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Truncation of Contact Defects in Reaction-Diffusion Systems\ast 

Milen Ivanov\dagger and Bj\"orn Sandstede\ddagger 

Abstract. Contact defects are time-periodic patterns in one space dimension that resemble spatially homo-
geneous oscillations with a defect embedded in their core region. For theoretical and numerical
purposes, it is important to understand whether these defects persist when the domain is truncated
to large spatial intervals, supplemented by appropriate boundary conditions. The present work
shows that truncated contact defects exist and are unique on sufficiently large spatial intervals.
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1. Introduction. Solutions of reaction-diffusion systems exhibit a wide variety of patterns,
which makes them ubiquitous in models of chemical, biological, and ecological systems [13].
In biological systems, Turing patterns are a potential mechanism for the emergence of stripes
and spots on animal coats [22]. In chemistry, complex spatiotemporal patterns have been
observed in several autocatalytic reactions, including the chlorite-iodide-malonic acid (CIMA)
reaction [14] and the light-sensitive Belousov--Zhabotinsky (BZ) reaction [24]. The CIMA
reaction exhibits one-dimensional defect patterns in which a stationary, spatially periodic
core is connected to spatially homogeneous oscillations in the far field [14]; see Figure 1(a)
for a similar pattern arising in numerical simulations of the Brusselator model of the CIMA
reaction [14, 23]. In [18], similar patterns were proved to exist in the complex cubic-quintic
Ginzburg--Landau equation. In the BZ reaction, two-dimensional spiral waves occur that
exhibit one or more line defects [24]; we refer the reader to Figures 1(b)--(c) for similar patterns
that arise in numerical simulations of the R\"ossler model [4]. These line defects are caused
by the destabilization of a rigidly rotating spiral wave through a period-doubling bifurcation
[4, 20, 24]: across the line defect, the phase of the spatiotemporal oscillations jumps by half
a period. In [20, Theorem 10], the existence of one-dimensional line defects with a half-
period phase jump across the defect was proved near period-doubling bifurcations of spatially
homogeneous oscillations.
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TRUNCATION OF CONTACT DEFECTS 27

(a) (b)
(c) (d)

Figure 1. Panel (a) shows a space-time plot (space plotted horizontally, and time vertically) of a time-
periodic solution of the one-dimensional Brusselator model: the solution exhibits a spatially periodic core in the
center of the domain and spatially homogeneous oscillations in the far field away from the core region. Panels
(b)--(c) contain snapshots of planar spiral waves that exhibit similar line defects (images taken from [19, 20]).
Panel (d) shows an enlarged version of the spatial region around the line defect from panel (b): if we interpret
the vertical direction as time, the solution resembles the space-time plot in panel (a), except that the oscillations
to either side of the defect are out of phase by half the period.

Our motivation for this paper comes from the solutions shown in panels (a) and (d) of
Figure 1, which can be thought of as defects in the center of the domain that are embedded
into a background of spatially homogeneous oscillations in the far field and which we refer to
as contact defects. Our goal is to prove that a contact defect defined on the entire real line
and positioned at, say, x= 0 persists as a solution on a large bounded interval ( - L,L) with
Neumann boundary conditions added at the end points. Our reason for proving this result is
threefold. First, it validates numerical computations that are conducted on bounded intervals
rather than the entire real line. Second, it allows us to transfer the existence and multiplicity
results for contact defects on the real line that were proved in [18, 19] to defects on large
bounded domains.

The third aspect arises from the long-time dynamics of the line defects shown in Fig-
ure 1(c). Over sufficiently long times, these line defects attract and annihilate each other in
pairs until only one line defect remains; Figure 1(c) illustrates this behavior through the two
pairs of collocated line defects that are about to merge and disappear. Once we established
the persistence of line defects on bounded intervals with Neumann boundary conditions, we
can concatenate several defects by reflecting them across x= L or x= - L and then attempt
to understand their interaction properties. Thus, the persistence results in this paper serve
also as a first step for the stability analysis of multiple line defects, which we plan to publish
separately.

2. Main results. We outline our setup and assumptions before describing our main results.
Consider the reaction-diffusion system

ut =Duxx + f(u)

with x \in R and u(x, t) \in Rn, where D is a constant, positive-definite diagonal matrix and
f \in C\infty (Rn) is a smooth nonlinearity. We are interested in time-periodic solutions and
therefore introduce the normalized time variable \tau = \omega t, where \omega > 0 is the temporal frequency;
this allows us to focus on solutions that are 2\pi -periodic in \tau for an appropriate value of \omega . In
these coordinates, the reaction-diffusion system becomes
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28 MILEN IVANOV AND BJ\"ORN SANDSTEDE

\omega u\tau =Duxx + f(u).(2.1)

We assume that this equation admits a spatially homogeneous oscillation of the form u(x, \tau ) =
u\mathrm{w}\mathrm{t}(\tau ) for \omega = \omega 0 > 0, where u\mathrm{w}\mathrm{t}(\tau ) is an appropriate 2\pi -periodic profile that satisfies the
ordinary differential equation (ODE)

\omega 0u\tau = f(u).(2.2)

We now formalize the assumption that this solution exists and is asymptotically stable for the
ODE (2.2).

Hypothesis 1. There are an \omega 0 > 0 and a 2\pi -periodic nonconstant function u\mathrm{w}\mathrm{t}(\tau ) that
satisfy (2.2). Furthermore, \lambda = 0 is an algebraically simple Floquet exponent of the
linearization

\omega 0v\tau = fu(u\mathrm{w}\mathrm{t}(\tau ))v(2.3)

of (2.2) about u\mathrm{w}\mathrm{t}(\tau ), and all other Floquet exponents of (2.3) have strictly negative real part.

Next, we consider the PDE linearization

\omega 0v\tau =Dvxx + fu(u\mathrm{w}\mathrm{t}(\tau ))v

of (2.1) about the homogeneous oscillation u\mathrm{w}\mathrm{t}(\tau ) and the resulting system

\omega 0\^v\tau = - k2D\^v+ fu(u\mathrm{w}\mathrm{t}(\tau ))\^v(2.4)

for the Fourier modes \^v(k, \tau ) belonging to the spatial wavenumbers k \in R. Note that (2.4)
evaluated at k= 0 agrees with (2.3). As shown in [18, section 3.3], we can continue the simple
Floquet exponent \lambda = 0 of (2.3) as an even smooth function \lambda \mathrm{l}\mathrm{i}\mathrm{n}(k) of temporal Floquet
exponents of the ODEs (2.4) for k \in R near k= 0. We refer to \lambda \mathrm{l}\mathrm{i}\mathrm{n}(k) as the linear dispersion
curve of the homogeneous oscillations.

It was also shown in [18, section 3.3] that Hypothesis 1 implies that there exists a unique
even, smooth function \omega \mathrm{n}\mathrm{l}(k) with \omega \mathrm{n}\mathrm{l}(0) = \omega 0 so that (2.1) has a traveling-wave solution of the
form u(x, \tau ) = u\mathrm{w}\mathrm{t}(\tau  - kx;k) for k close to zero, where u\mathrm{w}\mathrm{t}(\tau ;k) is 2\pi -periodic in \tau and close
to u\mathrm{w}\mathrm{t}(\tau ) in the C0-norm, if and only if \omega = \omega \mathrm{n}\mathrm{l}(k). We refer to the function \omega \mathrm{n}\mathrm{l}(k), which
relates the spatial wavenumber k to the temporal frequency \omega , as the nonlinear dispersion
curve.

Hypothesis 2. We assume that \lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0) < 0 and \omega \prime \prime 

\mathrm{n}\mathrm{l}(0) \not = 0. Furthermore, we assume that
the function \lambda \mathrm{l}\mathrm{i}\mathrm{n}(k) for k close to zero captures all Floquet exponents of (2.4) in the closed
right half-plane.

We are interested in 2\pi -periodic solutions u(x, \tau ) of (2.1) with \omega = \omega 0 that are spatially
asymptotic to the homogeneous oscillations u\mathrm{w}\mathrm{t}(\tau ) as | x| \rightarrow \infty . More precisely, we introduce
the following definition.
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TRUNCATION OF CONTACT DEFECTS 29

Definition 2.1. We say that a function u\mathrm{d}(x, \tau ) is a contact defect with frequency \omega 0 if it
is 2\pi -periodic in \tau , it satisfies the reaction-diffusion system (2.1) with \omega = \omega 0, and there are
phase-correction functions \theta \pm (x) with \theta \prime \pm (x)\rightarrow 0 as x\rightarrow \pm \infty so that

u\mathrm{d}(x, \tau ) - u\mathrm{w}\mathrm{t}(\tau + \theta \pm (x))\rightarrow 0 as x\rightarrow \pm \infty ,

where convergence is uniform in \tau for the functions and their first derivatives with respect to
(x, \tau ).

It is worth noting that the phase-correction functions \theta \pm (x) will necessarily diverge loga-
rithmically as x \rightarrow \pm \infty ; see [19, section 3.1]. In particular, the phases of the defects do not
converge.

Our goal is to prove that contact defects persist under domain truncation to a sufficiently
large interval [ - L,L] with Neumann boundary conditions at x = \pm L. Before stating our
persistence result, we describe our assumptions on the contact defect. To do so, we first
reformulate the reaction-diffusion system as a spatial dynamical system and formulate our
assumptions for the latter; this allows us to keep the discussion concise and makes it easier
to connect the hypotheses more directly with the proofs in the later sections. We refer the
reader to [18] for hypotheses formulated for (2.1) that imply our assumptions formulated for
the spatial system (2.5) below.

We proceed as in [18] and capture solutions u(x, \tau ) of (2.1) that are 2\pi -periodic in \tau as
solutions of an appropriate first-order dynamical system that is posed on a function space of
2\pi -periodic functions of \tau and for which the spatial variable x (instead of the time variable \tau )
is viewed as the evolution variable. We let S1 :=R/2\pi Z and write \bfu (x) = (u,ux)(x, \cdot ) \in Y :=
H1(S1)\times H

1

2 (S1) for each x \in R so that \bfu (x) is for each fixed x a function of \tau defined by
[\bfu (x)](\tau ) := (u,ux)(x, \tau ). With these definitions, we consider the first-order spatial dynamical
system

\bfu x =

\biggl( 
ux
vx

\biggr) 
=

\biggl( 
v

D - 1(\omega u\tau  - f(u))

\biggr) 
=: F (u, v;\omega ) = F (\bfu ;\omega ),(2.5)

where \bfu (x) = (u, v)(x, \cdot ) lies for each x in the dense subspace Y of X := H
1

2 (S1) \times L2(S1).
Thus, we exchange the evolution in time for evolution in the space variable x, hence the term
``spatial dynamics."" This method was pioneered by Kirchg\"assner [8, 9] and Mielke [12]; see
also [2, 17, 18]. While the initial-value problem for (2.5) is ill-posed, many approaches from
dynamical-systems theory, including invariant-manifold theory, continue to hold.

Before continuing, we discuss the equivariance and reversibility properties of (2.5). First,
for \alpha \in S1, we define the S1-action

\scrT \alpha :X  - \rightarrow X, \bfu \mapsto  - \rightarrow \scrT \alpha \bfu , [\scrT \alpha \bfu ](\tau ) = [\bfu ](\tau + \alpha )

of operators on X that shift the \tau variable. We denote by \Gamma \bfu := \{ \scrT \alpha \bfu : \alpha \in S1\} the group
orbit of an element \bfu \in X. Since the nonlinearity F (\bfu ;\omega ) in (2.5) does not depend explicitly
on \tau , a computation shows that it is equivariant under the S1-action of \scrT \alpha so that

F (\scrT \alpha \bfu ;\omega ) = \scrT \alpha F (\bfu ;\omega ), \bfu \in X, \alpha \in S1.
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30 MILEN IVANOV AND BJ\"ORN SANDSTEDE

2π

0 x

(a)
τ

π
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(b)2π

0

τ

Figure 2. Shown are space-time plots of time-periodic defects that are reversible under the reverser \scrR 0 in
panel (a) and the reverser \scrR \pi in panel (b). Patterns are reversible under \scrR 0 if they are invariant under the
reflection x \mapsto \rightarrow  - x, while they are reversible under \scrR \pi if they are invariant under reflection in x followed by a
translation in \tau by \pi (corresponding to half the temporal period).

In particular, \~\bfu (x) := \scrT \alpha \bfu (x) satisfies (2.5) if and only if \bfu (x) satisfies (2.5). Second, (2.5) is
reversible with respect to the reversers

[\scrR 0(u, v)](\tau ) := (u(\tau ), - v(\tau )), [\scrR \pi (u, v)](\tau ) := (u(\tau + \pi ), - v(\tau + \pi )) = [\scrR 0\scrT \pi (u, v)](\tau )
(2.6)

so that

F (\scrR j\bfu ;\omega ) = - \scrR jF (\bfu ;\omega ), \bfu \in X, j = 0, \pi .

Given a reverser \scrR , we denote by Fix\scrR := \{ \bfu \in X : \scrR \bfu = \bfu \} the space of its fixed points.
Reversibility implies that \~\bfu (x) := \scrR \bfu ( - x) satisfies (2.5) if and only if \bfu (x) satisfies (2.5).
We say that a solution \bfu (x) of (2.5) is reversible under a reverser \scrR if \bfu (0) \in Fix\scrR so that
\bfu (x) := \scrR \bfu ( - x) for all x. We refer the reader to Figure 2 for illustrations of solutions that
are reversible under these reversers. Note that \scrT \alpha and \scrR j commute for all \alpha and j = 0, \pi .

Returning to the homogeneous oscillation u\mathrm{w}\mathrm{t}(\tau ), it corresponds to the equilibrium \bfu \mathrm{w}\mathrm{t} :=
(u\mathrm{w}\mathrm{t},0) of (2.5). Equivariance implies that \Gamma \bfu \mathrm{w}\mathrm{t} is a circle of equilibria of (2.5). It was
proved in [12, section 3] and [18, Theorem 5.1] that this circle of equilibria has center, center-
stable, center-unstable, strong stable, and strong unstable invariant manifolds that respect the
reversers \scrR 0,\pi . Recall that we assumed in Hypothesis 2 that the second derivatives \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0) and
\omega \prime \prime 
\mathrm{n}\mathrm{l}(0) of the linear and nonlinear dispersion relations \lambda \mathrm{l}\mathrm{i}\mathrm{n} and \omega \mathrm{n}\mathrm{l}, respectively, do not vanish.

Hypotheses 1 and 2 together with [2, section 8.1] imply that (i) the center manifold W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t})
of the group orbit of the homogeneous oscillations is two-dimensional; (ii) the dynamics on
the center manifold is given by the ODE

\varphi x = \kappa , \kappa x =
2

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

(\omega  - \omega 0) +
 - \omega \prime \prime 

\mathrm{n}\mathrm{l}(0)

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\kappa 2 + g(\kappa ,\omega ),(2.7)

where (\varphi ,\kappa )\in S1\times R and (\varphi ,0) parametrizes \Gamma \bfu \mathrm{w}\mathrm{t}; and (iii) the reversers \scrR j act as \scrR j(\varphi ,\kappa ) =
(\varphi +j, - \kappa ) for j = 0, \pi . Reversibility of (2.7) under \scrR 0 and the estimates provided in [2, (8.15)]
imply that g(\kappa ,\omega ) is even in \kappa with

g(\kappa ,\omega ) = g( - \kappa ,\omega ) =O(| \omega  - \omega 0| 2 + | \omega  - \omega 0| \kappa 2 + \kappa 4)(2.8)

for all (\kappa ,\omega ) near (0, \omega 0).
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TRUNCATION OF CONTACT DEFECTS 31

Note that the equation for \kappa , which decouples from the equation for \varphi , exhibits a non-
degenerate saddle-node bifurcation that is unfolded generically as we vary \omega near \omega 0. In
particular, if \omega \prime \prime 

\mathrm{n}\mathrm{l}(0) < 0, the center manifold does not contain any equilibria for \omega > \omega 0, and
the same statement holds if we reverse both inequality signs.

We now describe our assumptions on the existence of a contact defect of (2.1).

Hypothesis 3. We assume that \bfu \mathrm{d}(x) is a solution of (2.5) that satisfies
(i) \bfu \mathrm{d}(x)\in W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}) \setminus W \mathrm{s}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}), and the distance d(\bfu \mathrm{d}(x),\Gamma \bfu \mathrm{w}\mathrm{t}) in Y goes to zero as

x\rightarrow \infty ;
(ii) \bfu \mathrm{d}(0)\in Fix\scrR for either \scrR =\scrR 0 or \scrR =\scrR \pi ; and
(iii) W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t})\pitchfork W \mathrm{c}\mathrm{u}(\Gamma \bfu \mathrm{w}\mathrm{t}) at \bfu \mathrm{d}(0).

Note that Hypothesis 3(i)--(ii) and reversibility of (2.5) imply that \bfu \mathrm{d}(x) \in W \mathrm{c}\mathrm{u}(\Gamma \bfu \mathrm{w}\mathrm{t}),
and Hypothesis 3(iii) is therefore meaningful. We also note that the intersection of the tan-
gent spaces of W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}) and W \mathrm{c}\mathrm{u}(\Gamma \bfu \mathrm{w}\mathrm{t}) at \bfu \mathrm{d}(0) is at least two-dimensional since it contains
\partial x\bfu \mathrm{d}(0) and \partial \tau \bfu \mathrm{d}(0), which are linearly independent. The transversality assumed in Hypoth-
esis 3(iii) implies that this intersection is two-dimensional; see [18, Proposition 5.3]. We can
now state our main result.

Theorem 1. Assume that Hypotheses 1--3 hold for the reverser \scrR . Then there exist positive
constants L0,C and a function \epsilon \ast : [L0,\infty )\rightarrow R so that the following is true for each L\geq L0.
First, (2.5) with \omega = \omega 0 - Sign(\omega \prime \prime 

\mathrm{n}\mathrm{l}(0))\epsilon 
\ast (L)2 has an \scrR -reversible solution \bfu L(x) : [ - L;L]\rightarrow X

that is uniformly at most C/L2 away from \Gamma \bfu \mathrm{d}(x) and satisfies Neumann boundary conditions
\bfu L(\pm L) \in Fix\scrR 0. Furthermore, if \bfu L and \~\bfu L are two such solutions, then there exists an
\alpha \in S1 such that \scrT \alpha \bfu L(x) = \~\bfu L(x) for all x. Finally, the function \epsilon \ast (L) is C2 and satisfies
the estimates

\epsilon \ast (L) =
\pi \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

2| \omega \prime \prime 
\mathrm{n}\mathrm{l}(0)| L

+O

\biggl( 
1

L2

\biggr) 
,

d\epsilon \ast 

dL
(L) = - 

\pi \lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

2| \omega \prime \prime 
\mathrm{n}\mathrm{l}(0)| L2

+O

\biggl( 
1

L3

\biggr) 
.(2.9)

If \bfu \mathrm{d}(x) is reversible under \scrR =\scrR 0, then the truncated contact defect satisfies Neumann
boundary conditions at x= 0,\pm L; we then necessarily have \bfu L( - L) = \bfu L(L) and can extend
the truncated defect smoothly as a spatially 2L-periodic solution to x\in R. If \bfu \mathrm{d}(x) is reversible
under \scrR =\scrR \pi , then we can extend it smoothly as a spatially 4L-periodic solution to x\in R by
reflecting first across x=L and then at x= 3L. Theorem 1 can therefore be viewed as a result
on the existence of periodic orbits with large periods near a given homoclinic orbit to a circle
of saddle-node equilibria. We will provide more details on this viewpoint in section 3.1 when
we outline our proof of Theorem 1. For our proof, we will need the following auxiliary result
on passage times near nondegenerate saddle-node bifurcations, which may be of independent
interest.

Theorem 2. Consider the one-dimensional ODE

\kappa x = \epsilon 2 + \kappa 2 + g(\kappa , \epsilon 2)(2.10)

with parameter \omega = \epsilon 2 and assume that the function g(\kappa ,\omega ) is Ck for some k\geq 4 and satisfies
g(0,0) = g\kappa (0,0) = g\kappa \kappa (0,0) = g\omega (0,0) = g\kappa \omega (0,0) = 0. The following statements are then true:
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32 MILEN IVANOV AND BJ\"ORN SANDSTEDE

(i) There exist positive constants \epsilon 1, \delta 1 and a function \ell = \ell (\epsilon , \delta ) defined for (\epsilon , \delta ) \in 
(0, \epsilon 1]\times [\delta 1/2,2\delta 1] such that the solution of (2.10) with \kappa (0) = - \delta satisfies \kappa (\ell (\epsilon , \delta )) = 0.
Furthermore, there are Ck - 1 functions a, b so that \ell (\epsilon , \delta ) = \pi 

2\epsilon + a(\epsilon ) log \epsilon + b(\epsilon , \delta ).
(ii) There exists an L0 > 0 and a unique function \epsilon \ast (L, \delta ) : (L0,\infty ) \times [\delta 1/2, \delta 1] \rightarrow (0, \epsilon 1)

such that L= \ell (\epsilon \ast (L, \delta ), \delta ) for all L\geq L0.
(iii) For each fixed \beta \in [0,1), the function \epsilon \ast is C1,\beta , and there is a C1,\beta function r(z, \delta )

such that

\epsilon \ast (L, \delta ) =
\pi 

2L
+ r

\biggl( 
1

L
, \delta 

\biggr) 
=

\pi 

2L
+O

\biggl( 
1

L1+\beta 

\biggr) 
,(2.11)

\partial \epsilon \ast 

\partial L
(L, \delta ) = - \pi 

2L2
 - 1

L2
rz

\biggl( 
1

L
, \delta 

\biggr) 
= - \pi 

2L2
+O

\biggl( 
1

L2+\beta 

\biggr) 
.

(iv) If g( - \kappa ,\omega ) = g(\kappa ,\omega ) for all (\kappa ,\omega ), then r(z, \delta ) \in Ck, and the estimates in (iii) hold
with \beta = 1.

(v) Analogous statements hold for the problem \kappa (0) = 0 and \kappa (\ell (\epsilon , \delta )) = \delta .

Theorem 2 provides expansions of the travel time from \kappa =  - \delta to \kappa = 0 (and similarly
from \kappa = \delta backwards in time to \kappa = 0) in the unfolding of a nondegenerate saddle-node
bifurcation at \kappa = 0: Theorem 2(i) shows that the travel times typically contain logarithmic
terms log \epsilon and are therefore not differentiable in \epsilon regardless of how smooth the right-hand
side is. In contrast, Fontich and Sardanyes [3] showed that the travel time from \kappa =  - \delta to
\kappa = \delta for the unfolding of possibly degenerate saddle-node bifurcations is analytic in \epsilon for
analytic right-hand sides. These two results are reconciled by noting that the logarithmic
terms in the travel times from \kappa =  - \delta to \kappa = 0 and from \kappa = 0 to \kappa = \delta cancel, yielding a
smooth expression for the travel times from \kappa = - \delta to \kappa = \delta . Finally, we remark that Kuehn
[10] showed that travel times may exhibit many different scaling laws when the right-hand
side depends only continuously on \omega .

We will prove Theorems 1 and 2 in sections 3 and 4, respectively, and end with a brief
discussion in section 5.

3. Existence of truncated contact defects. In this section, we prove Theorem 1. Through-
out this section, we assume that Hypotheses 1--3 are met. First, we provide intuition into why
this theorem should hold by appealing to a finite-dimensional analogue and outline our strat-
egy for proving this theorem in two steps. We then provide the details of the proof.

Recall from the discussion after (2.7) that the center manifold W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}) of the homoge-
neous oscillations \bfu \mathrm{w}\mathrm{t} does not contain any equilibria for \omega > \omega 0 when \omega \prime \prime 

\mathrm{n}\mathrm{l}(0) < 0 (and that
the same statement holds if we reverse both inequality signs). For clarity, and without loss of
generality, we assume throughout this section that \omega \prime \prime 

\mathrm{n}\mathrm{l}(0)< 0 so that the equilibria disappear
for \omega >\omega 0.

3.1. Outline of the proof. We first discuss our intuition into the underlying geometry
and refer the reader to Figure 3 for illustrations. Equivariance shows that \scrT \alpha \bfu \mathrm{d}(x) is, for each
\alpha \in S1, a solution that converges to the set \Gamma \bfu \mathrm{w}\mathrm{t} as | x| \rightarrow \infty . It follows from Hypothesis 3(i)
that the set \{ \bfu = \scrT \alpha \bfu \mathrm{d}(x) : \alpha \in S1, x\in R\} \cup \Gamma \bfu \mathrm{w}\mathrm{t}, which consists of the defect solution, its time
translates, and the S1-group orbit of the homogeneous oscillations, is a smooth invariant torus.
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TRUNCATION OF CONTACT DEFECTS 33

Figure 3. The left panel illustrates part of the invariant torus formed by the contact defect and its time
translates together with the circle \Gamma \bfu \mathrm{w}\mathrm{t} of equilibria. The remaining three panels illustrate the dynamics on the
invariant torus after factoring out the S1-action \scrT \alpha for \omega \gtreqqless \omega 0. The rightmost panel shows that for each given

\omega >\omega 0 there is an L\gg 1 so that the solution \bfu (x) on the circle satisfies \bfu (\pm L)\in Fix\scrR 0, and Theorem 2 shows
that we can invert the relationship between \omega  - \omega 0 and L.

Hypothesis 3(iii) can be used to show that this invariant torus is normally hyperbolic. If (2.5)
were finite-dimensional, we could appeal to existing results, for instance, those described in
[5, 11], to conclude that the invariant torus persists as a smooth torus for all \omega near \omega 0.
Assuming that the same results hold for (2.5), we can then focus our analysis on these tori.
Factoring out the S1-action \scrT \alpha on these tori, we end up with an \omega -dependent dynamical
system on a circle. Note also that the equilibrium \bfu \mathrm{w}\mathrm{t} = (u\mathrm{w}\mathrm{t},0) automatically lies in Fix\scrR 0.
The solution we want to construct should reach Fix\scrR 0 in finite time. Hence, we need to
focus on the case where the equilibria on the circle disappear, which happens for \omega > \omega 0.
As outlined in the rightmost panel of Figure 3, for each given \omega > \omega 0 there is indeed a
unique L = L(\omega ) so that the solution \bfu (x) on the circle satisfies \bfu (\pm L) \in Fix\scrR 0 as needed.
Theorem 2 shows that we can invert this relationship so that for each large L there is a unique
\omega = \omega (L)>\omega 0 for which a defect solution exists that satisfies Neumann boundary conditions at
x=\pm L. For finite-dimensional Galerkin approximations of (2.5), these arguments were made
rigorous by the first author in [7]. As mentioned above, this proof relies on the persistence
of normally hyperbolic invariant manifolds; however, these persistence results have not yet
been generalized to the case of infinite-dimensional ill-posed spatial dynamics problems of the
form (2.5). Thus, while this approach provides geometric intuition, we need to find a different
strategy to prove Theorem 1.

Figure 4 illustrates the two main steps of our proof of Theorem 1. In the first step, we will
show that, using an appropriate boundary-value problem formulation of the ill-posed spatial
dynamical system (2.5) for \omega near \omega 0, we can transport the space Fix\scrR near \bfu \mathrm{d}(0) from x= 0
to x=L0 to yield the space M\scrR (L0) near \bfu \mathrm{d}(L0). In the second step, we prove that for each
\omega >\omega 0 there is a unique \ell = \ell (\omega ) so that there is a solution \bfu \mathrm{N}(x) with \bfu \mathrm{N}(0)\in M\scrR (L0) and
\bfu \mathrm{N}(\ell )\in Fix\scrR 0.

3.2. Dynamics near the homogeneous oscillations. We describe results and notation for
the dynamics of (2.5), given by

\bfu x =

\biggl( 
ux
vx

\biggr) 
=

\biggl( 
v

D - 1(\omega u\tau  - f(u))

\biggr) 
=: F (u, v;\omega ) = F (\bfu ;\omega ), \bfu (x)\in Y =H1(S1)\times H

1

2 (S1),

(3.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

3/
24

 to
 1

28
.1

48
.2

25
.8

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



34 MILEN IVANOV AND BJ\"ORN SANDSTEDE

Figure 4. We illustrate the proof of Theorem 1. In step 1, we use (2.5) for \omega near \omega 0 to transport Fix\scrR 
at x= 0 to the manifold M\scrR (L0) at x=L0, where L0 is so large that \bfu \mathrm{d}(L0) lies in the center-stable manifold
W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}). In step 2, we focus on values of \omega near \omega 0 in the region where the equilibria on the center manifold
W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}) have disappeared. For each such \omega , we construct a solution \bfu \mathrm{N}(x) that lies in M\scrR (L0) for x= 0 and
in Fix\scrR 0 for x= \ell for some large \ell = \ell (\omega )\gg 1.

near the S1-orbit \Gamma \bfu \mathrm{w}\mathrm{t} of the equilibria associated with the homogeneous oscillations. Through-
out, we will denote by \delta 0 > 0 a small positive constant so that existence of the invariant
manifolds and fibers that we will review below holds within a neighborhood of \Gamma \bfu \mathrm{w}\mathrm{t} of radius
\delta 0. We may decrease \delta 0 later, but its final size will depend only on the quantities in Hy-
potheses 1--3 and not on the length L of the interval on which we will construct the truncated
defect.

We begin by summarizing the consequences of the results in [18, section 3.4] or [2, sections
4.1 and 8.1] for (3.1), whose assumptions are met due to our Hypotheses 1--2. The linearized
operator F\bfu (\bfu \mathrm{w}\mathrm{t};\omega 0) has an eigenvalue at \lambda = 0 with geometric multiplicity one and algebraic
multiplicity two, and there is an \eta > 0 so that the remainder of the spectrum is discrete
and satisfies | Re\lambda | \geq 4\eta for all \lambda \not = 0 in the spectrum. We denote the associated spectral
projections for the unstable, stable, and center parts of the spectrum by P j

0 (\bfu \mathrm{w}\mathrm{t}) for j = c, s,u
and note that reversibility and equivariance imply that

\scrR 0,\pi RgP
\mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}) =RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t}), \scrT \alpha P j
0 (\bfu \mathrm{w}\mathrm{t}) = P j

0 (\scrT \alpha \bfu \mathrm{w}\mathrm{t})\scrT \alpha , \scrT \alpha RgP j
0 (\bfu \mathrm{w}\mathrm{t}) =RgP j

0 (\scrT \alpha \bfu \mathrm{w}\mathrm{t})

(3.2)

for all \alpha \in S1 and all j. The two-dimensional center space of F\bfu (\bfu \mathrm{w}\mathrm{t};\omega 0) belonging to the
eigenvalue \lambda = 0 is spanned by the eigenvector \mathrm{d}

\mathrm{d}\alpha \scrT \alpha \bfu \mathrm{w}\mathrm{t}| \alpha =0 = \partial \tau \bfu \mathrm{w}\mathrm{t}, which corresponds to
the tangent vector of \Gamma \bfu \mathrm{w}\mathrm{t}, and a generalized eigenvector that we denote by \bfv \mathrm{w}\mathrm{t}. By [12,
section 3] or [2, section 8.1], the circle \Gamma \bfu \mathrm{w}\mathrm{t} of equilibria of (3.1) has a two-dimensional locally
invariant manifold

W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) = \Gamma \~W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) = \Gamma \{ \bfu = \bfu \mathrm{w}\mathrm{t} + \kappa \bfv \mathrm{w}\mathrm{t} + h(\kappa ,\omega ) : | \kappa | < \delta 0\} ,(3.3)

where h is Ck for each fixed finite k and maps into the space RgP \mathrm{s}
0(\bfu \mathrm{w}\mathrm{t})\oplus RgP \mathrm{u}

0 (\bfu \mathrm{w}\mathrm{t}). The
vector field on the center manifold is given by (2.7),

\varphi x=\kappa , \kappa x=
2

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

(\omega  - \omega 0)+
 - \omega \prime \prime 

\mathrm{n}\mathrm{l}(0)

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\kappa 2+g(\kappa ,\omega ), g(\kappa ,\omega )=O(| \omega  - \omega 0| 2+ | \omega  - \omega 0| \kappa 2+\kappa 4),

(3.4)
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TRUNCATION OF CONTACT DEFECTS 35

where the reverser \scrR 0 leaves the center manifold invariant and acts as \scrR 0(\varphi ,\kappa ) = (\varphi , - \kappa ). In
particular, W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega )\cap Fix\scrR 0 is parametrized by \{ (\varphi ,\kappa ) : \kappa = 0\} . Using (3.2) and

X =R\partial \tau \bfu \mathrm{w}\mathrm{t} \oplus R\bfv \mathrm{w}\mathrm{t} \oplus RgP \mathrm{s}
0(\bfu \mathrm{w}\mathrm{t})\oplus RgP \mathrm{u}

0 (\bfu \mathrm{w}\mathrm{t})

we conclude that

Fix\scrR 0 = \{ \bfu = \alpha \partial \tau \bfu \mathrm{w}\mathrm{t} + \bfb \mathrm{s} +\scrR 0\bfb 
\mathrm{s} : \alpha \in R, \bfb \mathrm{s} \in RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t})\} .(3.5)

Since the truncated contact defect we want to construct will need to reach the space Fix\scrR 0

of Neumann boundary conditions in a large but finite time, we will first characterize the time
it takes for solutions \kappa (x) on the center manifold to reach \kappa = 0.

Lemma 3.1. For each \delta 2 > 0, there is an \epsilon 0 and a unique function L(\epsilon , \kappa 0) defined for
0< \epsilon < \epsilon 0 and \kappa 0 \leq  - \delta 2 so that the following is true for \omega = \omega 0 + \epsilon 2. The ODE (3.4) for \kappa (x)
has a solution that satisfies \kappa (0) = \kappa 0 and \kappa (\ell ) = 0 for some \ell > 0 if and only if \ell = L(\epsilon , \kappa 0).
Furthermore,

L(\epsilon , \kappa 0) =
\pi \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

 - 2\omega \prime \prime 
\mathrm{n}\mathrm{l}(0)\epsilon 

+ r(\epsilon , \kappa 0),

where r depends smoothly on (\epsilon , \kappa 0), and we have \kappa (L(\epsilon , \kappa 0)+ \~x) = 2\epsilon 2\~x/\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)+O(\epsilon 4\~x2) for

all \~x with | \~x| \leq 1
3 .

Proof. First, since g(\kappa ,\omega ) is even in \kappa , [6, Corollary 1] shows that there is a Ck-smooth
near-identity diffeomorphism (\~\kappa , \~\omega ) = (H(\kappa ,\omega ), h(\omega )) with H(0, \omega 0) = h(\omega 0) = 0 that brings
(3.4) into the normal form

\~\kappa x =
2

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\~\omega +
 - \omega \prime \prime 

\mathrm{n}\mathrm{l}(0)

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\~\kappa 2.

Setting \~\omega = \~\epsilon 2, the statements in the lemma can be verified directly for the normal form, as
its solutions can be found explicitly using separation of variables. We note that these results
follow also from Theorem 2 (proved in Lemmas 4.1 and 4.2 in section 4), which is valid for
the general case when g is not necessarily even.

We now discuss the center-stable manifold W \mathrm{c}\mathrm{s}(\bfu \mathrm{w}\mathrm{t}, \omega ), which for \omega = \omega 0 contains all
solutions \bfu (x) of (3.1) whose distance to \Gamma \bfu \mathrm{w}\mathrm{t} converges to zero as x\rightarrow \infty . Using the strong
stable fibers \scrF \mathrm{s}\mathrm{s}(\bfp , \omega ) belonging to base points \bfp \in W \mathrm{c}(\bfu \mathrm{w}\mathrm{t}, \omega ), we can write

W \mathrm{c}\mathrm{s}(\bfu \mathrm{w}\mathrm{t}, \omega ) =
\bigcup 

\bfp \in W \mathrm{c}(\bfu \mathrm{w}\mathrm{t},\omega )

\scrF \mathrm{s}\mathrm{s}(\bfp , \omega ) =
\bigcup 

\bfp \in \~W \mathrm{c}(\bfu \mathrm{w}\mathrm{t},\omega )

\Gamma \scrF \mathrm{s}\mathrm{s}(\bfp , \omega ).

We know from [18, Theorem 5.1] that \scrF \mathrm{s}\mathrm{s}(\bfp , \omega ) is a smooth manifold that depends smoothly
on (\bfp , \omega ) and whose tangent space converges to RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t}) as (\bfp , \omega ) approaches (\bfu \mathrm{w}\mathrm{t}, \omega 0).
We parametrize each strong stable fiber for base points in \~W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) via

\scrF \mathrm{s}\mathrm{s}(\bfp , \omega ) =
\bigcup 

\bfb \mathrm{s}\in \mathrm{R}\mathrm{g}P \mathrm{s}
0 (\bfu \mathrm{w}\mathrm{t})

\scrF \mathrm{s}\mathrm{s}(\bfp ,\bfb \mathrm{s}, \omega ),(3.6)

\scrF \mathrm{s}\mathrm{s}(\bfp ,\bfb \mathrm{s}, \omega ) = \bfp + \bfb \mathrm{s} + h\mathrm{u}(\bfp ,\bfb \mathrm{s}, \omega ), | h\mathrm{u}(\bfp ,\bfb \mathrm{s}, \omega )| \leq C\delta 0| \bfb \mathrm{s}| ,
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36 MILEN IVANOV AND BJ\"ORN SANDSTEDE

where h\mathrm{u} maps into RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}) and the positive constant C does not depend on \delta 0. The

defect solution \bfu \mathrm{d}(x) lies in the center-stable manifold W \mathrm{c}\mathrm{s}(\bfu \mathrm{w}\mathrm{t}, \omega 0) and therefore has the
representation

\bfu \mathrm{d}(x) = \scrT \varphi \mathrm{d}(x)

\bigl( 
\bfu \mathrm{w}\mathrm{t} + \kappa \mathrm{d}(x)\bfv \mathrm{w}\mathrm{t} + h(\kappa \mathrm{d}(x), \omega 0) +O(e - 3\eta x)

\bigr) 
(3.7)

for x \geq L0 for an appropriate L0 \gg 1, where (\varphi \mathrm{d}, \kappa \mathrm{d})(x) satisfy (3.4) with \omega = \omega 0 and the
exponentially decaying term accounts for the contribution from the strong stable fiber that
\bfu \mathrm{d}(x) belongs to.

3.3. Step 1: Transporting the fixed-point space of the reverser along the defect.
Throughout this section, we denote by \scrR the reverser from Hypothesis 3 for which \bfu \mathrm{d}(0) \in 
Fix\scrR . Our goal is to transport Fix\scrR near the solution \bfu \mathrm{d}(x) from x= 0 to x= L0 for some
L0 \gg 1 so large that \bfu \mathrm{d}(L0) has distance less than \delta 0 from \Gamma \bfu \mathrm{w}\mathrm{t}. To accomplish this, we will
exploit that the linearization

\bfv x = F\bfu (\bfu \mathrm{d}(x);\omega 0)\bfv (3.8)

of (3.1) about the defect \bfu \mathrm{d}(x) has exponential trichotomies, which will allow us to decom-
pose the underlying space into three complementary subspaces that consist of, respectively,
initial conditions of solutions that decay exponentially in forward time, decay exponentially
in backward time, or grow only moderately.

Lemma 3.2. Assume that Hypotheses 1--3 are met. Then the linearization (3.8) of (3.1)
about \bfu \mathrm{d}(x) has an exponential trichotomy on R+. More precisely, there exist strongly con-
tinuous families \{ \Phi \mathrm{s}(x, y)\} x\geq y\geq 0, \{ \Phi \mathrm{c}(x, y)\} x,y\geq 0, and \{ \Phi \mathrm{u}(x, y)\} y\geq x\geq 0 of operators in L(X)
with the following properties:

(i) For j = c, s,u and each \bfu 0 \in X, the function \Phi j(x, y)\bfu 0 satisfies (3.8) for all x, y
for which this term is defined, and we have \Phi j(x, y)\Phi j(y, z) = \Phi j(x, z) for j = c, s,u
whenever these terms are defined.

(ii) There is a constant C > 0 so that \| \Phi \mathrm{s}(x, y)\| +\| \Phi \mathrm{u}(y,x)\| \leq Ce - 3\eta | x - y| for all x\geq y\geq 0
and \| \Phi \mathrm{c}(x, y))\| \leq Ce\eta | x - y| for x, y \geq 0, where 4\eta > 0 is the spectral gap defined in
section 3.2.

(iii) For j = c, s,u, the operators P j
\mathrm{d}(x) := \Phi j(x,x) are projections with \| P j

\mathrm{d}(x)  - 
P j
0 (\scrT \varphi \mathrm{d}(x)\bfu \mathrm{w}\mathrm{t})\| L(X) \rightarrow 0 as x\rightarrow \infty and their sum is the identity in L(X).

(iv) The projections P j
\mathrm{d}(x) can be chosen so that RgP \mathrm{c}

\mathrm{d}(x) = Span\{ \partial x\bfu \mathrm{d}(x), \partial \tau \bfu \mathrm{d}(x)\} and
\scrR RgP \mathrm{s}

\mathrm{d}(0) =RgP \mathrm{u}
\mathrm{d} (0). Furthermore,

X =Fix\scrR \oplus R\partial x\bfu \mathrm{d}(0)\oplus RgP \mathrm{s}
\mathrm{d}(0),(3.9)

and we have that \bfv = \bfa \mathrm{s} + \bfa \mathrm{u} with \bfa j \in RgP j
\mathrm{d}(0) for j = s,u lies in Fix\scrR if and only

if \bfa \mathrm{s} =\scrR \bfa \mathrm{u}.

Proof. The existence of center-stable and unstable exponential dichotomies and their con-
vergence properties for x \rightarrow \infty were established in [15, 17] and also in [18, Appendices A.1
and A.2]. The arguments in [18, section 4.1] show how exponential weights with rates \pm 2\eta 
can be used to construct exponential trichotomies from exponential dichotomies, and we also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

3/
24

 to
 1

28
.1

48
.2

25
.8

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



TRUNCATION OF CONTACT DEFECTS 37

refer the reader to [21, section 5.2] for proofs of similar statements in the more complicated
case of planar spiral waves. To establish (iv), we note that it follows from [15, 16] that we
can pick any complement of the range of the center-stable projection as the range of P \mathrm{u}

\mathrm{d} (0);
reversibility and Hypothesis 3(iii) show that \scrR RgP \mathrm{s}

\mathrm{d}(0) is such a complement. A similar ar-
gument establishes the claim about the range of the center projection. Using \Gamma \bfu \mathrm{d}(0)\subset Fix\scrR ,
the fact that the sum of the projections is the identity in X, and the characterization of the
ranges of the projections we just established, we conclude that (3.9) holds. The final claim in
(iv) follows from

\bfa \mathrm{s} + \bfa \mathrm{u} = \bfv 
\bfv \in \mathrm{F}\mathrm{i}\mathrm{x}\scrR 

= \scrR \bfv =\scrR \bfa \mathrm{s} +\scrR \bfa \mathrm{u}

combined with \scrR \bfa \mathrm{s} \in RgP \mathrm{u}
\mathrm{d} (0) and \scrR \bfa \mathrm{u} \in RgP \mathrm{s}

\mathrm{d}(0), which implies that \bfa \mathrm{s} =\scrR \bfa \mathrm{u}.

The next lemma shows that we can transport Fix\scrR along the defect solution \bfu \mathrm{d}(x) from
x= 0 to x=L0 for each sufficiently large L0 \gg 1.

Lemma 3.3. There are positive constants C0,C1,C2,L
\ast 
0 so that for each L0 \geq L\ast 

0 the fol-
lowing is true. For all \omega with | \omega  - \omega 0| \leq C1e

 - 2\eta L0, we have

M\scrR (L0, \omega ) :=

\biggl\{ 
\~\bfu \in X : \exists solution \bfu (x) of (3.1) with \bfu (0)\in Fix\scrR ,\bfu (L0)=\~\bfu ,

sup
0\leq x\leq L0

| \bfu (x) - \bfu \mathrm{d}(x)| \leq C0e
 - \eta L0

\biggr\} 
=\Gamma \~M\scrR (L0, \omega ) = \Gamma 

\Bigl\{ 
\~\bfu = \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u} + h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u},L0, \omega ),

\bfa \mathrm{u} \in RgP \mathrm{u}
0 (u\mathrm{w}\mathrm{t}), | \bfa \mathrm{u}| \leq C1e

 - \eta L0

\Bigr\} 
,

where h\mathrm{c}\mathrm{s}\scrR is smooth, maps into RgP \mathrm{c}\mathrm{s}
0 (u\mathrm{w}\mathrm{t}), and satisfies | h\mathrm{c}\mathrm{s}\scrR (\bfa \mathrm{u},L0, \omega )| \leq C2(\delta 0| \bfa \mathrm{u}| + | \bfa \mathrm{u}| 2+

| \omega  - \omega 0| ).
Proof. We exploit the existence of exponential trichotomies to solve (3.1) near the defect

solution \bfu \mathrm{d}(x). To do so, we write \bfu = \bfu \mathrm{d}(x) + \bfv and \omega = \omega 0 + \=\omega so that \bfu satisfies (3.1) if
and only if \bfv satisfies

\bfv x = F\bfu (\bfu \mathrm{d}(x), \omega 0)\bfv + F (\bfu \mathrm{d}(x) + \bfv , \omega 0 + \=\omega ) - F (\bfu \mathrm{d}(x), \omega 0) - F\bfu (\bfu \mathrm{d}(x), \omega 0)\bfv \underbrace{}  \underbrace{}  
=:G(\bfv ,\=\omega )

,

G(\bfv , \=\omega ) =O(| \bfv | 2 + | \=\omega | ).

Solutions to this equation can be found as solutions of the fixed-point problem

\bfv (x) =\Phi \mathrm{s}(x,0)\bfa \mathrm{s} +\Phi \mathrm{u}(x,L0)\bfa 
\mathrm{u} +

\int x

0
\Phi \mathrm{c}\mathrm{s}(x, y)G(\bfv (y), \=\omega )dy+

\int x

L0

\Phi \mathrm{u}(x, y)G(\bfv (y), \=\omega )dy

(3.10)

=: \scrG (\bfv ,\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega )(x)

with x \in [0,L0], \bfa 
\mathrm{s} \in RgP \mathrm{s}

\mathrm{d}(0), and \bfa \mathrm{u} \in RgP \mathrm{u}
\mathrm{d} (L0), where \scrG (\cdot ,\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega ) maps C0([0,L0],X),

equipped with the supremum norm \| \cdot \| , into itself for each (\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega ). The estimates from
Lemma 3.2 show that there is a constant C0 that does not depend on L0 such that
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38 MILEN IVANOV AND BJ\"ORN SANDSTEDE

\| \scrG (\bfv ,\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega )\| \leq C0

\bigl( 
| \bfa \mathrm{s}| + | \bfa \mathrm{u}| + e\eta L0(\| \bfv \| 2 + | \=\omega | )

\bigr) 
, \| \scrG \bfv (\bfv ,\bfa 

\mathrm{s},\bfa \mathrm{u}, \=\omega )\| \leq C0e
\eta L0\| \bfv \| .

Setting C1 :=
1

12C2
0
and C3 :=

1
2C0

, we find that

\| \scrG (\bfv ,\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega )\| \leq C3e
 - \eta L0 , \| \scrG \bfv (\bfv ,\bfa 

\mathrm{s},\bfa \mathrm{u}, \=\omega )\| \leq 1

2

for all (\bfv ,\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega ) with | \bfa \mathrm{s}| , | \bfa \mathrm{u}| \leq C1e
 - \eta L0 , | \=\omega | \leq C1e

 - 2\eta L0 , and \| \bfv \| \leq C3e
 - \eta L0 . The uniform

contraction mapping principle now guarantees the existence of a unique fixed point \bfv of (3.10)
that depends smoothly on (\bfa \mathrm{s},\bfa \mathrm{u}, \=\omega ) provided these satisfy the estimates noted above, and we
have \| \bfv \| \leq 2C0(| \bfa \mathrm{s}| + | \bfa \mathrm{u}| + e\eta L0 | \=\omega | ). We are interested in solutions with \bfv (0)\in Fix\scrR . Since

\bfv (0) = \bfa \mathrm{s} +\Phi \mathrm{u}(0,L0)\bfa 
\mathrm{u} +

\int 0

L0

\Phi \mathrm{u}(0, y)G(\bfv (y), \=\omega )dy,

we conclude from Lemma 3.2(iv) that \bfv (0)\in Fix\scrR if and only if \bfa \mathrm{s} satisfies

\bfa \mathrm{s} =\scrR 
\biggl( 
\Phi \mathrm{u}(0,L0)\bfa 

\mathrm{u} +

\int 0

L0

\Phi \mathrm{u}(0, y)G(\bfv (y), \=\omega )dy

\biggr) 
=O

\bigl( 
e - 3\eta L0 | \bfa \mathrm{u}| + | \bfa \mathrm{s}| 2 + | \bfa \mathrm{u}| 2 + | \=\omega | 

\bigr) 
,

which we can solve uniquely for \bfa \mathrm{s} as a function of (\bfa \mathrm{u}, \=\omega ) with | \bfa \mathrm{s}| \leq C2(e
 - 3\eta L0 | \bfa \mathrm{u}| +| \bfa \mathrm{u}| 2+| \=\omega | )

for some C2 that does not depend on L0. We substitute this function for \bfa \mathrm{s} into the expression
for \bfv (L0) in (3.10) to obtain

\bfv (L0) = \bfa \mathrm{u}+H\mathrm{c}\mathrm{s}
\scrR (\bfa \mathrm{u},L0, \=\omega ), \bfa \mathrm{u}\in RgP \mathrm{u}

\mathrm{d} (L0), H\mathrm{c}\mathrm{s}
\scrR (\bfa \mathrm{u},L0, \=\omega ) =O

\bigl( 
e - 3\eta L0 | \bfa \mathrm{u}| + | \bfa \mathrm{u}| 2 + | \=\omega | 

\bigr) 
,

where H\mathrm{c}\mathrm{s}
\scrR maps into RgP \mathrm{c}\mathrm{s}

\mathrm{d} (L0), so that

\scrT  - \varphi \mathrm{d}(L0)\bfv (L0) = \scrT  - \varphi \mathrm{d}(L0)\bfa 
\mathrm{u} + \scrT  - \varphi \mathrm{d}(L0)H

\mathrm{c}\mathrm{s}
\scrR (\bfa \mathrm{u},L0, \=\omega ) = \~\bfa \mathrm{u} + \scrT  - \varphi \mathrm{d}(L0)H

\mathrm{c}\mathrm{s}
\scrR (\scrT \varphi \mathrm{d}(L0)\~\bfa 

\mathrm{u},L0, \=\omega )\underbrace{}  \underbrace{}  
=:\~h\mathrm{c}\mathrm{s}

\scrR (\~\bfa \mathrm{u},L0,\=\omega )

with \~\bfa \mathrm{u} \in \scrT  - \varphi \mathrm{d}(L0)RgP
\mathrm{u}
\mathrm{d} (L0) and

\~h\mathrm{c}\mathrm{s}\scrR (\~\bfa 
\mathrm{u},L0, \=\omega ) =O

\bigl( 
e - 3\eta L0 | \~\bfa \mathrm{u}| + | \~\bfa \mathrm{u}| 2 + | \=\omega | 

\bigr) 
\in \scrT  - \varphi \mathrm{d}(L0)RgP

\mathrm{c}\mathrm{s}
\mathrm{d} (L0).

Lemma 3.2(iii) and (3.2) imply that \scrT  - \varphi \mathrm{d}(L0)RgP
j
\mathrm{d}(L0) is \delta 0-close to RgP j

0 (\bfu \mathrm{w}\mathrm{t}) for j = cs,u,
and we can therefore also parametrize \scrT  - \varphi \mathrm{d}(L0)\bfv (L0) in the form

\scrT  - \varphi \mathrm{d}(L0)\bfv (L0) = \v \bfa \mathrm{u} + \v h\mathrm{c}\mathrm{s}\scrR (\v \bfa 
\mathrm{u},L0, \omega 0 + \=\omega )

with

\v \bfa \mathrm{u} \in RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}, \v h\mathrm{c}\mathrm{s}\scrR (\v \bfa 

\mathrm{u},L0, \omega ) =O
\bigl( 
\delta 0| \v \bfa \mathrm{u}| + | \v \bfa \mathrm{u}| 2 + | \omega  - \omega 0| 

\bigr) 
\in RgP \mathrm{c}\mathrm{s}

0 (\bfu \mathrm{w}\mathrm{t}).

Substituting this expression together with \omega = \omega 0 + \=\omega into the equation

\~\bfu := \scrT  - \varphi \mathrm{d}(L0)\bfu (L0) = \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \scrT  - \varphi \mathrm{d}(L0)\bfv (L0)

= \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \v \bfa \mathrm{u} + \v h\mathrm{c}\mathrm{s}\scrR (\v \bfa 
\mathrm{u},L0, \omega )\in \~M\scrR (L0, \omega )

and omitting the superscripts\v completes the proof.
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TRUNCATION OF CONTACT DEFECTS 39

Next, we show that Fix\scrR transported along the defect solution \bfu \mathrm{d} intersects W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega )
in a unique group orbit for each \omega near \omega 0.

Lemma 3.4. Fix L0 \geq L\ast 
0. Then there exists a \delta 1(L0)> 0 so that for each \omega with | \omega  - \omega 0| \leq 

\delta 1(L0) we have

M\scrR (L0, \omega )\cap W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) = \Gamma \scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 
\mathrm{s}
\scrR (\omega ), \omega )

for smooth functions \bfp \scrR (\omega ) \in \~W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) and \bfb \mathrm{s}
\scrR (\omega ) \in RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t}) with the property that
\bfu \mathrm{d}(L0) = \scrT \varphi \mathrm{d}(L0)\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega 0),\bfb 

\mathrm{s}
\scrR (\omega 0), \omega 0).

Proof. Equivariance shows that it suffices to construct intersections of \~M\scrR (L0, \omega ) and
W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ). We first construct these intersections for \omega = \omega 0. Lemma 3.3 shows that
\~M\scrR (L0, \omega 0) has the representation

\~M\scrR (L0, \omega 0) =
\bigl\{ 
\~\bfu = \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u} +O(\delta 0| \bfa \mathrm{u}| + | \bfa \mathrm{u}| 2) : \bfa \mathrm{u} \in RgP \mathrm{u}

0 (\bfu \mathrm{w}\mathrm{t})
\bigr\} 
.

Next, we parametrize W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega 0). Equation (3.7) shows that we can choose \bfp \scrR (\omega 0) \in 
\~W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega 0) and \bfb \mathrm{s}

\scrR (\omega 0)\in RgP \mathrm{s}
0(\bfu \mathrm{w}\mathrm{t}) so that

\scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) =\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega 0),\bfb 
\mathrm{s}
\scrR (\omega 0), \omega 0).

We write \bfp = \bfp \scrR (\omega 0) + \~\bfp and \bfb \mathrm{s} = \bfb \mathrm{s}
\scrR (\omega 0) + \~\bfb and use the representation (3.6) of the strong

stable fibers to get

\scrF \mathrm{s}\mathrm{s}(\bfp ,\bfb \mathrm{s}, \omega 0) = \bfp \scrR (\omega 0) + \~\bfp + \bfb \mathrm{s}
\scrR (\omega 0) + \~\bfb + h\mathrm{u}(\bfp \scrR (\omega 0) + \~\bfp ,\bfb \mathrm{s}

\scrR (\omega 0) + \~\bfb , \omega 0)

= \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \~\bfp + \~\bfb \mathrm{s} + \~h\mathrm{u}(\~\bfp , \~\bfb ),

where | \~h\mathrm{u}(\~\bfp , \~\bfb )| \leq C\delta 0(| \~\bfp | + | \~\bfb | ). The union of these fibers for small (\~\bfp , \~\bfb ) parametrizes a
neighborhood of \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) in W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega 0). Comparing the expressions for \~M\scrR (L0, \omega 0)
and \scrT \varphi \mathrm{d}(L0)\scrF \mathrm{s}\mathrm{s}(\bfp ,\bfb \mathrm{s}, \omega 0), we see that intersections are determined by the equation

\bfa \mathrm{u} +O(\delta 0| \bfa \mathrm{u}| + | \bfa \mathrm{u}| 2) = \~\bfp + \~\bfb + \~h\mathrm{u}(\~\bfp , \~\bfb ),

which we can solve uniquely for (\~\bfp , \~\bfb , \~\bfa \mathrm{u}) by the implicit function theorem since \~\bfp spans
the center directions, \~\bfb \in RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t}), and \~\bfa \mathrm{u} \in RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}). The same chain of argu-

ments can also be applied if we now vary \omega near \omega 0 and treat the additional terms as small
perturbations.

Finally, we provide a parametrization of M\scrR (L0, \omega ) near the group orbit of the intersection
with W \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ).

Lemma 3.5. There is a constant C > 0 such that for each fixed L0 \geq L\ast 
0 there exists a

\delta 1(L0)> 0 so that for each \omega with | \omega  - \omega 0| \leq \delta 1(L0) we have

M\scrR (L0, \omega ) = \Gamma \{ \scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 
\mathrm{s}
\scrR (\omega ), \omega ) + \bfa \mathrm{u} +H\mathrm{c}\mathrm{s}

\scrR (\bfa \mathrm{u}, \omega ) : \bfa \mathrm{u} \in RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t})\} ,(3.11)

where | H\mathrm{c}\mathrm{s}
\scrR (\bfa \mathrm{u}, \omega )| \leq C\delta 0| \bfa \mathrm{u}| uniformly in \omega .
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40 MILEN IVANOV AND BJ\"ORN SANDSTEDE

Proof. Lemma 3.3 gives

\~M\scrR (L0, \omega ) =
\bigl\{ 
\scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u} + h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u},L0, \omega ),\bfa 
\mathrm{u} \in RgP \mathrm{u}

0 (\bfu \mathrm{w}\mathrm{t})
\bigr\} 
,

where | h\mathrm{c}\mathrm{s}\scrR (\bfa \mathrm{u},L0, \omega )| \leq C2(\delta 0| \bfa \mathrm{u}| + | \bfa \mathrm{u}| 2 + | \omega  - \omega 0| ). Lemma 3.4 shows that by construction

\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 
\mathrm{s}
\scrR (\omega ), \omega )\in \~M\scrR (L0, \omega )

and therefore

\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 
\mathrm{s}
\scrR (\omega ), \omega ) = \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u}0(\omega ) + h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u}
0(\omega ),L0, \omega )(3.12)

for a unique \bfa \mathrm{u}0(\omega ). To establish the parametrization (3.11), we need to find for each \bfa \mathrm{u} an
element \bfv so that

\scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u} + h\mathrm{c}\mathrm{s}\scrR (\bfa 
\mathrm{u},L0, \omega ) =\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 

\mathrm{s}
\scrR (\omega ), \omega ) + \bfv .

Substituting (3.12), we arrive at

\scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u} + h\mathrm{c}\mathrm{s}\scrR (\bfa 
\mathrm{u},L0, \omega ) = \scrT  - \varphi \mathrm{d}(L0)\bfu \mathrm{d}(L0) + \bfa \mathrm{u}0(\omega ) + h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u}
0(\omega ),L0, \omega ) + \bfv 

so that \bfv needs to be chosen according to

\bfv = \bfa \mathrm{u}  - \bfa \mathrm{u}0(\omega ) + h\mathrm{c}\mathrm{s}\scrR (\bfa 
\mathrm{u},L0, \omega ) - h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u}
0(\omega ),L0, \omega ).

We write \bfa \mathrm{u} = \bfa \mathrm{u}0(\omega ) + \~\bfa \mathrm{u} to get

\bfv = \~\bfa \mathrm{u} + h\mathrm{c}\mathrm{s}\scrR (\bfa 
\mathrm{u}
0(\omega ) + \~\bfa \mathrm{u},L0, \omega ) - h\mathrm{c}\mathrm{s}\scrR (\bfa 

\mathrm{u}
0(\omega ),L0, \omega )\underbrace{}  \underbrace{}  

| \cdot | \leq C\delta 0| \~\bfa \mathrm{u}| 

as required.

3.4. Step 2: Constructing the truncated defect solution. In the second step of our proof,
we construct solutions that start in \~M\scrR (L0, \omega ) and end in the space Fix\scrR 0 of Neumann bound-
ary conditions. We remark that our arguments below no longer involve the defect solution,
since we can rely on the parametrization provided in Lemma 3.5. Recall from Lemma 3.4 that
\bfp \scrR (\omega )\in \~W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ) is the base point of the intersection \scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 

\mathrm{s}
\scrR (\omega ), \omega ) of

\~M\scrR (L0, \omega )
andW \mathrm{c}\mathrm{s}(\Gamma \bfu \mathrm{w}\mathrm{t}, \omega ). Let \kappa \scrR (\omega ) be the center-manifold coordinate \kappa of \bfp \scrR (\omega ) that we introduced
in (3.3) and denote by \bfp \ast (x; \epsilon , \~\kappa ) the solution on \~W \mathrm{c}(\bfu \mathrm{w}\mathrm{t}, \omega 0+\epsilon 2) that belongs to the solution
\kappa (x) with \kappa (0) = \kappa 0 = \kappa \mathrm{R}(\omega )+ \~\kappa and \kappa (L(\epsilon , \~\kappa )) = 0 that we constructed in Lemma 3.1. Next,
we also vary the strong stable coordinate of the intersection \scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 

\mathrm{s}
\scrR (\omega ), \omega )| \omega =\omega 0+\epsilon 2 and

consider the points

\bfu \ast (0; \epsilon , \~\kappa , \~\bfb \mathrm{s}) :=\scrF \mathrm{s}\mathrm{s}(\bfp \ast (0; \epsilon , \~\kappa ),\bfb \scrR (\omega 0 + \epsilon 2) + \~\bfb \mathrm{s}, \omega 0 + \epsilon 2), \~\bfb \mathrm{s} \in RgP \mathrm{s}
0(\bfu \mathrm{w}\mathrm{t}),

in the center-stable manifold. Note that these points parametrize an open neighborhood of

\bfu \ast (0; \epsilon ,0,0) =\scrF \mathrm{s}\mathrm{s}(\bfp \scrR (\omega ),\bfb 
\mathrm{s}
\scrR (\omega ), \omega )| \omega =\omega 0+\epsilon 2(3.13)
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TRUNCATION OF CONTACT DEFECTS 41

Figure 5. We illustrate the strategy behind step 2. The manifold M\scrR (L0) intersects W
\mathrm{c}\mathrm{u}(\Gamma \bfu \mathrm{w}\mathrm{t}) in the point

\scrF \mathrm{s}\mathrm{s}(\bfp \scrR ,\bfb \mathrm{s}
\scrR ). Varying the initial condition p\ast (0) near the base point \bfp \scrR in W \mathrm{c}(\Gamma \bfu \mathrm{w}\mathrm{t}) and the strong stable fiber

coordinate \bfb \mathrm{s} near \bfb \mathrm{s}
\scrR creates an open neighborhood \scrU of initial conditions \bfu \ast (0) in W \mathrm{c}\mathrm{u}(\Gamma \bfu \mathrm{w}\mathrm{t}) with associated

solutions \bfu \ast (x), which we use to construct the desired solution u\mathrm{N}(x) that starts in M\scrR (L0) and ends in Fix\scrR 0.

inside the center-stable manifold upon varying (\~\kappa , \~\bfb \mathrm{s}). We denote the associated solutions,
which are guaranteed to exist for x\geq 0 by the construction of the center-stable manifold, by
\bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) and recall that the base point of this solution in the center manifold is \bfp \ast (x; \epsilon , \~\kappa ).
The properties of strong stable fibers guarantee that

\bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) = \bfp \ast (x; \epsilon , \~\kappa ) +O(e - 3\eta x)(3.14)

as x \rightarrow \infty . Figure 5 illustrates these solutions. For future reference, we will denote the
\varphi -coordinate of \bfp \ast in the center manifold by \varphi \ast .

Our goal is now to use the variation-of-constants formula to construct solutions near
\bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) that start in M\scrR (L0) and end in Fix\scrR 0. The roughness theorem for dichotomies
for (3.1), which was established in [15, 17, 18], shows that the linearization of (3.1) about
\bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) admits exponential dichotomies \Phi \mathrm{c}\mathrm{s},\mathrm{u}

\ast (x, y) with constants and rates given by
Lemma 3.2 and that the operators \Phi \mathrm{c}\mathrm{s},\mathrm{u}

\ast (x, y) depend smoothly on (\epsilon , \~\kappa , \~\bfb \mathrm{s}). We can now seek
solutions of (3.1) near \bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}).

Lemma 3.6. For each (\epsilon , \~\kappa , \~\bfb \mathrm{s}, \~x) and \bfa \mathrm{u} \in \scrT \varphi \ast (\ell ;\epsilon ,\~\kappa )RgP
\mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}) with | \epsilon | , | \~\kappa | , | \~\bfb \mathrm{s}| , | \bfa \mathrm{u}| < \delta 2,

\epsilon > 0, and | \~x| \leq 1
3 , equation (3.1) with \omega = \omega 0+\epsilon 2 has a unique solution \bfu (x) on [0,L(\epsilon , \~\kappa )+ \~x]

with

\bfu (0) = \bfu \ast (0; \epsilon , \~\kappa , \~\bfb \mathrm{s}) +O(e - \eta /\epsilon | \bfa \mathrm{u}| ), \bfu (\ell ) = \bfu \ast (\ell ; \epsilon , \~\kappa , \~\bfb \mathrm{s}) + \bfa \mathrm{u} + o(1)| \bfa \mathrm{u}| +O(| \bfa \mathrm{u}| 2),(3.15)

where we used the notation \ell =L(\epsilon , \~\kappa )+ \~x, and o(1) is a term that converges to zero as \epsilon \rightarrow 0.

Proof. We seek solutions of (3.1) of the form

\bfu (x) = \bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) + \bfv (x), 0\leq x\leq \ell , \ell :=L(\epsilon , \~\kappa ) + \~x.

Using that \bfu \ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}) is a solution of (3.1) for all (\epsilon , \~\kappa , \~\bfb \mathrm{s}), we see that \bfv (x) satisfies an
equation of the form

\bfv x = F\bfu (\bfu 
\ast (x; \epsilon , \~\kappa , \~\bfb \mathrm{s}), \omega 0 + \epsilon 2)\bfv +G(\bfv , \epsilon , \~\kappa , \~\bfb \mathrm{s}), G(\bfv , \epsilon , \~\kappa , \~\bfb \mathrm{s}) =O(| \bfv | 2).
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42 MILEN IVANOV AND BJ\"ORN SANDSTEDE

By [18, Lemma A.1 and Theorem A.4] and [17, Lemma 5.2], the linear part of this equation
admits an exponential dichotomy with center-stable and unstable projections, and the range
of the unstable projection at x= \ell is \delta 0-close to \scrT \varphi \ast (\ell ;\epsilon ,\~\kappa )RgP

\mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}), where \varphi 

\ast denotes the \varphi -

coordinate of \bfp \ast . Omitting the dependence of G on (\epsilon , \~\kappa , \~\bfb \mathrm{s}), we can rewrite the full nonlinear
equation for \bfv as the fixed-point equation

\bfv (x) =\Phi \mathrm{u}
\ast (x, \ell )\bfa 

\mathrm{u} +

\int x

0
\Phi \mathrm{c}\mathrm{s}
\ast (x, y)G(\bfv (y))dy+

\int x

\ell 
\Phi \mathrm{u}
\ast (x, y)G(\bfv (y))dy, 0\leq x\leq \ell .(3.16)

The fact that the function G(\bfv ) vanishes at \bfv = 0 allows us to use the exponentially weighted
norms

\| \bfv \| \eta := sup
0\leq x\leq \ell 

e2\eta (\ell  - x)| \bfv (x)| .

Using this norm, we have

\| RHS of (3.16)\| \eta \leq C| \bfa \mathrm{u}| +Ce2\eta (\ell  - x)

\biggl[ \int x

0
e\eta (x - y)e - 4\eta (\ell  - y) dy+

\int \ell 

x
e - 3\eta (y - x)e - 4\eta (\ell  - y) dy

\biggr] 
\| \bfv \| 2\eta 

\leq C| \bfa \mathrm{u}| +Ce2\eta (\ell  - x)
\Bigl[ 
e - 4\eta (\ell  - x) + e\eta xe - 4\eta \ell + e - 3\eta (\ell  - x) + e - 4\eta (\ell  - x)

\Bigr] 
\| \bfv \| 2\eta 

\leq C(| \bfa \mathrm{u}| + \| \bfv \| 2\eta ),

and a similar calculation shows that the derivative of the right-hand side of (3.16) with respect
to \bfv in the exponential weighted norm can be bounded by 1

2 for \| \bfv \| \eta sufficiently small.
The uniform contraction principle therefore guarantees existence, uniqueness, and smooth
dependence on data of a fixed point of (3.16). Evaluating (3.16) at x = 0 and x = \ell , noting
that \ell \geq 1

\epsilon by Lemma 3.1, and using the exponential weights for \bfv (x) establishes the estimates
(3.15) and completes the proof.

\bfF \bfi \bfn \bfa \bfl \bfs \bft \bfe \bfp \bfo \bff \bfo \bfu \bfr \bfp \bfr \bfo \bfo \bff . It remains to prove that the solution \bfu (x) we constructed in
Lemma 3.6 satisfies the two conditions

\bfu (0)\in \~M\scrR (L0, \omega 0 + \epsilon 2) and \bfu (\ell )\in Fix\scrR 0.(3.17)

For the first condition, we use (3.15) for \bfu (0) together with (3.11) and (3.13) for \~M\scrR (L0, \omega 0+
\epsilon 2) to arrive at the equation

\bfu \ast (0; \epsilon , \~\kappa ,\bfb \mathrm{s}
0) +O(e - \eta /\epsilon | \bfa \mathrm{u}1 | ) = \bfu \ast (0; \epsilon ,0,0) + \bfa \mathrm{u}0 +O(\delta 0)| \bfa \mathrm{u}0 | ,(3.18)

where \bfb \mathrm{s}
0 \in RgP \mathrm{s}

0(\bfu \mathrm{w}\mathrm{t}) and \bfa \mathrm{u}0 \in RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}), and the O(\delta 0) term goes to zero as \delta 0 goes to

zero uniformly in \epsilon . Expanding (3.18) in (\~\kappa ,\bfb \mathrm{s}
0) near zero, we obtain the equation

\partial \~\kappa \bfu 
\ast (0; \epsilon ,0,0)\~\kappa + \partial \bfb \mathrm{s}

0
\bfu \ast (0; \epsilon ,0,0)\bfb \mathrm{s}

0 +O(e - \eta /\epsilon | \bfa \mathrm{u}1 | + | \~\kappa | 2 + | \bfb \mathrm{s}
0| 2) = \bfa \mathrm{u}0 +O(\delta 0)| \bfa \mathrm{u}0 | ,

which we can solve uniquely for

(\~\kappa ,\bfa \mathrm{u}0 ,\bfb 
\mathrm{s}
0) =O(e - \eta /\epsilon | \bfa \mathrm{u}1 | )(3.19)
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TRUNCATION OF CONTACT DEFECTS 43

as a function of \bfa \mathrm{u}1 . With (\~\kappa ,\bfa \mathrm{u}0 ,\bfb 
\mathrm{s}
0) now determined, it remains to satisfy the second condition

in (3.17), which is given by \bfu (\ell )\in Fix\scrR 0. We first recall from (3.15) that

\bfu (\ell ) = \bfu \ast (\ell ; \epsilon , \~\kappa ,\bfb \mathrm{s}
0) + \bfa \mathrm{u}1 + o(1)| \bfa \mathrm{u}1 | +O(| \bfa \mathrm{u}1 | 2).(3.20)

We now exploit the estimates (3.19) for (\~\kappa ,\bfa \mathrm{u}0 ,\bfb 
\mathrm{s}
0) to simplify the expression for \bfu \ast (\ell ; \epsilon , \~\kappa ,\bfb \mathrm{s}

0)
as follows:

\bfu \ast (\ell ; \epsilon , \~\kappa ,\bfb \mathrm{s}
0) = \bfu \ast (L(\epsilon , \~\kappa ) + \~x; \epsilon , \~\kappa ,\bfb \mathrm{s}

0) = \bfu \ast (L(\epsilon ,O(e - \eta /\epsilon )) + \~x; \epsilon ,O(e - \eta /\epsilon ),O(e - \eta /\epsilon ))

= \bfu \ast (L(\epsilon ,0) + \~x; \epsilon ,0,0) +O(e - \eta /\epsilon ) = \bfp \ast (L(\epsilon ,0) + \~x; \epsilon ,0) +O(e - \eta /\epsilon )

= \bfp \ast (L(\epsilon ,0); \epsilon ,0) +
2\epsilon 2\~x

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\scrT \varphi \ast (L(\epsilon ,0);\epsilon ,0)\bfv \mathrm{w}\mathrm{t} +O(e - \eta /\epsilon + \epsilon 4\~x2),

where we used (3.14) and Lemma 3.1 and recall that we defined \bfv \mathrm{w}\mathrm{t} in the paragraph after (3.2)
and denoted the \varphi -coordinate of \bfp \ast in the center manifold by \varphi \ast . Using that \bfp \ast (L(\epsilon ,0); \epsilon ,0)\in 
Fix\scrR 0 by Lemma 3.1 and that Fix\scrR 0 is a linear space, equation (3.20) shows that it suffices
to show that

\scrT \varphi \ast (L(\epsilon ,0);\epsilon ,0)

\biggl( 
2\epsilon 2\~x

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\bfv \mathrm{w}\mathrm{t} +O(e - \eta /\epsilon + \epsilon 4\~x2) + \bfa \mathrm{u}1 + o(1)| \bfa \mathrm{u}1 | +O(| \bfa \mathrm{u}1 | 2)
\biggr) 
\in Fix\scrR 0,

where \bfa \mathrm{u}1 \in RgP \mathrm{u}
0 (\bfu \mathrm{w}\mathrm{t}) by Lemma 3.6 and (3.20). Exploiting equivariance and using the

representation (3.5) for Fix\scrR 0, we arrive at the equation

2\epsilon 2\~x

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

\bfv \mathrm{w}\mathrm{t} + \bfa \mathrm{u}1 + o(1)| \bfa \mathrm{u}1 | +O(e - \eta /\epsilon + \epsilon 4\~x2 + | \bfa \mathrm{u}1 | 2) = \alpha \partial \tau \bfu \mathrm{w}\mathrm{t} + \bfb \mathrm{s}
1 +\scrR 0\bfb 

\mathrm{s}
1.

Projecting this equation onto R\partial \tau \bfu \mathrm{w}\mathrm{t}\oplus RgP \mathrm{s}
0(\bfu \mathrm{w}\mathrm{t})\oplus RgP \mathrm{u}

0 (\bfu \mathrm{w}\mathrm{t}) along R\bfv \mathrm{w}\mathrm{t} allows us to solve
uniquely for (\alpha ,\bfa \mathrm{u}1 ,\bfb 

\mathrm{s}
1) = O(e - \eta /\epsilon + \epsilon 4\~x2) as a function of (\epsilon , \~x), and the remaining equation

in the \bfv \mathrm{w}\mathrm{t}-direction becomes

2\epsilon 2\~x

\lambda \prime \prime 
\mathrm{l}\mathrm{i}\mathrm{n}(0)

+O(e - \eta /\epsilon + \epsilon 4\~x2) = 0,

which we can solve uniquely for \~x = O(e - \eta /2\epsilon ). This proves that there are unique functions
(\~\kappa , \~x,\bfa \mathrm{u}0,1,\bfb 

\mathrm{s}
0,1) = (\~\kappa \ast , \~x\ast ,\bfa \mathrm{u},\ast 0,1 ,\bfb 

\mathrm{s},\ast 
0,1)(\epsilon ) = O(e - \eta /2\epsilon ) so that the matching conditions (3.17) are

satisfied for each \epsilon > 0.
It remains to express the parameter \epsilon as a function of the interval length L. Lemma 3.1

and the preceding discussion show that the total interval length L over which the truncated
defect solution exists is given by

L=L(\epsilon , \~\kappa \ast (\epsilon )) + \~x\ast (\epsilon ) +L0 =
\pi \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

 - 2\omega \prime \prime 
\mathrm{n}\mathrm{l}(0)\epsilon 

+ r(\epsilon , \~\kappa \ast (\epsilon )) + \~x(\epsilon ) +L0

=
\pi \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

 - 2\omega \prime \prime 
\mathrm{n}\mathrm{l}(0)\epsilon 

+ r(\epsilon ,0) +L0 +O(e - \eta /2\epsilon ).

Smoothness of r(\epsilon ,0) and the remainder terms allows us to solve this equation for \epsilon = \epsilon \ast (L)
with

\epsilon \ast (L) =
\pi \lambda \prime \prime 

\mathrm{l}\mathrm{i}\mathrm{n}(0)

2
\sqrt{} 

 - 2\omega \prime \prime 
\mathrm{n}\mathrm{l}(0)L

+O

\biggl( 
1

L2

\biggr) 
,

as claimed. This completes the proof of Theorem 1.
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44 MILEN IVANOV AND BJ\"ORN SANDSTEDE

4. Passage times near saddle-node equilibria. In this section, we prove Theorem 2.
Our goal is to find expansions of the passage times through \kappa = 0 for solutions of the one-
dimensional ODE

\kappa x = \epsilon 2 + \kappa 2 + g(\kappa , \epsilon 2),(4.1)

where the function g(\kappa ,\omega ) = O(\omega 2 + \kappa 3) is sufficiently smooth. To simplify the analysis, we
will first bring (4.1) into an appropriate normal form.

Lemma 4.1. Consider

\kappa x = \omega + \kappa 2 + g(\kappa ,\omega )(4.2)

and assume that the function g(\kappa ,\omega ) is Ck for some k \geq 4 and satisfies g(0,0) = g\kappa (0,0) =
g\kappa \kappa (0,0) = g\omega (0,0) = g\kappa \omega (0,0) = 0. There is then a Ck near-identity diffeomorphism (u,\mu ) =
(\kappa +H(\kappa ,\omega ), \omega + h(\omega )) with H(0,0) = h(0) = 0 and H(\kappa ,\omega )(0,0) = h\omega (0) = 0 and Ck functions
c0,1(\mu ) so that (4.2) becomes

ux = \mu + (1+ \mu c0(\mu ))u
2 + c1(\mu )u

3.(4.3)

Furthermore, if g(\kappa ,\omega ) is even in \kappa for all \omega , then we have c0(\mu ) = c1(\mu ) = 0 for all \mu .

Proof. First, [6, Corollary 1] shows that there is a Ck-smooth near-identity transformation
that brings (4.2) into the normal form

vx = (\nu + v2)(1 + c1(\nu )v),(4.4)

where c1(\nu ) is Ck. If g(\kappa ,\omega ) is even in \kappa , then c1(\nu ) vanishes identically by symmetry,
and (4.4) is already of the form (4.3) with c0,1(\mu ) = 0 as claimed. If g is not even in \kappa ,
(4.4) is cubic in v, and a calculation shows that the transformation u := v  - \nu c1(\nu )d(\nu ) and
\mu := \nu +\nu 2c1(\nu )

2d(\nu )(1+d(\nu )+\nu d(\nu )2c1(\nu )
2) turns (4.4) into (4.3), where the function d= d(\nu )

is the unique Ck solution of 1+2d+3\nu c1(\nu )d
2 = 0 with d(0) = - 1

2 , which exists by the implicit
function theorem.

We now focus first on the normal form (4.3) and discuss extensions to the original equation
(4.1) afterward. For given \delta with 0< \delta \ll 1, we consider the boundary-value problem

ux = \epsilon 2 + (1+ \epsilon 2c0(\epsilon 
2))u2 + c1(\epsilon 

2)u3, u(0) = 0, u(L) = \delta ,(4.5)

where the functions c0,1(\mu ) are Ck. In this situation, we say that L is the travel time from
u= 0 to u= \delta . Our goal is to find expansions of L in terms of \epsilon uniformly in 0< \epsilon \ll 1.

Lemma 4.2. Assume that c0,1(\mu ) are C
k for some k\geq 4. Then there exist numbers \epsilon 1, \delta 1 > 0

so that the following statements hold with Q := (0, \epsilon 1]\times [\delta 1/2,2\delta 1]:
(i) Equation (4.5) has a solution for (\epsilon , \delta ) \in Q if and only if L = L+(\epsilon , \delta ) for a unique

L+(\epsilon , \delta ).
(ii) There are functions a \in Ck([0, \epsilon 1]) and b \in Ck(Q) with a(0) = b(0, \delta ) = 0 for all \delta so

that

\epsilon L+(\epsilon , \delta ) =
\pi 

2
+ a(\epsilon ) log \epsilon + b(\epsilon , \delta ).

In particular, \epsilon L+(\epsilon , \delta )\rightarrow 0 uniformly in \delta as \epsilon \rightarrow 0.
(iii) If c0,1(\mu ) = 0 for all \mu , then a(\epsilon ) = 0 for all \epsilon , and we have \epsilon L+(\epsilon , \delta )\in Ck(Q).
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TRUNCATION OF CONTACT DEFECTS 45

Proof. Note that (i) follows immediately from positivity of the right-hand side of the
ODE in (4.5) for small data together with the existence and uniqueness theorem of solutions
of ODEs. To prove (ii), we use the identity

L+(\epsilon , \delta ) =

\int \delta 

0

1

\epsilon 2 + (1+ \epsilon 2c0(\epsilon 2))u2 + c1(\epsilon 2)u3
du.

The idea is to use partial fractions to evaluate the integral. However, \epsilon is small and c1(\epsilon 
2)

may vanish, which obstructs the decomposition into partial fractions. To remedy this issue,
we multiply the equation by \epsilon and use the substitution u= \epsilon /v to get

\epsilon L+(\epsilon , \delta ) =

\int \infty 

\epsilon /\delta 

\epsilon 

\epsilon 2 + \epsilon 2

v2 (1 + \epsilon 2c0(\epsilon 2)) +
\epsilon 3

v3 c1(\epsilon 2)

\epsilon 

v2
dv

=

\int \infty 

1

v

v3 + v(1 + \epsilon 2c0(\epsilon 2)) + \epsilon c1(\epsilon 2)
dv

+

\int 1

\epsilon /\delta 

v

v3 + v(1 + \epsilon 2c0(\epsilon 2)) + \epsilon c1(\epsilon 2)
dv=: I1 + I2.

The dominated convergence theorem implies that \epsilon L+(\epsilon , \delta )| \epsilon =0 =
\pi 
2 and that the integral I1

is Ck in \epsilon . To evaluate I2, we use partial fractions. For simplicity, we will omit the argument
\epsilon 2 of the functions c0,1 for the remainder of this proof. We denote by v1,2,3 the roots of
v3+ v(1+ \epsilon 2c0)+ \epsilon c1 so that v1 = - \epsilon c1(1+O(\epsilon 2)), v2 = i+O(\epsilon c1+ \epsilon 2c0), and v3 = \=v2. Hence,
setting

Aj(\epsilon ) :=
vj(\epsilon )

3vj(\epsilon )2 + 1+ \epsilon 2c0(\epsilon 2)
, j = 1,2,3,(4.6)

we have

v

v3 + v(1 + \epsilon 2c0) + \epsilon c1
=

A1(\epsilon )

v - v1(\epsilon )
+

A2(\epsilon )

v - v2(\epsilon )
+

A3(\epsilon )

v - v3(\epsilon )
.

We claim that the integral

\~I2(\epsilon , \delta ) :=

\int 1

\epsilon /\delta 

\biggl[ 
A2(\epsilon )

v - v2(\epsilon )
+

A3(\epsilon )

v - v3(\epsilon )

\biggr] 
dv(4.7)

is Ck in (\epsilon , \delta ). Informally, combining the two terms in \~I2 into a single term and using that
v2,3 =\pm i to leading order, we obtain an integrand of the form Bv+C

v2+1 whose integral is B log(v2+
1) + C arctanv, which is smooth up to v = 0. To turn this into a rigorous argument, we use
that v3 = \=v2 and A3 = \=A2 to simplify the integrand of \~I2 as follows:

A2

v - v2
+

A3

v - v3
=

A2(v - v3) +A3(v - v2)

(v - v2)(v - v3)
=

2vReA2  - 2Re(A2v3)

v2  - 2vRev2 + (Rev2)2 + (Imv2)2

=
1

Imv2

v - \mathrm{R}\mathrm{e}v2

\mathrm{I}\mathrm{m}v2
B(\epsilon ) +C(\epsilon )

(v - \mathrm{R}\mathrm{e}v2

\mathrm{I}\mathrm{m}v2
)2 + 1

,
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46 MILEN IVANOV AND BJ\"ORN SANDSTEDE

where B(\epsilon ),C(\epsilon ) are Ck functions of \epsilon , which can be computed explicitly from v2,3(\epsilon ). Hence,

\~I2(\epsilon , \delta ) =

\int 1

\epsilon /\delta 

1

Imv2

v - \mathrm{R}\mathrm{e}v2

\mathrm{I}\mathrm{m}v2
B(\epsilon ) +C(\epsilon )

(v - \mathrm{R}\mathrm{e}v2

\mathrm{I}\mathrm{m}v2
)2 + 1

dv

=

\Biggl[ 
B(\epsilon )

2
log

\Biggl( \biggl( 
v - Rev2(\epsilon )

Imv2(\epsilon )

\biggr) 2

+ 1

\Biggr) 
+C(\epsilon ) arctan

\biggl( 
v - Rev2(\epsilon )

Imv2(\epsilon )

\biggr) \Biggr] 1

\epsilon /\delta 

,

which is Ck in (\epsilon , \delta ) up to \epsilon = 0 as claimed, since Im v2(\epsilon ) = 1+O(\epsilon ).
The smoothness properties of I2 are therefore determined by the remaining integral that

involves A1. We write v1(\epsilon ) = - \epsilon c1(\epsilon 
2)(1+O(\epsilon 2)) =: - \epsilon c2(\epsilon 

2), where c2 is C
k, and then obtain

\int 1

\epsilon /\delta 

A1

v - v1
dv=A1

\Bigl[ 
log(1 - v1) - log

\Bigl( \epsilon 

\delta 
 - v1

\Bigr) \Bigr] 
=

v1(log(1 - v1) - log \epsilon  - log(c2 + 1/\delta ))

3v21 + 1+ \epsilon 2c0

(4.8)

=:
 - v1(\epsilon )

3v1(\epsilon )2 + 1+ \epsilon 2c0(\epsilon 2)\underbrace{}  \underbrace{}  
=:a(\epsilon )

log \epsilon +\~b(\epsilon , \delta ),

where \~b(\epsilon , \delta ) is Ck provided we choose \delta 1 so small that c2(\epsilon ) + 1/\delta 1 \geq 1. In summary, we
proved that

\epsilon L+(\epsilon , \delta ) = I1 + I2 =
\pi 

2
+ a(\epsilon ) log \epsilon + b(\epsilon , \delta ),

where a(\epsilon ) is Ck with a(0) = 0, and where b(\epsilon , \delta ) contains the Ck remainder terms and satisfies
b(0, \delta ) = 0. This proves part (ii). Part (iii) follows from the observation that a(\epsilon ) vanishes
identically whenever the function c1 vanishes identically.

We briefly collect a few consequences of the preceding lemma.

Lemma 4.3. Assume that c0,1(\mu ) are Ck for some k\geq 4. Then the travel time of the ODE
in (4.5) from u= - \delta to u= 0 is given by L=L - (\epsilon , \delta ), and we have the expansion

\epsilon L - (\epsilon , \delta ) =
\pi 

2
 - a(\epsilon ) log \epsilon +\~b(\epsilon , \delta ),

where a(\epsilon ) is the function from Lemma 4.2, and \~b is Ck. Furthermore, the travel time
L - (\epsilon , \delta ) +L+(\epsilon , \delta ) from u= - \delta to u= \delta satisfies

\epsilon (L - (\epsilon , \delta ) +L+(\epsilon , \delta )) = \pi + b(\epsilon , \delta ) +\~b(\epsilon , \delta ),

where the right-hand side is Ck in (\epsilon , \delta ).

Proof. The statement about L - follows by applying Lemma 4.2 to the system obtained
by substituting (u,x) \rightarrow ( - u, - x), which leaves c0 the same and replaces c1 by its negative.
The claim about L - +L+ follows by adding the expressions for \epsilon L+ and \epsilon L - .

Our next step is to show that we can solve the equation L = L+(\epsilon , \delta ) for \epsilon as a function
of L.
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TRUNCATION OF CONTACT DEFECTS 47

Lemma 4.4. Assume that c0,1(\mu ) are Ck for some k \geq 4. Then there is a unique function
r(z, \delta ) so that L= L+(\epsilon , \delta ) if and only if \epsilon = \epsilon \ast (

1
L) =

\pi 
2L + r( 1L , \delta ), and the function r(z, \delta ) is

in C1,\beta for each fixed 0\leq \beta < 1 with r(z, \delta ) =O(z1+\beta ). If the functions c0,1 vanish identically,
then r \in Ck with r(z, \delta ) =O(z2).

Proof. Setting L :=L+(\epsilon , \delta ), we proved in Lemma 4.2 that

\epsilon L=
\pi 

2
+ a(\epsilon ) log \epsilon + b(\epsilon , \delta ),

where a, b\in Ck with a(0) = b(0, \delta ) = 0 for all \delta . Writing z = 1/L and a(\epsilon ) = \epsilon \~a(\epsilon ), we conclude
that

z =
\epsilon 

\pi 
2 + \epsilon \~a(\epsilon ) log \epsilon + b(\epsilon , \delta )

=: f(\epsilon , \delta ),(4.9)

where \~a \in Ck - 1. It is not difficult to check that for each fixed 0 \leq \beta < 1 the functions f(\epsilon , \delta )
and f\epsilon (\epsilon , \delta ) are C\beta (since \epsilon log \epsilon is C\beta ) on [0, \epsilon 1] and satisfy f(0, \delta ) = 0 and f\epsilon (0, \delta ) =

2
\pi for all

\delta . Hence we can apply the implicit function theorem to solve (4.9) for \epsilon = \epsilon \ast (z) as a function
of z = 1/L and conclude that

\epsilon \ast (z) =
\pi z

2
+ r(z, \delta )

for an appropriate C1,\beta function r(z, \delta ) with r(z, \delta ) = O(z1+\beta ). When c0,1 vanish, we know
that a(\epsilon ) vanishes identically, and we see from (4.9) that r \in Ck with r(z, \delta ) =O(z2).

Finally, we justify that the preceding results extend directly from the normal form (4.3)
to the original equation (4.2). We recall that the boundary-value problems

\kappa x = \omega + \kappa 2 + g(\kappa ,\omega ), \omega = \~\epsilon 2, \kappa (0) = 0, \kappa (\~L) = \~\delta (4.10)

and

ux = \mu + (1+ \mu c0(\mu ))u
2 + c1(\mu )u

3, \mu = \epsilon 2, u(0) = 0, u(L) = \delta (4.11)

are related via the transformation (u,\mu ) = (H(\kappa ,\omega ), h(\omega )) described in Lemma 4.1, which
guarantees that \epsilon and \~\epsilon are also related by an invertible smooth transformation of the form
\epsilon = \~h(\~\epsilon ). We then obtain the relationship

\~L+(\~\epsilon , \~\delta ) =L+(\~h(\~\epsilon ),H(\~\delta ,\~\epsilon 2))

between the travel times \~L+ and L+ for (4.10) and (4.11), respectively, which allows us to
transfer the results from this section to (4.10) as claimed in Theorem 2.

5. Discussion. The present work establishes the existence and uniqueness of truncated
contact defects in reaction-diffusion systems. A forthcoming paper will address the issue of
spectral stability of the truncated contact defect solutions we constructed here under the
assumption that the contact defect on the whole line is spectrally stable: it turns out that
\scrR 0-reversible truncated contact defects are spectrally stable when periodic boundary condi-
tions are used, while reversible truncated contact defects are always spectrally unstable under

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Neumann boundary conditions, regardless of which of the two reversers \scrR 0,\pi is present, since
the eigenvalue corresponding to the approximate eigenfunction \partial x\bfu L becomes positive. These
results will, in particular, explain why these defects pairwise attract each other. We believe
that nonlinear stability of contact defects and their truncation are difficult to establish due to
the logarithmically diverging phase correction. Already in the case of source defects (whose
spectra are, from an Evans function viewpoint, more regular than those of contact defects;
see [18, Figure 6.1] and [19]), the proof of nonlinear stability is highly nontrivial [1].

There are three other types of generic defect solutions, namely, sources, sinks, and trans-
mission defects. These defects have very different truncation properties, and we refer the
reader to [18, section 6.8] for a brief discussion of these different cases and to [21] for recent
results on the truncation of planar spiral-wave sources. In experiments, source-sink pairs often
interact with each other. These interactions have not been analyzed in the literature, though
a brief discussion of anticipated behaviors can be found in [18, section 6.9].

Acknowledgment. We are grateful to the referees for many helpful and constructive sug-
gestions that helped improve the presentation of this paper.
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