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Abstract

Horizontal gene transfer (HGT) is a major contributor to bacterial genome evolution, generating phenotypic diversity, driving 
the expansion of protein families, and facilitating the evolution of new phenotypes, new metabolic pathways, and new 
species. Comparative studies of gene gain in bacteria suggest that the frequency with which individual genes successfully 
undergo HGT varies considerably and may be associated with the number of protein–protein interactions in which the 
gene participates, that is, its connectivity. Two nonexclusive hypotheses have emerged to explain why transferability should 
decrease with connectivity: the complexity hypothesis (Jain R, Rivera MC, Lake JA. 1999. Horizontal gene transfer among 
genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 96:3801–3806.) and the balance hypothesis (Papp B, Pál 
C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197.). These hypotheses 
predict that the functional costs of HGT arise from a failure of divergent homologs to make normal protein–protein interac
tions or from gene misexpression, respectively. Here we describe genome-wide assessments of these hypotheses in which we 
used 74 existing prokaryotic whole genome shotgun libraries to estimate rates of horizontal transfer of genes from taxonom
ically diverse prokaryotic donors into Escherichia coli. We show that 1) transferability declines as connectivity increases, 
2) transferability declines as the divergence between donor and recipient orthologs increases, and that 3) the magnitude 
of this negative effect of divergence on transferability increases with connectivity. These effects are particularly robust among 
the translational proteins, which span the widest range of connectivities. Whereas the complexity hypothesis explains all 
three of these observations, the balance hypothesis explains only the first one.
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Significance
Comparisons between prokaryotic genomes consistently show that genes with informational functions, for example, in 
genome replication, transcription, and translation, have been subject to horizontal gene transfer between species more 
often than genes with operational functions, for example, in metabolism and environmental sensing. In this study, we 
perform a genome-wide analysis of transferability, using data obtained from 74 genomes, to show that this pattern 
results from differences between informational and operational genes in the number of other proteins with which 
they interact, that is, their connectivity, rather than from their functional differences. Our analysis underscores the 
need for an exceptionally large data set to detect connectivity effects on transferability, explaining why past experimen
tal studies failed to replicate the consistent finding from comparative genomic studies.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Horizontal gene transfer (HGT) is a major contributor to 
bacterial genome evolution (Skippington and Ragan 2011; 
Brito 2021; Arnold et al. 2022), contributing 10–20% 
of the protein-coding genes to most bacterial genomes 
(Lawrence and Ochman 1998; Nakamura et al. 2004; 
Soucy et al. 2015). HGT promotes diversity (Guttman 
1997; Baltrus et al. 2011; Polz et al. 2013), facilitating the 
evolution of novel phenotypes (Moran and Jarvik 2010), 
metabolic pathways (Soyer and Creevey 2010), and species 
(Schaack et al. 2010). Numerous instances of rapid adapta
tion have been attributed to HGT (e.g., Lozupone et al. 
2008; Dhillon et al. 2015; Frazão et al. 2019; Arnold et al. 
2020; Woods et al. 2020; reviewed in Arnold et al. 2022).

Comparative studies reveal that the frequency of HGT 
varies among genes and among pairs of donor and recipi
ent species in predictable ways (Nakamura et al. 2004; Pál 
et al. 2005; Soucy et al. 2015). For instance, transferability 
is observed to depend on gene function (Rivera et al. 1998; 
Nakamura et al. 2004), connectivity (i.e., the number of 
protein–protein interactions [PPIs]) (Lercher and Pál 2008; 
Cohen et al. 2011), and the divergence between donor 
and recipient genomes (Tuller et al. 2011; Baltrus 2013; 
Soucy et al. 2015).

Two nonexclusive hypotheses have been proposed to ex
plain why the fitness cost of gene transfer increases with 
connectivity: the balance hypothesis (Papp et al. 2003) 
and the complexity hypothesis (Jain et al. 1999). These hy
potheses predict that the fitness costs of HGT arise from 
gene misregulation (balance hypothesis) or from the failure 
of transferred orthologs to engage in normal PPIs (complex
ity hypothesis). The central predictions of these hypotheses 
are illustrated in figure 1. Whereas costs associated with 
gene misregulation are expected regardless of the diver
gence between the resident and transferred orthologs 
(fig. 1A and C), costs associated with PPI failure are ex
pected to increase in frequency with divergence (fig. 1B 
and D). In both hypotheses, the average magnitude of 
the fitness cost is expected to increase with connectivity.

Because comparative genomic data often rely on the ex
istence of sequence divergence to detect HGT, comparative 
data can document only cases where gene transfer had the 
potential to affect both gene regulation and PPIs. HGT of 
similar or identical alleles, expected to result in gene misre
gulation but not PPI failure, would not be detectable by com
parative methods. Thus, experimental data are needed to 
distinguish between these two effects. To date, experimen
tal data have confirmed that the fitness costs of HGT vary 
among genes (Sorek et al. 2007; Knöppel et al. 2014; Acar 
Kirit et al. 2020) and depend on the divergence between do
nor and recipient genomes (Sorek et al. 2007). However, 
previous experimental tests have failed to detect an effect 
of connectivity on transferability (Acar Kirit et al. 2020).

Here we use a genome-wide quantitative approach to 
provide a direct test of the complexity and balance hypoth
eses. Following Sorek et al. (2007), we analyze the data 
generated during whole genome shotgun sequencing of 
70 bacterial and 4 archaeal genomes. In the shotgun ap
proach, random genome fragments were sequenced only 
after they were successfully cloned into a plasmid and 
transformed (i.e., transferred) into Escherichia coli. Thus, 
genes that imposed fitness costs as a result of their inciden
tal expression from the plasmid may have been underrepre
sented in the shotgun libraries. Sorek et al. (2007)
investigated qualitative differences in gene representation 
(presence or absence) in the shotguns to explain the inabil
ity of some specific genes from some specific species to 
transfer into E. coli. They confirmed experimentally 1) that 
most genes in the libraries were expressed after transfer 
to E. coli and 2) that their expression was a critical factor 
in the absence of certain genes from the libraries. They 
also confirmed that 3) the genes’ high copy number on 
multicopy cloning plasmids (Chang and Cohen 1978; 
Summers 1998) was not the sole determinant of their trans
ferability, as evidenced by the finding that genes that were 
absent from the shotgun libraries tended to be untransfer
able on single-copy fosmids, as well (Sorek et al. 2007). We 
build on their analysis by investigating quantitative differ
ences in gene representation in the shotgun sequencing 
data, to test general hypotheses for differences in transfer
ability among genes and genomes (as in Knöppel et al. 
2014; Acar Kirit et al. 2020). We test the complexity and 
balance hypotheses by investigating the effects of connect
ivity and divergence on the number of times individual 
genes, in their entirety, were successfully cloned, trans
formed, and sequenced in the whole genome shotguns. 
The strong statistical power of our genome-wide quantita
tive approach enabled detection of both a main effect of 
connectivity and of an interaction effect between connect
ivity and divergence on the transferability (representation in 
the shotgun data) of individual genes, confirming the cen
tral predictions of the balance and complexity hypotheses, 
respectively (fig. 1).

Results
We acquired the shotgun library sequences of 74 prokary
otic species (70 bacteria and 4 archaea, described in 
supplementary table S1, Supplementary Material online) 
from the NCBI Trace Archive, following Sorek et al. 
(2007). We then calculated the coverage of each coding se
quence in each shotgun library as the number of plasmid 
inserts in the library that contained the gene in its entirety 
(as described in Materials and Methods: Gene Coverage 
in the Shotguns). A visual examination of the coverage 
variation among genes within individual shotgun libraries 
(figs. 2 and S1, Supplementary Material online) revealed 
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two general patterns: 1) long genes are less well covered 
than short genes in all shotguns and 2) genes near the ori
gin of replication are better covered than genes near the 
terminus of replication, but to different degrees in different 
shotguns. These patterns suggested strong effects of the 
particular pretransformation methods used to generate 
the shotgun libraries; thus, we first determined the extent 

to which variance in the gene coverage within libraries 
could be explained by the particular methods used to gen
erate the libraries. Below, we first describe how the shot
gun library methods were likely to bias gene coverage 
and how we controlled for these pretransformation meth
odological effects on variance in coverage. We then de
scribe our investigation of how biological features—such 
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FIG. 1.—Central predictions of the complexity and balance hypotheses. The balance hypothesis (A) posits that transferred genes with resident orthologs 
may cause an imbalance in the expression of genes that participate in multiprotein complexes and must be produced in stoichiometric amounts. The cost of 
expression imbalance is predicted to increase with the number of PPIs, but not with divergence. As a result, genes that engage in PPIs (dark gray and black lines) 
are less transferable than genes that lack PPIs (light gray line). The complexity hypothesis (B) posits that transferred genes may interfere in the normal PPIs of the 
resident ortholog, and that the probability of interference increases with the divergence between the resident and transferred genes. As a result, transferability 
decreases with divergence, but only for genes that engage in PPIs (dark gray and black lines). Two testable predictions result from these hypotheses. The central 
prediction of the balance hypothesis (C) is that the transferability of a particular gene, averaged over all donor orthologs, should decrease as the connectivity of 
the gene increases. In statistical lingo, the balance hypothesis predicts a main effect of connectivity. Points in (C) are mean values of lines of the same shade in 
(A) and (B), illustrating that this prediction does not distinguish between the balance (filled circles) and complexity (open circles) hypotheses. The central pre
diction of the complexity hypothesis (D) is that the effect of divergence on transferability (i.e., the main effect of divergence) should become more negative as 
connectivity increases. In statistical lingo, the complexity hypothesis predicts a connectivity × divergence interaction. Points in (D) are slopes of lines of the same 
shade in (A) and (B), illustrating that only the complexity hypothesis predicts a connectivity × divergence interaction, shown here as a decreasing main effect of 
divergence from light gray to dark gray to black, among the open cirles. The balance hypothesis makes no such prediction: the main effect of divergence does 
not differ between the filled circles.
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as connectivity, divergence from the E. coli ortholog, and 
their statistical interaction—explain the remaining variance 
in coverage; variance that we infer to have resulted from dif
ferences in transformation efficiency, that is, transferability.

Effect of Gene Length on Coverage

In figures 2A, 2D, and S1, Supplementary Material online, 
we show the relationship between coverage and gene 
length in each shotgun library (note that two species pos
sess two chromosomes and we analyzed data for each 
chromosome separately). It is apparent from these figures 
that long genes are less well covered than short genes in 
all shotgun libraries. The likely reason is straightforward. 
Long genes are less likely to be entirely contained within 
short cloned fragments.

To correct for this bias against long genes, we calculated 
the expected bias, bij, against each gene i from genome j, gi
ven the length of the gene, Lij, and the distribution of cloned 
fragment lengths from genome j (supplementary fig. S1, 
Supplementary Material online; details in Materials and 
Methods: Effect of Gene Length on Coverage). We then di
vided the observed raw coverage value, cij, by the expected 
bias, bij, to obtain an unbiased, length-corrected estimate 

cij* for that gene (figs. 2B, 2E, and S1, Supplementary 
Material online). Before correcting for length bias, the effect 
of gene length on coverage was negative for 74 out of 74 bac
terial chromosomes (supplementary fig. S1, Supplementary 
Material online). After correcting for length bias, the effect 
of gene length on coverage was negative in 21 and positive 
in 53 shotguns (the unbiased expectation is 37 negative and 
37 positive) and has a much smaller statistical effect on cover
age. Whereas gene length explains up to 43% of variance in 
raw coverage within individual shotgun libraries (median R2 =  
0.092; range = 0.0023–0.43), gene length explains only up to 
1.8% of variance in length-adjusted coverage (median R2 =  
0.0020; range = 1.0 × 10−5–0.036).

Effect of Gene Position on Coverage

In figures 2C, 2F, and S1, Supplementary Material online, 
we show the adjusted coverage values, cij*, plotted against 
position in the genome for individual shotguns. The most 
obvious pattern is that genes near the origin of replication 
had higher coverage residuals than genes near the terminus 
of replication in some shotguns. Again, the likely reason for 
this pattern is straightforward. Because bacterial genome 
replication begins at the origin, genes near the origin are 
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FIG. 2.—Methodological effects on coverage (cij) in whole genome shotguns. As shown here for P. syringae (A) and Pseudoalteromonas atlantica (D), long 
genes are substantially less well covered than short genes in all shotguns. By adjusting the raw coverage values of each gene solely by the likelihood of complete 
coverage given the gene’s length (to obtain cij*; see Materials and Methods), the bias against long genes is dramatically reduced, as shown here for P. syringae 
(B) and P. atlantica (E). These adjusted coverage values, cij*, show positional biases in some genomes, for example, P. syringae (C), but not others, for example, 
P. atlantica (F). In all panels, points represent the coverage or adjusted coverage of individual genes (i.e., coding sequences) in the P. syringae (A–C) or P. atlan
tica (D–F) shotgun. Solid black lines (A, B, D, E) show the best fit linear relationship between coverage or adjusted coverage and gene length. Dashed lines (C, F) 
are the mean adjusted coverage across all genes in the individual shotguns. Solid lines (C, F) are the sine curves that yield the best fit to the adjusted coverage 
data. The solid and dashed lines in F are indistinguishable. Supplementary fig. S1, Supplementary Material online, shows analogous data and model fits for the 
complete set of genome shotguns.
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replicated before genes near the terminus. Thus, in actively 
dividing cells, genes near the origin are present in more 
copies within the cell than genes near the terminus. We in
fer that the difference in this pattern between shotguns re
sulted from a methodological difference in the bacterial 
growth phase, exponential or stationary, at the time gen
omes were harvested for use in the shotgun.

We estimated the positional bias in each genome j by fit
ting a sine curve to the cij* values as a function of the start 
position of each gene i (solid red lines in figs. 2C, 2F, and S1, 
Supplementary Material online). The sine curves explained 
between 0.007% (fig. 2F; Pseudomonas syringae pv. syrin
gae) and 45% (supplementary fig. S1, Supplementary 
Material online; Arthrobacter sp. fb24) of the variance in 
cij* (interquartile range = 1.32–7.57% variance explained). 
To correct for this positional bias, we divided the cij* values 
by the coverage expectation given the position of gene i in 
genome j, E(cij* | positionij), obtained from the best fit sine 
curve. For all downstream analyses, we consider the effects 
of various independent variables on the resulting depend
ent variable ĉij = cij*/E(cij* | positionij), which we refer to 
as relative coverage.

Biological Effects on Coverage

We next examined the effect of amino acid divergence be
tween donor and recipient copies of orthologous transferred 
genes on relative coverage in the shotgun libraries. For each 
protein-coding gene in the E. coli K12 genome, we identified 
likely orthologs within the 74 shotgun libraries (see Effect of 
Divergence on Coverage). There was wide variation among 
protein-coding genes, in both the number of shotgun librar
ies that contained a likely ortholog and the divergence (% 
amino acid difference) of those orthologs from the E. coli 
copy of the gene (supplementary fig. S2, Supplementary 
Material online). For each gene, we then calculated mean 
relative coverage among its likely orthologs and the slope 
of the relationship between relative coverage and diver
gence. A visual examination of these data for different genes 
revealed dramatically higher variance in the estimated rela
tionship (i.e., slope) between divergence and relative cover
age among genes with fewer orthologs than among genes 
with more orthologs (figs. 3A–3D and S2, Supplementary 
Material online). For example, compare the genes shown 
in figure 3A–D, which are representative of genes from the 
1st (hofC, fig. 2A, green), 25th (yjjP, fig. 2B, yellow), 50th 
(fliS, fig. 2C, blue), and 75th (tolB, fig. 2D, orange) percen
tiles, in terms of their number of likely orthologs. hofC and 
yjjP were randomly chosen from among genes with 5 and 
13 likely orthologs, respectively, but, like other genes with 
few likely orthologs, the estimated effect of divergence on 
transferability for these genes (solid green and yellow circles 
in fig. 3H and I) is extreme compared with genes with many 
likely orthologs (open black circles in fig. 3H and I).

To reduce this source of noise in the data, we limited the 
analyses below to protein-coding genes in the E. coli K12 
genome for which we identified likely orthologs in a reason
ably large number of bacterial genomes and for which the 
likely orthologs spanned a reasonably wide range of diver
gence values from the E. coli gene. Specifically, we required 
that each set of orthologous genes include at least 16 ortho
logs and exhibit a standard deviation, among the orthologs, 
of greater than 10% amino acid difference. These criteria 
were chosen based on a power analysis of the entire 
data set (supplementary figs. S3 and S4, Supplementary 
Material online; described in Materials and Methods: Power 
Analysis) and reduced the data set to 1,295 sets of ortholo
gous genes. However, the results we present below were 
not quantitatively sensitive to the choice of criteria (described 
in detail below). Thus, we proceeded with the set of 1,295 
genes for which we have relatively high confidence in our es
timates of both mean relative coverage and the effect of di
vergence on relative coverage. We investigated the effects of 
three biological characteristics of genes—connectivity, the 
expression level of the native gene in E. coli, and gene func
tion as identified in the Clusters of Orthologous Groups of 
proteins (COG) database (Tatusov et al. 1997; Galperin 
et al. 2015)—on both of these estimates.

For a particular set of orthologous genes, mean relative 
coverage (horizontal dashed lines in figs. 3A–3D and S2, 
Supplementary Material online) provides a measure of the 
average transferability of divergent copies of that ortholog. 
Among the most stringent set of 1,295 protein-coding 
genes in our data set, all three biological characteristics 
had significant effects on this metric of transferability 
(table 1). Increasing connectivity and increasing expression 
level both had significant negative effects on mean trans
ferability (fig. 3E and F), and there was significant variation 
among functional categories in their mean transferability 
(fig. 3G). Because these three biological characteristics 
are correlated with each other (supplementary fig. S5, 
Supplementary Material online), we determined the effects 
of connectivity, in isolation from the other two characteris
tics, by examining the deviations (i.e., residuals) of each 
gene’s mean transferability from the value that would be 
expected given the gene’s native expression level and 
COG functional category. We found a significant negative 
relationship between connectivity and the resulting mean 
transferability residuals (fig. 4A; effect estimate = −6.5 ×  
10−4, F1,1294 = 27.5, P = 2 × 10−7). Repeating the analysis 
using only the 192 genes involved in translation (COG cat
egory J; the subset of informational genes with the largest 
number of highly connected genes) reveals a strong contri
bution of these genes to the statistical power of the ana
lysis. Nonetheless, the effect of connectivity on mean 
transferability appears to be a general characteristic of all 
protein-coding genes, not just informational genes. The ef
fect is negative and of similar magnitude among the 192 
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translation proteins (fig. 4B; connectivity effect estimate =  
−8.3 × 10−4, F1,191 = 19.88, P = 1.4 × 10−5) and the 1,102 
nontranslation proteins (fig. 4C; connectivity effect esti
mate = −9.8 × 10−4, F1,1102 = 10.54, P = 0.0012). These 
effect estimates and P values were quantitatively similar 
and qualitatively unchanged in analyses of the 2,653 (or 
1,883) orthologous gene sets that met the less stringent 
criteria of including a minimum of 4 (or 10) orthologs 
and a standard deviation greater than 4% (or 7%) amino 

acid difference (supplementary table S2, Supplementary 
Material online).

For a particular set of orthologous genes, the slope of the 
relationship between relative coverage and divergence 
from the E. coli gene (solid lines in figs. 3A–3D and S2, 
Supplementary Material online) estimates the main effect 
of divergence on transferability of the orthologs. Among 
the most stringent set of 1,295 protein-coding genes in 
our data set, connectivity shows a significant negative 
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FIG. 3.—Biological effects on transferability in whole genome shotguns. We first estimated the mean value and the effect of divergence (% amino acid 
difference) on transferability among the set of orthologs of each protein-coding gene in the E. coli K12 genome. Estimates for individual genes are illustrated 
here for the E. coli genes hofC (A, green), yjjP (B, gold), fliS (C, blue), and tolB (D, orange) that are representative, respectively, of genes in the 1st, 25th, 50th, 
and 75th percentiles, in terms of their number of likely orthologs. For each gene, we estimated mean transferability as mean relative coverage (mean ĉij; 
dashed colored lines in A–D), and we estimated the effect of divergence on transferability as the slope of the best fit linear relationship between relative cover
age (ĉij ) and divergence from the E. coli gene (solid colored lines in A–D). We then examined the effects of connectivity, native expression level, and COG 
functional category on the resulting estimates of mean transferability (E–G) and on the effect of divergence on transferability (H–J ). Open colored circles 
in (A)–(D) show the relative coverage and divergence from the E. coli gene of likely orthologs of the E. coli gene shown on the corresponding plot. Each 
open colored circle in (A)–(D) was estimated from a different genome shotgun library. Filled colored points in (E), (F), (H ), and (I) show the mean transferability 
and effect of divergence estimated from the gene in (A)–(D) with the corresponding color. Each open black circle in panels (E), (F), (H ), and (I) shows the mean 
transferability and effect of divergence estimated from an individual gene with at least 16 likely orthologs and a standard deviation, among the orthologs, of 
greater than 10% amino acid difference. The genes hofC and yjjP are labelled in H and I to highlight that genes with few identified orthologs tended to yeild 
extreme estimates for the effect of divergence on transferability.
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interaction with the effect of divergence on transferability 
(fig. 3H and table 2). Native expression level and functional 
category do not (fig. 3I and J and table 2). Examining the 
deviations (i.e., residuals) of each gene’s effect of diver
gence on transferability from the value that would be ex
pected given the gene’s native expression level and COG 
functional category, we found a significant negative rela
tionship between connectivity and the effect of divergence 
residuals (fig. 4D, effect estimate = −3.3 × 10−5, F1,1294 =  
9.037, P = 0.0027). That is, we found a significant diver
gence × connectivity interaction. Like the main effect of 

connectivity, the power of this analysis stems largely from 
the translation proteins but the divergence × connectivity 
interaction appears to be a general characteristic of all 
protein-coding genes. The divergence × connectivity inter
action is negative and of similar magnitude among the 
61 translation proteins (fig. 4E; estimate = −4.0 × 10−5, 
F1,192 = 11.44, P = 0.0009) and the 1,102 nontranslation 
proteins (fig. 4F; estimate = −5.6 × 10−5, F1,1101 = 3.98, 
P = 0.0463). The results described in this and the previous 
paragraph do not appear to be constrained to the 1,295 
genes we analyzed here. These effect estimates were quan
titatively similar in analyses of the 2,653 (or 1,883) ortholo
gous gene sets that met the less stringent criteria of 
including a minimum of 4 (or 10) orthologs and a standard 
deviation greater than 4% (or 7%) amino acid difference 
(supplementary table S3, Supplementary Material online), 
but these data sets tended to be too noisy to sufficiently 
power the statistical tests.

Discussion
In this paper, we built on the recognition by Sorek et al. 
(2007) that the shotgun libraries used to generate the 

Table 1 
Analysis of Variance Table: Biological Effects on Mean Transferability

Model Parameter df SSE MSE F Value P Value

Connectivity 1 2.2312 2.23123 274.1 2.2 × 10−16

COG functional 
category

20 1.0647 0.05324 6.542 2.2 × 10−16

Native expression 
level

1 0.1656 0.16555 20.34 7.1 × 10−6

Residuals 1,273 10.359 0.00814 — —

NOTE.—Statistical model: mean transferability ∼ connectivity + COG category  
+ native expression level.
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FIG. 4.—Tests of the balance and connectivity hypotheses. Plots show the mean transferability (A–C) and effect of divergence on transferability (D–F), after 
first controlling for the effects of native expression level and COG functional category. Each point shows the deviation (i.e., residual) of each gene’s value from 
the expected value given the native expression level and COG category of that gene. The different plots show all the genes in our collection (A, D), the trans
lation proteins only (B, E), or all the genes except the translation proteins (C, F). Solid lines are best fit linear regression models. Dashed horizontal lines at zero 
are shown only for reference.
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earliest whole prokaryotic genome sequences could be 
used as experimental tests of the complexity hypothesis. 
Sorek et al. (2007) observed across 85 finished microbial 
genomes that a subset of genes appeared “unclonable,” 
as indicated by an absence of sequencing reads spanning 
a gene. They then followed a bottom-up approach, experi
mentally investigating a modest set of particular genes 
from particular genomes that failed to transfer and identi
fying the molecular mechanism that explained each failure. 
Here, we focused on a top-down approach, using the shot
gun libraries to estimate relative rates of transfer for large 
numbers of genes from large numbers of genomes. We 
then tested the ability of two general hypotheses—the bal
ance and complexity hypotheses—to explain differences in 
the estimated transfer rates between genes and genomes. 
Our quantitative analysis confirmed that 1) transferability 
decreased with the connectivity of the transferred gene 
and 2) protein sequence divergence between transferred 
and native orthologs reduced transferability more for genes 
with higher connectivities than for genes with lower connec
tivities. The first observation is predicted by both the balance 
and complexity hypotheses; the second observation is 
predicted only by the complexity hypothesis (fig. 1). Thus, 
although our analysis is consistent with the balance hypoth
esis, in that the cost of protein overexpression increases with 
connectivity, it provides stronger support for the complexity 
hypothesis. Specifically, our analysis suggests that the suc
cess or failure of a transferred gene to engage in normal 
PPIs is an important determinant of which genes successfully 
undergo HGT, and that the probability of HGT failure in
creases via a negative (i.e., synergistic) interaction between 
increasing connectivity and increasing divergence.

We note that the complexity and balance hypotheses pre
dict consequences of horizontal transfer for PPI failure and 
misexpression, specifically of genes native to the recipient 
bacterium. To test these hypotheses, we had to narrow our 
focus to orthologs of genes in the E. coli genome. 
Consequently, our support for the complexity hypothesis is 
most relevant to its role in phenomena such as the expansion 
of protein families and the acquisition of novel gene func
tions, for which the acquisition of genes with orthologous 
native copies is a necessary intermediate. The extent to which 
complexity also poses a barrier to HGT of accessory genes 
(such as virulence factors or antibiotic resistance genes) 

that are not orthologous to any native gene is also of interest 
but falls beyond the scope of the work we present here.

Our results highlight several of the difficulties inherent in 
testing the balance and complexity hypotheses experimental
ly: 1) connectivity and divergence are not the only biological 
characteristics of genes correlated with transferability, 2) 
many of these characteristics are also correlated with each 
other (supplementary fig. S5, Supplementary Material on
line), and 3) gene function and connectivity are poorly under
stood for many genes. For example, connectivity explains 
substantially more of the variance among all genes in their 
mean transferability (R2 = 0.16 before controlling for the cor
related effects of native expression level and COG category) 
than among their mean transferability residuals (R2 = 0.02 
after controlling for the correlated effects of native expression 
level and COG category). Connectivity also explains substan
tially more of the variance in mean transferability residuals 
among the translational proteins (R2 = 0.09), for which func
tion and connectivity are better understood, than among the 
nontranslational proteins (R2 = 0.01), which include many 
proteins of unknown function and connectivity. Thus, our 
conservative decisions to control for the potentially con
founding effects of native expression level and COG category 
and to include many poorly characterized genes in our ana
lysis likely resulted in an underestimate of the contributions 
of connectivity and divergence to transferability.

Even in a less conservative analysis that includes only the 
translational proteins and does not control for the corre
lated effects of native expression level, connectivity explains 
only 31% of the variance in transferability (i.e., R2 = 0.31) 
and 16% of the variance in the effect of divergence on 
transferability, leaving most of the variance unexplained. 
Other than the fact that genomic data are inherently noisy, 
in part because genomes still contain many poorly charac
terized genes, we do not know what explains the remaining 
variance. We examined more closely the set of proteins 
with more than 80 PPIs to try to identify differences be
tween the proteins that fall substantially above and sub
stantially below the regression lines in figure 4A and D. 
Among this set of highly connected genes, the genes that 
were more versus less transferable than expected did not 
differ in their identities, functions, lengths, number of dis
ordered regions, or number of identified orthologs in our 
collection. The ten most transferable genes among this 

Table 2 
Analysis of Variance Table: Biological Effects on the Divergence × Connectivity Interaction

Model Parameter df SSE MSE F Value P Value

Connectivity 1 0.002711 0.0027113 42.56 9.87E − 11
COG functional category 20 0.000884 0.0000442 0.694 0.8357
Native expression level 1 0.000117 0.00011658 1.83 0.1764
Residuals 1,273 0.081097 6.371 × 10−5 — —

NOTE.—Statistical model: effect of divergence ∼ connectivity + COG category + native expression level.
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set (ribosomal subunit proteins S4, S8, S11, S15, L17, L28, 
L32, and L33 and RNA polymerase subunits alpha and ome
ga) are, to our eyes, indistinguishable from the ten least trans
ferable genes among this set (ribosomal subunit proteins S7, 
S10, S12, S20, L3, L4, L11, and L34 and RNA polymerase sub
units beta and beta′). However, the differences in mean 
transferability and in the effect of divergence on transferabil
ity (more specifically, the residuals in fig. 4A and B) did de
pend on the distribution among the orthologs in each gene 
set of their divergence from the E. coli gene. Genes whose 
orthologs were, on average, more divergent from the E. 
coli gene copy were less transferable (effect of mean diver
gence on the residuals in fig. 4A: estimate = −0.0045, F1,52  

= 6.781, P = 0.012, adjusted R2 = 0.1). In contrast, genes 
whose orthologs exhibited higher variation in divergence 
from the E. coli gene copy were more transferable (effect 
of the standard deviation of divergence on the residuals in 
fig. 4A: estimate = 0.0064, F1,52 = 9.046, P = 0.004, ad
justed R2 = 0.13). Sets of gene orthologs with higher vari
ation in their divergence from E. coli also exhibited weaker 
(more positive) effects of divergence on transferability (effect 
of the standard deviation of divergence on the residuals in fig. 
4B: estimate = 0.0004, F1,52 = 11.11, P = 0.0016, adjusted 
R2 = 0.16). These patterns indicate that there are effects of di
vergence on transferability beyond the divergence × connect
ivity interaction predicted by the complexity hypothesis. 
Because the data for this analysis were originally gathered 
for a different purpose, this “experiment” was unavoidably 
unbalanced. For instance, we could not ensure a similar distri
bution of divergence values among genes with low and high 
PPIs. As a result, the main effects of divergence contributed to 
the difficulties inherent in our test of the complexity hypoth
esis. We note, however, that these effects of the mean and 
standard deviation of divergence were apparent only when 
we limited our focus to genes with more than 80 PPIs. 
None of these effects was apparent in the full data set.

The difficulties inherent in testing the balance and com
plexity hypotheses were also highlighted by a previous experi
mental test (Acar Kirit et al. 2020) that did not detect a 
statistically significant main effect of connectivity on transfer
ability (as defined in fig. 1C), despite the use of a more precise 
measure of transferability than ours. Acar Kirit et al. (2020) ex
amined a substantially smaller number of genes (44 compared 
with 1,295) from a smaller number of donor genomes (1 
compared with ≥16 for each gene). Thus, the difference in 
outcome is likely to have resulted from the limited statistical 
power of their smaller data set to detect a main effect of con
nectivity on transferability. Although their precise fitness as
says enabled the detection of fitness costs imposed by two 
biological characteristics of genes that we did not detect, in
creasing the number of disordered regions and the length 
of transferred proteins, their use of only a single donor gen
ome prevented an examination of the statistical interaction 
between connectivity and divergence in their effects on 

transferability (as in fig. 1D). Because the detection of inter
action effects requires more statistical power than the detec
tion of main effects, our ability both to differentiate between 
the two hypotheses and to support the complexity hypothesis 
was likely only possible because our data set was compiled 
from 74 whole genome shotgun libraries.

Indeed, our strongest support of the complexity hypoth
esis comes from the consistency of the interaction between 
divergence and connectivity among both proteins with func
tions in translation and proteins with other functions (fig. 4). 
The complexity hypothesis was proposed to explain the ob
servation from comparative data that HGT has happened 
less often among informational genes, like the subunits of 
ribosomes and polymerase complexes, than among oper
ational genes, like enzymes (Rivera et al. 1998; Jain et al. 
1999). The complexity hypothesis posits that the observed 
difference in the rate of HGT resulted not from the differ
ence in function between informational and operational 
genes but rather from the large difference in the connectiv
ities of these different types of genes. Its central prediction is 
that increases in connectivity and the divergence between 
donor and recipient orthologs will interact synergistically to 
reduce transferability. In short, highly divergent genes with 
many PPIs will exhibit the lowest rates of HGT, regardless 
of function. Thus, our finding that connectivity interacts 
with divergence to reduce transferability, not only among 
the translation (i.e., informational) genes but also among 
nontranslation (i.e., noninformational) genes, supports 
both the central prediction of the complexity hypothesis 
and its underlying logic that informational genes exhibit low
er rates of HGT specifically because they are highly con
nected, not because they perform an informational function.

Our results confirm the central predictions of both of the 
two nonexclusive hypotheses used to explain why transfer
ability should decrease with connectivity. We provide the 
strongest support for the role of PPI failure among diver
gent orthologs of highly connected genes (the complexity 
hypothesis). Together, our results support the emerging 
“rule” that deleterious interactions among protein partners 
in bacteria may govern the frequency with which individual 
genes successfully undergo HGT. Given that HGT is a major 
contributor to bacterial genome evolution, our work sug
gests that the complexity hypothesis may shape phenotypic 
diversity, drive the expansion of protein families, and affect 
the evolution of new phenotypes, new metabolic path
ways, and new species in bacteria.

Materials and Methods

Data Sources

The complete set of whole genome shotguns and as
sembled genomes used in this work is described in 
supplementary table S1, Supplementary Material online.
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We obtained whole genome shotgun reads from NCBI’s 
trace archive (ftp://ftp.ncbi.nih.gov/pub/TraceDB). We in
cluded all of the shotguns examined in Sorek et al. (2007)
except Candidatus Koribacter versatilis Ellin345, whose 
shotgun reads were no longer available in the trace archive.

We obtained complete bacterial genome sequences 
from NCBI’s microbial genome database (https://www. 
ncbi.nlm.nih.gov/genome/microbes/). From these se
quence files, we determined the protein sequence, start 
position, end position, and length for each coding se
quence in each genome.

We obtained protein interaction data from the STRING 
database version 11.5 (http://string-db.org). We downloaded 
two files containing detailed confidence scores associated 
with evidence of PPIs in E. coli strain K12 substrain 
MG1655, one including evidence of physical interactions 
only (511145.protein.physical.links.detailed.v11.5.txt) and 
the other including evidence of both physical and nonphysic
al interactions (511145.protein.links.detailed.v11.5.txt). For 
each gene, we extracted the confidence score from the ex
perimental column of these files. Confidence scores range 
from 0 (low confidence) to 999 (high confidence). We con
sidered pairs of proteins to be interacting if their confidence 
score, based on experimental evidence only, was greater 
than a particular threshold value. Our statistical tests of the 
balance and complexity hypotheses produced qualitatively 
and quantitatively similar conclusions regardless of the 
choice to count only physical interactions or both physical 
and nonphysical (as represented in the STRING database) 
or the choice of confidence score cutoff between 200 and 
800 (analyses not shown). For the analysis described here, 
we counted both physical and nonphysical interactions and 
used an intermediate confidence score threshold of 500.

We obtained expression data for the native copy of each 
gene in E. coli from the ASAP database (https://asap. 
genetics.wisc.edu/asap/experiment_data.php). We down
loaded data from two replicate (PALSP49 and PALSP50) ca
librated microarray experiments conducted by Allen et al. 
(2003) on E. coli strain K12 MG1655, grown to log phase 
in LB liquid medium at 37 °C. For each gene, we calculated 
native expression level as the mean of the estimated tran
script copy number across the two replicate experiments.

We obtained the functional category of each gene from 
the COG database at https://www.ncbi.nlm.nih.gov/ 
research/cog/ (Tatusov et al. 1997; Galperin et al. 2015).

We obtained the number of disordered regions for all of 
the genes with at least 80 PPIs using the web service 
GlobPlot at http://globplot.embl.de (Linding et al. 2003).

Gene Coverage in the Shotguns

The coverage, cij, of gene i in the whole genome shotgun of 
species j was calculated as the number of plasmid inserts in 
shotgun j that contain gene i in its entirety. Coverage values 

were determined by mapping the paired reads from each 
whole genome shotgun to the corresponding assembled gen
ome using the BWA-SW algorithm from the Burrows– 
Wheeler Aligner (Li and Durbin 2010). A small minority of 
reads mapped to more than one location. We identified 
and eliminated most of the incorrectly mapped reads by re
quiring a phred-scaled map quality score greater than 150 
and a distance between paired reads of fewer than 
100,000 bases. For the few multiply-mapped reads that re
mained, one of the mapping locations was chosen at random. 
Read pairs for which one read mapped upstream of gene i 
and one read mapped downstream of gene i were counted 
toward the coverage of gene i. Read pairs that entirely 
spanned more than one gene were counted toward all of 
the spanned genes. Although we mapped read pairs to 
all of the replicons that comprised each genome, only 
genes contained on large replicons (i.e., chromosomes) 
were included in downstream analyses. We ignored genes 
on plasmids because their biology differs from genes on 
chromosomes (e.g., their copy number is often higher) 
and because their dramatically lower gene content resulted 
in dramatically higher variance in coverage and, conse
quently, much less ability to correct for the known biases 
in the data that we describe below.

Effect of Gene Length on Coverage

To control for the bias against long genes, we calculated for 
each genome j a likelihood of observing a gene of a particu
lar length, l, given the actual distribution of cloned frag
ment lengths, fj, that comprised whole genome shotgun j.

For an individual cloned fragment of length x, the prob
ability that it contained the entirety of a gene of length l is 
proportional to the difference in the lengths between the 
cloned fragment and the gene, if the cloned fragment is 
at least as long as the gene, or 0 otherwise:

p(l|x) ∼ x + 1 − l if x ≥ l
p(l|x) = 0 if x < l.

(1) 

For each genome j, the likelihood of observing each gene, 
gij, of length, lij, given the distribution of cloned fragment 
lengths, fj, is then calculated by summing these individual 
probabilities over all of the observed cloned fragment 
lengths xj in the shotgun of genome j:

L(gij|fj) =
􏽘

xj

p(lij|xj). (2) 

For each genome j, the bias against long genes, bj(l ), was 
then calculated as the likelihood of observing a gene of 
length l relative to that of the most likely (i.e., the shortest) 
gene in the same genome:

bj(l) = L(l|fj)/L(min(lj)|fj). (3) 
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For each genome, coverage values for each gene were ad
justed by the length biases calculated for that genome, so 
that the data used for all downstream analysis were of 
the form:

c∗
ij =

cij

bj(lij)
(4) 

Effect of Gene Position on Coverage

To control for the long-range positional biases, we fit the 
adjusted coverage data from individual genomes to a sine 
curve using the lm function in R (figs. 2C, 2F, and S1D, 
Supplementary Material online). For gene i in genome j, 
we calculated relative coverage, cij, by dividing its length- 
adjusted coverage value, ĉij, by the fitted value at that pos
ition in the genome, E(cij*|positionij):

ĉij = c∗
ij /E(c∗

ij |positionij) (5) 

Effect of Divergence on Coverage

For each protein-coding gene in the E. coli K12 genome, we 
identified the coding sequences in each shotgun library that 
were reciprocal best hits to the E. coli K12 gene using 
BLASTp (Altschul et al. 1990). Coding sequences that 
were not reciprocal best hits could not be identified as 
the most likely ortholog of a particular coding sequence 
in E. coli K12 and were, therefore, excluded from down
stream analyses. The protein sequences of reciprocal best 
hits were aligned to the E. coli K12 gene using the software 
ProbCons (Do et al. 2005), and the alignments were used to 
calculate protein divergence as % amino acid difference 
from the E. coli K12 ortholog. For each of the resulting 
sets of orthologous genes, we used the lm function from 
the stats package in R (version 4.1.2) to determine the 
best fit linear relationship between the relative coverage 
of each ortholog in the set and its divergence from the E. 
coli ortholog.

Statistical Tests of the Balance and Complexity 
Hypotheses

We used the lm function from the stats package in R (ver
sion 4.1.2) to investigate the effects of connectivity and di
vergence on the transferability into E. coli of orthologs of 
the protein-coding genes in the E. coli genome (as illu
strated in fig. 1). For each E. coli gene, we estimated 
mean transferability (the y axis in fig. 1C) as the mean rela
tive coverage across all orthologs of the gene. We mea
sured the effect of divergence on transferability (i.e., the 
main effect of divergence; y axis in fig. 1D) as the slope of 
the linear relationship between relative coverage and diver
gence for all orthologs of the gene (as described above in 
Effect of Divergence on Coverage). In essence, this statistic
al approach considers connectivity and divergence as fixed 

effects and the identity of the E. coli ortholog as a random 
effect. The experimental units are the sets of gene ortho
logs and the analysis considers the individual orthologs in 
each set to be repeated measures of a particular ortholo
gous gene along a divergence gradient.

Power Analysis

A visual examination of the data in supplementary figure 
S2, Supplementary Material online, revealed that the high
est positive and lowest negative estimates of the effects of 
divergence on relative coverage were most common 
among genes for which the set of identified orthologs 
spanned only a narrow range of divergence values or for 
which we identified only very few orthologs. In addition, 
the smaller sets of orthologous genes often included at 
least one gene with an exceptionally high divergence 
(>80% amino acid difference) from the E. coli ortholog, 
suggesting that these sets included donor genes that 
were not true orthologs. To examine the sensitivity of our 
statistical tests to the noisy data that resulted from these is
sues, we repeated the analysis described above, requiring 
that each set of orthologous genes includes at least X 
orthologs and exhibits a standard deviation greater than 
Y% amino acid difference, where X and Y were both varied 
between 2 and 22. For each pair of X and Y, we estimated 
the number of genes that met both requirements, the main 
effect of connectivity on mean transferability, and the F 
statistic and P value associated with the statistical test of 
the effect (supplementary fig. S3, Supplementary Material
online). For each pair of X and Y, we also estimated the con
nectivity × divergence interaction effect (i.e., the effect of 
connectivity on the main effect of divergence; see fig. 
1D), as well as the F statistic and P value associated with 
the statistical test (supplementary fig. S4, Supplementary 
Material online).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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Data Availability
The data are publicly available and described in 
supplementary table S1, Supplementary Material online. 
The analysis pipeline consists of programs written in 
Python 3.6 and R version 4.1.2 (R Development Core 
Team 2013), and UNIX shell scripts that call those pro
grams, BEDTools (Quinlan and Hall 2010), and SAMtools 
(Li et al. 2009). All of our code and scripts are publically 
available at https://bitbucket.org/cburch/burch-et-al-2023.
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