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Truncation of Contact Defects in Reaction-Diffusion Systems*
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Abstract. Contact defects are time-periodic patterns in one space dimension that resemble spatially homo-
geneous oscillations with a defect embedded in their core region. For theoretical and numerical
purposes, it is important to understand whether these defects persist when the domain is truncated
to large spatial intervals, supplemented by appropriate boundary conditions. The present work
shows that truncated contact defects exist and are unique on sufficiently large spatial intervals.
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1. Introduction. Solutions of reaction-diffusion systems exhibit a wide variety of patterns,
which makes them ubiquitous in models of chemical, biological, and ecological systems [13].
In biological systems, Turing patterns are a potential mechanism for the emergence of stripes
and spots on animal coats [22]. In chemistry, complex spatiotemporal patterns have been
observed in several autocatalytic reactions, including the chlorite-iodide-malonic acid (CIMA)
reaction [14] and the light-sensitive Belousov-Zhabotinsky (BZ) reaction [24]. The CIMA
reaction exhibits one-dimensional defect patterns in which a stationary, spatially periodic
core is connected to spatially homogeneous oscillations in the far field [14]; see Figure 1(a)
for a similar pattern arising in numerical simulations of the Brusselator model of the CIMA
reaction [14, 23]. In [18], similar patterns were proved to exist in the complex cubic-quintic
Ginzburg—Landau equation. In the BZ reaction, two-dimensional spiral waves occur that
exhibit one or more line defects [24]; we refer the reader to Figures 1(b)—(c) for similar patterns
that arise in numerical simulations of the Réssler model [4]. These line defects are caused
by the destabilization of a rigidly rotating spiral wave through a period-doubling bifurcation
[4, 20, 24]: across the line defect, the phase of the spatiotemporal oscillations jumps by half
a period. In [20, Theorem 10|, the existence of one-dimensional line defects with a half-
period phase jump across the defect was proved near period-doubling bifurcations of spatially
homogeneous oscillations.
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Figure 1. Panel (a) shows a space-time plot (space plotted horizontally, and time vertically) of a time-
periodic solution of the one-dimensional Brusselator model: the solution exhibits a spatially periodic core in the
center of the domain and spatially homogeneous oscillations in the far field away from the core region. Panels
(b)—(c) contain snapshots of planar spiral waves that exhibit similar line defects (images taken from [19, 20]).
Panel (d) shows an enlarged version of the spatial region around the line defect from panel (b): if we interpret
the vertical direction as time, the solution resembles the space-time plot in panel (a), except that the oscillations
to either side of the defect are out of phase by half the period.

Our motivation for this paper comes from the solutions shown in panels (a) and (d) of
Figure 1, which can be thought of as defects in the center of the domain that are embedded
into a background of spatially homogeneous oscillations in the far field and which we refer to
as contact defects. Our goal is to prove that a contact defect defined on the entire real line
and positioned at, say, = 0 persists as a solution on a large bounded interval (—L, L) with
Neumann boundary conditions added at the end points. Our reason for proving this result is
threefold. First, it validates numerical computations that are conducted on bounded intervals
rather than the entire real line. Second, it allows us to transfer the existence and multiplicity
results for contact defects on the real line that were proved in [18, 19] to defects on large
bounded domains.

The third aspect arises from the long-time dynamics of the line defects shown in Fig-
ure 1(c). Over sufficiently long times, these line defects attract and annihilate each other in
pairs until only one line defect remains; Figure 1(c) illustrates this behavior through the two
pairs of collocated line defects that are about to merge and disappear. Once we established
the persistence of line defects on bounded intervals with Neumann boundary conditions, we
can concatenate several defects by reflecting them across x = L or x = —L and then attempt
to understand their interaction properties. Thus, the persistence results in this paper serve
also as a first step for the stability analysis of multiple line defects, which we plan to publish
separately.

2. Main results. We outline our setup and assumptions before describing our main results.
Consider the reaction-diffusion system

up = Dugy + f(u)

with z € R and u(x,t) € R™, where D is a constant, positive-definite diagonal matrix and
f € C*®(R"™) is a smooth nonlinearity. We are interested in time-periodic solutions and
therefore introduce the normalized time variable 7 = wt, where w > 0 is the temporal frequency;
this allows us to focus on solutions that are 27-periodic in 7 for an appropriate value of w. In
these coordinates, the reaction-diffusion system becomes
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(2.1) Wiy = Dugg + f(u).

We assume that this equation admits a spatially homogeneous oscillation of the form u(z,7) =
Uwt(7) for w = wy > 0, where uy(7) is an appropriate 2m-periodic profile that satisfies the
ordinary differential equation (ODE)

(2.2) wour = f(u).

We now formalize the assumption that this solution exists and is asymptotically stable for the
ODE (2.2).

Hypothesis 1. There are an wp > 0 and a 27-periodic nonconstant function wuy(7) that
satisfy (2.2). Furthermore, A = 0 is an algebraically simple Floquet exponent of the
linearization

(2.3) wovr = futwt(T))v

of (2.2) about uw(7), and all other Floquet exponents of (2.3) have strictly negative real part.

Next, we consider the PDE linearization
wWovr = Dugg + fu(uwt(T))v
of (2.1) about the homogeneous oscillation uy(7) and the resulting system
(2.4) wolr = —k? Do + fu(tw(T))0

for the Fourier modes o(k,7) belonging to the spatial wavenumbers k € R. Note that (2.4)
evaluated at k =0 agrees with (2.3). As shown in [18, section 3.3], we can continue the simple
Floquet exponent A = 0 of (2.3) as an even smooth function Aj,(k) of temporal Floquet
exponents of the ODEs (2.4) for k € R near k=0. We refer to \j, (k) as the linear dispersion
curve of the homogeneous oscillations.

It was also shown in [18, section 3.3] that Hypothesis 1 implies that there exists a unique
even, smooth function wy) (k) with wy(0) = wp so that (2.1) has a traveling-wave solution of the
form u(x,7) = uwt (T — ka; k) for k close to zero, where uyt(7;k) is 2m-periodic in 7 and close
t0 Uyt (7) in the CY-norm, if and only if w = wy (k). We refer to the function wy(k), which
relates the spatial wavenumber k to the temporal frequency w, as the nonlinear dispersion
curve.

Hypothesis 2. We assume that Aj/ (0) < 0 and w;|(0) # 0. Furthermore, we assume that
the function \j, (k) for k close to zero captures all Floquet exponents of (2.4) in the closed

right half-plane.

We are interested in 27-periodic solutions u(z,7) of (2.1) with w = wq that are spatially
asymptotic to the homogeneous oscillations uy(7) as |x| — co. More precisely, we introduce
the following definition.
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Definition 2.1. We say that a function uq(x,T) is a contact defect with frequency wq if it
is 2m-periodic in T, it satisfies the reaction-diffusion system (2.1) with w = wy, and there are
phase-correction functions 04 (x) with 0/ (x) — 0 as © — +o0 so that

ud(z,7) — Uwt (7 + 0+ () = 0 as z — too,

where convergence is uniform in T for the functions and their first derivatives with respect to
(z,7).

It is worth noting that the phase-correction functions 64 (z) will necessarily diverge loga-
rithmically as © — +o00; see [19, section 3.1]. In particular, the phases of the defects do not
converge.

Our goal is to prove that contact defects persist under domain truncation to a sufficiently
large interval [—L, L] with Neumann boundary conditions at * = +L. Before stating our
persistence result, we describe our assumptions on the contact defect. To do so, we first
reformulate the reaction-diffusion system as a spatial dynamical system and formulate our
assumptions for the latter; this allows us to keep the discussion concise and makes it easier
to connect the hypotheses more directly with the proofs in the later sections. We refer the
reader to [18] for hypotheses formulated for (2.1) that imply our assumptions formulated for
the spatial system (2.5) below.

We proceed as in [18] and capture solutions u(z,7) of (2.1) that are 2m-periodic in 7 as
solutions of an appropriate first-order dynamical system that is posed on a function space of
27m-periodic functions of 7 and for which the spatial variable x (instead of the time variable 7)
is viewed as the evolution variable. We let S :=R/27Z and write u(x) = (u,u;)(z,:) €Y :=
H(S') x Hz(S") for each z € R so that u(z) is for each fixed # a function of 7 defined by
[u(z)](1) := (u, ug)(z, 7). With these definitions, we consider the first-order spatial dynamical
system

(25 g = (jjj) - (Dl(wuf ) f(u») — Pu,v;0) = F(u;w),

where u(z) = (u,v)(z,-) lies for each x in the dense subspace Y of X := Hz(S!) x L2(S1).
Thus, we exchange the evolution in time for evolution in the space variable x, hence the term
“spatial dynamics.” This method was pioneered by Kirchgéssner [8, 9] and Mielke [12]; see
also [2, 17, 18]. While the initial-value problem for (2.5) is ill-posed, many approaches from
dynamical-systems theory, including invariant-manifold theory, continue to hold.

Before continuing, we discuss the equivariance and reversibility properties of (2.5). First,
for a € S', we define the S'-action

To: X — X, u—Tou, [Tau](7) = [u](7 + @)

of operators on X that shift the 7 variable. We denote by T'u := {Tou : a € S'} the group
orbit of an element u € X. Since the nonlinearity F(u;w) in (2.5) does not depend explicitly
on 7, a computation shows that it is equivariant under the S'-action of T, so that

F(Touyw) =To F(u;w), ueX, acSh
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Figure 2. Shown are space-time plots of time-periodic defects that are reversible under the reverser Ro in
panel (a) and the reverser Ry in panel (b). Patterns are reversible under Ro if they are invariant under the
reflection © — —x, while they are reversible under R if they are invariant under reflection in x followed by a
translation in T by w (corresponding to half the temporal period).

In particular, G(z) := Tou(x) satisfies (2.5) if and only if u(x) satisfies (2.5). Second, (2.5) is
reversible with respect to the reversers

(2.6)
[Ro(u,v)[(7) == (u(7), —v(7)),  [Ralu,v)(7):= (u(r + 7),—v(7 + 7)) = [RoTx(u,v)|(T)

so that
F(Rju;w) =—-R;F(u;w), ucX, j=0,m.

Given a reverser R, we denote by FixR := {u € X : Ru = u} the space of its fixed points.
Reversibility implies that u(z) := Ru(—=x) satisfies (2.5) if and only if u(x) satisfies (2.5).
We say that a solution u(x) of (2.5) is reversible under a reverser R if u(0) € Fix R so that
u(z) := Ru(—=z) for all z. We refer the reader to Figure 2 for illustrations of solutions that
are reversible under these reversers. Note that 7, and R; commute for all o and j =0, .

Returning to the homogeneous oscillation uyt(7), it corresponds to the equilibrium uy :=
(uwt,0) of (2.5). Equivariance implies that T'uy is a circle of equilibria of (2.5). It was
proved in [12, section 3] and [18, Theorem 5.1] that this circle of equilibria has center, center-
stable, center-unstable, strong stable, and strong unstable invariant manifolds that respect the
reversers Ro . Recall that we assumed in Hypothesis 2 that the second derivatives [\ (0) and
wgl(O) of the linear and nonlinear dispersion relations Aj, and wy, respectively, do not vanish.
Hypotheses 1 and 2 together with [2, section 8.1] imply that (i) the center manifold W€¢(T'uyy)
of the group orbit of the homogeneous oscillations is two-dimensional; (ii) the dynamics on
the center manifold is given by the ODE

: —u(0)
(2.7) Pz =K, Hz:W(W—WO)‘i'W“Q‘FQ(H»W),

where (i, k) € S xR and (¢, 0) parametrizes ['uyt; and (iii) the reversers R; act as R;(¢p, k) =
(p+4,—k) for j =0,7. Reversibility of (2.7) under R and the estimates provided in [2, (8.15)]
imply that g(k,w) is even in x with

(2.8) 9(k,w) = g(~k,w) = O|w — wol? + | — wolw? + &)

for all (k,w) near (0,wp).
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Note that the equation for x, which decouples from the equation for ¢, exhibits a non-
degenerate saddle-node bifurcation that is unfolded generically as we vary w near wg. In
particular, if w!|(0) <0, the center manifold does not contain any equilibria for w > wp, and
the same statement holds if we reverse both inequality signs.

We now describe our assumptions on the existence of a contact defect of (2.1).

Hypothesis 3. We assume that uq(z) is a solution of (2.5) that satisfies
(i) ugq(z) € WS (Tuyt) \ W3 (Tuyt), and the distance d(uqg(z),luyt) in Y goes to zero as
& — 00;
(ii) uq(0) € FixR for either R =Ry or R =R,; and
(iii) WS (Tuy) h W (Tuy) at ug(0).

Note that Hypothesis 3(i)—(ii) and reversibility of (2.5) imply that uq(z) € W (Tuwt),
and Hypothesis 3(iii) is therefore meaningful. We also note that the intersection of the tan-
gent spaces of W (Iuy,) and W (Tuy,) at ug(0) is at least two-dimensional since it contains
0,uq(0) and 9;uq(0), which are linearly independent. The transversality assumed in Hypoth-
esis 3(iii) implies that this intersection is two-dimensional; see [18, Proposition 5.3]. We can
now state our main result.

Theorem 1. Assume that Hypotheses 1-3 hold for the reverser R. Then there exist positive
constants Lg,C and a function € : [Lg,00) — R so that the following is true for each L > L.
First, (2.5) with w = wo — Sign(w!,(0))e*(L)? has an R-reversible solution ur(z): [—L; L] — X
that is uniformly at most C/L? away from I'ug(x) and satisfies Neumann boundary conditions
ur(£L) € FixRy. Furthermore, if ur, and 0y are two such solutions, then there exists an
a € St such that Tour(z) = ur(z) for all x. Finally, the function €*(L) is C? and satisfies
the estimates

AL (0) ( 1 ) de* AL (0) 1
- DD o(1) e, oo (1)
@9 W= o To\) W awoe OB

If uq(x) is reversible under R =Ry, then the truncated contact defect satisfies Neumann
boundary conditions at  =0,£L; we then necessarily have ur(—L) =ur(L) and can extend
the truncated defect smoothly as a spatially 2L-periodic solution to x € R. If uq(x) is reversible
under R =R, then we can extend it smoothly as a spatially 4 L-periodic solution to z € R by
reflecting first across x = L and then at x = 3L. Theorem 1 can therefore be viewed as a result
on the existence of periodic orbits with large periods near a given homoclinic orbit to a circle
of saddle-node equilibria. We will provide more details on this viewpoint in section 3.1 when
we outline our proof of Theorem 1. For our proof, we will need the following auxiliary result
on passage times near nondegenerate saddle-node bifurcations, which may be of independent
interest.

Theorem 2. Consider the one-dimensional ODE
(2.10) fip = € + K2+ g(k, €?)

with parameter w = €2 and assume that the function g(k,w) is C* for some k>4 and satisfies
9(0,0) =94(0,0) = gxx(0,0) = 9,(0,0) = gy (0,0) = 0. The following statements are then true:
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(i) There exist positive constants €1,01 and a function ¢ = {(€,8) defined for (e, )
(0,€1]x[01/2,281] such that the solution of (2.10) with k(0) = —4 satisfies k(£(e,d)) =
Furthermore, there are C*~1 functions a,b so that {(e,0) = Z + a(e) loge + b(e, §).

(ii) There exists an Lo > 0 and a unique function €*(L,0) : (Lo, 00) X [01/2,01] — (0,€1)
such that L =£(e*(L,6),d) for all L > Ly.

(iii) For each fired B € [0,1), the function €* is C1B, and there is a C'P function r(z,0)
such that

X 1 T 1

e 1 (1 1
ar b= "5 " <L’5> - 2L2 O <L2+/3>

(iv) If g(—r,w) = g(k,w) for all (k,w), then r(z,6) € C*, and the estimates in (iii) hold
with B =1.
(v) Analogous statements hold for the problem k(0) =0 and k(¢(e,d)) =90.

Theorem 2 provides expansions of the travel time from k = —6 to k = 0 (and similarly
from k = 0 backwards in time to x = 0) in the unfolding of a nondegenerate saddle-node
bifurcation at k = 0: Theorem 2(i) shows that the travel times typically contain logarithmic
terms loge and are therefore not differentiable in e regardless of how smooth the right-hand
side is. In contrast, Fontich and Sardanyes [3] showed that the travel time from k = —0 to
k = ¢ for the unfolding of possibly degenerate saddle-node bifurcations is analytic in € for
analytic right-hand sides. These two results are reconciled by noting that the logarithmic
terms in the travel times from k = —§ to k = 0 and from x = 0 to kK = ¢ cancel, yielding a
smooth expression for the travel times from x = —¢§ to k = 9. Finally, we remark that Kuehn
[10] showed that travel times may exhibit many different scaling laws when the right-hand
side depends only continuously on w.

We will prove Theorems 1 and 2 in sections 3 and 4, respectively, and end with a brief
discussion in section 5.

3. Existence of truncated contact defects. In this section, we prove Theorem 1. Through-
out this section, we assume that Hypotheses 1-3 are met. First, we provide intuition into why
this theorem should hold by appealing to a finite-dimensional analogue and outline our strat-
egy for proving this theorem in two steps. We then provide the details of the proof.

Recall from the discussion after (2.7) that the center manifold W€¢(I'uys) of the homoge-
neous oscillations uy; does not contain any equilibria for w > wp when w”,(0) < 0 (and that
the same statement holds if we reverse both inequality signs). For clarity, and without loss of
generality, we assume throughout this section that w’;(0) <0 so that the equilibria disappear
for w > wy.

3.1. Qutline of the proof. We first discuss our intuition into the underlying geometry
and refer the reader to Figure 3 for illustrations. Equivariance shows that Touq(z) is, for each
a € S, a solution that converges to the set iyt as |x| — co. It follows from Hypothesis 3(i)
that the set {u="Tyuq(x): a € Sl oze R}UTMuy, which consists of the defect solution, its time
translates, and the S'-group orbit of the homogeneous oscillations, is a smooth invariant torus.
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Figure 3. The left panel illustrates part of the invariant torus formed by the contact defect and its time
translates together with the circle Tuwy of equilibria. The remaining three panels illustrate the dynamics on the
invariant torus after factoring out the S*-action T, for w % wo. The rightmost panel shows that for each given
w > wo there is an L > 1 so that the solution u(z) on the circle satisfies u(£L) € FixRo, and Theorem 2 shows
that we can invert the relationship between w —wo and L.

Hypothesis 3(iii) can be used to show that this invariant torus is normally hyperbolic. If (2.5)
were finite-dimensional, we could appeal to existing results, for instance, those described in
[5, 11], to conclude that the invariant torus persists as a smooth torus for all w near wy.
Assuming that the same results hold for (2.5), we can then focus our analysis on these tori.
Factoring out the S'-action 7, on these tori, we end up with an w-dependent dynamical
system on a circle. Note also that the equilibrium uy = (uwt,0) automatically lies in Fix Ry.
The solution we want to construct should reach FixRg in finite time. Hence, we need to
focus on the case where the equilibria on the circle disappear, which happens for w > wyp.
As outlined in the rightmost panel of Figure 3, for each given w > wg there is indeed a
unique L = L(w) so that the solution u(z) on the circle satisfies u(+L) € Fix R as needed.
Theorem 2 shows that we can invert this relationship so that for each large L there is a unique
w=w(L) > wp for which a defect solution exists that satisfies Neumann boundary conditions at
x ==+L. For finite-dimensional Galerkin approximations of (2.5), these arguments were made
rigorous by the first author in [7]. As mentioned above, this proof relies on the persistence
of normally hyperbolic invariant manifolds; however, these persistence results have not yet
been generalized to the case of infinite-dimensional ill-posed spatial dynamics problems of the
form (2.5). Thus, while this approach provides geometric intuition, we need to find a different
strategy to prove Theorem 1.

Figure 4 illustrates the two main steps of our proof of Theorem 1. In the first step, we will
show that, using an appropriate boundary-value problem formulation of the ill-posed spatial
dynamical system (2.5) for w near wp, we can transport the space Fix R near uq(0) from x =0
to x = Ly to yield the space Mg (Lg) near uq(Lg). In the second step, we prove that for each
w > wp there is a unique ¢ = ¢(w) so that there is a solution uy(z) with un(0) € Mz (Lo) and
uN(E) € FixRy.

3.2. Dynamics near the homogeneous oscillations. We describe results and notation for
the dynamics of (2.5), given by

(3.1)

0= () = (o — ) = Flvss) =Flww), ute) €Y = HA(SY) x H3(S")
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FixR
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Figure 4. We illustrate the proof of Theorem 1. In step 1, we use (2.5) for w near wo to transport Fix R
at x =0 to the manifold Mr(Lo) at x = Lo, where Lo is so large that ua(Lo) lies in the center-stable manifold
WS (Tuwe). In step 2, we focus on values of w near wo in the region where the equilibria on the center manifold
We(Tuwt) have disappeared. For each such w, we construct a solution un(z) that lies in Mg (Lo) for =0 and
in FixRo for x =€ for some large £ =4(w) > 1.

near the S'-orbit 'uy of the equilibria associated with the homogeneous oscillations. Through-
out, we will denote by dy > 0 a small positive constant so that existence of the invariant
manifolds and fibers that we will review below holds within a neighborhood of I'uyt of radius
do. We may decrease Jg later, but its final size will depend only on the quantities in Hy-
potheses 1-3 and not on the length L of the interval on which we will construct the truncated
defect.

We begin by summarizing the consequences of the results in [18, section 3.4] or [2, sections
4.1 and 8.1] for (3.1), whose assumptions are met due to our Hypotheses 1-2. The linearized
operator Fy(uyg;wo) has an eigenvalue at A =0 with geometric multiplicity one and algebraic
multiplicity two, and there is an n > 0 so that the remainder of the spectrum is discrete
and satisfies [ReA| > 4n for all A # 0 in the spectrum. We denote the associated spectral
projections for the unstable, stable, and center parts of the spectrum by Py (uyt) for j =c¢,s,u
and note that reversibility and equivariance imply that

(3.2)

Ro.x Rg By (uwt) = Rg P (uwt), %Pg (uwt) = Pg (Tauwt) Ta,s TaRgPS (uwt) =Rg Pg (Tauwt)
for all « € S* and all j. The two-dimensional center space of Fy(uwt;wo) belonging to the
eigenvalue A = 0 is spanned by the eigenvector %Tauwtla:o = OrUyt, wWhich corresponds to
the tangent vector of I'uy, and a generalized eigenvector that we denote by vyi. By [12,

section 3] or [2, section 8.1], the circle I'uyy of equilibria of (3.1) has a two-dimensional locally
invariant manifold

(3.3) We(TMyt,w) = TWE(Mayt,w) = T {u = Uyt + £Vt + h(k,w) : || <o},

where h is C* for each fixed finite k and maps into the space Rg P§(uywt) ® Rg Py (uywt). The
vector field on the center manifold is given by (2.7),

(3.4)
2 —w (0
Or =K, nx:w(w—wo)—k)\??;ﬂ(é))ﬁ—kg(ﬁ,w), g(k,w) = O(|lw—wo|? + |w — wo|k? + k%),

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/24 to 128.148.225.83 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRUNCATION OF CONTACT DEFECTS 35

where the reverser R leaves the center manifold invariant and acts as Ro(p, k) = (¢, —k). In
particular, W¢(Tuyt,w) N Fix Ry is parametrized by {(¢, k) : x =0}. Using (3.2) and

X = Ra‘ruwt ©® vat ©® Rg Pg(uwt) ©® Rg Pou(uwt)
we conclude that
(3.5) FixRo={u=ad;uy; +b*+ Rob*:a € R, b* € Rg Fj(uwt)} .

Since the truncated contact defect we want to construct will need to reach the space Fix Rg
of Neumann boundary conditions in a large but finite time, we will first characterize the time
it takes for solutions x(x) on the center manifold to reach k= 0.

Lemma 3.1. For each 63 > 0, there is an €y and a unique function L(e,kg) defined for
0<e<ey and kg < —d2 so that the following is true for w=wqy+€2. The ODE (3.4) for k(x)
has a solution that satisfies k(0) = ko and k() =0 for some £ >0 if and only if £ = L(e, ko).
Furthermore,

AL (0)
Lie, ko) = — "2 4 (e, ko),
(0) = 5o ()
where r depends smoothly on (€, ko), and we have k(L(e, ko) + &) = 262 /N[ (0) + O(e*3?) for
all & with |F < 3.
Proof. First, since g(k,w) is even in &, [6, Corollary 1] shows that there is a C*-smooth
near-identity diffeomorphism (&,&) = (H(k,w),h(w)) with H(0,wp) = h(wp) = 0 that brings
(3.4) into the normal form

2 _w//

— O+ nl (O)
AL AL (0)

2 /2.

Setting @ = €2, the statements in the lemma can be verified directly for the normal form, as
its solutions can be found explicitly using separation of variables. We note that these results
follow also from Theorem 2 (proved in Lemmas 4.1 and 4.2 in section 4), which is valid for
the general case when g is not necessarily even. |

We now discuss the center-stable manifold W (uyt,w), which for w = wy contains all
solutions u(z) of (3.1) whose distance to I'uy, converges to zero as x — co. Using the strong
stable fibers F*(p,w) belonging to base points p € W¢(uyt,w), we can write

o) = ) o= | TP
PEW® (Uy,w) PEW (Uy,w)

We know from [18, Theorem 5.1] that F*(p,w) is a smooth manifold that depends smoothly
on (p,w) and whose tangent space converges to Rg Pj(uyt) as (p,w) approaches (uyt,wp).

We parametrize each strong stable fiber for base points in W¢(T'uy,w) via

(3.6) Frpw= J Fpbw),
bseRg P§(uwt)
F¥(p,b%,w) =p + b* + h%(p,b%,w), |h%(p,b%,w)| < CH|be,
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where h" maps into Rg P§'(uws) and the positive constant C' does not depend on dp. The
defect solution uq(z) lies in the center-stable manifold W (uyt,wo) and therefore has the
representation

(3.7) w4 () = Tpy(2) (Gwe + K (@) Ve + h(ka (), w0) + O(e™>))

for © > Ly for an appropriate Lo > 1, where (pq,kq)(x) satisfy (3.4) with w = wp and the
exponentially decaying term accounts for the contribution from the strong stable fiber that
uq(x) belongs to.

3.3. Step 1: Transporting the fixed-point space of the reverser along the defect.
Throughout this section, we denote by R the reverser from Hypothesis 3 for which uq(0) €
FixR. Our goal is to transport Fix R near the solution uq(z) from x =0 to z = L¢ for some
Lo > 1 so large that ugq(Lg) has distance less than ¢y from T'uyt. To accomplish this, we will
exploit that the linearization

(3.8) vy = Fu(uq(z);wo)v

of (3.1) about the defect uq(z) has exponential trichotomies, which will allow us to decom-
pose the underlying space into three complementary subspaces that consist of, respectively,
initial conditions of solutions that decay exponentially in forward time, decay exponentially
in backward time, or grow only moderately.

Lemma 3.2. Assume that Hypotheses 1-3 are met. Then the linearization (3.8) of (3.1)
about ug(x) has an exponential trichotomy on RT. More precisely, there exist strongly con-
tinuous families {®°(x,y)}a>y>0, {P(2, ) }ay>0, and {P*(z,y)}y>e>0 of operators in L(X)
with the following properties:

(i) For j = c,s,u and each ug € X, the function ®(z,y)uy satisfies (3.8) for all z,y
for which this term is defined, and we have ®(z,y)®’(y,z) = ®/(x,2) for j = c,s,u
whenever these terms are defined.

(ii) There is a constant C >0 so that ||®5(z,y)|| + || ®"(y, z)|| < Ce=3e=Yl for allz >y >0
and || ®°(z,y))|| < Ce"*Y for x,y > 0, where 4n > 0 is the spectral gap defined in

section 3.2. ' '
(ili) For j = c,s,u, the operators Pi(x) := ®(z,x) are projections with ||P](z) —
Py (T () uwt)| Lx) = 0 as @ — 0o and their sum is the identity in L(X).

(iv) The projections Pi(x) can be chosen so that Rg P§(x) = Span{d,uq(z),d-uq(x)} and
RRg P3(0) =Rg Py(0). Furthermore,

(3.9) X =FixR ®RI,uq(0) ® Rg P3(0),
and we have that v = a® + a with a’ € Rg Pg (0) for j =s,u lies in FixR if and only
if a® ="Ra".
Proof. The existence of center-stable and unstable exponential dichotomies and their con-
vergence properties for x — oo were established in [15, 17] and also in [18, Appendices A.1

and A.2]. The arguments in [18, section 4.1] show how exponential weights with rates +2n
can be used to construct exponential trichotomies from exponential dichotomies, and we also
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refer the reader to [21, section 5.2] for proofs of similar statements in the more complicated
case of planar spiral waves. To establish (iv), we note that it follows from [15, 16] that we
can pick any complement of the range of the center-stable projection as the range of P} (0);
reversibility and Hypothesis 3(iii) show that R Rg P;(0) is such a complement. A similar ar-
gument establishes the claim about the range of the center projection. Using I'ug(0) C Fix R,
the fact that the sum of the projections is the identity in X, and the characterization of the
ranges of the projections we just established, we conclude that (3.9) holds. The final claim in
(iv) follows from

VEERR py — Ra® + Ra"

a*t+a'=v
combined with Ra® € Rg P}'(0) and Ra" € Rg P§(0), which implies that a®>="Ra". [ ]

The next lemma shows that we can transport Fix R along the defect solution ug(z) from
=0 to x = Ly for each sufficiently large Lo > 1.

Lemma 3.3. There are positive constants Cy,C1,Ca, L{ so that for each Lo > L the fol-
lowing is true. For all w with |w — wo| < Cre™2"° we have

Mg (Ly,w) := {ﬁeX: 3 solution u(z) of (3.1) with u(0)eFixR,u(Ly)=n,
sup ru<x>—ud<x>|scoenLo}

OSISLO
— T MR (Lo,w) = r{a =T o (zoyta(Lo) + " + A (a", Lo, w),
a' e Rg Py (uwt), [a%] < Cle_"LO},
where hSs is smooth, maps into Rg P§*(uwy), and satisfies |h$s(a™, Lo, w)| < Ca(dola™| + |a®|? +
|w — wol)-

Proof. We exploit the existence of exponential trichotomies to solve (3.1) near the defect
solution u4(z). To do so, we write u =uq(z) + v and w = wp + @ so that u satisfies (3.1) if
and only if v satisfies

vy = Fu(uq(z),wo)v + F(uq(x) + v,wy + @) — F(uq(x),wo) — Fu(ug(x),wo)v,
=:G(v,w)
G(v,) = O(|v[* + |@]).

Solutions to this equation can be found as solutions of the fixed-point problem
(3.10)
v(z) =®%(z,0)a® + " (z, Lg)a" + /Off O (z,y)G(v(y),w)dy + /Lx Y (z,y)G(v(y),w)dy
=:G(v,a*,a",w)(x) U

with z € [0, Lo], a® € Rg P5(0), and a" € Rg PY(Ly), where G(-,a%,a%, @) maps C°([0, Lo], X),
equipped with the supremum norm || - ||, into itself for each (a® a",@). The estimates from
Lemma 3.2 show that there is a constant Cj that does not depend on L such that
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IG(v,a®% a", @) < Co ([a°] + [a" + e (|v]* + |@])),  [|Gv(v,a®,a",@)|| < Coe™ | v]].
Setting C := Tlcg and C5:= ﬁ, we find that

- — _ 1
IG(v, %, a", @) < Cze™,  |[Gy(v,a%,a" @) < o

for all (v,a% a%, @) with |a%|, |a"| < Cre™0, |©] < Cre2"0 and ||v|| < Cse~" 0. The uniform
contraction mapping principle now guarantees the existence of a unique fixed point v of (3.10)
that depends smoothly on (a® a",®) provided these satisfy the estimates noted above, and we
have |[v|| <2Cy(|a%| + |a%| + e"'°|@]). We are interested in solutions with v(0) € FixR. Since

0
v(0)=a*+ 80, Lo + [ E(0.5)G(v(y).2)d
Lo
we conclude from Lemma 3.2(iv) that v(0) € Fix R if and only if a° satisfies
0
A =R (@“(O,Lo)a“ +/ ¢"(0,y)G(v(y),w) dy) =0 (e ?0la"| + [a°* + |a"|? + |@]) ,
Lo

which we can solve uniquely for a® as a function of (a%, @) with |a’| < Co(e™3"0 a4 |a" |2 +|@])
for some Cs that does not depend on Ly. We substitute this function for a® into the expression
for v(Lg) in (3.10) to obtain

v(Lo) =a"+ Hg(a", Lo,@), a"€RgPy (L), Hy(a% Lo,w)=0 (e *a"|+(a"|* +|@]),
where H7 maps into Rg P{*(Lo), so that

,T—npd(Lo)V(LO) = 7-—50d(L0)au + T_wd(LO)H%(au, LO,(D) =a'+ 7:¢4(L0)H7Czs(7:pd(L0)5ua LO,@)

with &% € T, (z,) Rg Py (Lo) and
hiz(@", Lo, @) = O (72" [a"| + |a"* + |&]) € Ty, (1,) Re PE* (Lo).

Lemma 3.2(iii) and (3.2) imply that 7_, (1) Rg Pg(Lo) is dp-close to Rg Pg(uwt) for j =cs,u,
and we can therefore also parametrize 7_,, (r,,)V(Lo) in the form

T pa(royV(Lo) =a" + hF (8", Lo, wo + @)
with
a" € Rg P} (g, h$5(a", Lo,w) = O (802" + |&"|* + |w — wo|) € Rg P§™ (W)
Substituting this expression together with w =wgy + @ into the equation
=T, (L) u(Lo) = Ty (Lo)Ua(Lo) + Ty (o) V(Lo)
=T_pu(roya(Lo) +a" + A3 (8", Lo,w) € Mg (Lo,w)

and omitting the superscripts “completes the proof. |
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Next, we show that Fix R transported along the defect solution uq intersects W (T'uyt,w)
in a unique group orbit for each w near wy.

Lemma 3.4. Fiz Lo > L§. Then there exists a 61(Lo) >0 so that for each w with |w—wp| <
01(Lg) we have
Mg (Lo, w) N WS(Tuyt, w) =TF*(pr(w), bk (w),w)
for smooth functions pr(w) € W(Tuy,w) and bl (w) € Rg P§(uy) with the property that
d(Lo) = To, (£0) > (PR (wo), bR (wo), wo)-

Proof. Equivariance shows that it suffices to construct intersections of MR(LO,w) and
WS (Tuyg,w). We first construct these intersections for w = wp. Lemma 3.3 shows that
Mg (Lg,wp) has the representation

Mg (Lo,wo) = {0 =Ty, (1) ua(Lo) +a" + O(dola"| + [a"[*) : a" € Rg Py () }

Next, we parametrize W (I'uwt,wp). Equation (3.7) shows that we can choose pr(wo) €

We(IMawt,wo) and b (wo) € Rg Pj(uyy) so that
T—pu(ro)ud(Lo) = F*(pr(wo), bR (wo),wo)-

We write p = pr(wo) + P and b¥ = b, (wp) + b and use the representation (3.6) of the strong
stable fibers to get

F*(p,b%,wo) = pr(wo) + P + bk (wo) + b + h* (PR (wo) + P, bk (wo) + b,wo)
= twd(Lo)ud(LO) + f) + BS + iLu(f)v B)a
where |h"(p,b)| < Cdo(|p| + |b|). The union of these fibers for small (p,b) parametrizes a

neighborhood of 7_,,,(1,yua(Lo) in W(I"ay,wp). Comparing the expressions for Mg (Lg,wo)
and 7o, ( LO)]—"SS(p,bS,wO), we see that intersections are determined by the equation

a4+ O(dla%| + [a%?) =p + b + 2%(p, b),

which we can solve uniquely for (f),f),é“) by the implicit function theorem since p spans
the center directions, b € Rg Pj(uywt), and a" € RgPJ'(uwt). The same chain of argu-
ments can also be applied if we now vary w near wy and treat the additional terms as small
perturbations. [ ]

Finally, we provide a parametrization of Mg (Lg,w) near the group orbit of the intersection
with WS (Tuy, w).

Lemma 3.5. There is a constant C > 0 such that for each fized Ly > L, there ezists a
01(Lo) > 0 so that for each w with |w — wo| < 61(Lg) we have

(3.11) Mg(Ly,w) =T {F*(pr(w),bxr(w),w)+a" + HF(a",w) :a" € Rg P} (uwt) },

where |HS (a%,w)| < Cdpla"| uniformly in w.
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Proof. Lemma 3.3 gives
MR(LO,w) = {ﬁwd(Lo)ud(Lo) +a"+hg(a%, Lo,w),a" € RgPél(uwt)} ,
where |h$5 (", Lo,w)| < Ca(dp|a®| + |a|> + |w — wp|). Lemma 3.4 shows that by construction
F5(pr(w), bR (w),w) € MR (Lo,w)
and therefore
(312)  F(pr(@)e(@)w) = T iy ualLo) + al(w) + A3 (ab(w), Lo.w)

for a unique afj(w). To establish the parametrization (3.11), we need to find for each a" an
element v so that

T—pa(Lo)ud(Lo) +a" + hg(a", Lo,w) = F*(pr(w), br (w),w) + V.
Substituting (3.12), we arrive at
T—pa(oyua(Lo) +a" + hz (a", Lo,w) = T_y, (1) (Lo) + ag(w) + A (ag(w), Lo,w) + v
so that v needs to be chosen according to
v=a"—aj(w) + h3%(@", Lo,w) — hiz(ag(w), Lo,w).
We write a" = afj(w) +a" to get

v=a"+ h%(ag(w) =+ éua L0>w) - h%(ag(w)ame)

[-|<Cdola

as required. ]

3.4. Step 2: Constructing the truncated defect solution. In the second step of our proof,
we construct solutions that start in MR(LO, w) and end in the space Fix R of Neumann bound-
ary conditions. We remark that our arguments below no longer involve the defect solution,
since we can rely on the parametrization provided in Lemma 3.5. Recall from Lemma 3.4 that
Pr(w) € W¢(Tuy,w) is the base point of the intersection F*(pgr(w), bk (w),w) of Mz (Lo,w)
and W (T'uy,w). Let kg (w) be the center-manifold coordinate  of pr (w) that we introduced
in (3.3) and denote by p*(z; €, &) the solution on W®(uyt,wo + €2) that belongs to the solution
k(z) with £(0) = ko = kr(w) + & and k(L(e, k)) =0 that we constructed in Lemma 3.1. Next,
we also vary the strong stable coordinate of the intersection F*(pg(w), b% (w),w)|w=w,+e> and
consider the points

u*(0;€, &, b%) := F*(p* (0, &), br (wo + €2) + b, wp + €2), b® € Rg P (uyt),
in the center-stable manifold. Note that these points parametrize an open neighborhood of

(3.13) u*(0;¢,0,0) = F¥(pr(w), bR (w),w) |w=wyte2
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\\jn(LO) \ FixRy

WCS (Fuwt)

/

\ p*(z) | WMy )

Figure 5. We illustrate the strategy behind step 2. The manifold Mg (Lo) intersects W (Iuwy) in the point
F=(pr,bR). Varying the initial condition p* (0) near the base point pr in W (I'uws) and the strong stable fiber
coordinate b° near by creates an open neighborhood U of initial conditions u*(0) in W (T'uwt) with associated
solutions u* (z), which we use to construct the desired solution ux(z) that starts in Mr(Lo) and ends in Fix Ro.

inside the center-stable manifold upon varying (Fz,f)s). We denote the associated solutions,
which are guaranteed to exist for z > 0 by the construction of the center-stable manifold, by
u*(x; €, R, BS) and recall that the base point of this solution in the center manifold is p*(z;e€, ).
The properties of strong stable fibers guarantee that

(3.14) u*(z;€, 7, b%) = p* (56, ) + O(e ™)

as x — oo. Figure 5 illustrates these solutions. For future reference, we will denote the
p-coordinate of p* in the center manifold by ¢*.

Our goal is now to use the variation-of-constants formula to construct solutions near
u*(z; €, i, b%) that start in Mg (Lg) and end in Fix Rg. The roughness theorem for dichotomies
for (3.1), which was established in [15, 17, 18], shows that the linearization of (3.1) about
u*(z;€,/,b*) admits exponential dichotomies ®"(z,y) with constants and rates given by
Lemma 3.2 and that the operators ®" (x,4) depend smoothly on (e, 7, b%). We can now seek
solutions of (3.1) near u*(z;e, &, b%).

Lemma 3.6. For each (e,7,b%, &) and a" € T (0:e,) Rg ot (uyy) with [el, |l b%|,]|a"| < o,
€>0, and |Z| < %, equation (3.1) with w =wo+€* has a unique solution u(z) on [0, L(e, &)+ Z|
with

(3.15) u(0) =u*(0;¢,%,b%) +O(e " [a%]), u(f)=u*(l;e, i, b%) +a" +o(1)]a"] + O(|a"[?),

where we used the notation £ = L(e, k) + &, and o(1) is a term that converges to zero as € — 0.

Proof. We seek solutions of (3.1) of the form
u(z) =u*(z;e, 7, b%) + v(x), 0<z<{t, (:=L(ek)+1I.

Using that u*(z;e€, &, b®) is a solution of (3.1) for all (e, &, b%), we see that v(z) satisfies an
equation of the form

Ve = Fu(u*(z; 6,7, 0%),wo + €)v + G(v, 6,7, b%),  G(v,e,i&b%)=0(v[?).
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By [18, Lemma A.1 and Theorem A.4] and [17, Lemma 5.2], the linear part of this equation
admits an exponential dichotomy with center-stable and unstable projections, and the range
of the unstable projection at x = £ is dp-close to To (4:c,z) Rg Py (uwt ), where ¢* denotes the -
coordinate of p*. Omitting the dependence of G on (e, &, BS), we can rewrite the full nonlinear
equation for v as the fixed-point equation

xT

(3.16) v(z) =%z, 0)a" + /0 "0, )G (y)) dy + /g O (e y)Gv(y)dy, 0<z<L.

The fact that the function G(v) vanishes at v =0 allows us to use the exponentially weighted
norms

I¥llg= sup =) jv(@)]
ST

Using this norm, we have

T J4
IRHS of (3.16)],, < Cla"| + Ce?n¢=2) [ / @y e=4nt=y) gy 4 / ;

e 3N(y—a) g—4n(l~y) dy] [ v[?
0 x
< C|au‘ + Ce277(£—a:) |:e—477(£—:c) +enace—477é +e—3n(€—x) +e—477(£—a:)] HVH%
<C(la"+[[v]2),

and a similar calculation shows that the derivative of the right-hand side of (3.16) with respect
to v in the exponential weighted norm can be bounded by 3 for ||v|, sufficiently small.
The uniform contraction principle therefore guarantees existence, uniqueness, and smooth
dependence on data of a fixed point of (3.16). Evaluating (3.16) at =0 and x = ¢, noting
that £ > % by Lemma 3.1, and using the exponential weights for v(z) establishes the estimates
(3.15) and completes the proof. |

Final step of our proof. It remains to prove that the solution u(z) we constructed in
Lemma 3.6 satisfies the two conditions

(3.17) u(0) € Mg (Lo,wo +€2) and u(f) € FixRy.

For the first condition, we use (3.15) for u(0) together with (3.11) and (3.13) for Mg (Lo, wo +
€2) to arrive at the equation

(3.18) u*(0;¢, 7, b)) + O(e™<|a}]) = u*(0;¢,0,0) 4 al + O(dp)|ay],

where bj € Rg P§(uwt) and aj € Rg Pj'(uwt), and the O(dgp) term goes to zero as dy goes to
zero uniformly in e. Expanding (3.18) in (i, b{) near zero, we obtain the equation

Dru* (03 €,0,0)7 + Db u* (05, 0,0)b + O(e™"|af| + [&[* + [b|*) = ag + O(d)[af],
which we can solve uniquely for

(3.19) (7,28, bj) = O(e™"/|al)
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as a function of aj'. With (&, ajj, bj)) now determined, it remains to satisfy the second condition
n (3.17), which is given by u(¢) € Fix Ry. We first recall from (3.15) that

(3.20) u(l) =u*(6e,7,by) + af +o(1)|ay] + O(Jai|*).

We now exploit the estimates (3.19) for (&, ag, b) to simplify the expression for u*(¢;¢, &, by)
as follows:

“(L(e.R) + &1, 7. bh) = w0 (L(e, 0( ™)) + 6, 0(e /%), 0( ™))

u*(4;e,k,by) =u
—u*(L(e,0) + ;¢€,0,0) + O(e ™) = p*(L(e,0) + &;¢,0) + O(e )
9¢25
= p*(L(Q O) € 0) + )\//6 (0) T *(L(€,0);¢,0) Vwt + O(ein/e + 64'%2)7
lin

where we used (3.14) and Lemma 3.1 and recall that we defined vy, in the paragraph after (3.2)
and denoted the p-coordinate of p* in the center manifold by ¢*. Using that p*(L(e,0);¢€,0) €
Fix R by Lemma 3.1 and that Fix Ry is a linear space, equation (3.20) shows that it suffices

to show that
25

2 ~ u u u ]
T twtcaneny (377 ¥+ O+ ) i+ oL+ O ) € FixRo

where aj € Rg Fj'(uyt) by Lemma 3.6 and (3.20). Exploiting equivariance and using the
representation (3.5) for Fix Rg, we arrive at the equation

2623
Ain(0)
Projecting this equation onto RO uywt ®Rg By (uwt) BRE P! (uwt) along Rvy allows us to solve
uniquely for (a,a%,b}) = O(e™€ + €*?) as a function of (¢,%), and the remaining equation
in the vy¢-direction becomes

vy +al +o(1)]al] + O(e™VE + 7% + [al|?) = adruys + b + Roby.

2623
A7,(0)
which we can solve uniquely for & = O(e~"/2¢). This proves that there are unique functions
(%, Z,a81,bg 1) = (%, 2", a] l,bgﬁ)( ) = O(e™"/%¢) so that the matching conditions (3.17) are
satisfied for each ¢ > 0.
It remains to express the parameter € as a function of the interval length L. Lemma 3.1
and the preceding discussion show that the total interval length L over which the truncated
defect solution exists is given by

+O0(e™ "+ 4i?) =0,

L= L(e.(€) 4 () + Lo = o)

WA 2T (0)c +1r(e, k" (€)) + x(e) + Lo

)‘i/ ( ) —n/2e
= ———— +71(6,0) + Lo + O(e” ).
2./—20"(0)e
Smoothness of r(e,0) and the remainder terms allows us to solve this equation for ¢ = ¢*(L)
with
7.[_)\//

(Y — in(0) 1
“h=y —2lwn1(0)L o (L?) ’

as claimed. This completes the proof of Theorem 1.
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4. Passage times near saddle-node equilibria. In this section, we prove Theorem 2.
Our goal is to find expansions of the passage times through x = 0 for solutions of the one-
dimensional ODE

(4.1) kp =€+ K2+ g(k,€?),

where the function g(k,w) = O(w? + k?) is sufficiently smooth. To simplify the analysis, we
will first bring (4.1) into an appropriate normal form.

Lemma 4.1. Consider
(4.2) Ky =w+ K2+ g(k,w)

and assume that the function g(k,w) is C* for some k > 4 and satisfies g(0,0) = g.(0,0) =
9 (0,0) = 94,(0,0) = go(0,0) = 0. There is then a CF near-identity diffeomorphism (u,p) =
(k+ H(k,w),w+ h(w)) with H(0,0) =h(0) =0 and H, ,(0,0) = h,(0) =0 and C* functions
co,1(p) so that (4.2) becomes

(4.3) g = pt+ (1 + pco(p))u® + 1 (pu?.

Furthermore, if g(k,w) is even in k for all w, then we have co(p) = c1(pn) =0 for all .

Proof. First, [6, Corollary 1] shows that there is a C*-smooth near-identity transformation
that brings (4.2) into the normal form

(4.4) ve = (v 4+ v (1 + c1(v)v),

where c1(v) is C*. If g(k,w) is even in &, then c;(v) vanishes identically by symmetry,
and (4.4) is already of the form (4.3) with co1(p) = 0 as claimed. If g is not even in &,
(4.4) is cubic in v, and a calculation shows that the transformation u := v — vep(v)d(v) and
pi=v+vie;(v)2d(v)(1+d(v)+vd(v)?ci (v)?) turns (4.4) into (4.3), where the function d = d(v)
is the unique C* solution of 1+ 2d+3ve; (v)d? = 0 with d(0) = —3, which exists by the implicit
function theorem. |

We now focus first on the normal form (4.3) and discuss extensions to the original equation
(4.1) afterward. For given § with 0 < J < 1, we consider the boundary-value problem

(4.5) Uy = €2 + (1 + Eco(2))u? + 1 (€)ud, uw(0)=0, wu(L)=7,
where the functions co1(p) are C. In this situation, we say that L is the travel time from
u=0to u=4. Our goal is to find expansions of L in terms of ¢ uniformly in 0 < e < 1.

Lemma 4.2. Assume that co1(p) are C* for some k > 4. Then there exist numbers e1,5, > 0
so that the following statements hold with @ :=(0,€1] x [01/2,201]:
(i) Equation (4.5) has a solution for (e€,0) € Q if and only if L = Ly(¢,d) for a unique

L+(€,5).
(ii) There are functions a € C*([0,€1]) and b € C*(Q) with a(0) = b(0,8) =0 for all § so
that

eLi(e0)= g + a(e)log e+ b(e,0).

In particular, €Ly (e,0) — 0 uniformly in § as e — 0.
(iii) If co.1(p) =0 for all u, then a(e) =0 for all €, and we have €L (e,8) € C*(Q).
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Proof. Note that (i) follows immediately from positivity of the right-hand side of the
ODE in (4.5) for small data together with the existence and uniqueness theorem of solutions
of ODEs. To prove (ii), we use the identity

)
1
Lile0)= /0 €2 + (14 €2co(€2))u? + c1(e?)u? du.

The idea is to use partial fractions to evaluate the integral. However, € is small and c;(€?)
may vanish, which obstructs the decomposition into partial fractions. To remedy this issue,
we multiply the equation by e and use the substitution u=¢€/v to get

Lo(e,0) /OO ¢ € d
eLy(€,0)= : ; — dv
* /5 €+ S (1+€e2c(e2)) + S (e2) v?

> v
= d
/1 v3 +0(1 + 2c0(€2)) + ecy (€2) Y

1
v
dv=:1; + I>.
+/E/5 v3 +v(1+ e2¢o(€?)) + ecy(€2) v 1+ 42

The dominated convergence theorem implies that €L, (€,0)|c=o = 5 and that the integral Iy

is C* in e. To evaluate Iy, we use partial fractions. For simplicity, we will omit the argument
€2 of the functions co,1 for the remainder of this proof. We denote by v; 23 the roots of
v3 4 v(1+ €2cg) + ecy so that vy = —ecy (1 +O(€?)), va =i+ O(ect + €2cp), and vz = vo. Hence,
setting

v;(€) .
4. Aj(e) = . =1,2
( 6) ](6) 3Uj(€)2+1+€260(€2)’ J ) 735

we have

v . Al(e) AQ(E) A3(6)
v +o(l+€2co) +ec;  v—vi(e) T va(€) Tz v3(e)’

We claim that the integral

(4.7) ig(e,a)::/l[ As(e) | As(e) |

/s Lv—v2(€) v —ws3(e)

is C* in (e,0). Informally, combining the two terms in I, into a single term and using that
vg 3 = +i to leading order, we obtain an integrand of the form ’i SI? whose integral is B log(v?+
1) + Carctanv, which is smooth up to v =0. To turn this into a rigorous argument, we use
that v3 = Uy and Az = Ay to simplify the integrand of I as follows:

Ay n Ay As(v —wv3) + Az(v — v2) _ 2vRe Ay — 2Re(Azvs3)
v—v2  U—U3 (v—wv2)(v—v3) v2 —2vRevy + (Reva)? 4+ (Imwvy)?
1 a2 B(e) + O(e)
S Tmuvy  (2pBemy24 g
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where B(e),C(¢) are C* functions of €, which can be computed explicitly from g 3(e). Hence,

7 B L 7”1_15552 B(e) + C(e)
2(€,0) = I > Reva 3 dov
/s Imug  (57802)2 ]

Im v,

B0 g ((M)Q ¥ 1) + C(e)arctan <I‘mReQ(2)<)>] :/5’

which is C¥ in (e,0) up to € =0 as claimed, since Imvz(e) = 1+ O(e).
The smoothness properties of I are therefore determined by the remaining integral that

involves A;. We write vy (e) = —ecy (€2)(1+0(€2)) =: —eca(€?), where ¢ is C*, and then obtain
(4.8)
1
Ay € v1(log(1 —v1) —loge —log(ca +1/9))
dv = A, [log(1 = v;) —log (S =1 )| =
/6/50—1)1 v 1 [og( v1) — log (5 111)} 31}%+1+6260
—vi(e) A
=: 1 b(e, o
3v1(€)2 + 14 €2¢p(€?) oge+b(e,9),

=:a(e)
where b(e,8) is CF provided we choose 81 so small that ¢(e) +1/8; > 1. In summary, we
proved that
eLy(e,8) =1+ I = g + a(e) log e + b(e, 6),

where a(e) is C¥ with a(0) = 0, and where b(e, §) contains the C* remainder terms and satisfies
b(0,6) = 0. This proves part (ii). Part (iii) follows from the observation that a(e) vanishes
identically whenever the function ¢; vanishes identically. |

We briefly collect a few consequences of the preceding lemma.
Lemma 4.3. Assume that co1(p) are C* for some k> 4. Then the travel time of the ODE
in (4.5) from u=—4§ to u=0 is given by L =L_(¢,0), and we have the expansion

eL—(e,6) =5 —a(e) loge +b(e, ),

where a(e) is the function from Lemma 4.2, and b is C*. Furthermore, the travel time
L_(€,0) + Li(€,0) from u=—0 to u=4J satisfies

e(L_(e,8) + Ly(€,0)) =7+ b(e,8) + b(e, d),

where the right-hand side is C* in (e, 0).

Proof. The statement about L_ follows by applying Lemma 4.2 to the system obtained
by substituting (u,z) — (—u, —z), which leaves ¢y the same and replaces c¢; by its negative.
The claim about L_ + Ly follows by adding the expressions for eL; and eL_. |

Our next step is to show that we can solve the equation L = L (e,0) for € as a function
of L.
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Lemma 4.4. Assume that co1(p) are C* for some k> 4. Then there is a unique function
r(2,8) so that L =Ly (e€,8) if and only if € = €.(1) = o= +7(+.,5), and the function r(z,8) is
in C1P for each fized 0 < B < 1 with r(2,8) = O(2*P). If the functions co1 vanish identically,
then r € C* with r(2,0) = O(2?).

Proof. Setting L := L4 (¢€,6), we proved in Lemma 4.2 that
el = g + a(e)loge+ b(e, 6),

where a,b € C* with a(0) =b(0,0) =0 for all §. Writing z = 1/L and a(e) = ei(e), we conclude
that
€

4. =
(4.9) ‘ 7+ ea(e)loge + b(e,0)

= f(€v5)7

where @ € C¥~1. Tt is not difficult to check that for each fixed 0 < 8 < 1 the functions f(e,d)
and fe(e,8) are CP (since eloge is C?) on [0, ¢1] and satisfy £(0,6) =0 and f(0,5) = 2 for all
d. Hence we can apply the implicit function theorem to solve (4.9) for € = e.(z) as a function

of z=1/L and conclude that

Tz

(2)= "7 4 r(2.0)
for an appropriate C1# function r(z,8) with r(z,6) = O(z!*#). When ¢ vanish, we know

that a(e) vanishes identically, and we see from (4.9) that r € C* with r(z,8) = O(z?). [ ]

Finally, we justify that the preceding results extend directly from the normal form (4.3)
to the original equation (4.2). We recall that the boundary-value problems

(4.10) Ke=w+r2+g(kw), w=&, r0)=0, k(L)=0
and
(4.11) ug = p+ (1+ peo(p)u? + er(pu®, p=€, u(0)=0, u(L)=34

are related via the transformation (u,p) = (H(k,w),h(w)) described in Lemma 4.1, which
guarantees that € and € are also related by an invertible smooth transformation of the form

€ = h(€). We then obtain the relationship
Ly (&6)=Ly(h(8), H(5,&))

between the travel times L, and L, for (4.10) and (4.11), respectively, which allows us to
transfer the results from this section to (4.10) as claimed in Theorem 2.

5. Discussion. The present work establishes the existence and uniqueness of truncated
contact defects in reaction-diffusion systems. A forthcoming paper will address the issue of
spectral stability of the truncated contact defect solutions we constructed here under the
assumption that the contact defect on the whole line is spectrally stable: it turns out that
Ro-reversible truncated contact defects are spectrally stable when periodic boundary condi-
tions are used, while reversible truncated contact defects are always spectrally unstable under
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Neumann boundary conditions, regardless of which of the two reversers R » is present, since
the eigenvalue corresponding to the approximate eigenfunction d,uy, becomes positive. These
results will, in particular, explain why these defects pairwise attract each other. We believe
that nonlinear stability of contact defects and their truncation are difficult to establish due to
the logarithmically diverging phase correction. Already in the case of source defects (whose
spectra are, from an Evans function viewpoint, more regular than those of contact defects;
see [18, Figure 6.1] and [19]), the proof of nonlinear stability is highly nontrivial [1].

There are three other types of generic defect solutions, namely, sources, sinks, and trans-
mission defects. These defects have very different truncation properties, and we refer the
reader to [18, section 6.8] for a brief discussion of these different cases and to [21] for recent
results on the truncation of planar spiral-wave sources. In experiments, source-sink pairs often
interact with each other. These interactions have not been analyzed in the literature, though
a brief discussion of anticipated behaviors can be found in [18, section 6.9].

Acknowledgment. We are grateful to the referees for many helpful and constructive sug-
gestions that helped improve the presentation of this paper.
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