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foraging task set in natural conditions.
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SUMMARY

The use of abstract rules in behavioral decisions is considered evidence of executive functions associated
with higher-level cognition. Laboratory studies across taxa have shown that animals may be capable of
learning abstract concepts, such as the relationships between items, but often use simpler cognitive abilities
to solve tasks. Little is known about whether or how animals learn and use abstract rules in natural environ-
ments. Here, we tested whether wild, food-caching mountain chickadees (Poecile gambeli) could learn an
abstract rule in a spatial-temporal task in which the location of a food reward rotated daily around an
8-feeder square spatial array for up to 34 days. Chickadees initially searched for the daily food reward by
visiting the most recently rewarding locations and then moving backward to visit previously rewarding
feeders, using memory of previous locations. But by the end of the task, chickadees were more likely to
search forward in the correct direction of rotation, moving away from the previously rewarding feeders. These
results suggest that chickadees learned the direction rule for daily feeder rotation and used this to guide their
decisions while searching for a food reward. Thus, chickadees appear to use an executive function to make

decisions on a foraging-based task in the wild.

INTRODUCTION

Many species have evolved cognitive strategies to learn and track
where resources are located in variable environments.'? As re-
sources often change predictably in both time and space, animals
may be able to learn and use rules to forage more efficiently.**
Rules are generalizable concepts that have been learned from
previous experiences and can be transferred to new situations,>°
such as when to leave a resource patch to maximize foraging ef-
ficiency.*” Nonhuman animals are well known to learn rules based
on perceptual concepts or generalization from physical character-
istics.® But rule-learning based on abstract concepts remains
controversial,® as it involves generalization based on the relation-
ships between and among stimuli, regardless of specific physical
characteristics.®° Using abstract concepts to learn and use a rule
is associated with executive functions, or higher-level cognitive
processes that integrate different types of information for goal-ori-
ented behaviors.'® The ability to use abstract relational rules may
be beneficial in variable environments with repeating conditions
but has been considered supposedly unique to humans.'"'?
Recently, studies have found evidence for learning abstract rules
in a wide variety of diverse taxa, including nonhuman primates,®'*
other mammals,'*'° birds,'®'° fishes,?>?" and invertebrates.?>?*

Yet, in other studies, nonhuman animals often fail to fully learn or
use abstract concepts.’*2® As such, how and why abstract
learning abilities may vary across taxa or among individuals is still
unclear.

Some of the controversy is due to methodologies that do not
sufficiently rule out alternative strategies using simpler cognitive
processes.®® For example, rule-learning has been commonly
tested in laboratory conditions using a classic serial reversal
task in which individuals must repeatedly learn reward contin-
gencies associated with two food sources.’>*° In this task,
individuals could improve their performance by learning the
“win-stay, lose-shift” rule: return to the rewarding cue; if it stops
rewarding, switch to a different cue.?®*" This rule-based strategy
likely involves executive functions to inhibit the previously
learned association and shift to the correct rewarding
cue.?>?"*2 But because the food reward alternates between
the same two cues, an individual could simply learn to search
in the order of most recent memory.?®>® In other words, perfor-
mance on a serial reversal learning task could demonstrate rule-
learning but is often inconclusive when evaluating whether or not
the learned rule was abstract.

Failure to learn an abstract rule could also be explained by
alternative strategies, depending on the task design.'®"** For
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Figure 1. Spatial-temporal task design

Each day, the rewarding feeder (green circled
square) for each bird is reassigned to the nearest
feeder in the direction of rotation (e.g., clockwise).
The strength of memory for recently remembered
feeders (color of squares) decreases (from dark red
to light red) in the opposite direction (e.g., coun-
terclockwise). A bird starts a trial by visiting any
feeder at the array and ends the trial by receiving a
food reward at the correct rewarding feeder. Visits
(numbered boxes) to unrewarding locations before
finding the food reward are recorded as location
errors. In this example, the bird started a trial by
making a location error to the previous rewarding
feeder from yesterday, defined as a reversal error
(visit #1). After making a reversal error, the bird
could search for the rewarding feeder by relying on
spatial learning and memory to move in the direc-
tion of memory recency or by using the abstract
rule to move in the direction of the feeder rotation,
toward the correct rewarding feeder. Moving
across the array would not provide evidence for
either memory recency or rule-learning. In this
example, the bird moved away from the correct

rewarding feeder and toward the second-most recently remembered feeder (visit #2). The trial ended when it found the correct rewarding feeder on its 4th visit,

after making a total of 3 location errors. See also Table S1.

example, a common test of abstract concept learning is the
same/different task in which individuals must learn to match or
identify pairs of items as “same” or “different” and then apply
this relational rule to novel items.® Animals fail to learn the rule
if they do not categorize the new items as well as the items in
the training set.®° However, this failure does not necessarily
mean the animal lacks the ability to learn abstract concepts.?”
If the item pairs are repeated or share physical characteristics,
then individuals could potentially use simpler perceptual con-
cepts to learn associations with specific characteristics of the
items, leading to poor performance.'®?® An individual might
also perform poorly if it has not had previous experience using
abstract rules and so has not developed the mental representa-
tions needed to learn the rule during the task.?”-*° Similarly,
without previous experience, an individual might be biased to-
ward using certain cues, and may need to learn which cues are
salient during a same/different task.?” Testing wild animals
with tasks that resemble natural conditions may address these
alternatives by increasing the likelihood that individuals have
already generated the necessary representations before testing.
But because most studies have been conducted under labora-
tory conditions, it is unclear to what extent wild animals may
use abstract rules in natural environments.

Here, we attempted to address these issues by using wild,
food-caching mountain chickadees (Poecile gambeli) in their
natural environment. We designed a novel experimental task to
test whether chickadees could learn an abstract rule while
making foraging decisions in a complex spatial-temporal task.
Chickadees had to learn to track the daily location of a food
reward that moved predictably around a square spatial array of
eight feeders (Figure 1). Birds could visit any feeder at the array
but could only receive a food reward from one feeder per day.
We used “smart” feeders®”*® to reassign each bird to a new
rewarding feeder every day for 34 days, always rotating the
food reward to the nearest feeder in the same direction

(clockwise or counterclockwise; Figure 1). Through experience
with the task, birds could learn the spatial pattern (where the
food reward is located), the temporal pattern (when the food
reward shifts), and the abstract rule (the relative direction that
the food reward rotates). By learning all three, birds could also
learn to predict where the food reward would be located the
next day.

As a food-caching species, mountain chickadees rely on
spatial learning and memory to make and retrieve individually
cached food items throughout the winter.**“° Learning abstract
rules may be advantageous because one rule could replace
multiple learned associations, reducing overall cognitive load
and reducing the possibility of previously learned associations
interfering with the formation of new memories (i.e., proactive
interference®). As chickadees store thousands of memories of
caches,*® any mechanism that reduces cognitive load could be
highly beneficial (e.g., forgetting unnecessary cache locations
after retrieval®®). Moreover, chickadees appear to adjust
foraging-based search behavior depending on environmental
conditions (e.g., harshness) and previous experience.* It may
be advantageous for chickadees to learn abstract rules that
could be used to predict when and where ephemeral resources
will be available, especially in harsh winter conditions when
caloric requirements may be high.

The design of this spatial-temporal task allowed us to discrim-
inate between two different processes that birds could use to
solve the task. The smart feeders recorded all visits from tagged
birds, allowing us to count how many incorrect feeder locations
(i.e., location errors) were visited before finding a food reward
(i.e., completion of a “trial,” Table S1). When a bird makes a loca-
tion error at the beginning of a trial, it must decide where to
search for food next. If the bird remembered the previous
day’s reward location, then it likely made this error to that
same location and has now learned that the reward contingency
has changed. At this point, the chickadee’s next feeder visit
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Figure 2. Performance in the spatial-temporal task improved across
trials 1-5 but not across days

Mean location errors (points) and standard errors (error bars) per trial (color
and shape). Heavy dashed line indicates performance based on chance (3.5
out of 7 location errors). See also Tables S1 and S3.

should provide information about which processes influenced its
decision-making. First, if the chickadee relied on associative
learning and memory recency, we would expect it to search for
food by moving backward to visit the locations that most recently
provided food. Second, if the chickadee learned the rule of the
spatial-temporal rotation, we would expect it to search forward,
moving toward the correct rewarding feeder and away from the
previously rewarding feeders. This second method demon-
strates using an abstract rule: birds must learn that the food
reward is located in the feeder, one position to the left (or right)
of the most recently rewarding feeder. They must then apply
this learned relationship to new feeders, as the rewarding feeder
location continues to rotate daily around the feeder array.

Behavior during the first trial completed each day (i.e., “trial 1)
should reflect where the bird expected to find food when first
visiting the array. Unlike all subsequent trials, trial 1 does not
show evidence of learning because the bird does not learn the
new rewarding feeder location until it finishes trial 1 and receives
afood reward. Instead, trial 1 behavior should show how the bird
searches. If chickadees learn to predict the spatial-temporal
pattern using the abstract rule, they should search less during
trial 1, leading to a reduction in trial 1 location errors as birds
learn to go directly to the correct rewarding feeder. If birds learn
to use the abstract rule but do not learn to predict the temporal
pattern, we do not expect to see perfect performance (i.e.,
zero trial 1 location errors) but would expect to see fewer location
errors to the previous day’s rewarding feeder (i.e., a reversal er-
ror) throughout the task.

Finally, to assess the role of individual cognitive ability in
learning an abstract rule, we used the same spatial feeder arrays
to test two spatial cognitive abilities: spatial learning and memory
ability,>®“? as well as spatial reversal learning ability.***° We ex-
pected that performance on the spatial-temporal task would
correlate with performance on the spatial learning and memory
task if birds were using associative memory as an alternative
strategy (e.g., learning each rewarding feeder location every
day), but would correlate with performance on the spatial
reversal learning task if birds learned to use the abstract
rule. We expected that the processes involved in reversal
learning (i.e., inhibiting the recall of a previous memory and
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simultaneously learning new, similar information®®>?) may also

be associated with abstract-concept learning. We do not use
reversal learning performance to estimate “general intelligence”
or to draw conclusions about cognitive flexibility.**

RESULTS

Performance improved across trials but not across days
in the spatial-temporal task

The number of location errors in trial 1 did not change signifi-
cantly across days (generalized linear mixed model [GLMM]
estimate + SE: —0.01 + 0.02, x? = 0.28, p = 0.59) or with the num-
ber of trials completed the previous day (0.002 + 0.02, x2 = 0.12,
P = 0.9%; R% vy = 0-13; R pmym) < 0.001; n = 55; Figure 2).
Birds performed better than chance in trial 1 every day, suggest-
ing that search behavior was not random (one-sample t tests,
Table S3). As trial 1 performance did not improve across the
spatial-temporal task, birds did not appear to learn to predict
the daily location of the rewarding feeder across days.

For trials 2-5, the number of location errors per trial was on
average less than 1 location error and did not vary significantly
across days (GLMM estimate + SE: —0.01 + 0.04, 2 = 0.06,
p = 0.80) or with the number of trials completed during the pre-
vious day (—0.03 + 0.03, % = 0.99, p = 0.32; Figure 2). Location
errors per trial varied significantly among individual trials (X% =
25.59, p < 0.001; Figure 2) and there was a significant interaction
effect between trials and days since first visit (x3 = 8.70, p = 0.03).
However, differences in the rate of change among trials 2-5 were
small, with mean values less than 0.5 location errors across all
days (Figure 2). Birds appeared to learn the location of each
day’s feeder rapidly after trial 1 but did not continue to improve
overall performance in trials 2-5 across days.

Birds did not learn to predict the temporal component of
the spatial-temporal task

Birds consistently made a reversal error (i.e., a location error to
the previous day’s rewarding feeder) in trial 1 throughout the
spatial-temporal task. The average probability of making a
reversal error in trial 1 did not change significantly with days
since first visit (GLMM estimates in log-odds scale + SE:
0.341 + 0.06, 2 = 0.29, p = 0.59), but birds that completed
more trials the previous day were significantly more likely to
make a reversal error in the first trial the following day (0.46 +
0.08, x3 = 30.538, p < 0.001; R%‘LMM(C): 0.109, RéLMM(m) =
0.059; n = 55; Figure 3A). The consistency across days in making
a reversal error after the food reward had moved suggests that
birds did not learn the temporal component of the task.

The number of location errors made before the reversal error in
trial 1 was small and increased significantly across days since
first visit (GLMM negative binomial estimate + SE: 0.18 + 0.05,
Xf = 12.29, p < 0.001), but was not significantly associated
with the number of trials completed the previous day (—0.09 =
0.06, x? = 2.40, p = 0.12; RéLMM( )= 0.09, RéLMM(m) =0.03,n=
55; Figure 3B). Despite this significant increase, birds on average
only made ca. 1 location error before making a reversal error,
even at the end of the task. This suggests that chickadees typi-
cally started a trial by making a reversal error at the beginning of
the task, but toward the end of the task more birds were instead
making a location error to another feeder first.
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Figure 3. Birds did not learn to predict the temporal component of the spatial-temporal task

(A) Probability of making a reversal error (i.e., visit to previously rewarding feeder location) in trials 1-5 across days.

(B) Number of location errors before making a reversal error in trial 1 across days. Regression lines with 95% confidence intervals (shaded) generated from
reported GLMMs. For (B), mean location errors (points) and standard errors (error bars) per trial generated from GLMMs, with an interaction of trial by day. Heavy
dashed line indicates chance performance for (B), 3.5 out of 7 location errors. See also Table S1.

In trials 2-5, the average probability that a bird made a reversal
error also did not vary significantly across days (GLMM estimate
in log-odds scale + SE: —0.11+ 0.07, x2 = 2.22, p=0.14), among
trials (x3 = 3.50, p = 0.32), with the number of trials completed the
previous day (—0.01 + 0.05, x2 = 0.02, p = 0.88), nor with an inter-
action between days since first visit and trials (x3 = 3.88, p=0.27;
RéLMM(C) = 0.05, RéLMM(m) = 0.004; n = 55; Figure 3A). Unlike in
trial 1, birds were unlikely to make a reversal error in trials 2-5
throughout the whole spatial-temporal task.

Birds learned the abstract direction rule across days in
the spatial-temporal task
The probability that a bird moved toward the correct feeder (i.e.,
in the direction of feeder rotation) after making a reversal error in
trial 1 of each day significantly increased across days since the
bird’s first visit (GLMM estimate in log-odds scale + SE: 0.30 +
0.06, x2 = 24.55, p < 0.001), but was not significantly associated
with the number of trials completed the previous day (—0.02 +
0.07, x2 = 0.08, p = 0.78; RéLMWC) =0.10, RéLMM(m) =0.03;n=
55; Figure 4A). At the same time, the probability that a bird moved
backward after making areversal error (i.e., away from the correct
rewarding feeder) significantly decreased across days since the
bird’s first visit (GLMM estimate in log-odds scale + SE:
—0.28 + 0.06, x? = 20.80, p < 0.001; previous day trials:
—0.05 + 0.07, 2 = 0.52, p = 0.47; HéLMM(C) = 0.08, RéLMM(m =
0.02; n =55; Figure 4B). Birds rarely moved across the array after
visiting the previously rewarding feeder (4% of 1,242 trials). Over-
all, as the task continued, birds were less likely to move backward
to the feeders that were rewarding most recently and were more
likely to move forward toward the new rewarding feeder.

To address the possibility that birds could be biased to
continue moving in a consistent direction around the arrays,

we repeated this direction analysis with a conservative subset
of only trials that started with a reversal error (825 trials, n = 55
unique birds). This subset excluded 34% of trials in the previous
analysis and yielded similar results: the probability of moving to-
ward the correct rewarding feeder increased from below random
chance (50%) to above random chance by the end of the task
(GLMM estimate in log-odds scale + SE: 0.21 + 0.07, x2 =
8.10, p = 0.004; previous day trials: 0.13 + 0.08, X? =254,p=
0.11; R(ZBLMM(C) =0.09, RéLMM(m = 0.02; n = 55; Figure 4A). The
probability to move backward from the previous feeder also
decreased significantly throughout the task (GLMM estimate in
log-odds scale = SE: —0.21 + 0.07, x? = 8.10, p = 0.004; trials
completed the previous day: —0.20 + 0.08, 2 = 6.09, p = 0.01;
R&immie) = 0-09, R ynym) = 0.02; n = 55; Figure 4B). Birds rarely
moved to the opposite side of the feeder array after visiting the
previous feeder (3% of 825 trials). Overall, these results were
consistent with previous models: as the task progressed, birds
were less likely to move backward to visit recently rewarding
feeders and were more likely to move forward toward the correct
feeder, after making a reversal error to the previous day’s
rewarding feeder.

No effect of spatial learning and memory performance
on performance in spatial-temporal task

The number of location errors in trial 1 each day was not signif-
icantly associated with spatial learning and memory perfor-
mance (GLMM estimate =+ SE: —0.11 + 0.10, x5 = 1.10, p =
0.29; days since first visit: —0.02 + 0.06, X? = 0.11, p = 0.74;
Raimmie) = 0.08; R%ymm = 0.002; n = 49). The average
probability that a bird made a reversal error in trial 1 was also
not significantly associated with spatial learning and memory
performance (GLMM estimates in log-odds scale + SE: 0.01 +
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Figure 4. Birds were more likely to search in the direction of rotation and away from recently rewarding feeders across days

After making a reversal error in trial 1, the probability of moving (A) toward the correct feeder or (B) away from the correct feeder toward the feeders that were
rewarding in the previous few days. Analysis using two subsets of trial 1: all trials with a reversal error (light green, solid line, 1,242 trials) or only trials with a reversal
error as the first visit (dark green, dashed line, 825 trials). Linear regression lines and 95% confidence intervals (shaded) calculated from GLMMs (ggeffects).

Heavy dashed line indicates chance levels (50%). See also Table S1.

0.09, x2 = 0.02, p = 0.90; Réuww(c) =0.10, RéLMM(m) =0.05;n=
49). The direction birds moved after making a reversal error did
not vary with spatial learning and memory for the conservative
dataset, either for the probability of moving toward the correct
feeder location (GLMM estimate in log-odds scale + SE: 0.07 +
0.08, 2 = 0.40, p = 0.53; RéLMM(c) = 0.08, RéLMM(m) =0.01;n=
49) or away from the correct feeder location (GLMM estimate
in log-odds scale + SE: —0.01 + 0.10, x3 = 0.01, p = 0.93;
RéLMM(C) =0.08, R%LMM(m) =0.02; n = 49).

No effect of spatial reversal learning performance on
performance in spatial-temporal task

The number of location errors in trial 1 each day was also not
significantly associated with reversal learning performance
(GLMM estimate + SE: 0.03 + 0.11, x2 = 0.09, p = 0.77; days
since first visit: —0.0247 +SE = 0.06, X? = 0.19, p = 0.66;
RZivmi)= 0-08, R ypym) < 0.001; n = 47). The average probabil-
ity that a bird made a reversal error in trial 1 was not significantly
associated with reversal learning performance (GLMM estimates
in log-odds scale + SE: —0.06 + 0.09, x3 = 0.49, p = 0.48;
RéLMM(C): 0.09, R(ZBLMM(m) =0.04; n=47).

Birds made almost no location errors in the last 5 trials
completed per day

Birds successfully learned the daily rewarding location by the
end of each day: every day, birds made fewer than 0.5 mean
location errors per trial in the last 5 trials of each day. The sum
of location errors in the last 5 trials per day significantly
decreased across days (GLMM estimate + SE: —0.14 + 0.03,
x3 = 17.57, p < 0.001; RéLMM(C) = 0.13, RéLMM(m) =0.02; n =
55), but the number of errors was close to zero across the entire
task (Figure S2).
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DISCUSSION

Overall, our data showed that wild, food-caching chickadees
were able to learn an abstract rule for a complex spatial-temporal
pattern in a natural setting. To our knowledge, this is the first time
that abstract-concept learning has been demonstrated outside
of a laboratory setting without using a serial reversal task. As pre-
dicted, as birds learned the spatial-temporal task, they appeared
to rely less on spatial learning and memory and more on the di-
rection rule to decide where to search next. Although at the
beginning chickadees were less likely than chance to search in
the correct direction of rotation (and equally likely to search
away from the correct feeder), by the end of the task chickadees
were significantly more likely to search toward the correct
rewarding feeder (and less likely to search away). Due to the
setup of the task, the choices were mutually exclusive: a bird
could either use memory recency to move backward, searching
feeders it likely remembered from previous days, or it could
search toward the correct feeder, likely using the direction rule
it had learned during the task. It is unlikely that birds could use
memory recency or associative learning alone, without a mental
representation of direction, to achieve this better-than-chance
performance. Moreover, chickadees in this study system do
not show directional bias while searching the feeder arrays for
a food reward,”® suggesting that the significant tendency to
move in the direction of rotation is not likely due to passive direc-
tional biases or laterality in movement.

Although birds appeared to learn the directional rule, they did
not learn to predict the temporal part of the task. Chickadees
learned to search in the correct direction despite no significant
change in trial 1 performance (the number of location errors or
the likelihood of making a reversal error). Moreover, there was
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no significant association between these trial 1 metrics with
either spatial learning and memory ability or spatial reversal
learning performance. Although the former result supports our
prediction that chickadees did not use simple associative
learning to solve the spatial-temporal task, the latter was unex-
pected. One possible explanation is that chickadees at high
elevation may rely strongly on spatial learning and memory to
survive harsh winter environments,*”-*4454" and as such their
reversal learning ability may be constrained by strong associa-
tions associated with winter caching. We have previously found
that chickadees at lower, milder elevations performed better on
tasks of reversal learning than chickadees at the higher elevation
sites tested in this study.***® Additionally, these low elevation
birds were capable of learning to predict the location of a food
reward across days in a serial reversal task, unlike high elevation
birds,®® suggesting there may be constraints to flexibility in a
spatial context for the birds in this study. Unfortunately, due to
low participation, we only analyzed one bird from low elevation
and could not test for elevational differences in the present
study. We speculate that motivation for low elevation birds to
participate may have been low due to abundant natural food
sources (i.e., pine nuts).

Evidence for abstract-concept learning
Learning the direction rule presents evidence for abstract rule-
based learning in wild mountain chickadees. The concept of
direction in this task likely differs from other uses of direction
in navigation. For example, desert ants navigate using path
integration, in which individuals use the speed, distance, and
direction previously traveled to update their position relative
to a starting position.”® But the representation of direction in
path integration may not be abstract because it depends on
specific characteristics of the landscape and the previous
path that the animal traveled along. In contrast, birds in this
study needed to learn the relative direction between previous
rewarding feeder locations and then generalize this to new in-
stances (days). By rotating the feeders every day, we prevented
birds from learning the rule through simple associations. If a
bird associated a given feeder’s position with food one day,
that bird could not use the same association to find food the
next day. Considering that birds did not predict the temporal
pattern, they may have learned the rule to search for food in
the same direction of rotation. This abstract rule could be sum-
marized as “win-stay, lose-shift-forward,” to make a compari-
son with the optimal strategy to solve a serial reversal task,
the win-stay, lose-shift rule. Indeed, there was no correlation
between individual spatial learning and memory performance
and trial 1 performance on the spatial-temporal task, suggest-
ing that search behavior was not likely determined primarily by
associative learning ability. Finally, birds need to inhibit previ-
ous memories to learn to move forward, and such inhibition
is also part of executive control.*®

Abstract-concept learning associated with the same vs.
different concept has been shown in many bird species,
including pigeons,'®°° corvids,'®'9*9*" and closely related
black-capped chickadees, Poecile atricapillus.” But reported
performance varies widely, and the set sizes needed to train in-
dividuals to learn the abstract rules vary from hundreds to thou-
sands.? Other types of rule-learning have been documented in
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birds as well, including ordering rules to recognize auditory se-
quences® and other rules that resemble language or grammar.>®
There has been debate about whether apparent abstract-
concept learning could be better explained by other cognitive
processes, such as associative learning or feature-based gener-
alization.®%*> A key difficulty in traditional abstract-concept
learning tasks is the amount of featural overlap between the
learned and transfer stimuli; when the tested stimuli share char-
acteristics with the transfer stimuli, animals may be able to use
simple, alternative processes to solve the task instead of a
rule.® Our spatial-temporal task design limits featural overlap
because the feeders were virtually identical in every dimension
except for spatial location. The feeder construction ensured
that the shape, size, color, material, and reward type for each
feeder was the same, and even minor differences in appearance
could not be used to find the correct food reward. Moreover,
food-caching birds primarily use spatial cues over local
cues,*®39%* making it less likely that featural overlap could
have led birds to learn the rule through simple associative
learning. Our spatial-temporal task also differed from previous
abstract learning studies because it was conducted with wild,
free-living birds in their natural habitat using a foraging task
that allowed birds to move freely. Thus, the decisions about
where to search during this task likely resembled decisions
made during typical foraging behavior. It is well known that
chickadees use specialized spatial cognitive abilities to retrieve
self-made food caches during the fall and winter; but it has
been less studied whether chickadees also use spatial cognition
to make foraging decisions. Our spatial-temporal task likely re-
sembles foraging from food sources that vary in accessibility
due to harsh storms that prevent access to foraging during the
winter. Although spatial tasks have been underutilized for study-
ing abstract-concept learning, such tasks may provide unique
advantages.

Conclusion

Our study presents evidence for abstract rule-learning in wild
birds in their natural environments, using a complex spatial-tem-
poral pattern. We conclude that the behavior observed in this
foraging task could only be explained by abstract rule-learning,
as birds could only learn to search in the correct direction based
on transferring learned associations to new feeders in the array.
Yet, birds in this study did not learn to predict the spatial-tempo-
ral pattern, suggesting that there may be limits to the types of
temporal cues or the range of abstraction that is possible for
these birds. Using abstract rules could be adaptive in harsh or
variable conditions, allowing animals to rapidly adjust their
behavior to forage more efficiently. As there was substantial in-
dividual variation in abstract learning abilities, the next question
is whether natural selection could potentially act on this individ-
ual variation in chickadees. Future directions should aim to un-
derstand the mechanisms driving this variation and whether it
may be associated with heritable, genetic variation or may arise
from individual differences in previous experience. We think it is
important to conduct tasks that are ecologically relevant, to
explore not only whether nonhuman animals can demonstrate
executive functions but also whether animals use these higher-
level abilities for decision-making with real consequences in
the wild.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Spatial-temporal task data Benedict https://doi.org/10.17632/

txk2vp6657.1

Experimental models: Organisms/strains

Mountain chickadee, Poecile Wild NA

gambeli

Software and algorithms

R Statistical Software R Core Team®® RRID:SCR_001905

Contributed R packages Comprehensive R Archive RRID:SCR_003005
Network (CRAN)

R Code Benedict https://doi.org/10.17632/

txk2vp6657.1

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Lauren Benedict
(Ibenedict@nevada.unr.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o All spatial-temporal task data have been deposited at Mendeley Data Repository and are publicly available as of the date of
publication. DOls are listed in the key resources table.

o All original code has been deposited at Mendeley Data Repository and is publicly available as of the date of publication. DOIs
are listed in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study subjects and study system

The study was conducted during the winter of 2021-2022 as part of an ongoing, long-term study of Mountain chickadees (Poecile
gambeli) in the Sierra Nevada mountains ca. 10 km north of Truckee, CA, USA (started in 2014 at Sagehen Experimental Forest, Sage-
hen Creek Field Station, University of California Berkeley®”-*%4234¢)_Wild, free-living birds were trapped and banded during annual
banding efforts and breeding surveys using mist nets at feeders or by hand in nestboxes. Trapped birds were banded with unique
color bands, including a passive integrated transponder (PIT)-tag with a unique alphanumeric ID (IB Technology, Leicestershire, UK).
Banding efforts were concentrated at two elevations (‘high’: ca. 2400m; ‘low’: ca. 1900m). Previous studies in this system found sig-
nificant elevation-related differences in winter conditions as well as in behavioral, cognitive and morphological traits of chickadees
residing at each elevation.®*#>45:47:56 Although we collected data at two elevations within this study system, we did not explore
elevational differences in the present study because our final sample contained only one low elevation bird compared to 54 high
elevation birds. We speculate this was due to low participation of low elevation birds during this particular season.

The study was approved by the University of Nevada Reno Institutional Animal Care and Use Committee (Protocol numbers 00818,
00046 and 00603) and was in accordance with California Department of Fish and Wildlife Permit D-0011776516-4. For banding
efforts, we followed the U.S. Federal Bird Banding Permit 22878. To the best of our knowledge, no birds were harmed by the collec-
tion of these data and wild-caught birds were only handled in the field for a few minutes during banding. We detected no negative
effects of using PIT tags and color bands during our study. To reduce stress during handling, banding efforts were not conducted
2903475484326during adverse conditions (i.e., wind, precipitation).
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METHOD DETAILS

Smart feeders and spatial arrays

Data were collected automatically using four spatial arrays of smart feeders previously established in 2014 (two at high elevation ca.
1.2 km apart, and two at low elevation®”*3°"). Each array consisted of eight feeders attached equidistantly to a square aluminum
frame (1.2x1.2m) that was suspended ca. 3m in the air from four trees in a small clearing (ca. 3m away from foliage on all sides).
Each feeder had a perch-mounted antenna connected to a Radio-Frequency Identification (RFID) data logger to detect and record
the identity and timestamp of any PIT-tagged bird that landed on the perch to forage.*®°° Birds could only access black oil sunflower
seeds from the perch. A mechanized door controlled individual access to food within each feeder according to three different pro-
gram modes: (1) ‘open’ mode: feeder doors were always open so all birds could forage from all eight feeders; (2) ‘all’ mode: feeder
doors were closed until any PIT-tagged bird landed on the perch and triggered the door to open, so all PIT-tagged birds could forage
from all eight feeders; and (3) ‘target’ mode: feeder doors were closed until specific PIT-tagged birds landed on the perch, so only
specific PIT-tagged birds could forage from each feeder. In target mode, feeders could be programmed individually for each bird and
reassigned depending on the experiment, so that at any given time birds could only access food from one of eight feeders. During all
three modes, PIT-tagged birds could forage at the arrays ad libitum during daylight hours (ca. 06:00-20:00) until feeders automatically
closed and turned off each night. When feeders were off, visits were not recorded, and birds were not able to access their rewarding
feeder. However, birds were expected to stop foraging several hours before the feeders turned off.*’

Trials during cognitive tasks

During each cognitive task, smart feeders automatically collected visit data from all PIT-tagged birds (bird ID, date, time), regardless
of whether the bird received a food reward. Visits could be grouped into ‘trials’; a trial began when a bird visited any feeder at an array
and ended when the bird received a food reward at its assigned rewarding feeder (Figure 1; Table S1). Chickadees forage for seeds
one-at-a-time, leaving the array to consume or cache the seed; thus, each trial resulted in a single food reward. Chickadee motivation
to complete trials during each task was not constrained by appetite,® as caching drive is unrelated to daily energy requirements®%:¢’
and likely increases participation in food-rewarded tasks during caching seasons. During each trial, any incorrect feeder location that
a bird visited before it found a food reward was counted as a ‘location error’ (Table S1). Chickadees search the array by landing and
inspecting feeders one at a time by moving from feeder to feeder until they discover the rewarding feeder;*' so birds could make a
maximum of 7 location errors per trial, as there were eight total feeder locations in an array and only one provided a food reward per
bird. Birds typically arrived at the arrays in small flocks but foraged individually, using both social and asocial information to search for
food.?%°8

Spatial learning and memory task

To assess individual cognitive ability, we conducted a spatial learning and memory task following our previous work.*”*® First, all
feeders were set to ‘open’ mode (January 10-26, 2022) and then ‘all’ mode (January 26-February 2, 2022) to habituate the birds
to the feeders at the arrays. Feeders switched to ‘target’ mode to start the spatial learning and memory task (February 2-6, 2022).
For four days, access to the feeders was restricted so that each bird could only forage from one feeder in a given array. Birds
were assigned to their rewarding feeder pseudorandomly: tagged birds were equally distributed across all eight feeders and no in-
dividual was assigned to the feeder that they had visited most frequently during ‘all’ mode. Birds rarely visited both arrays, which were
spaced ca. 1.2km apart, and so were only assigned a ‘target’ feeder at one array. Performance was estimated as the mean number of
location errors in the first 20 trials of the task, with better performance indicated by lower values. We have previously shown that this
metric is a meaningful representation of individual variation and is associated with differences in fitness.®”+4246:56:62

Spatial reversal learning task

Immediately after the spatial learning and memory task, the spatial reversal learning task began by changing the target feeder for
each bird to another feeder on a different side of the spatial array (February 6-10, 2022). This was a single reversal task, not a serial
reversal task, so there was only one change in reward contingencies. To minimize social learning, birds were reassigned individu-
ally.*® Performance was estimated as the mean number of location errors in the first 20 trials of the task, with better performance
indicated by lower values, following our previous work,33:37:42:43.62

Spatial-temporal task

The spatial-temporal task began immediately after the spatial single reversal task (February 10 - March 16, 2022). Birds were reas-
signed to a new rewarding feeder overnight each day so that the food reward rotated either clockwise or counterclockwise to the next
nearest feeder (Figure 1). Importantly, the feeders themselves did not move; instead, the Arduino board within each smart feeder
automatically updated the list of specific birds that could access food at that feeder each day.*® Birds were randomly assigned to
either a clockwise or counterclockwise rotation, and the direction of rotation remained consistent for each bird throughout the
task. Feeder assignments continued to rotate automatically for 34 days, changing overnight while feeders were closed so that
each morning (starting at 06:00) birds could access the new day’s rewarding feeder. Performance was estimated as the number
of location errors per trial (range: 0-7) as well as whether or not the bird made a reversal error, or a location error made to the previous
day’s rewarding feeder.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data exclusions for spatial-temporal data

In the spatial-temporal task, 165 birds completed at least one trial during the spatial-temporal task (n = 133 from high elevation, n = 32
from low elevation). Participation during the 34-day task varied across birds, both in terms of the number of days (1-34 days) and the
number of completed trials per day (0-500 trials per day). We needed to account for this variation in participation because birds could
only learn the rule by first learning the sequence of daily rewarding feeders. Each bird’s experience should depend on which days it
visited the array during the task and whether or not it learned the daily location of the food reward. For example, a bird that partic-
ipated in 5 consecutive days of the task could learn the feeder sequence ‘1, 2, 3, 4, 5°. But a bird that participated in 5 nonconsecutive
days, missing three days, would experience a different sequence of feeders: ‘1, 2, 6, 7, 8'. Birds with different perceptions of the daily
feeder rotation may not be able to learn the abstract rule that we expected. Birds could fail to learn the daily feeder location due to
poor cognitive ability or due to low participation; as such, it was important to exclude data due to low participation before analyses.

To compare birds based on their experience with the task, we created the variable ‘days since first visit’ to count the number of
days since each bird completed its first trial during the spatial-temporal task. We defined a ‘missed’ day as any day during the spatial-
temporal task that a bird was not detected at the array at all or that the bird completed fewer than 20 trials (Table S1). We chose the
20-trial threshold based on our previous work using mean performance scores over the first 20 trials of the two previous spatial
cognitive tasks, which have been associated with variation in fitness outcomes.*?*°* Using 20 trials per day provided a conservative
estimate to ensure that every bird had sufficient experience with the daily rewarding feeder both to learn and reinforce the spatial
memory of the daily food reward. For analyses, data were excluded from days with fewer than 20 trials, as well as each day imme-
diately following a missed day. The ‘days since first visit’ variable increased by 1 for each day, regardless of whether data were
excluded (see Figure S1 for detailed examples).

Next, we made a distinction between missing two or more days in a row and only missing one day at a time. When returning to the
feeder arrays after missing one day, a bird could potentially still learn the direction-rule because the next rewarding feeder would be
located nearby in the correct direction. But after missing two or more consecutive days, the next rewarding feeder could be located
on the opposite side of the array, or further away, and this could provide confusing information to the bird about the spatial-temporal
task. As such, we excluded data from all trials after a bird missed two or more days in a row (Table S2; Figure S1). We only used data
from before a bird missed two or more days in a row to make sure that we only analyzed birds when they attempted the task for the
first time; partial experience with the task could affect learning performance.

Finally, we excluded data based on the total number of missed days, so that each bird never exceeded a maximum of four missed
days or 15% of the total number of days analyzed in the study. When possible, we excluded data after a bird hit these maximum
criteria (i.e., after the 4th missed day) instead of excluding the bird entirely (determined from the ‘days since first visit’ counter;
Table S2; see Figure S1 for detailed examples). We also set a minimum threshold: we excluded birds that did not complete at least
16 days during the spatial-temporal task (including up to 2 missed days). To be conservative, if a bird missed a day within the last
3 days of its last day detected, we excluded all trials after that missed day.

The final dataset (n = 55) only contained one low-elevation bird, so elevational comparisons were dropped from the analysis. Lower
participation at low elevation was not completely unexpected, as we have previously recorded low participation during the winters of
2017-2018 and 2018-2019. Overall, these exclusions were important because we could not control participation in the study and so
needed another way to ensure that we only analyzed birds that had a reasonable opportunity to learn the task. It is possible that these
exclusions may have introduced bias to the analysis by selecting a specific subset of birds. However, we do not think these exclu-
sions substantially affected our interpretations because our conclusions can only be based on birds that completed testing every
day. Motivation to participate in the spatial-temporal task every day is likely related to a wide variety of factors and is likely not asso-
ciated with the individual cognitive abilities we focus on in this study.

Analyses

The spatial-temporal task dataset consisted of longitudinal data collected from a known set of marked individuals measured repeat-
edly across time. We analyzed these data primarily through generalized linear mixed effects models (GLMMs) to assess how variation
in performance varied throughout the task. All GLMMs included days since first visit as a fixed effect (range: 2-34 days, centered and
scaled) and individual bird ID as a random intercept to account for pseudoreplication and temporal autocorrelation. Continuous vari-
ables were centered and scaled to compare explanatory variables with widely varying ranges and to improve residual fit and
convergence.

We analyzed data from the first trial each bird completed per day (‘trial 1°), the first 2-5 trials per day (‘trials 2-5) and the last 5 trials
per day separately to address different hypotheses. When a bird makes a reversal error during trial 1, the bird should learn that the
reward contingency has changed and the direction the bird decides to move next should indicate where the bird expects to find food.
This decision happens before receiving any reinforcement and should provide support for whether or not the bird learned the abstract
rule. In contrast, behavior during all other trials after trial 1 reflects the bird’s ability to overcome proactive interference and learn the
new daily feeder location. We performed a specific analysis for the first 2-5 and not subsequent trials because we have previously
found that birds learn new rewarding feeder locations extremely quickly®>“® and we were interested in variation in the initial stages of
the learning process. We analyzed data from the last five trials completed by each bird each day to confirm that the bird successfully
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learned the correct rewarding feeder, and so could be reasonably expected to learn the abstract rule. There was no overlap between
the first and last 5 trials analyzed, since all birds completed at least 20 trials per day.

We calculated several metrics to explore our hypotheses: location errors, reversal errors, location errors before a reversal error and
direction moved after making a reversal error. Location errors measure an individual’s overall ability to learn the rewarding feeder
location during the spatial-temporal task, whereas reversal errors measure the ability to learn new reward contingencies while inhib-
iting a response to the previously learned feeder location.**"** While some studies analyze repeated visits to a previously rewarding
location to estimate reversal errors, we defined reversal errors as whether or not the bird visited the previous reversal location during a
given trial. Birds could make a maximum of one reversal error per trial because there was only one feeder location providing a food
reward on the previous day. This allowed us to use logistic regressions to analyze reversal errors across time during the spatial-tem-
poral task. We were also interested in behavior before and after birds made a reversal error. The number of location errors before
making a reversal error provided an estimate of whether or not birds went directly to the previous day’s rewarding feeder at the begin-
ning of a trial. This metric allowed us to assess to what extent birds were learning to predict or to retain memories of the previous
feeder location. The direction a bird moves after making a reversal error provides information about where the bird expects to
find food after conditions have changed and what strategy the bird may be using.

Model fixed effects

To control for variation in reinforcement of the previous day’s rewarding feeder, GLMMs that used metrics from the first 5 trials per
day also included a fixed effect for the total number of trials completed the previous day (‘previous day trials’, range: 20-500, centered
and scaled; Table S1). In models that included previous day trials as a fixed effect, we excluded the first day of the task, as there were
no previous day trials reported. To explore the effects of spatial learning and memory ability and spatial reversal learning ability on
performance in the spatial-temporal task, we fit separate GLMMs using the subset of birds that participated in all three cognitive
tasks (Table S2). We used the mean location errors per trial in the first 20 trials of the spatial learning and memory task (range:
0.05-1.35 mean location errors per trial, scaled and centered) and for the spatial reversal learning task (range: 0.15-1.05 mean loca-
tion errors per trial, scaled and centered).

Overall performance in trial 1 and trials 2-5

To explore how performance on the spatial-temporal task varied across days, we fit a GLMM (Poisson distribution) to the number of
location errors in trial 1 each day (range: 0-7 location errors) with fixed effects of days since first visit and previous day trials. To
explore the effects of the other two cognitive tasks on trial 1 performance, we fit two additional GLMMs by adding either a fixed effect
of spatial learning and memory performance or spatial reversal learning performance.

We compared mean performance in trial 1 (location errors) to chance level using one-sample student t-tests. These tests were
aimed to determine whether birds were searching randomly during the first trial each day or whether they appeared to use learning
and memory ability to find the correct feeder. Given eight choices, random expectation for location errors in one trial is equal to 4.5
errors.®® Regarding the assumptions of the student t-test, these data were (a) continuous, (b) normally distributed, (c) represented a
moderate sample size of n = 55 and passed a simple test for homogeneity of variance. To ensure that data were independent, we ran
separate t-tests per day to avoid repeat measures of individuals (test statistics in Table S3). Multiple comparisons may inflate the risk
of Type | errors, so caution should be used to analyze these results. The Bonferroni-adjusted threshold for significance is alpha =
0.0015, after dividing the original alpha value (0.05) by the number of tests (34 tests).

Models for learning to predict the temporal component

To assess whether birds learned to predict the location of the correct rewarding feeder each day, we explored whether the probability
of making a reversal error in trial 1 varied across days. If birds learned to predict during the spatial-temporal task, we expected to see
an overall decrease in both the number of location errors and the probability of making a reversal error, suggesting that birds went
directly to the correct feeder during trial 1 each day. We created a binary categorical response variable for whether or not a bird made
areversal error in trial 1 and fit a GLMM (binomial distribution, “logit link”, reported in tables using log-odds scale) with the fixed ef-
fects of days since first visit and previous day trials. To explore the effects of the other two cognitive tasks on the probability of making
a reversal error in trial 1, we fit two additional GLMMs by adding either a fixed effect of spatial learning and memory performance or
spatial reversal learning performance.

To assess whether birds continued to make reversal errors during trials 2-5, we fit another GLMM (binomial distribution, logit link)
with the probability of making a reversal error per trial as the response variable. We included fixed effects of days since first visit, trial
number (categorical, four levels), previous day trials and an interaction effect between days and trial number. We included trial num-
ber as a fixed effect because we were interested in the differences in effect of each trial, as performance should continue to improve
across trials.

We fit another model to estimate the number of location errors made before a reversal error in trial 1 each day. This should provide
information about whether birds were making a reversal error first during the task, which would suggest they remembered where the
previous day’s food reward had been located. This only used the subset of trials in which birds made a reversal error, so this does not
represent performance or likelihood of making a reversal error. We fit a GLMM (negative binomial distribution, using the MASS pack-
age®) to these location errors with fixed effects of days since first visit and previous day trials.

Models for learning the direction rule

To assess whether the birds learned the abstract rule of feeder rotation, we scored each trial for the direction the bird moved after
making a reversal error in trial 1. Atrial was scored “toward” if the bird moved toward the correct feeder location, in the same direction
as the daily feeder rotation and was scored “away” if the bird moved away from the correct feeder, toward the most recently
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rewarding feeders during the task. For example, consider that the feeders are numbered 1-8, increasing in the direction of rotation,
and a bird was assigned to rotate clockwise around the arrays, starting with feeder 1 on day 1. In the first trial completed on day 2, this
bird makes a reversal error by visiting feeder 1, the previous day’s rewarding feeder. The direction for this trial would be scored de-
pending on the next feeder that the bird visited: “away” for moving backwards to feeders 8 and 7; “toward” for moving forward in the
correct direction of rotation to feeders 2, 3, or 4; and “unscored” for feeders across the array (feeders 6 and 5). We scored direction
for two subsets of the data: a more conservative subset, in which a bird made a reversal error in trial 1 for their first visit of the trial, and
a less conservative subset, in which a bird made a reversal error in trial 1 at any point during the trial. We tested the less conservative
subset because if birds learned the direction-rule, then we would expect them to learn to move in the correct direction regardless of
whether they remembered to go to the previous day’s rewarding feeder first.

We used the direction data to make two binary category variables, one to indicate whether or not the bird went toward and one to
indicate whether the bird went away from the correct rewarding feeder. We then fit GLMMs (binomial, logit link) with fixed effects of
days since first visit and the number of trials completed the previous day, one for the toward and one for the away response variables.
We fit two models using each data subset.

Model for the last 5 trials per day

To assess whether individuals learned each day’s rewarding feeder location and assess how this performance varied across days,
we calculated the sum of location errors in the last 5 trials completed each day. We fit a GLMM (Poisson distribution) to the sum of
location errors in the last 5 trials with a fixed effect of days since first visit (see also Figure S2).

Statistical software

All analyses were performed using R version 4.1.0.°° (G)LMMs were fit using Ime4°° unless otherwise indicated and statistics were
reported using Wald Chi-Squared values from analysis of variance (ANOVA) tests fit with car.®® GLMMs with a negative binomial dis-
tribution were fit with the MASS package.®® Regression assumptions and goodness-of-fit were evaluated using DHARMa.®” Residual
variance was reported separately for fixed effects and the full model as marginal (RéLMM(m)) and conditional (R(ZSLMM(C)) residual vari-
ance for GLMMs, respectively, following Nakagawa and Schielzeth®® and calculated in the performance package.®® Estimated mar-
ginal means and associated standard errors were calculated with emmeans’® and ggeffects’' to make within-group comparisons,
plot model estimates and report Tukey post hoc analyses. All plots were made with ggplot2.”®
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