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Wide-area soil moisture sensing is a key element for smart irrigation systems. However, existing soil moisture sensing methods
usually fail to achieve both satisfactory mobility and high moisture estimation accuracy. In this paper, we present the design
and implementation of a novel soil moisture sensing system, named as Soilld, that combines a UAV and a COTS IR-UWB
radar for wide-area soil moisture sensing without the need of burying any battery-powered in-ground device. Specifically,
we design a series of novel methods to help Soilld extract soil moisture related features from the received radar signals, and
automatically detect and discard the data contaminated by the UAV’s uncontrollable motion and the multipath interference.
Furthermore, we leverage the powerful representation ability of deep neural networks and carefully design a neural network
model to accurately map the extracted radar signal features to soil moisture estimations. We have extensively evaluated Soilld
against a variety of real-world factors, including the UAV’s uncontrollable motion, the multipath interference, soil surface
coverages, and many others. Specifically, the experimental results carried out by our UAV-based system validate that Soilld
can push the accuracy limits of RF-based soil moisture sensing techniques to a 50% quantile MAE of 0.23%.
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1 INTRODUCTION

Timely, accurate, and wide-area soil moisture sensing plays an important role in smart irrigation for agriculture.
First, it helps to preserve the irrigational water usage. Reportedly, more than 15% of the earth’s fresh water is
wasted due to overwatering in agriculture [1]. Such wastage of the invaluable fresh water resource could be
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greatly alleviated, if we could sense when the soil contains enough water, and refrain irrigation accordingly [2].
Besides, the crops grow optimally only when they are irrigated properly at the right time and amount. Thus,
accurate soil moisture sensing in real time enables smart irrigation systems to dynamically optimize the irrigation
schedule to meet the requirements of the specific types of the grown crops, which eventually helps improve
crop yields [3]. Apart from agricultural applications, soil moisture sensing also brings crucial benefits to other
real-world tasks, such as eco-environment monitoring [4], outdoor sports field (e.g., golf court, football field)
maintenance [5], and many others.

Thus far, a series of techniques have been proposed for soil moisture sensing, which can be categorized into
the sensor-based and RF-based ones. Specifically, the operation mode of the sensor-based techniques are to bury
dedicated sensor nodes in the soil, such as electricity resistance sensors [6, 7], tensiometers sensors [8], and
radioactive sensors [9]. However, such techniques typically have the following limitations. First, the sensor-based
techniques have to rely on various types of peripherals, such as data loggers and communication modules, to store
and transmit the collected sensory data. Installing and connecting these devices into the whole moisture sensing
system usually require professional knowledge and much effort. Second, a typical farm oftentimes needs tens or
even hundreds of moisture sensors to provide enough sensing coverage. Clearly, the maintenance operations,
including battery change and faulted device replacement, of an in-ground sensor network with such scale are
rather prohibitive.

Unlike the sensor-based techniques, the RF-based ones employ the RF signals to estimate the soil moisture
without installing the aforementioned dedicated sensors in the soil. However, existing RF-based techniques
have their own limitations, as well. Some of them require to bury battery-powered devices in the soil, such as
Wi-Fi receivers [10], LoRa nodes [11, 12], and radar backscatter tags [13], which thus suffer from the risk of soil
contamination from battery corruption, as well as the excessive labor works for battery change. In contrast, a
variety of other RF-based techniques do not depend on any battery-powered in-ground devices. Among them,
the remote sensing approaches [14-17] use radars attached on satellites or planes for soil moisture estimation
through the RF signals reflected by the soil surface. However, these approaches usually have coarse-grained
geographical sensing resolutions, and could only estimate the surface moisture of the soil. A very recent RF-based
technique CoMEt [18] exploits the RF signals reflected by the boundaries between the adjacent soil layers with
different moisture contents, and achieves a much finer-grained geographical sensing resolution, as well as larger
sensing depth than the remote sensing approaches. However, due to the moderate strength of the RF signals
reflected by the soil layer boundaries, the operating distance between CoMEt’s antenna array to the soil surface
has to be less than 60cm, which prevents CoMEt from being carried by aerial mobile platforms (e.g., UAVs) to
conduct wide-area soil moisture sensing,.

Motivated by the above facts, we propose Soilld!, an RF-based soil moisture sensing system that overcomes
the above limitations of existing soil moisture sensing techniques. The operation mode of Soilld is illustrated in
Figure 1. Specifically, Soilld deploys at predetermined measurement points battery-free in-ground reflectors (e.g.,
metal plates), which are buried beneath the soil surface and provide strong RF signal reflections. Furthermore,
Soilld deploys a UAV that carries a COTS IR-UWB radar to cruise around the measurement points, and uses the
IR-UWB radar to estimate the soil moisture at each measurement point through the RF signals reflected by both
the soil surface and the reflector. In fact, the radar utilized by Soilld is a COTS IR-UWB radar with a central
operation frequency of 7.29GHz. The reasons to select such type of radar come from its compactness in size, its
lower cost compared with professional RF-based soil moisture sensing devices (e.g., ground penetrating radars
[19]), as well as its sufficient soil penetrating capability validated by a series of experiments® that we carefully

The name Soilld comes from our overall approach of Soil moisture estimation using IR-UWB radar and deep learning.
2Please refer to Section 2.1 for our experimental designs and results on radar choices.
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Fig. 1. Operation mode of Soilld.

conducted. In what follows, we elaborate on the challenges of designing Soilld, as well as our approaches that
address them.

The first challenge comes from the discrete sampled form of the received radar signals. Specifically, Soilld
estimates the soil moisture through various moisture related radar signal features, which are extracted from the
basic information of the received radar signals, including the time of flights (ToFs) and amplitudes. However,
the limited sampling rate of the received radar signals makes the precision of the obtained ToFs and amplitudes
unsatisfactory for soil moisture sensing. To address this challenge, Soilld up-samples the received signals via
interpolation, and obtains ToF estimations with a higher precision and more accurate amplitudes from the
interpolated signal, which finally promotes the precision of the extracted soil moisture related features.

The second challenge is that, although the UAV enables Soilld to be highly mobile, the uncontrollable motion
of it (e.g., shaking, deviating from the measurement point) will heavily contaminate part of the received signals,
making them unusable for soil moisture estimation. To address this challenge, Soilld detects and filters out
the distorted collected data caused by the UAV’s uncontrollable motion by employing a distorted data filtering
algorithm. The algorithm automatically filters out the distorted radar signal data according to the representative
signal features when the UAV is under undesirable motion, and thus prevents them from influencing the soil
moisture estimation accuracy.

In practice, however, apart from the uncontrollable motion of the UAV, the multipath interference provided by
the reflections from the objects other than the reflector, such as the stones and bushes around the measurement
points, could also contaminate the received radar signals. To address this challenge, Soilld leverages the mobile
nature of the UAV to collect data at different altitudes, and further employs a multipath interference elimination
algorithm that helps Soilld distinguish and discard the data distorted by multipath interference through carefully
comparing the characteristics of the radar signal data received when the UAV is at different altitudes.

After Soilld filters out the data contaminated by both the UAV’s uncontrollable motion and multipath interfer-
ence, another challenge that arises is how to map the extracted radar signal features to accurate soil moisture
estimations. Instead of simply applying the existing empirical equations (e.g., Topp equation [20]) which use
polynomials to fit such mapping, Soilld leverages the powerful representation ability of deep neural networks
and employs a carefully designed neural network structure, SoilldNet, to capture the inherent relationships
between the extracted radar signal features and soil moisture estimations. Furthermore, to avoid the tedious
process of collecting a large volume of training data and training SoilldNet from scratch for each type of soil,
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Soilld augments the existing meta learning framework to pretrain a meta model, named as mSoilldNet, which
can be fine-tuned to fit any soil type with only a small number of labeled data.
In summary, this paper makes the following contributions.

o In this paper, we design and implement a novel RF-based soil moisture sensing system, named as Soilld, that
combines a UAV and an IR-UWB radar, which is able to quickly perform wide-area soil moisture sensing
without burying any in-ground battery-powered devices.

o Technically, we design a series of novel approaches that make use of the highly mobile nature of the UAV,
and meanwhile eliminate the negative influences of the UAV’s uncontrollable motion and the multipath
interference. We envision that these approaches could potentially be useful in other UAV-based radar
sensing tasks, as well.

o Furthermore, we propose a novel deep neural network model, named as SoilldNet, to map the extracted
radar signal features to soil moisture estimations, and also augment the meta learning framework to obtain
a meta model, named as mSoilldNet, which can be quickly fine-tuned to any target soil type with only a
small number of labeled data.

o Finally, we conduct extensive experiments to evaluate Soilld against a variety of real-world factors, including
the UAV’s uncontrollable motion, the multipath interference, soil surface coverage, and many others. Our
experimental results validate that Soilld can push the accuracy limits of RF-based soil moisture sensing
techniques to a 50% quantile MAE of 0.23% on the tests carried out by our UAV-based system.

2 PRELIMINARIES

In this section, we first introduce the principles and the experiments to select a proper radar for soil moisture
sensing. Next, we model the propagation process of the radar signal and extract the soil moisture related radar
signal features for subsequent soil moisture estimation tasks.

2.1 Radar Choices

In order to select a proper radar that can be carried on a UAV for soil moisture sensing, we survey the miniature
on-chip radars in the market for their compact size and light weight, and carry out a set of experiments on
the soil penetrating capabilities of these radars. Specifically, we test three kinds of COTS radars with central
operation frequencies of 77GHz, 24GHz, and 7.29GHz, which covers those of a wide majority of commercial
COTS radars. In our experiments, the radar is placed 1m above the soil surface with the antenna plane parallel to
the soil surface, and an aluminum plate is buried 30cm below the soil surface as the reflector®. We conduct the
experiments on four types of soil, including sand, loamy soil, silt soil, and clay soil. As the experimental results
for these different types of soil show similar trends, we only present those for sand as follows for conciseness.
For each of the two FMCW radars, we set it to consecutively transmit 128 chirps and apply Fast Fourier
Transform (FFT) to the Intermediate Frequency (IF) signals of each chirp. Then, we stack the frequency spectrums
of the 128 chirps, as illustrated in Figures 2a and 2b. The horizontal axes in these figures represent the normalized
distance calculated by multiplying the ToFs of the received signals with the velocity of light in vacuum. Considering
the propagation velocity of radar signals in the sand, if a radar could receive the signal reflected by the aluminum
plate, there will exist a peak at the normalized distances of around 1.5m. However, we could not observe such
peaks in Figures 2a and 2b, which indicates that the FMCW radars tested in our experiments cannot receive
the signals reflected by the aluminum plate. This is because the signals transmitted by the aforementioned two
FMCW radars attenuates rapidly in the soil due to their high frequencies, and thus the signals received by them
are mostly composed of those reflected by the soil surface. For the IR-UWB radar, we obtain the amplitudes of the

3The reflector can be composed of other materials, such as stainless steel, as long as it can provide enough reflection to radar signals. We
have conducted experiments to test the performance of reflectors of different materials in Section 6.4.5.
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Fig. 2. Experimental results on the soil-penetrating abilities of three types of commercial miniature on-chip radars with
their central operation frequencies specified. The brighter zones indicate higher RSS values for the FMCW radars or larger
amplitudes of the received signals for the IR-UWB radar.

received signals for 100 consecutive frames and also stack them together. From Figure 2c, we could easily observe
the peaks at the normalized distances of both 1m and 1.5m, which means that the IR-UWB radar receives clear
reflections from both the soil surface and aluminum plate. Additionally, we change the distance from the IR-UWB
radar to the soil surface from 1m to 2m and obtain the amplitudes of the received signals for 20 consecutive
frames at each distance. As is shown in Figure 2d, even if the IR-UWB radar is 2m above the soil surface, it can
still clearly receive the signals reflected by the aluminum plate.

The above experiments show that the IR-UWB radar with central operation frequency 7.29GHz is able to
penetrate the soil of enough depth (30cm) for moisture sensing, and from an altitude that is proper for UAV
cruising (2m). Thus, we choose such IR-UWB radar as the sensing device for our soil moisture sensing task.

2.2 Modeling IR-UWB Radar Signals

In this section, we model the propagation of the IR-UWB radar signals in the process of soil moisture sensing.
The IR-UWB radar carried by the UAV cruising in the air transmits pulse signals and collects the reflected signals
from both the soil surface and buried reflector. The baseband signal s(t) of the IR-UWB radar takes the form of
Gaussian pulse, i.e.,

2
s(t) = arce?, (1)

where @, is the amplitude determining the pulse strength and o2 is the variance determining the pulse width.
The baseband signal is modulated to the carrier with central frequency f. and becomes the transmitted signal

x(t) = s(t)e 72kt (2)
Suppose the distance from the radar to the soil surface is d;, the signal reflected by the soil surface becomes
2d : dy -1
ri(t) = als(t - —l)e_JZ”fC(t_ZT)n—, (3)
c n+1

where a; = e~?%ird1 is the attenuation of signal propagation in the air with a,;, denoting the attenuation factor
of the air, and n is the refractive index (RI) of the soil.

Similarly, suppose the reflector is buried at a depth of d;, then the signal reflected by the reflector can be
expressed as

4

where a; = € is the attenuation of signal propagation in the soil with a; denoting the attenuation factor of
the soil, and a3 = 4n(m —n)/((n+1)?(m+n)) with m denoting the RI of the reflector. In fact, as is the attenuation
caused by penetrating the soil-air boundary and the reflection by the reflector.

Z(dl + dzn) )e—jZch(t— 2(d1+cd2n) )

ra(t) = a1a2a3s(t -
c

—2asdz

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



11:6 « Dingetal.

2.3 Soil Moisture and IR-UWB Radar Signals

After modeling the signals reflected by the soil surface and the reflector, we then aim to find the features of
signals that are related to the soil moisture. The first feature that we exploit is n, i.e., the RI of the soil. Specifically,
n is defined by the ratio of the propagation velocity of the IR-UWB signals in vacuum to that in the soil. In fact,
the value of n is influenced by the relative permittivity and electrical conductivity of the soil, both of which are
closely related to the soil moisture [21].

Apart from n, another feature influenced by the soil moisture is the in-soil attenuation factor a; [10]. Specifically,
as influences r,(t)’s peak amplitude, i.e., ayaze2%% However, this value is also influenced by other parameters
that are hard to obtain, such as the in-air attenuation @, and thus, we cannot directly calculate a5 from r,(¢)’s
peak amplitude. In fact, from Equations (3) and (4), we notice that the signals r; () and r, () are both attenuated
by a; because of the same signal propagation distance in the air. Thus, we can utilize this property and obtain the
relative amplitude ratio (RAR) defined in the following Definition 1, which does not depend on the in-air signal
propagation process but is related to ;.

DEFINITION 1 (RELATIVE AMPLITUDE RATIO). The relative amplitude ratio p is defined as the ratio of ro(t)’s peak
amplitude (i.e., acyazas) to r1(t)’s peak amplitude (i.e., a;(n — 1)/(n + 1)). That is,

_moas(nt+l) 0 4n(m — n)
ST Aot ¢ T men+n-1

©)

By Definition 1, if we fix the material of the reflector and its buried depth, which leads to fixed m and d,, the
value p will only be determined by «; and n.

Thus, based on the above discussions in Section 2.3, we choose to use the soil RI n and RAR p extracted from
the IR-UWB radar signals as the features to estimate the soil moisture, as elaborated in Section 4.1.

3 METHODOLOGY OVERVIEW

In this paper, we propose to use an IR-UWB radar carried by a UAV to sense the soil moisture. Figure 3 shows an
overview of our proposed methodology, referred to as Soilld, which contains three major components: (1) data
collection, (2) feature extraction and data selection, and (3) moisture estimation via neural network.

e Data Collection. The function of this component is to collect the IR-UWB radar signals that can be used to
estimate the soil moisture. We first select several representative measurement points in the sensing area?. At
each measurement point, we bury in advance a reflector that is highly reflective to the IR-UWB radar signals
(e.g., an aluminum plate) under the soil surface at a specific depth. During the data collection process, the
UAV hovers above each measurement point, and raises its altitude vertically within a pre-defined altitude
range. Meanwhile, the IR-UWB radar attached on the UAV collects the reflected signals continuously. Such
design of vertical raise of the UAV’s altitude is to resolve the multipath interference problem which will be
elaborated in Section 4.3.

e Feature Extraction and Data Selection. This component extracts soil moisture related features (i.e.,
soil RI and RAR) from the received radar signals, and selects the valid data that can be fed to our soil
moisture estimation model. Specifically, we first perform interpolation to acquire more accurate amplitudes
and ToFs of the received signals (Section 4.1). After that, we filter out the unusable data distorted by the
uncontrollable motion of the UAV (Section 4.2). Next, we detect and discard the data influenced by multipath
interference (Section 4.3). The extracted features of the remaining data are used for soil moisture estimation.

4In practice, it suffices to measure the soil moisture only at a few representative points, as the moisture distribution of the entire sensing area
could usually be estimated using the samples taken at several measurement points using existing methods, such as [22-24]. However, the
method of choosing the measurement points are out of the scope of this paper.
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Fig. 3. System overview of Soilld, where the red circles indicate the measurement points in the sensing area.

e Moisture Estimation via Neural Network. This component is designed to estimate the soil moisture
through the extracted radar signal features. To achieve this goal, we propose a neural network model that
can directly map the input features to the estimated soil moisture (Section 5.1). Besides, it is typically
tedious to collect a large volume of labeled training data to fit the neural network model for a new type of
soil. Thus, we propose to augment the meta learning framework to enable fast adaptation from the model
trained on existing soil types to the target new soil type with only few labeled training data (Section 5.2).

In the following parts of this paper, we will mainly elaborate upon the feature extraction and data selection, as
well as moisture estimation via neural network components in Sections 4 and 5.

4 FEATURE EXTRACTION AND DATA SELECTION

In this section, we first introduce how to accurately extract the RAR and soil RI from the received radar signals.
Then, we discuss the problem that the UAV’s motion and the multipath interference contaminate the received
radar signal, as well as our proposed distorted data filtering and multipath elimination algorithm to solve it.

4.1 RAR and Soil RI Extraction

In order to extract the RAR and soil RI from the received radar signals, we need to obtain the ToFs® and peak
amplitudes of 7 (¢) and r;(¢). However, the signals we can collect from the IR-UWB radar are actually the discrete
sampled version of the continuous received signals. The time interval between two consecutive samples is 0.343ns,
which is also the ToF precision. However, if the distance from the radar to the soil surface is 1m, which is proper
for a UAV to hover over the measurement point, we can easily calculate that the ToF of r{(t) is about 6.67ns. As
a result, such a precision is unsatisfactory for accurate ToF calculation, because it is over 5% of the ToF itself.
Besides, the sampling points do not necessarily coincide with the peaks of r{(¢) and r,(t), so that the obtained
peak amplitudes are imprecise, as well.

In order to obtain more accurate ToFs and peak amplitudes of r;(¢) and r,(t), we propose to up-sample the
received signals via interpolation. Specifically, as illustrated in Figure 4, we apply spline interpolation® on the

>In this paper, we define the ToF of a pulse signal as the ToF of the signal point with the peak amplitude.
%We have also implemented other interpolation techniques, such as low-pass filtering, and they have similar performances with spline
interpolation.
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Fig. 4. Interpolation of the sampled received signals of the IR-UWB radar.

amplitudes of the collected sampled signals. In fact, we perform 16X interpolation in our experiments, promoting
the ToF precision to 21.3 ps. Such a precision is sufficient, as it is within 0.5% of the ToF values of r;(t) and r,(%).
Suppose the IR-UWB radar receives totally k frames of signals at a measurement point. We then apply

interpolation on the signals of each frame. After that, we calculate the values of the soil RI and RAR of each
frame by the following process. For the ith frame, we first find the samples of r; () and r,(¢) with the highest
amplitudes, and obtain the amplitudes a;; and a,; and ToFs t;; and t,; of these two samples. The values of the
soil RI and RAR that correspond to the ith frame are then calculated as n; = 0.5¢(t2; — t1;)/d2 and p; = azi/ a1,
respectively. We apply such process to all of the k received frames and obtain the sets of peak amplitudes of

r1(t) and r»(t), soil RI, and RAR of each frame, denoted as A; = {a11,a12, -+, a1k}, Az = {az1, az22, -, dok },
N ={ny,ny - ,nx},and P = {p1, pa, - - -, pr }- These sets of values are further used for distorted data filtering

as described in the following Section 4.2.

4.2 Distorted Data Filtering
lustration of Data Distortions. The uncontrollable motion of the UAV makes part of the received signals

4.2.1

contaminated and thus unable to be directly used for soil moisture estimation. To illustrate this problem, we
choose three pieces of representative data collected by the IR-UWB radar attached on the UAV at the same
measurement point. Each piece of data contains 240 consecutive frames. We apply the interpolation technique as
described in Section 4.1 to each frame and plot their amplitudes as illustrated in Figure 5.

The data for Figure 5a is collected by the IR-UWB radar attached on a UAV stably hovering above the
measurement point (State S1). From Figure 5a, we observe that the peak amplitudes and the ToFs of r;(t) and
ro(t) are quite steady. Figures 5b and 5¢ show two representative distorted data caused by the undesirable motion
of the UAV. As illustrated in Figure 5b, when the UAV is shaking (State S2), the orientation of the UAV will change
rapidly, which makes the antenna plane of the IR-UWB radar not always parallel to the soil surface, and thus
causes frequent change to the peak amplitudes of r; (¢) and ry(t). Figure 5c shows the scenario where the UAV
deviates from the measurement point (State S3). In such case, the transmitted signal will not be reflected by the
reflector. Thus, the peak amplitudes of r;(¢) is becoming much smaller and gradually disappears as the UAV

deviates from the measurement point.

4.2.2 Distorted Data Filtering Algorithm. Based on the above observations, we design the distorted data filtering
algorithm as elaborated in Algorithm 1 to detect and discard the data distorted by the UAV’s undesirable motion
for each measurement point. The algorithm takes the four sets A;, A,, N and P extracted using the technique
in Section 4.1, as well as the sliding window size h, outlier detection threshold § as inputs, and outputs the sets of

filtered soil RIs NV and RARs P’.
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Fig. 5. Examples of the flight state of the UAV and the corresponding received signals of IR-UWB radar, where the black, red,
and blue arrow represents the signal transmitted by the IR-UWB radar, reflected by the soil surface, and reflected by the
aluminum plate, respectively.

Algorithm 1: Distorted Data Filtering Algorithm
Input: Ay, A2, N, P, h, 6;
Output: Sets of filtered soil RIs N’ and RARs P’;
// Initialization.
1 N —0,P « 0
// Peak amplitude averages calculation.

2 @ < (71 Diaysey Wi @2 < 7] Diayie Ay Wi 5
// Data selection.
3 fori=1+htok—h do
// RAR Moving averages calculation.
4 mi %Z;?_h Pj, Mi2 < %Z?;},lej;
if |p; —mi1| < 6 and |p;i — mi2| < 6 and a;,1 > a1 and a;2 > a then
6 | N =N Ui}, P P Uipils

«

After initializing the sets N’ and #’ as empty (line 1), the algorithm calculates the average peak amplitudes of
r1(t) and r,(t) of each frame (line 2). Next, for each of the ith frame with i € [1 + h, k — h], the algorithm checks
whether it is usable (lines 3-6). The algorithm first calculates the moving average m;; and m;; of the RARs in h
previous frames and h subsequent frames (line 4). If the ith frame is collected when the UAV is stable, the extracted
RAR will have similar values as those calculated RAR moving averages m;; and m;,, which means conditions
|pi —mi1| < & and |p; — mi2| < & should hold. Besides, if the UAV does not deviates from the measurement point,
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Fig. 6. Frames of RARs and soil Rls selected and discarded by Algorithm 1 under UAV flight states S1, S2 and S3.

the peak amplitudes of r;(t) and r,(t) should be no less than the calculated average peak amplitudes over all the
frames, which means conditions a;; > a; and a;2 > 4, should hold. Therefore, the algorithm retains the soil RI
and RAR of the ith frame, if all the aforementioned four conditions are satisfied (line 5-6).

Figure 6 demonstrates the frames of RARs and soil RIs discarded and selected by Algorithm 1, when it takes
the RARs and soil RIs extracted from the frames collected at the same measurement point under different UAV
flight states S1, S2, and S3, as shown in Figure 5. The values of RARs and soil RIs extracted from all the frames
under S1 are in consensus and they are all selected by Algorithm 1. When Algorithm 1 takes the RARs and soil
Rls extracted from the frames collected under S2 or S3, it only selects the frames whose values of RARs and
soil RIs are similar to those extracted from frames collected under S1. Specifically, suppose that the average
extracted RAR and soil RI under S1 are pg, and ng;, the sets of RARs extracted under S2 and S3 are Ps; and Pss,
and the sets of soil RIs extracted under S2 and S3 are Ns, and N3, respectively. After the selection of Algorithm
1, suppose that the sets of selected RARs under S2 and S3 are 5";2 and Pég, and the sets of selected soil RIs under
S2 and S3 are N¢, and N/,. We further define E(X, f) = ﬁ Ykex |k — f| as the mean absolute errors (MAEs)
between elements in set K and f. The values of E(P{,, ps;) and E(Pg,, ps;) are only 0.149 and 0.063, whereas
those of E(Psz, ps;) and E(Pss3, ps,) raise to 0.395 and 1.001. Similarly, the values of E(N¢,, 7is1) and E(N¢,, fis1)
are only 0.028 and 0.017, whereas those of E(Ns,, ng1) and E(Nss, nigy) raise to 0.062 and 0.104. The quantitative
results validate the effectiveness of Algorithm 1 for automatically discarding the data contaminated by the UAV’s
undesirable motions.

The retained data will be further used for resolving multipath interference as elaborated in the following
Section 4.3.

4.3 Multipath Interference Elimination

Apart from the UAV’s undesirable motion, the multipath interference caused by the reflections from the objects
other than the reflector, such as bushes and stones that may appear near the measurement point, could also
contaminate the collected data. This is because the multipath signals may mix with r;(t) and r,(¢), which
influences the accuracy of the obtained peak amplitudes and ToF of r{(t) and ry(t), and further makes the
extracted soil RI and RAR unusable for accurate soil moisture sensing.

Our insights to resolve such multipath interference is by leveraging the mobile nature of the UAV. Specifically,
as mentioned in Section 3, we let the UAV hover over each measurement point and raise its altitude vertically
within a predefined range. In practice, multipath interference only happens when the UAV is at some specific

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning « 11:11

225 - Average Soil RIs at M1
: 0.35 ! -©- Average Soil RIs at M2
Soil Surface :
w
E & = 215
g S5 3
= —0— Average RARs at M1 @
-©- Average RARs at M2 2.05
0.15
1.95
1.5 1.6 1.7 1.8 1.9 2 1.5 1.6 1.7 1.8 1.9 2
ToF (ns) Soil Surface-Radar Distance (m) Soil Surface-Radar Distance (m)
(a) Received radar signals at M1. (b) Average RARs. (c) Average soil Rls.

Fig. 7. Received radar signals, average RARs and soil Rls at different soil surface-radar distance.

altitudes where the Gaussian pulses of the interference signals overlap with r;(¢) and r2(t). Thus, only at certain
altitudes during the raising process, the received frames will be influenced by multipath interference.

We validate the above insights by carrying out experiments at a measurement point M1 in a garden with plenty
of bushes and trees to provide rich multipath reflections. We change the distance from the IR-UWB radar to the
soil surface vertically from 1.5m to 2m in a 10cm increment, and plot the received signals and average RARs and
soil RIs of the frames collected at each altitude in Figure 7. From Figure 7a, we notice that when the distance
from the IR-UWB radar to the soil surface is 1.5m, the peak amplitude of r,(t) is abnormally low, and the ToF
difference between ry(t) and r,(¢) is abnormally large, which lead to the calculated average RAR and soil RI with
abnormal values, as shown in Figure 7b and 7c, compared with those RARs and soil RIs at higher altitudes.

Based on the above insights and experimental results, we design the multipath interference elimination
algorithm as elaborated in Algorithm 2. The algorithm takes the sets of filtered soil RIs N’ and RARs #’ output
by Algorithm 1, as well as the outlier detection thresholds €, and ¢, as inputs, and outputs the sets of valid soil
RIs N” and RARs P”. At first, the algorithm initializes the sets N’ and P’ as empty (line 1). After that, the
algorithm first calculates the averages of the soil RIs 7 and RARs p in the input sets N’ and £’ (line 2). Next, the
algorithm checks every pair of (n;, p;) to evaluate whether their values are influenced by multipath interference
(lines 3-5). Since in practice multipath interference only occurs to few frames, the average of soil RIs and RARs
across all the frames should be close to those without multipath interference. Thus, the algorithm regards the
pair (n;, p;) as valid and keeps it, only if n;, and p; do not deviate from the averages n and p too much, i.e., the
conditions |n; — 71| < €, and |p; — p| < €, hold (lines 4-5).

To evaluate the effectiveness of Algorithm 2, we manually collect the soil at the measurement point M1, and
construct another measurement point M2 with the collected soil in a multipath free environment. We then collect

Algorithm 2: Multipath Interference Resolving Algorithm

Input: N, P’ en, €p;
Output: Sets of valid soil RIs N/ and RARs P”’;
// Initialization.
1 N —0,P" —0;
// Average RI and RAR calculation.
2 e ﬁ Zimge N7 Nis P ﬁ Zipiep Dis
// Data selection.
fori=1to|N’| do
4 L if [n; — 1| < ey and |p; — p| < ¢p then

©w

5

| N7 = N Ui}, P = P Ulpi:
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the IR-UWB radar signal at M2 following the same procedure at M1 and extract the RARs and soil RIs. Figure
7b and 7c indicate that the averages of RARs and soil Rls extracted from the signals collected at M1 and M2
are similar at most soil surface-radar distance, except for at the height of 1.5m, where the signal collected at
M1 are interfered by the multipath signal. For RARs and soil RIs at M1, Algorithm 2 discards those at the soil
surface-radar distance of 1.5m and retains the others. Specifically, suppose that the average extracted RAR and soil
Rl at M2 are p,,, and 7pr2, and the sets of extracted RARs and soil RIs at M1 are #;,, and N}, respectively. After
the selection of Algorithm 2, suppose the sets of selected RARs and soil RIs at M1 are #,;, and N7 . The values
of E(Pyyys Parz) and E(Njy,, iarz) are only 0.0125 and 0.0127, whereas those of E(P},,, prr,) and E(Nj,, i)
raise to 0.0495 and 0.0372. The quantitative results validate the effectiveness of Algorithm 2 for automatically
discarding the data contaminated by multipath interference.

After the multipath interference elimination process, the retained data will be further used for soil moisture
estimation introduced in the following Section 5.

5 MOISTURE ESTIMATION VIA NEURAL NETWORKS

In this section, we introduce the proposed novel deep neural network, SoilldNet, that directly maps the input
radar signal features to soil moisture. After that, we elaborate on augmenting the mata learning framework to
enable fast adaptation from the pretrained meta model, mSoilldNet, to the new target soil type with only a few
labeled training data.

5.1 Deep Neural Network Model

Although there exist some empirical equations (e.g., Topp equation [20]) that offer mappings from certain physical
properties (e.g., apparent permittivity) of the soil to its moisture, these equations usually use simple polynomials
to fit such mappings, which have limited representation ability, and thus suffer from unsatisfactory moisture
estimation accuracy. Alternatively, we leverage the powerful representation ability of neural networks, and
design a neural network structure (named as SoilldNet), which uses Multi-Layer Perception (MLP) as its basic
building block, to directly map the extracted radar signal features to soil moisture. Basically, SoilldNet consists of
three modules, i.e., two encoder modules and one inference module. The two encoder modules take respectively
the RARs and soil RIs as inputs and encode the input data. The inference model then jointly takes the output
of the two encoder modules as input and yields the soil moisture estimations. Compared with Topp equation
that only relies on the soil Rls for moisture estimation, the inference module fully utilizes the rich soil moisture
related information extracted from both RARs and soil RIs, which further promotes the sensing accuracy.

Encoder

_________________

F ]
| 1
: |
n | — — _Inference
! : f Estimated
! 1 Moisture

- ’

CUDSTTNeTTIIe

Encoder
Fig. 8. Structure of our SoilldNet. The blue blocks indicate the FC layers, the yellow blocks indicate the ReLU layers, and &
indicates the concatenation operation.
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After the process of feature extraction and data selection described in Section 4, we randomly select K soil RIs
from N”" and K RARs from ", and then gather them respectively into two K dimensional vectors, denoted as n
and p. As illustrated in Figure 8, n and p are fed into two encoder modules respectively. Each encoder module is
an MLP that consists of alternating fully connected (FC) and ReLU activation layers. Then, the features output by
the encoder modules are concatenated and fed into the inference module which is also an MLP composed of
alternating FC and ReLU activation layers. The inference module finally outputs the soil moisture estimation.

Given enough training data’ collected over one type of soil, we could train SoilldNet for such soil type by
minimizing the MAE loss between the estimated soil moisture and ground truth. However, due to the variant
physical properties of different types of soil, our SoilldNet trained on one soil type does not necessarily perform
satisfactorily on others. Moreover, it is clearly tedious to collect a large volume of labeled training data to train an
SoilldNet model individually for each soil type. To mitigate this issue, we propose to augment the meta learning
framework with details elaborated in the following Section 5.2.

5.2 Meta Learning for Fast Adaptation

In real practice, soil moisture sensing tasks are conducted on a variety of types of soil, which have variant
components, particle sizes, as well as water holding abilities. To avoid complete retraining of SoilldNet for
every type of soil that we may encounter in real-world tests, we propose to pretrain a meta model (named as
mSoilldNet), which is an instance of SoilldNet with parameters that can be fine-tuned to fit any new encountered
soil type with only a small number of labeled training data and a few gradient descent steps.

5.2.1 Meta Model Training. To obtain mSoilldNet, a straightforward way is to adopt the existing meta learning
framework MAML [25] to train a model that is suitable to construct the latent representations of the input radar
signal features for different types of soil. However, directly applying MAML is problematic in our scenario, and
we elaborate the reasons as follows. In each training epoch, MAML uses a set of training data sampled randomly
from the entire training dataset of all soil types. However, such a mixed-soil-type training data generation policy
is problematic for mSoilldNet to learn the essential variation trend of RAR and soil RI when the moisture of a
single type of soil varies, as the soil type is agnostic to mSoilldNet in meta training process. Therefore, to alleviate
such problem, we augment MAML by strictly sampling the training data used in the same epoch from those
collected over the same type of soil, and utilize such augmented MAML to train mSoilldNet.

5.2.2 Meta Model Adaptation. After the meta model mSoilldNet is trained, we adapt it to the target soil type by
the following process. We first (1) collect a small dataset on the target soil type under very few (as few as one or
two) moisture levels. After that, we (2) fine-tune mSoilldNet using stochastic gradient decent to minimize the
MAE loss between the estimated soil moisture and ground truth, over the dataset collected in step (1).

In order to enhance the efficiency of the above adaptation process, we freeze the parameters of the encoder
modules and only update those of the inference module. Our insight for such partial update method is that,
through the meta model training process, the encoder modules of mSoilldNet learn the encoding principle suitable
for different types of soil. Thus, only fine-tuning the final inference module is sufficient for adaptation.

6 EXPERIMENTS

In this section, we first introduce in detail the implementation of Soilld. Next, we show the experimental setups
and results for evaluating Soilld against variety real-world factors, as well as validating the adaptation ability of
the meta model mSoilldNet.

7Qur training data collection method will be introduced in Section 6.3.
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6.1 Experimental Setup

We evaluate Soilld on four different kinds of representative soil, including sand, loamy soil, silt soil, and clay soil,
which have variant components, particle sizes as well as water holding abilities. We conduct experiments in both
lab environments and in the wild for field tests. For lab environments, we place the soil in a container with a size
35cm X 35cm X 30cm, which can hold the soil with a enough depth, and meanwhile the container’s moderate
volume makes it convenient for us to change the soil moisture and alternate different types of soil. For field
tests, we measure the soil moisture at three measurement points on a lawn. In our experiments, an aluminum
plate with a size 30cm X 30cm is buried below the soil surface. We choose such a reflector size to ensure that the
IR-UWB radar could be easily aligned with the measurement point, which greatly facilitates the data collection
process in our experiments. In practice, the reflector can be smaller to reduce cost. The reasons for selecting
aluminum as the material for the reflector will be elaborated in Section 6.4.5.

We use the volumetric water content (VWC) to depict the soil moisture, which is a standard metric defined
by the ratio of the volume of the water contained in the soil to the total volume of the the soil containing it.
We obtain the moisture ground truths of the training datasets through the oven-based method [26], which is
regarded as the most accurate method to obtain the moisture of the soil samples. Specifically, we first fill up a
container with a known volume by the soil sample. Next, we weigh the soil sample and heat it in the oven for
sufficiently long time to make it totally dry. Then, we reweigh the dried-up soil sample and get the weight of the
water by subtracting the weight of the soil sample before and after the heating process. Finally, we calculate the
volume of the water in the soil sample, and further use it to obtain the VWC value of the soil sample.

6.2 System Implementations

6.2.1 Bracket-Based System. As illustrated in Figure 9, the bracket-based system hangs an IR-UWB radar on
a stable bracket to collect radar signal data. Such system prevents the collected radar signal data from being
contaminated by the uncontrollable motion of the UAV, and is thus primarily used to collect the training datasets.
Furthermore, we also use such bracket-based system to collect the testing datasets in a few experiments which are
further discussed in Sections 6.4.1 and 6.4.3. The core component of our IR-UWB radar is the low-cost Novelda
X4Mo05 IR-UWB transceiver [27], which transmits the baseband signal with a bandwidth of 1.5 GHz modulated
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onto a 7.29GHz carrier. In such bracket-based system, the IR-UWB radar is controlled and powered by a laptop
through two separate serial ports.

6.2.2 UAV-Based System. Apart from the aforementioned bracket-based system, we also implement a UAV-based
system for the testing process, as is shown in Figure 10. Specifically, we use the DJI Matrix 210 UAV as the mobile
platform that carries a Dell OptiPlex 7040 mini PC and the IR-UWB radar introduced in Section 6.2.1. The UAV
provides power to the mini PC through its XT30 external power interface and a 24V to 19.5V voltage converter.
The IR-UWB radar is further powered by the mini PC through a power serial port. Thus, we do not need to attach
additional batteries on the UAV other than those that power the UAV itself. By the above system design, the total
weight of the attached devices on the UAV is 1.183kg, which is less than the allowable load 1.57kg of our DJI
Matrix 210 UAV. For UAVs with lower loading capacity, we can replace the mini PC by a single-board computer,
such as Raspberry Pi, to decrease the weight of the system.

Apart from powering the IR-UWB radar, the mini PC also runs a piece of python script to control when the
IR-UWB radar begins and stops to collect data. Such control commands are sent from the mini PC to the IR-UWB
radar via a data serial port. The data collected by the IR-UWB radar is sent to the mini PC through the data
serial port. Moreover, on the mini PC, we implement the RAR and soil RI extraction, distorted data filtering, and
multipath interference elimination components in MATLAB and implement the neural networks of the SoilldNet
and fine-tuned mSoilldNet in Python. The collected data can be directly processed by the mini PC, and thus, we
can get the soil moisture estimation results in real time.

6.3 More Details on Training and Testing

In our experiments, to further ensure the quality of the collected training data, the bracket-based system is
operated in a multipath-free environment, which helps get rid of the multipath interference. For each combination
of soil type and soil moisture that we consider in our experiments, we extract the soil RIs and RARs from the
received frames and collect 1000 training data instances. For moisture estimation of a single type of soil, the
SoilldNet model is trained for 2000 epochs. For meta model training, we select all the available training datasets
apart from the dataset of the target soil type to train the mSoilldNet. The meta model mSoilldNet is trained for
4000 epochs, and in the adaptation process, it is updated for 20 epochs using the labeled data with only one or
two kinds of moisture labels. All the training and adaptation procedures are conducted on a laptop with Intel
i7-1160G7 CPU, and 12 GB memory. The entire training times of SoilldNet and mSoilldNet are around 1 hour and
3 hours. The adaptation time of mSoilldNet is around 3 minutes.

As mentioned in Section 6.2, the testing datasets are collected by both the UAV-based system and bracket-based
system. In the process of testing with the UAV-based system, the UAV raises its altitude so that the distance from
the IR-UWB radar to the soil surface increases from 1m to 3m. We select such a distance range for the following
three reasons. First, it ensures the received signals reflected by the soil surface and the reflector are strong enough
to be distinguished from the noise. Second, it is included in the distance range (0-5m) that the UAV can rely
on the altitude sensing system [28] (consisting of stereo vision sensors and ultrasonic sensors) to accurately
sense its distance to the ground and further to control its altitude. Moreover, such a distance range prevents
the UAV to be too close to the ground for its flight safety. For the bracket-based system, we also manually raise
the distance from the radar to the soil surface to mimic the raising motion of the UAV. For each combination
of soil type and soil moisture, we collect 200 testing data instances with both systems. The SoilldNet outputs
the moisture estimation of all the 200 testing data instances, and we use the average of these values as the final
testing moisture estimation.
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6.4 Performance of SoilldNet

6.4.1 Overall Accuracy. To evaluate the accuracy of SoilldNet, we test it in lab environments where we can
accurately control the soil moisture and designate the soil type. We evaluate the accuracy of SoilldNet on the
test datasets collected by both the bracket-based system (bracket test) and the UAV-based system (UAV test).
We compare the performance of SoilldNet against the baseline that uses Topp equation [20] to estimate the soil
moisture. The Topp equation uses polynomials to fit the mappings between the extracted soil RI and soil moisture.
For each combination of soil type and data collection system, we construct 7 different measurement points such
that the soil moisture monotonically increases from measurement point 1 to measurement point 7.

Specifically, the errors of SoilldNet and the baseline method are defined as the MAE between the ground truths
and the estimated VWC values. Figure 11 shows the CDFs of the errors of all the experiments conducted over all
four types of soil in both the bracket and UAV tests. From this figure, we could observe that for SoilldNet the
50% quantile of VWC errors is just 0.05% in the bracket tests, and 0.23% in the UAV tests. The baseline method
has much higher 50% quantile of VWC errors in both bracket tests and UAV tests, which are 2.04% and 2.07%,
respectively. Clearly, the soil moisture estimation accuracy of SoilldNet in the UAV tests is slightly lower than that
in the bracket testes due to the distortion of the collected testing data caused by the UAV’s uncontrollable motion
and multipath interference. However, despite of such distortion and interference, our distorted data filtering and
multipath interference elimination algorithms help us control the error of SoilldNet within an acceptable range.

Besides, we show the experimental results for loamy soil and sand in both the bracket and UAV tests, and omit
those for clay soil and silt soil for conciseness because they show similar trends. As illustrated in Figures 12 to
15, the errors in the bracket and UAV tests for both the loamy soil and sand show a similar trend as the overall
accuracy shown in Figure 11. Note that, if not specifically mentioned, we use the testing dataset collected by our
UAV-based system in lab environments for the following experiments by default.

6.4.2 Impact of the UAV’s Uncontrollable Motion. To validate the effectiveness of our proposed distorted data
filtering algorithm introduced in Section 4.2, we compare SoilldNet’s estimation accuracy on the original testing
datasets with those on the testing data processed by the distorted data filtering (DDF) algorithm proposed in
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Section 4.2. In Figure 16, we show the MAEs of SoilldNet on the testing datasets of loamy soil, sand, and clay soil.
We notice that the MAE is decreased by 1.61%, 2.14%, and 0.9% on loamy soil, sand, and clay soil respectively,
if we filter the testing data using our distorted data filtering algorithm. Such results validate that our distorted
data filtering algorithm that discards the data contaminated by the UAV’s uncontrollable motion enhances the
moisture estimation accuracy.

6.4.3 Impact of the Multipath Interference. To evaluate the impact of the multipath interference on the soil
moisture estimation, we conduct experiments on loamy soil, sand, and clay soil in an outdoor garden with plenty
of bushes and trees which provide rich multipath reflections. Specifically, in order to exclude the effect of the
uncontrollable factor of the UAV’s motion in this set of experiments, we use the bracket-based system to collect
the testing data. Furthermore, to mimic the raising process of the UAV, we manually raise the altitude of the
IR-UWB radar such that its distance to the soil surface changes from 1m to 3m in a 20cm increment.

In Figure 20, we compare the MAE of SoilldNet on the original testing data with that on the testing data
processed by the multipath interference elimination (MIE) algorithm proposed in Section 4.3. We notice that the
MAE is decreased by 1.1%, 1.86%, and 1.32% on loamy soil, sand, and clay soil respectively, if we filter the testing
data using our multipath interference elimination algorithm. Such results validate that our multipath interference
elimination algorithm that discards the data contaminated by multipath interference also helps enhance the
moisture estimation accuracy.

6.4.4 Impact of the Soil Surface Coverage. In wild fields, there could be objects, such as leaves and stones,
covering on the measurement points, which might distort the radar signals and thus influence the soil moisture
measurement accuracy. To investigate the feasibility of Soilld in such scenario, we conduct experiments where
soil surface coverage exists. The coverage settings are illustrated in Figure 17 and Figure 18, including the light
coverage and heavy coverage. In the light coverage setting, there exist a few leaves and stones covering part of
the soil surface. In the heavy coverage setting, plenty of grass, leaves, and stones cover the entire soil surface
and the thickness of coverage is around 5cm. We conduct the coverage experiments on on loamy soil, sand, and
clay soil, whose results are shown in Figure 21. From this figure, we could observe that the soil surface coverage
indeed influences the accuracy of soil moisture estimation. Specifically, heavy coverage decreases the estimation
accuracy more significantly than light coverage. However, even in the heavy coverage setting, the maximum
MAE of SoilldNet is just 0.54%. Thus, SoilldNet can get satisfactory performance even if there are coverages on
the measurement point.

6.4.5 Impact of the Reflector’s Material. Due to the the stringent FCC power limit for UWB systems, which
is -41.3 dBm/MHz, the reflector buried under the soil surface should be highly reflective and able to provide
strong reflections for radar signals. Besides, the material of the reflector should be stable in the soil so that
we can bury the reflector in the soil for years without replacement. We have tested four reflectors composed
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of different materials, i.e., aluminum (AL), stainless steal (SS), EVER, and plastic (PLA), as shown in Figure 19.
The reflectors are buried 30cm below the soil surface. We plot the peak amplitude of r;(t) corresponding to the
four reflectors in Figure 22. From this figure, we notice that the aluminum and stainless steal reflectors provide
stronger reflections. In our experiments, we choose to use the aluminum plate, since it is cheaper than stainless
steel, which is beneficial for potential wide area deployment. Besides, the dense oxide film that exists on the
surface of the aluminum plate makes it resistive to the erosion by chemicals in the soil®.

6.4.6 Impact of the Input Features. As described in Section 5.1, SoilldNet takes both the soil RI and RAR as the
input features to estimate the soil moisture. To validate that both of the features are useful for SoilldNet to acquire
accurate moisture estimation, we build two variants of SoilldNet that only takes either soil RI or RAR as the input
features for comparison. These two models share the same structure as the original SoilldNet except that they
only consist of one encoder module followed by an inference module. In Figure 23, we show the MAEs of the
trained models with different features as inputs. From this figure, we notice that our SoilldNet using both the soil
RI and RAR as inputs has a lower MAE than the other two models on all the tested soil types. Such experimental
results validate our design choice to take both the soil RI and RAR as input features, as they carry different soil
moisture related information that helps SoilldNet make accurate estimation.

6.4.7 Comparison of Different Machine Learning Methods. To validate our design of using the deep neural
network model, i.e., SoilldNet, to map the relationship between extracted radar signal features to soil moistures,
we train other three machine learning models, i.e., support vector regression (SVR), linear regression (LR), decision
tree (DT), and compare their performances with SoilldNet. As shown in Figure 24, SoilldNet outperforms the
other three models on the testing datasets of loamy soil, sand, and clay soil. Such results indicate that employing
the deep neural network structure, SoilldNet has a more powerful representation ability than the other three
machine learning models.

8The oxide film of aluminum is stable for years in the pH range of 4.5 to 8.5 [29], and the pH range of most types of soil is 5 to 8.5 [30].
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6.4.8 Impact of the Soil Surface-Radar Distance. To investigate how the soil surface-radar distance influence
the accuracy of SoilldNet, we divide the testing datasets into four groups, which are collected under the soil
surface-radar distance of 1m-1.5m, 1.5m-2m, 2m-2.5m, and 2.5m-3m, respectively. In Figure 25, we show the
MAEsS of SoilldNets on the testing datasets of loamy soil, sand, and clay soil. The MAEs are below 0.25% for all the
experiments, whereas the MAEs do not show a clear correlation with soil surface-radar distance, which confirms
with our intuition since the values of RARs and soil Rls are independent of the soil surface-radar distance, as
introduced in Section 2.3. The experimental results indicate that the sensing accuracy of SoilldNet is robust to
the soil surface-radar distance, even if the soil surface-radar distance becomes as far as 3m.

6.4.9 Impact of Hyperparameters of SoilldNet. To investigate how the hyperfarameters influence the performance
of SoilldNet, we implement variants of SoilldNet with different encoder modules. Suppose N is the number of
alternating FC layers and ReLU layers in the encoder modules. We implement three SoilldNet with N = 3, N = 5,
and N = 7, respectively. In Figure 26, we show the MAEs of the SoilldNets on the testing datasets of loamy soil,
sand, and clay soil. The SoilldNet with N = 5 slightly outperforms the others on the testing datasets of each soil
type. Thus, we choose N = 5 for SoilldNet in all the experiments.

6.5 Performance of Fine-Tuned mSoilldNet

6.5.1 Impact of the Soil Type. To validate that the SoilldNet trained on one soil type may not generalize well
to others, we first obtain four SoilldNet models trained on datasets collected on individual four types of soil,
respectively. Next, we apply each of the four models to estimate the moisture of all four types of soil, and obtain
the estimation results shown in Figure 27. From this figure, we observe that SoilldNet only obtains low MAE, when
it is tested on the same type of soil in the training process. In contrast, on other types of soil, the performance of
SoilldNet is rather unsatisfactory.

6.5.2  Effectiveness of the mSoilldNet Adaptation. We conduct several experiments to validate the effectiveness of
our meta training and adaptation method proposed in Section 5.2. Specifically, we compare the adaptation ability
of the pretrained mSoilldNet model and an end-to-end (E2E) model. The E2E model is not pretrained and just
adjusts its paramters from randomly initialized ones. We also prepare two groups of adaptation datasets for the
target soil type. The first group consists of the data instances with only one kind of moisture label, whereas in the
second group the data instances have two kinds of moisture labels. We adapt the pretrained mSoilldNet and E2E
model on these two groups of data respectively, and test the adapted models on the testing datasets. The results
are shown in Figure 28. From this figure, we could observe that the MAE of the fine-tuned mSoilldNet is much
lower than that of the fine-tuned E2E model. Besides, we observe that the models adapted on the datasets with
two moisture labels have better performance than those with only one moisture label. Such result is reasonable
since more labels bring more useful information for fine-tuning the model. Furthermore, the average MAE of the
fine-tuned mSoilldNet is comparable to that yielded by training SoilldNet with full labels of one type of soil, and
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testing the trained SoilldNet on the same soil type, as shown by Figures 27 and 28. Specifically, the former is only
larger than the latter for 0.07%, which indicates the effectiveness of the fine-tuned mSoilldNet.

6.6 Field Test

To evaluate the performance of our Soilld system in wild fields, we conduct field tests at three measurement
points (M3, M4, and M5) on a lawn. As illustrated in Figure 29, we bury a 30cm X 30cm aluminum plate in the soil
as the reflctor of each measurement point. Since the soil type in the field test is a priori unknown, we first collect
the training data of at M3 using the bracket-based system for meta adaptation. After that, we collect the testing
data of all the three measurement points using the UAV-based system for evaluation, as illustrated in Figure 30.
The UAV is hovering over each measurement point to sense the soil moisture. The distance from the IR-UWB
radar to the soil surface changes from 1m to 3m in a 20cm increment. Moreover, in real field tests, we cannot
accurately control the soil moisture to be uniform at each measurement point as we do in lab environments. Thus,
we manually collect five soil samples at each measurement point, and use the mean value of the ground truth
moisture of the samples at M3 as the label of the dataset for meta adaptation. The meta model is pretrained with
all the training dataset collected in the lab environments. As illustrated in Figure 31, the soil moisture estimation
results of mSoilldNet accurately fall in the range of the five ground truth moistures of the soil samples collected at
each measurement point. The MAEs between the averages of the ground truth values at each measurement point
and the estimated soil moistures are 0.76%, 0.1%, and 0.17% for M3, M4, and M5, respectively. The experimental
results validate the effectiveness of the meta adaptation mechanism, which enables mSoilldNet to achieve MAEs
of lower than 0.8% in real-world field tests for all the three measurement points.

7 RELATED WORK

As discussed in Section 1, existing work on soil moisure sensing can be broadly categorized as sensor-based and
RF-based techniques. Sensor-based techniques bury the dedicated sensor nodes in the soil to sense soil moistures.
Several types of sensors have been proposed to measure an appropriate kind of soil property that is sensitive to
moisture. For example, electricity resistance sensors [6] estimate moisture by measuring the electricity resistance
between the two electrodes, and there also exist other types of soil moisture sensors such as capacitive sensors
[31] heat-diffusion sensors [32], tensiometers sensors [8], and radioactive sensors [9] operating by different
principles. The tedious labor work for installing the sensors and changing their batteries prevent these sensors

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning « 11:21

Table 1. Comparison with recent RF-based soil moisture sensing methods, where the sensing range refers to the distance
between the soil surface and the above-ground device (e.g., radar board, antenna arrays) utilized by each method.

Method RF Type Avg. Error Sensing Range In-Soil Battery UAV Test
CoMEt [18] SDR 1.1% 0.6m no no
SoilTAG [40] Wi-Fi 2% 6m no no
Tag+Radar [13] IR-UWB radar 1.4% 4m yes no
GreenTag [36] RFID 5% 2m no no
Strobe [10] Wi-Fi 10% 1.5m yes no
Lora+Switch [12] LoRa 3.1% >5m yes no
smol [11] LoRa 1.63% 1.95m yes no
Soilld IR-UWB radar 0.2% 3m no yes

from the widespread usages. Besides, these sensors are either prohibitively expensive or inaccurate to yield
fine-grained soil moisture estimations.

RF-based techniques do not require to deploy any sensor node, but some of them [10-13] also bury battery-
powered devices in the soil. Specifically, Strobe [10] employs the propagation time and amplitude of Wi-Fi signals
received by different antennas in the soil to jointly estimate soil moisture and salinity; The authors in [11, 12]
propose to bury LoRa nodes in the soil to estimate the soil moisture based on the RSSI or the phase of LoRa
signals; [13] proposes to bury a battery-powered tag in the soil and estimate the soil moisture based on the ToF
from the tag to the radar. Other approaches [33, 34] also propose to bury a pair of UWB chips in the soil to
estimate the soil moisture. However, the risk of soil contamination from battery corruption and the extra labor to
replace the batteries limit the usage of these techniques.

Apart from these works, there are also other RF-based techniques that bury battery-free tags to provide
reflections [35-37] of RF-signals, or just use the reflection of the soil surface and the boundaries between different
soil layers for soil moisture sensing [14, 15, 18, 38, 39]. GreenTag [36] senses the moisture of the potted soil by
utilizing the RFID tag attached to the exterior of the pot. However, its operation mode limits its application for
in-ground soil moisture sensing in agricultural, and other wide-area soil moisture sensing scenarios. SoilTag [40]
employs the Wi-Fi tag for soil moisture sensing. However, its accuracy is lower than that of Soilld, and SoilTag is
not tested on UAV for mobile soil moisture sensing. [14-17, 38, 39] estimate the soil moisture through measuring
soil surface reflections of the RF signals from spaceborne GNSS or radars carried on planes. These techniques can
widely estimate soil moisture all over the earth, but could only operate at limited spatial resolutions. Apart from
the remote sensing techniques, CoMEt [18] utilizes the signals reflected by the soil surface, as well as those by
the boundaries of different soil layers to estimate the soil moisture. However, due to the limited power of the
reflected signal strength, the operation range of CoME't is within 60cm of the soil surface, which restricts its
potential to be carried on aerial mobile platforms (e.g., UAVs) for wide-area soil moisture sensing.

Compared with these approaches, Soilld can quickly measure the soil moisture of multiple measurement points
in a wide area, and can also provide moisture estimation with satisfactory spatial resolution and precision for
agriculture, as well as other applications. We also comprehensively compare Soilld with the aformentioned recent
RF-based soil moisture sensing methods in terms of sensing accuracy, the requirement of burying batteries in the
soil, sensing range, and several other aspects in Table 1. As shown by this table, Soilld is the method with a lower
error, and is the only work that performs system implementation on an actual UAV for soil moisture sensing
compared with other recent RF-based soil moisture sensing methods [10-13, 18, 36, 40] listed in this table.

Apart from soil moisture sensing, the low cost and highly compact commercial miniature on-chip radars
have shown rising popularity among lots of other sensing applications, such as through fog imaging and indoor
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mapping [41-43], material sensing [44, 45], motion recognition and mesh recovery [46-49], as well as localization
and bounding box estimation [50, 51], and many others [52-55]. Our work distinguishes from the above works
[41-55] as we attach a miniature on-chip IR-UWB radar on an UAV and leverage it for a completely different task
of soil moisture sensing.

8 CONCLUSION AND DISCUSSION
8.1 Conclusion

In this paper, we present Soilld, an RF-based soil moisture sensing system that combines a UAV and an IR-UWB
radar to quickly perform wide-area soil moisture sensing without burying any in-ground battery-powered
devices. To measure soil moisture, Soilld extracts soil moisture related features from the received radar signals,
automatically detects and discards the data influenced by the UAV’s uncontrollable motion and the multipath
interference, and finally accurately maps the radar signal features to the soil moisture estimation through a novel
deep neural network model SoilldNet. Furthermore, we also augment the meta learning framework to obtain a
meta model mSoilldNet, which can be quickly fine-tuned on new target soil type with only a small number of
labeled data. Soilld achieves a 50% quantile MAE of 0.23% on UAV tests. Besides, the meta model mSoilldNet also
shows its satisfactory adaptation ability in our extensive experiments.

8.2 Potential for Real-World Applications

8.2.1 Soil Moisture Sensing for a Large Area with Soilld. Clearly, a smart and automatic soil moisture monitoring
system will release much human labor of carrying the sensing devices in a large sensing area. The highly mobile
nature of Soilld makes the automatic soil moisture sensing in a large area possible. Users can program on the
software development kit (SDK) to predefine the UAV’s flight paths, and utilize the RTK modules or the visual
markers to accurately localize the UAV. The soil surface-UAV distance can be accurately sensed by UAV’s altitude
sensing system [28] and automatically controlled through SDK. After that, the UAV can make soil moisture
estimations at different measurement points consecutively in a fully automatic manner. The average time spent
for measuring the soil moisture at a measurement point in our experiments is less than 2 minutes. Thus, Soilld
supports fast measurement of the soil moistures at many measurement points in a wide area.

8.2.2 Low Cost Compared with Existing Systems. Existing large scale soil moisture sensing systems usually
require to bury tens or even hundreds of sensors to provide enough coverage [56]. The high costs of reliable soil
moisture sensor nodes ($100-$400 [7] each) make such systems prohibitively expensive. Compared with these
systems, Soilld buries at each measurement point a battery-free aluminum reflector with attractive price ($5
each), which is 20x cheaper than the dedicated sensors. Meanwhile, Soilld does not require more efforts to deploy
the reflectors, because the deployment density of the reflectors in Soilld is comparable to that of the sensors in
existing systems. However, a soil moisture sensing system with sensors also requires to install various types of
peripherals, such as sensor data loggers (more than $1000 each [7]) for data gathering and LoRa gateways for
communications. These devices also bring extra costs and labor works to install and connect. Soilld does not
require these peripherals because it can directly sense the soil moisture at each measurement point and store
the results on the computing device on the UAV. The aluminum reflectors are chemically stable in soil for years
without any maintenance. The major cost of Soilld comes from the UAV. However, nowadays many farms have
already equipped with UAVs for other purposes (e.g., monitoring the growth of crops, spraying fertilizers and
pesticides). The Soilld framework can be easily implemented on such UAV by integrating a Raspberry Pi and a
commercial IR-UWB radar on it. The extra operation costs for soil moisture sensing are just the charging costs
for extra flights. Thus, from the perspective of price, Soilld is also suitable for soil moisture sensing in large areas
with multiple measurement points.
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8.3 Limitations and Future Works

Soilld takes the first step to implement a UAV-based soil moisture sensing system with commercial IR-UWB radar
and deep learning techniques, making it possible for modern smart agriculture to accurately monitor the soil
moisture of a large sensing area. However, the potential of Soilld has not been fully exploited. We elaborate on
the limitations and potential improvement directions for Soilld as follows.

8.3.1 Smaller Reflectors. In our experiments, we choose the reflector’s size to be 30cm X 30cm, such that the
UAV can easily align with the measurement point. However, it is far from the smallest size we can use. Smaller
reflectors will reduce the deployment cost, and have less impact on the plant growth. Meanwhile, it is more
difficult for the UAV to vertically align with the measurement point if we use smaller reflectors. Various choices
of reflector size can be decided by considering the trade-off between environment friendliness and sensing
convenience.

8.3.2 Other Choices of Radars with Different Operation Frequencies. Soilld employs the COTS IR-UWB radar
whose central operation frequency is 7.29GHz to sense the soil moisture. Although the signals of such IR-
UWB radar show satisfactory soil penetrating ability compared with other miniature on-chip radars radars, the
performance of Soilld might be improved, if it is equipped with radars operating at lower frequencies. Since RF
signal attenuates more slowly when its frequency is lower, if Soilld uses a radar with a lower operation frequency,
it might sense deeper in the soil. Thus, in such case, the strengths of the signals reflected by the reflector will be
higher, which will help promote the soil moisture sensing accuracy.

8.3.3  Effect of Plant Roots. Clearly, plant roots may change composition of the soil at the measurement points and
further impact the soil moisture sensing accuracy. Luckily, such impact can be alleviated by manually removing
the plant roots in advance when we construct a measurement point. However, it is possible that years after there
might be new plant roots spread into the measurement point. We will leave the exploration of such impact on
soil moisture sensing accuracy in our future work.
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