’s population in tract i. Next, define
E(G||F) as the integrated binary entropy from the CDF F to the
CDF G, that is,

E(G||F) =
∫ ∞

−∞
e[F(y)]dG(y) (6)

where e(p) = −p log(p) − (1 − p) log(1 − p) is binary entropy.
Then the rank-order information theory index, denoted by HR,
can be defined as

HR =
I∑

i=1
wi

E(F||F) − E(F||Fi)
E(F||F)

. (7)

Since HR is based on entropy, it is better understood as a
measure of the differences in diversity of the income distribu-
tions between the tract-level and metro-level (Roberto 2015).
Indeed, the following example illustrates the point. Suppose that
households in the metro area only have one of two incomes:
y = 30,000 and y = 100,000. In the entire metro area P(y =
30,000) = 2/3, while in tract i, Pi(y = 30,000) = 1/3. Then for
tract i we have

E(Fi||F) = −e[Fi(30, 000)]P(y = 30, 000)
− e[Fi(100, 000)]P(y = 100, 000)

= −e[1/3]2
3

− e[1]1
3

= −e[2/3]2
3

= E(F||F)

since e(p) = e(1 − p). So tract i contributes nothing to
the metro area’s segregation index even though it has a much
higher concentration of rich households than the entire metro
area.

To remedy this, Roberto (2015) proposes the KL divergence
index. Let f denote the PDF associated with F above, and simi-
larly for fi and Fi. Then the KL divergence index can be defined
as

D =
I∑

i=1
wiD(fi||f ), D(g||f ) =

∫ ∞

−∞
log

g(y)
f (y)

g(y)dy (8)

where D(g||f ) is the KL divergence from the PDF f to the
PDF g. In other words, the divergence index is the population
weighted sum of the divergences from the metro-level income
distribution to each of the tract-level distributions.
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Table 4. Posterior summaries of raw EIV regression coefficients for the Gini index.

Households Mean SD 2.5% 25% 50% 75% 97.5%

Information theory index
All 0.427 0.058 0.313 0.389 0.427 0.467 0.540
Black −0.079 0.125 −0.328 −0.161 −0.078 0.004 0.164
White 0.145 0.111 −0.072 0.071 0.146 0.220 0.366

Divergence index
All 0.763 0.157 0.458 0.657 0.762 0.868 1.074
Black 1.403 0.742 −0.036 0.899 1.402 1.898 2.872
White 0.683 0.240 0.207 0.523 0.683 0.843 1.155

4.1. Correlates of Income Segregation

Reardon andBischoff (2011) investigate the correlates of income
segregation asmeasured byHR. In particular, they are interested
in whether income inequality, as measured by the Gini index, is
correlated with income segregation. They consider the largest
100 metro areas in the United States by population, and fit a
variety of regression models controlling for various covariates.
We focus on a portion of their Table 4, which reports the results
of severale regression models, of which we focus on three: one
for all families, one for black families only, and one for white
families only. In these models they control for the year of the
census, various metro-year and race-metro-year covariates, and
include metro fixed effects. They find a stable positive relation-
ship between the Gini coefficient and HR. Further, the strength
of this relationship is about the same for white families alone
as it is for black families alone. Our aim is to attempt to rerun
these regressions using recent ACS data, then run them again
replacing HR with the divergence index.

Since we use ACS data, our controls and data differ in sev-
eral ways in general. First, we use the top 100 metro areas by
population according to the 2018 ACS 5-year period estimates
of population. This list may not be identical to the list used
by Reardon and Bischoff (2011). Second, we use ACS estimates
for households instead of families because more of the required
variables are available, thoughReardon and Bischoff (2011) note
that they would have preferred to do a household level analysis,
but it was not possible due to data limitations. Finally, we only
use a single year of ACS 5-year period estimates. The ACS is
not old enough to have more than two years of nonoverlapping
5-year period estimates. We use the 2018 5-year period esti-
mates. 2013 5-year period estimates are also available, though
the definitions of several covariates differ across vintages. To
avoid this complication, we only use a single year of estimates.
This leaves us with no within-metro variation in any of the
three regression models, so we omit the metro area fixed effects.
Otherwise, we attempt to faithfully include every covariate in
the regression of Reardon andBischoff (2011) in our own regres-
sions. Appendix E of the supplementarymaterials describes how
each covariate was sourced from the 2018 ACS 5-year period
estimates, including how standard errors were constructed if
necessary. For black households and white households, two
covariates are not available: percentage of households with a
female householder, and the Gini index. We omit the female
householder covariate in the black households and white house-
holds regressions for this reason. However, we take advantage
of L-PRLN to construct the metro-level Gini index for black
households and white households only along with its standard

error using the available metro-race-level income estimates. See
Appendix F, supplementary materials for a description of how
this was performed.

To construct bothHR andD for a givenmetro area, we first fit
L-PRLN to the household ACS 5-year period estimates of vari-
ations features of the household income distribution for each
tract in thatmetro area. For the household income distributions,
we use bin estimates with the same boundaries as in Section 3.1,
mean and median estimates, estimates of the 20th, 40th, 60th,
80th, and 95th percentile, estimates of the income shares of the
quintiles of the income distribution as well as the top 5% of the
income distribution, and an estimate of theGini coefficient (U.S.
Census Bureau 2020a, 2020b, 2020c, 2020d, 2020e). For many
tracts, some of these estimates or their standard errors are not
available. For those tracts we proceed with whichever estimates
with standard errors are available. In all cases if the mean esti-
mate or its standard error was not available for the tract, or if the
ACS estimate of the population of households was less than 100,
the tract was omitted from the analysis. The same procedure
was applied to estimating the tract-level income distributions of
black households alone, and of white households alone, again as
long as there were at least 100 households of the given race in the
tract according to the ACS. The only available tract-race-level
household income distributionACS estimates are the bin,mean,
and median estimates. The same priors as in Section 2.5 were
used, except in the black households models, country-level bin
estimates for only black householdswere used to center the prior
on the bin probabilities, and similarly for the white households
models.

We cannot use the approach in Section 2.3 to estimateHR and
Dusing the L-PRLN incomedistribution estimates because both
HR and D will yield nonsensical results if each tract’s income
distribution does not have the same support. So instead we
treat both indices as a function of the underlying tract-level
parameters. Then we approximate the integrals in (6) and (8)
for each draw from the posterior distribution using importance
sampling techniques—see Appendix G for details. The result
of this process is that for a given metro area, we obtain a joint
posterior sample of the index and the standard error associated
with approximating the integrals. Our approach is the same for
computing HR and D by race in a given metro area.

4.2. Error-in-Variables Regression

To fit the regressions, we must contend with two complications
that were not present in Reardon and Bischoff (2011). First, the
response and each covariate of each regression is measured with
error, though in each case the standard error is known. Second,
instead of observing the response and its standard error, we
observe a sample from the joint posterior distribution of the
response and its standard error.

The solution to the first issue is an EIV regression; for
example, see Carroll et al. (2006), Arima et al. (2015), and the
references therein. But to use that, we first need to solve the
second problem using the variance decomposition formula. Let
θ denote all unknown parameters of the tract-level L-PRLN
models for a given metro area, let d∗(θ) denote a segregation
index as a function of those parameters, letd denote our estimate
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of that index, and let h(θ) denote the corresponding standard
error. Then conditional on themodel parameters we have d|θ ∼
N(d∗(θ), h2(θ)). Then we can write E[d] = E[d∗(θ)] and
var[d] = E[h2(θ)] + var[d∗(θ)]. Given a sample {(dm, h2m) :
m = 1, 2, . . . ,M} from the joint posterior of (d, h2(θ)), we can
approximate these quantities by

E[d] ≈ d = 1
M

M∑
m=1

dm

var[d] ≈ h2 = 1
M

M∑
m=1

h2m + 1
M − 1

M∑
m=1

(dm − d)2.

Then for simplicity we assume a simple measurement error
model using these quantities:

d ∼ N(d∗, h2),

where d∗ is the true underlying index. This approach works
for both HR and D, and allows us to completely reduce the
regression problem to EIV regression.

The EIV regression model we employ can be written as
follows. Let i = 1, 2, . . . , I indexmetro areas, let di denote either
segregation index for that metro area, and let hi denote its asso-
ciated standard error. Let xi denote a vector of covariates for the
metro area, with Si the associated (diagonal) error covariance
matrix. Further, let d∗

i and x∗
i denote the latent true values of

the index and covariates, respectively. Then the model is given
by (9)

di|xi, d∗
i , x∗

i ∼ N(d∗
i , h

2
i )

xi|d∗
i , x∗

i ∼ N(x∗
i , Si)

d∗
i |x∗

i ∼ N(α + (x∗
i )

′β , τ 2)

x∗
ij
ind∼ N(μj, σ 2

j ), (9)

for i = 1, 2, . . . , I, where j = 1, 2 . . . , J indexes covariates. To
complete the model we need priors on α, β , τ 2, the μjs, and the
σ 2
j s.
We specify priors on the standardized regression coefficients

for ease of interpretation and elicitation, and on the correspond-
ing standardized versions of all other parameters, that is, on
β̃j = βjsxj/sd, μ̃j = (μj − xj)/sxj , and σ̃j = σj/sxj for j =
1, 2 . . . , J, and on α̃ = (α − d + x′β)/sd and τ̃ = τ/sd. Using
this parameterization, we employ the independent priors listed
in (10)

α̃ ∼ N(0, 1002)

β̃j
iid∼ N(0, 32) for j = 1, 2, . . . , J

τ̃ ∼ N+(0, 0.82)

μ̃j
iid∼ N(0, 32) for j = 1, 2, . . . , J

σ̃j
iid∼ N+(0, 22) for j = 1, 2, . . . , J. (10)

The priors on the β̃j’s imply that for any covariate, we are 68%
sure that a one standard deviation change in the covariate will
result in no more than a three standard deviation change in the
response. The prior on α̃ implies that we are 68% certain that

the intercept will be within 100 sample standard deviations of
the response from the sample mean of the response. The half-
normal prior on τ̃ implies that we are 68% certain that the error
variancewill be nomore than 0.8 times the total sample variance
of the response. All of these priors are loose relative to typical
expectation of regressions in the social sciences, but still provide
a small amount of regularization.

The priors on the covariate means and standard deviations
are similarly loose, and can be thought of as empirical Bayes
priors. The priors on the μj’s are loosely centered on the sample
means of the xj’s, and the priors on the σj’s allow for a wide range
of variation around the sample standard deviations of the xj’s.

4.3. Results

Figures H.4, H.5, and H.6 in Appendix H, supplementary mate-
rials demonstrate that the divergence and information theory
indices substantially disagree about the relative ranking ofmetro
areas in terms of income segregation. This demonstrates that
Roberto’s (2015) criticism of the information theory index is not
merely a theoretical curiosity, but instead that there is significant
mismeasurement of income segregation. As a result, we should
expect the EIV regression results to differ as well.

Table 4 contains posterior summaries of the Gini index EIV
regression coefficient for each model fit—see Appendix H, sup-
plementary materials for detailed tables including every covari-
ate. In similar information index regressions, Reardon and
Bischoff (2011, Table 4) found that the regression coefficient on
the Gini index to be 0.56 for all families, 0.47 for black families,
and 0.45 for white families. Our regressions use more recent
household-level data, do not have exactly the same covariates,
and do not have metro fixed effects. Despite this, our results
for all households are broadly consistent with the results of
Reardon and Bischoff (2011) for all families. Our results for
black and white households are somewhat different. In both
cases the 95% credible intervals are much wider, and contain
zero. This is largely due to higher standard errors for the black
households and white households ACS estimates compared to
the standard errors of the all households ACS estimates. The
covariates simply contain less useful information for the black
households and white households regressions.

However, the Gini index regression coefficients also appear
to be much closer to zero for black households and white
households. The upper end of the 95% credible intervals do not
contain Reardon and Bischoff (2011)’s estimates, and for black
households the posterior mean and median are both negative.
This may be due to differences in model specification since our
black households and all households regressions are missing the
female head of household covariate since it is not available in the
ACS. Additionally, our regressions do not include metro area
fixed effects since we have only one year of data, though this
difference is present in the all households regressions as well.
That said, we take these regressions as a baseline to compare
with divergence index regressions using the same model speci-
fication.

The results for the divergence index are significantly dif-
ferent. The coefficient on the Gini index is larger in all cases,
though for making these comparisons the standardized coef-
ficients displayed in Table 5 is more meaningful—we also
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Table 5. Posterior summaries of standardized EIV regression coefficients for the
Gini index.

Households Mean SD 2.5% 25% 50% 75% 97.5%

Information theory index
All 0.566 0.076 0.414 0.515 0.565 0.618 0.714
Black −0.100 0.157 −0.412 −0.203 −0.098 0.005 0.207
White 0.138 0.106 −0.069 0.067 0.139 0.209 0.348

Divergence index
All 0.580 0.120 0.348 0.500 0.580 0.661 0.817
Black 0.379 0.200 −0.010 0.243 0.378 0.512 0.775
White 0.399 0.140 0.121 0.306 0.399 0.493 0.675

compute standardized versions of the regression coefficients
from Reardon and Bischoff’s (2011) Table 4 in Appendix H,
supplementary materials. In that case, the Gini index regres-
sion coefficient is similarly sized in the all households regres-
sions, though there is more uncertainty in the divergence index
regression. The Gini index coefficients in the black households
and white households regressions are once again smaller than
in the all households regressions, but this difference is much
less extreme for the divergence index than for the informa-
tion theory index. In fact, the 95% credible interval for white
households is strictly above zero, and for black households only
just contains zero inside the lower bound. Notably, the Gini
index appears to be positively associated with the divergence
index for black households only and white households only,
while the same is not true for the information theory index.
That is, there is enough uncertainty that we cannot rule out
that there is no meaningful difference between the divergence
index coefficients and the information theory index coefficients,
but this is evidence that the information index understates the
strength of the relationship between income inequality and
income segregation. This finding has significant subject-matter
implications. For example, Chetty et al. (2020) suggest that if
elite universities reduced parental income segregation by admit-
ting students in an income-neutral manner conditional on test
scores, this would reduce integenerational income persistence
among college students by about 25%. By using an improper
measure of income segregation that ultimately understates the
relationship between income segregation and income inequality,
Reardon and Bischoff (2011) implicitly understate the value of
these interventions.

5. Discussion

L-PRLN serves its purposes well. It interpolates the income
distribution nearly as well as the original PRLN when forced
to use a restricted subset of the available estimates. However,
it has several added benefits. First, our L-PRLN is able to take
advantage of a wider variety of tract-level estimates than PRLN,
including quantile and moment estimates. PRLN is fundamen-
tally limited to using only bin estimates. Second, unlike PRLN,
L-PRLN takes into account the standard errors of the tract-
level estimates. Finally, while PRLN can only provide point
estimates, L-PRLN provides uncertainty quantification through
the posterior distribution.

While we employ L-PRLN to construct income segrega-
tion indices, it can be used to construct any other feature of

income distributions of interest. For example, sociologists and
economists are interested in a variety of measures of income
inequality and income segregation, and use a variety ofmethods
to estimate them not limited to PRLN (Kennedy, Kawachi, and
Prothrow-Stith 1996; Jargowsky 1996; Mayer 2001; Hardman
and Ioannides 2004; Watson 2009). These approaches tend to
suffer from the same limitations as PRLN, and L-PRLN can be
applied to estimating them as well.

L-PRLN can also be generalized and applied to other types
of variables. For example, it could be used to interpolate the
age distribution, for which there are often a selection of bin
estimates available. To do this only requires appropriate choices
for the fks in (1). Each fk could be a truncated normal density,
though in practice the age distribution should be investigated
to determine an appropriate choice. Many choices will require
estimation ofmore parameters per bin than in the PRLNdensity.
In order to handle this, itmay be necessary to reduce the number
of knots so that there are more bin estimates than knots. The
framework can also be applied to data from sources other than
theCensus Bureau aswell. The key is that there are awide variety
of available estimates of different distributional features at the
area-level. These will typically be bin estimates, but many other
estimate types could be used.

Based on the simulation study in Section 3.1 and out-of-
sample performance onheld out estimates in Section 3.2, neither
PRLN nor L-PRLN performed uniformly superior than the
other when L-PRLN was restricted to a subset of available esti-
mates. L-PRLN performed the best in the middle and far right
tail of the distribution, with PRLN typically performing better
elsewhere. This is likely due to how informative the Dirichlet
prior is on the knot probabilities. As noted in Section 2.5, amore
informative prior was necessary in this case to help facilitate
NUTS. In particular, note that for some census tracts, the bin
estimate for one or more income categories is zero. Without
an informative prior, these probabilities will be estimated to be
close to zero and NUTS will go into the extreme tails of the
transformed space, causing numerical and sampling problems.
The informative prior regularizes those estimates away from
zero and prevents the computational problem. This leads to
a loss of predictive accuracy, although this is reflected in the
uncertainty estimates that are provided by L-PRLN. Further,
note the knots in L-PRLN are set equal to the boundaries
defining the bins for the bin estimates. This is done for computa-
tional convenience but is not necessary. Indeed, knot selection
is a potential avenue for improving L-PRLN. Naively, it seems
as though spacing the knots roughly equally in the quantile
domain would alleviate the problem with probabilities being
estimated close to zero, and improve the quality of themodel. In
model fits not reported here, we found that this degrades model
performance despite the looser priors, suggesting that there are
other factors important for knot selection. The number and
spread of available tract-level estimates should fundamentally
constrain the optimal number and placement of the knots in
some way, but precisely how is an area of future research.

We turn now to the empirical application constructing
income segregation indices and estimating the association
between them and the Gini index. The analysis in Reardon and
Bischoff (2011) cannot be performed for more recent years due
to the elimination of the decennial census long form. Instead,
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ACS estimates are available, but their standard error must be
taken into account. Because of its deficiencies, PRLN is not
suitable for constructing income segregation indices using ACS
data. Unlike PRLN, L-PRLN allows us to use all available esti-
mates, account for uncertainty in those estimates, and propagate
that and other sources of uncertainty into the estimated indices.
Additionally, L-PRLN played a secondary role by allowing us
to construct metro-level Gini indices for black households only
and white households only using ACS estimates, while again
propagating uncertainty into the indices so that it could be
accounted for in the EIV segregation index regressions. The
segregation indices themselves disagreed substantially about the
relative ranking of metro areas in terms of income segregation,
illustrating that Roberto’s (2015) criticisms of the information
theory index are well-founded.

The results of the regressions were also instructive. Reardon
andBischoff (2011) found a strong positive relationship between
income inequality and income segregation for all families (b =
0.353, se = 0.053) as well as for black families alone (b = 0.316,
se = 0.083) and white families alone (b = 0.311, se = 0.076).
The previous estimates are standardized regression coefficients,
whichwe compute fromReardon andBischoff (2011)’s raw coef-
ficients and summary statistics in Appendix H, supplementary
materials.Usingmore recentACShousehold data in a somewhat
different model specification, we were not able to reproduce
these results using Reardon and Bischoff (2011)’s information
theory index. For all households, we do reproduce the strong
positive relationship between income inequality and income
segregation in Table 5 (b = 0.566, sd = 0.076). However, for
black households only (b = −0.100, sd = 0.157) and white
households only (b = 0.138, sd = 0.106) the standardized esti-
mates are attenuated and not significantly different from zero,
suggesting that at least at the subgroup level, the relationship
between income inequality and income segregation has changed
in recent decades.

Whenwe use themore appropriate divergence index, we find
that the relationship between income inequality and income
segregation appears stronger, which can be seen using the stan-
dardized coefficient estimates in Table 5. The estimates for all
households are similar (b = 0.580, sd = 0.120), but the esti-
mates for black households alone (b = 0.379, sd = 0.200) and
for white households alone (b = 0.399, sd = 0.140) are much
larger using the divergence index rather than the information
index. There is a lot more uncertainty in these estimates, the
95% credible interval for black households alone does barely
contain zero, and the 95% credible intervals for our divergence
index regressions do overlap with the credible intervals for our
information theory index regressions. But with those caveats in
mind, our results do suggest that the information theory index
understates the strength of the relationship between income
inequality and income segregation.

Comparing our divergence index regressions to Reardon and
Bischoff’s (2011) information theory index regressions is more
fraught since both the index and the analysis period are chang-
ing at the same time. That said, we reproduce the strong positive
relationship they found between income inequality and income
segregation, though our standardized point estimates are some-
what larger, especially for all households. This again suggests
that the information index understates the relationship between

income inequality and income segregation, though there is
much more uncertainty in this comparison so the evidence is
much weaker. But whether we compare our divergence index
regressions with our own information theory index regressions
on the same ACS data, or with Reardon and Bischoff’s (2011)
information theory index regressions on older Census data, we
find evidence that the information theory index is understating
the relationship between income inequality and income segre-
gation.

SupplementaryMaterials

Online Appendix: Includes several appendices adding relevant detail to
the article.
Appendix A: Exploratory tables and figures. Includes various tables

and figures referenced throughout the article that are useful, but not
necessary, for understanding the data and results in this article.

Appendix B: Latent PRLN density functionals. Includes formulas
for all of the relevant functionals of the latent PRLN density
referenced in the article, including mean, variance, CDF, quantile
function, income shares, and Gini index.

Appendix C: Generating the synthetic population. Includes details
about how the synthetic population was generated in the simulation
study in Section 3.1.

Appendix D: Evaluating Point Estimates. Includes tables evaluating
L-PRLN and PRLN point estimates on a variety of metrics from
comparison using ACS data in Section 3.2.

Appendix E: Segregation index EIV data. Includes details on how
the data for the segregation index EIV regressions were sourced
from the ACS for Section 4.

Appendix F: Household level Gini index estimation by race.
Includes details on metro-level and metro-race-level household
income Gini indices were estimated for use in Section 4.

Appendix G: Computing segregation indices. Includes details on
how both the information theory index and the divergence index
were computed as a function of model parameters in the posterior
distribution for use in Section 4.

Appendix H: Segregation index results. Includes detailed tables of
regression coefficients for each of the income segregation index
EIV regressions we performed in Section 4, as well as Reardon
and Bischoff (2011)’s income index regression results in raw and
standardized form.

Github Repository: https://www.github.com/simpsonm/latentprln
Includes all code for the all models discussed and used in the article,
and for reproducing our results, including R code for the Pareto-linear
procedure, and code for downloading and cleaning ACS tables.
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