Visible light-assisted ring-opening of cyclic ethers with carboxylic acids mediated by triphenylphosphine and N-halosuccinimides

Dhiraj K. Jha, Sandhya Acharya, Nagaraju Sakkani, Samantha Chapa, Andrew Guerra, John C.-G. Zhao*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Supporting Information Placeholder

ABSTRACT: The ring-opening of cyclic ethers (epoxide, oxetane, THF, and THP) by carboxylic acids was achieved by using N-iodosuccinimide (NIS) or N-bromosuccinimide (NBS) and triphenylphosphine under the irradiation of blue light. The corresponding ω -haloalkyl carboxylates were obtained under mild reaction conditions. The reaction is believed to work through a halogen bond complex between NIS (or NBS) and triphenylphosphine, which, upon irradiation with blue light, produces the key phosphine radical cation intermediate that initiates the ring-opening reactions.

ω-Haloalkyl carboxylates are very useful in organic synthesis because both the halo and the ester groups are highly amenable to synthetic maneuvers. In addition, the ester functional group is ubiquitous in natural products, pharmaceuticals, and biologically active compounds, as well as industrial materials.² Ring-opening of cyclic ethers with acid halides, anhydrides, or carboxylates represents the most straightforward method for the synthesis of ω-haloalkyl carboxylates.³ Alternatively, these compounds can also be obtained by the esterification of ω-haloalcohols with acid chlorides.⁴ Nevertheless, most of these method require the use of acid halides, which are not readily available. In addition, a Lewis acid catalyst is also often necessary. There are only a few methods have been reported where the readily available carboxylic acids have been used for the direct synthesis of ω-haloalkyl carboxylates. 1,5 In the regard, Gopinath and Chandrasekaran have developed a one-pot sequential method for the synthesis of ω-bromoalkyl carboxylates via the ring-opening of cyclic ethers involving the acyloxyphosphonium salt intermediates.⁵ In 2022, Qiu and coworkers realized the synthesis of ω-iodoalkyl carboxylates directly from carboxylic acids via a Cu-catalyzed ringopening of cyclic ethers.1

Most recently, our group discovered the formation of halogen bond complexes^{6,7} between *N*-halosuccinimides and enamines^{8a} or polycyclic aromatic hydrocarbons,^{8b} which can be used for the direct acyloxylation of ketones or arenes using carboxylic acids under visible light irradiation.⁸ While it is well-known that *N*-halosuccinimides form halogen bond complexes with various nitrogen-containing compounds,^{7,8} formation of halogen bond complexes between *N*-halosuccinimides and phosphines have not been documented, probably because the combination of *N*-halosuccinimides and

phosphines is believed to form only polar reagents. Nevertheless, phosphines and phosphites are known to be good halogen bond acceptors. Based on these reports and our own above studies, we hypothesized that *N*-halosuccinimides and phosphines can also form halogen bond complexes and such complexes can be used for realizing novel visible light-assisted chemical reactions. Herein, we wish to report a visible light-assisted direct ring-opening of cyclic ethers using carboxylic acids mediated by the halogen bond complexes, a type of the electron donor-acceptor (EDA) complexes, of triphenylphosphine and *N*-halosuccinimides, via the in-situ-generated phosphine radical cation intermediates.

First of all, we selected N-iodosuccinimide (NIS, 1a) and triphenylphosphine (Ph_3P , 2a) to test our hypothesis. When NIS (1a) or Ph_3P (2a) was dissolved in chlorobenzene, only a colorless solution was obtained; however, the 1:1 mixture of 1a and 2a in chlorobenzene led to a dark yellow solution. This color change suggests the formation of a halogen bond complex between 1a and 2a. Further evidence supporting the formation of a halogen bond complex between 1a and 2a is provided by the UV-vis spectra of these three solutions (see Figure S-1 in the Supporting Information), the UV-vis absorption of the 1:1 Ph_3P/NIS solution is more intense than that of NIS and Ph_3P and shifts to the longer wavelength.

To find out the potential synthetic utility of this halogen bond complex, the ring-opening of cyclic ethers using carboxylic acids was investigated under visible light irradiation. Using THF (3a), benzoic acid (4a), NIS (1a), and Ph₃P (2a) as the model substrates, we first optimized the conditions of the ring-opening reaction. The results are summarized in Table 1. When a slightly excess of

Table 1. Ring-opening of THF mediated by phosphine and NIS^a

entry	4a	1a	2	yield of
	(equiv.)	(equiv.)	(equiv.)	5a $(\%)^b$
1	2.0	1.5	Ph ₃ P (1.5)	84 (95)
2^c	2.0	1.5	Ph ₃ P (1.5)	0
3	2.0	1.5		0
4^d	2.0	1.5	$Ph_{3}P(1.5)$	48
5	3.0	1.5	$Ph_{3}P(1.5)$	43
6	2.0	1.0	$Ph_{3}P(1.0)$	10
7	2.0	2.0	$Ph_{3}P(2.0)$	48
8^e	2.0	1.5	$Ph_3P(1.5)$	23
9 ^f	2.0	1.5	$Ph_3P(1.5)$	13
10 ^g	2.0	1.5	$Ph_{3}P(1.5)$	48
11^h	2.0	1.5	$Ph_3P(1.5)$	24
12^i	2.0	1.5	$Ph_3P(1.5)$	44
13^{j}	2.0	1.5	$Ph_3P(1.5)$	15
14^k	2.0	1.5	$Ph_3P(1.5)$	0
15^{l}	2.0	1.5	$Ph_3P(1.5)$	0
16^{m}	2.0	1.5	$Ph_3P(1.5)$	48
17	2.0	1.5	$(4-FC_6H_4)_3P(1.5)$	(33)
18	2.0	1.5	$(4-MeOC_6H_4)_3P$ (1.5)	(26)
19	2.0	1.5	$(2-MeC_6H_4)_3P(1.5)$	(11)
20	2.0	1.5	$(1-Nap)_3P(1.5)$	(27)
21	2.0	1.5	c-C ₆ H ₁₁ Ph ₂ P (1.5)	(21)
22	2.0	1.5	$(c-C_6H_{11})_2PhP(1.5)$	(23)
23	2.0	1.5	$(c-C_6H_{11})_3P(1.5)$	(9)

"Unless otherwise indicated, all reactions were carried out with THF (3a, 1.0 mmol), benzoic acid (4a, 2.0 mmol), NIS (1a, 1.5 mmol), phosphine 2 (1.5 mmol) in PhCl (5.0 mL) under argon at rt under the irradiation of two 36 W blue LED (460 nm) for 23 h. "Yield of the isolated product 5a after column chromatography. The number in the parentheses represents the conversion of 3a as determined by the ¹H NMR of the crude reaction product. "Carried out in the dark. "Carried out under air. "Carried out in toluene. "Carried out in CHCl3. "Carried out in EtOAc. "Carried out in acetone. "Carried out in CHCl3." Carried out using THF (3a) as the solvent. "Carried out in DMF. "Carried out in MeOH." "Carried out at 50 °C.

4a (2.0 equiv.), 1a (1.5 equiv.), and 2a (1.5 equiv.) was employed,

an excellent conversion (95%) of 3a was achieved after the mixture was irradiated in chlorobenzene with blue light at rt for 23 h. The desired ring-opened product 5a was isolated in 84% yield (entry 1). In contrast, control reactions conducted in the dark (entry 2) or without Ph₃P (entry 3) gave no product. These results clearly evince that both light and Ph₃P are crucial for this reaction. When the same reaction was carried out under air, a much lower yield of 5a (48%, entry 4) was obtained. Similarly, lower yields of the product were obtained when the loadings of benzoic acid (4a), NIS (1a), or Ph₃P (2a) were adjusted (entries 5-7). When the reaction was conducted in other common organic solvents, such as toluene, CHCl₃, EtOAc, acetone, CH3CN, and THF, the yield of 5a dropped substantially (entries 8-13). DMF and MeOH are especially bad solvents for this reaction and no formation of 5a was observed in these two solvents (entries 14-15). Raising the reaction temperature to 50 °C turned out also to be counterproductive for this reaction and the yield of 5a dropped to 48% (entry 16). Since phosphine is essential for this reaction, we screened several aryl- and alkyl-substituted phosphine derivatives together with NIS in this reaction (entries 17-23). As the results in Table 1 show, none of the other phosphines we screened are as effective as triphenylphosphine (2a) in converting THF (3a) to the ring-opened product. In summary, these optimizations identified that parameters listed in entry 1 is the best for this ring-opening reaction.

The substrate scope of this reaction was then evaluated. As the results summarized in Table 2 show, besides benzoic acid (4a), substituted benzoic acids can also be applied in the THF ring-opening reaction. While in general slight lower yields of the desired ringopened products (5b-i) were obtained from the substituted benzoic acids, there is almost no effect on the product yield whether an electron-donating group (such as Me, and MeO, 5b and 5c) or an electron-withdrawing group (such as F, Cl, Br, I, CN, or NO₂, **5d-i**) is attached to the para-position of the phenyl ring. While meta-nitrobenzoic acid only led to a slightly lower yield of the desired product (5j vs. 5i), no formation of the desired 5k was observed for orthonitrobenzoic acid. This is most likely due to steric effects. Indeed, when 2-fluorobenzoic acid was used in the reaction, the expected product 51 was obtained 53% yield, which is similar to that of 4fluorobenzoic acid (5d). The desired ring-opened product 5m of 2naphthoic acid was also obtained in 69% yield. When heterocyclic acids were applied in this reaction, the outcome of this reaction depends on the actual acid was employed. For examples, while no desired products of picolinic and nicotinic acids (5n and 5o) were obtained, that of coumalic acid (5p) was obtained in 54% yield. The failure in the former acids was most likely due to its nitrogen atom, which is known to form halogen bond complex with NIS^{7b} and, therefore, interferes the desired halogen bond formation between Ph₃P and NIS. In addition to aryl carboxylic acids, aliphatic carboxylic acids can also be applied in this reaction, and similar yields were obtained for the ring-opened products of 2-phenylacetic acid (5q), acetic acid (5r), cyclohexanecarboxylic acid (5s), pivalic acid (5t), and 1-adamantane carboxylic acid $(5\mathbf{u})$, which have either a primary, secondary, or tertiary alkyl group attached to the carboxylic acid function group. 3-Cyclohexen-1-carboxylic acid can also be used as a substrate in this ring-opening reaction, and desired 5v was obtained in 52% yield. The double bond in the acid is tolerated in the reaction. Similarly, the ring-opened product of α -tocopheryl acid succinate (5w) was obtained in 59% yield, and its oxygen-containing heterocycle does not affect the reaction. In addition to THF, we also applied some other cyclic ethers in this ring-opening reaction together with benzoic acid. As the results in Table 1 show, when 2-methyltetrahydofuran (3b) was employed as the substrate, the ring-opening reaction generated product 5x in 64% yield, with benzoic acid regioselectively attacking the methyl-substituted side of the THF ring. When oxetane (3c) was applied, the expected product 5y was obtained in 55% yield. Cyclohexene oxide (3d), which is an epoxide, can also be used as a substrate in this reaction and the desired product (5z) was obtained in 61% as a single *trans*-diastereomer. In contrast, the ring-opening reaction of tetrahydropyran

(THP, 3e) turned out to be more challenging and no product was obtained when the reaction was carried out under the optimized conditions. Nevertheless, when the reaction was carried out at 60 °C, the desired ring-opened product 5aa could be obtained in a low yield. Finally, we also applied N-bromo- (NBS, 1b) and N-chlorosuccinimide (NCS, 1c) as the halogen bond donors in this reaction. It was found that, while NBS (1b) led to the formation of the desired ω -bromoalkylester 5ab in 58% yield, no formation of the expected ω -chloroalkylester 5ac was observed from the reaction of NCS (1c). These results are not totally unexpected, as NBS and especially NCS are weaker halogen bond donors than NIS.

Table 2. Substrate scope of the ring-opening reactions mediated by triphenylphosphine/N-halosuccinimides^a

^aAll reactions were carried out with cyclic ether (**3**, 1.0 mmol), carboxylic acid (**4**, 2.0 mmol), NIS (**1a**, 1.5 mmol), triphenylphosphine (**2a**, 1.5 mmol) in PhCl (5.0 mL) under argon at rt under the irradiation of two 36 W blue LED (460 nm) for 23 h. ^bOnly the *trans*-diastereomer was obtained. ^cThe reaction was carried out at 60 °C.

The formation of iodine was observed in this ring-opening reaction, which was confirmed by the starch test. This observation suggests that iodine radical is produced during the reaction. In addition, we did not observe the formation of any decarboxylation products from the carboxylic acids, including those with a benzyl or tertiary substituent, such as 2-phenylacetic acid, pivalic acid, and 1-adamantane carboxylic acid, suggesting that carbonyloxy radical is not likely

involved in this reaction. Based on the results of the experiment using ^{18}O -labeled benzoic acid as the starting material, the C-O σ bond of benzoic acid is broken during this reaction. 13 Thus, the following mechanism is proposed for the ring-opening reaction (Scheme 1). When NIS (1a) and Ph₃P (2a) are mixed in chlorobenzene, the halogen bond complex 6 forms. Upon the irradiation of the blue light, the electron transfer between the halogen bond acceptor (2a) and

donor (1a) leads to the formation of the triphenylphosphine radical cation (7),¹⁴ iodine radical, and the succinimide anion. The reaction of 7 with benzoic acid (4a) gives the radical cation intermediate 8, which yields the phosphoranyl radical¹⁵ 9 after deprotonation. Subsequent elimination of triphenylphosphine oxide from 9 produces the benzoyl radical 10,¹⁶ which then reacts with iodine radical to give the acylium ion 11 (or benzoyl iodide). Reaction between 11 (or benzoyl iodide) and THF (3a) gives intermediate 12, which is ringopened by iodide to give 5a. It should be pointed out that we obtained product 5w as a single regioisomer when 2-methyltetrahydrofuran was applied as the substrate, which is much higher than that of the in-situ generated benzoyl iodide.^{3a} At present, we lack a good explanation for this discrepancy.

Scheme 1. Proposed mechanism for the ring-opening reaction.

Further support of this triphenylphosphine radical cation-mediated ring-opening mechanism came from the results of a TEMPO inhibition experiment. As shown in Scheme 2 (top equation), the desired product **5a** was not formed when the reaction was carried out in the presence of TEMPO. Instead, we obtained compound **13** in a low yield. Formation of this compound can be the result of the reaction of benzoyl radical (**10**) and TEMPO (Scheme 2, bottom equation).

Scheme 2. TEMPO inhibition experiments.

Qiu and co-workers have demonstrated multiple synthetic applications of ω -iodoalkyl carboxylates. We also conducted some further elaborations of the reaction product **5a** (Scheme 3).

In summary, we demonstrated that formation of a halogen bond complex between N-halosuccinimides and triphenylphosphine is possible and the corresponding complexes can be used for the visible light-assisted synthesis of ω -iodoalkyl carboxylates via the direct ring-opening of cyclic ethers by carboxylic acids under very mild conditions.

Scheme 3. Derivatizations of the reaction product **5a**.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information

Supporting Information

The Supporting Information is available free of charge at.

Detailed experimental procedures, compound characterization data, and copy of ¹H and ¹³C NMR spectra of the obtained products (PDF)

AUTHOR INFORMATION

Corresponding Author

John C.-G. Zhao - Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698; orcid.org/0000-0001-7174-5956; Email: cong.zhao@utsa.edu.

Authors

Dhiraj K. Jha- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698.

Sandhya Acharya- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698.

Nagaraju Sakkani- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698.

Samantha Chapa- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698.

Andrew Guerra- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698.

Present Address

+Medicine for All Institute, Virginia Commonwealth University, Richmond, VA 23298-0100.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors thank the National Science Foundation (CHE 1664278) for a post-doctoral fellowship. The authors also thank the UTSA Mass Spectrometry & Proteomics Core Facility and Dr. Wendell Griffith for help with the HRMS analysis and National Science Foundation (CHE 2117691) for the TOF instrument.

REFERENCES

- (1) Lu, D.; Guan, W.; Yang, X.; Wang, Y.; Kambe, N.; Qiu, R. Cu-Catalyzed Dual C–O Bonds Cleavage of Cyclic Ethers with Carboxylic Acids, NaI, and TMSCF₃ to Give Iodoalkyl Ester. *Org. Lett.* **2022**, 24, 2826-2831.
- (a) Tsakos, M.; Schaffert, E. S.; Clement, L. L.; Villadsen, N. L.; (2) Poulsen, T. B. Ester coupling reactions - an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 2015, 32, 605-632. (b) McCullagh, J. V.; Hirakis, S. P. Synthesis of the Commercial Fragrance Compound Ethyl 6-Acetoxyhexanoate: A Multistep Ester Experiment for the Second-Year Organic Laboratory. J. Chem. Educ. 2017, 94, 1347-1351. (c) Beardmore, L. N. D.; Cobb, S. L.; Brittain, W. D. G. One-pot ester and thioester formation mediated by pentafluoropyridine (PFP). Org. Biomol. Chem. 2022, 20, 8059-8064. (d) Rayne, S.; Forest, K. Carboxylic acid ester hydrolysis rate constants for food and beverage aroma compounds. Flavour Fragr. J. 2016, 31, 385-394. (e) Santoro, O.; Zhang, X.; Redshaw, C. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10, 800. (f) Yang, S.; Wang, X.; Pan, Y.; Zhan, Q.; Yvan, L. E. Environmentally Friendly Drilling Fluid Lubricant: A Review. Ind. Eng. Chem. Res. 2023, 62, 8146-8162.
- (a) Oku, A.; Harada, T.; Kita, K. Selective cleavage of ethers by sodium iodide-acyl chloride. Tetrahedron Lett. 1982, 23, 681-684. (b) Kwon, D. W.; Kim, Y. H.; Lee, K. Highly Regioselective Cleavages and Iodinations of Cyclic Ethers Utilizing SmI₂. J. Org. Chem. 2002, 67, 9488-9491. (c) Wu, H. Y.; Chen, R. E.; Zhang, Y. M. Tetrahydrofuran Ring Opening with Acyl Chlorides or Anhydrides Catalyzed by Gallium Triiodides: A Novel and Facile Method for the Preparation of Iodo Esters. Chin. Chem. Lett. 2000, 11, 191-194. (d) Peng, J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F. Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides. iScience 2018, 8, 175-182. (e) Guan, W.; Lu, D.; Yang, X.; Deng, W.; Xiang, J.; Kambe, N.; Qiu, R. CF₃SO₂Na-Mediated Five-Component Carbonylation of Triarylboroxines with TMSCF3 and THF/LiOH/NaI to Give Aroyloxyalkyl Iodides. J. Org. Chem. 2022, 87, 9635-9644. (f) Yu, Y.; Zhang, Y.; Ling, R. Tetrahydrofuran Ring Opening with Acid Chlorides Catalyzed by Samarium Triiodides. Synth. Commun. 1993, 23, 1973-1977. (g) Venkatesham, K.; Chanti Babu, D.; Bharadwaj, T. V.; Bunce, R. A.; Rao, C. B.; Venkateswarlu, Y. Synthesis of n-alkyl terminal halohydrin esters from acid halides and cyclic ethers or thioethers under solvent- and catalyst-free conditions. RSC Adv. 2014, 4, 51991-51994. (h) Malladi, R. R.; Kabalka, G. W. One-Pot Synthesis of ω-Chloroesters via the Reaction of Acid Chlorides with Tetrahydrofuran in the Presence of Ttrifluoroborane. Synth. Commun. 2002, 32, 1997-2001. (i) Liu, Y.; Zhang, Y. Tetrahydrofuran ring opening with acyloxyphosphonium bromide catalysed by allylsamarium bromide: a novel and effective method for the preparation of 4-bromobutyl esters. J. Chem. Res. 2002, 15-16.
- (4) Wang, X.-X.; Yu, L.; Lu, X.; Zhang, Z.-L.; Liu, D.-G.; Tian, C.; Fu, Y. NiH-Catalyzed Reductive Hydrocarbonation of Enol Esters and Ethers. *CCS Chem.* **2022**, *4*, 605–615.
- (5) Gopinath, P.; Chandrasekaran, S. A. Sequential One-Pot Synthesis of Functionalized Esters and Thioesters through a Ring-Opening Acylation of Cyclic Ethers and Thioethers. *Eur. J. Org. Chem.* **2018**, 6541-6547.
- (6) For reviews, see: (a) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. *Chem. Rev.* **2016**, *116*, 2478-2601. (b) Yamada, S.; Konno, T. Recent Advances in Halogen Bond-assisted Organic Synthesis. *Curr. Org. Chem.* **2020**, 24, 2118-2152. (c) *Halogen Bonding in Solution*. Huber, S. Ed., Wile-VCH: Weinheim, 2021.
- (7) For examples of halogen bonding between *N*-halosuccinimides and nitrogen-containing compounds, see: (a) Li, J.; Kwon, E.; Lear, M. J.; Hayashi, Y. Halogen Bonding of *N*-Halosuccinimides with Amines and Effects of Brønsted Acids in Quinuclidine-Catalyzed Halocyclizations. *Helv. Chim. Acta* **2021**, *104*, e2100080. (b) Stilinović, V.; Horvat, G.; Hrenar, T.; Nemec, V.; Cinčić, D. Halogen and Hydrogen Bonding between (*N*-Halogeno)-succinimides and Pyridine Derivatives in Solution, the Solid State and In Silico. *Chem. Eur. J.* **2017**, *23*, 5244-5257. (c) Castellote, I.;

- Morón, M.; Burgos, C.; Alvarez-Builla, J.; Martin, A.; Gómez-Sal, P.; Vaquero, J. J. Reaction of imines with *N*-iodosuccinimide (NIS): unexpected formation of stable 1:1 complexes. *Chem. Commun.* **2007**, 1281-1283. (d) Li, J.; Lear, M. J.; Kawamoto, Y.; Umemiya, S.; Wong, A. R.; Kwon, E.; Sato, I.; Hayashi, Y. Oxidative Amidation of Nitroalkanes with Amine Nucleophiles using Molecular Oxygen and Iodine. *Angew. Chem. Int. Ed.* **2015**, *54*, 12986-12990. (e) Wu, F.; Ariyarathna, J. P.; Kaur, N.; Alom, N.-E.; Kennell, M. L.; Bassiouni, O. H.; Li, W. Halogen-Bond-Induced Consecutive Csp3–H Aminations via Hydrogen Atom Transfer Relay Strategy. *Org. Lett.* **2020**, *22*, 2135-2140. (f) Guha, S.; Sekar, G. Metal-Free Halogen(I) Catalysts for the Oxidation of Aryl(heteroaryl)methanes to Ketones or Esters: Selectivity Control by Halogen Bonding. *Chem. Eur. J.* **2018**, *24*, 14171-14182.
- (8) (a) Sakkani, N.; Jha, D. K.; Whatley, E.; Zhao, J. C.-G. Visible light-assisted organocatalytic α -acyloxylation of ketones using carboxylic acids and N-halosuccinimides. *Chem. Commun.* **2002**, *58*, 11308-11311. (b) Jha, D. K.; Sakkani, N.; Zhao, J. C.-G. Visible Light-Assisted Direct C–H Acyloxylation of Polycyclic Aromatic Hydrocarbons using Carboxylic Acids. *Adv. Synth. Catal.* **2023**, *365*, 1585-1590.
- (9) (a) Virgil, S. C.; Korol, N.; Slivka, M. *Triphenylphosphine–N-Bromosuccinimide*. In *Encyclopedia of Reagents for Organic Synthesis*, **2018**, pp 1-3. (b) Ponpipom, M. M.; Hanessian, S. A method for the selective bromination of primary alcohol groups. *Carbohydr. Res.* **1971**, *18*, 342-344. (c) Cano, M. J.; Bouanou, H.; Tapia, R.; Alvarez, E.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-Manzaneda, E. NIS–PPh₃: A Selective Reagent for the Spiroannulation of *o*-Allyl Phenols. Total Synthesis of Corallidictyal D. *J. Org. Chem.* **2013**, *78*, 9196-9204.
- (10) For examples of halogen bond complexes between phosphines and iodides, see: (a) Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. *Science* **2019**, 363, 1429-1434. (b) Liu, Q.; Lu, Y.; Sheng, H.; Zhang, C.-S.; Su, X.-D.; Wang, Z.-X.; Chen, X.-Y. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. *Angew. Chem. Int. Ed.* **2021**, 60, 25477-25484.
- (11) For examples, see: (a) Xu, Y.; Huang, J.; Gabidullin, B.; Bryce, D. L. A rare example of a phosphine as a halogen bond acceptor. *Chem. Commun.* **2018**, *54*, 11041-11043. (b) Helmecke, L.; Spittler, M.; Baumgarten, K.; Czekelius, C. Metal-Free Activation of C–I Bonds and Perfluoroalkylation of Alkenes with Visible Light Using Phosphine Catalysts. *Org. Lett.* **2019**, *21*, 7823-7827. (c) Bracker, M.; Helmecke, L.; Kleinschmidt, M.; Czekelius, C.; Marian, C. M. Visible Light-Induced Homolytic Cleavage of Perfluoroalkyl Iodides Mediated by Phosphines. *Molecules* **2020**, *25*, 1606. (d) Huang, W. Y.; Zhang, H. Z. Reaction of Perfluoroalkyl Iodides with Alkenes Initiated by Organophosphine and Related Compounds. *J. Fluor. Chem.*, **1990**, *50*, 133-140.
- (12) For reviews on the photochemical reactions of EDA complexes, see: (a) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes. *J. Am. Chem. Soc.* **2020**, *142*, 5461-5476. (b) Lima, C. G. S.; de M. Lima, T.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. Organic Synthesis Enabled by Light-Irradiation of EDA Complexes: Theoretical Background and Synthetic Applications. *ACS Catal.* **2016**, *6*, 1389-1407.
 - (13) For details, please see the Supporting Information.
- (14) For a review, see Pan, D.; Nie, G.; Jiang, S.; Li, T.; Jin, Z. Radical reactions promoted by trivalent tertiary phosphines. *Org. Chem. Front.* **2020**, 7, 2349-2371.
- (15) For reviews, see: (a) Hu, X.-Q.; Hou, Y.-X.; Liu, Z.-K.; Gao, Y. Recent advances in phosphoranyl radical-mediated deoxygenative functionalisation. *Org. Chem. Front.* **2020**, *7*, 2319-2324. (b) Rossi-Ashton, J. A.; Clarke, A. K.; Unsworth, W. P.; Taylor, R. J. K. Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. *ACS Catal.* **2020**, *10*, 7250-7261.
- (16) Zhang, M.; Xie, J.; Zhu, C. A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes. *Nat. Commun.* **2018**, *9*, 3517.