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Abstract

Horizontal gene transfer (HGT) is a major contributor to bacterial genome evolution, generating phenotypic diversity, driving
the expansion of protein families, and facilitating the evolution of new phenotypes, new metabolic pathways, and new
species. Comparative studies of gene gain in bacteria suggest that the frequency with which individual genes successfully
undergo HGT varies considerably and may be associated with the number of protein—protein interactions in which the
gene participates, that is, its connectivity. Two nonexclusive hypotheses have emerged to explain why transferability should
decrease with connectivity: the complexity hypothesis (Jain R, Rivera MC, Lake JA. 1999. Horizontal gene transfer among
genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 96:3801-3806.) and the balance hypothesis (Papp B, Pal
C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194-197.). These hypotheses
predict that the functional costs of HGT arise from a failure of divergent homologs to make normal protein—protein interac-
tions or from gene misexpression, respectively. Here we describe genome-wide assessments of these hypotheses in which we
used 74 existing prokaryotic whole genome shotgun libraries to estimate rates of horizontal transfer of genes from taxonom-
ically diverse prokaryotic donors into Escherichia coli. We show that 1) transferability declines as connectivity increases,
2) transferability declines as the divergence between donor and recipient orthologs increases, and that 3) the magnitude
of this negative effect of divergence on transferability increases with connectivity. These effects are particularly robust among
the translational proteins, which span the widest range of connectivities. Whereas the complexity hypothesis explains all
three of these observations, the balance hypothesis explains only the first one.
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Significance

Comparisons between prokaryotic genomes consistently show that genes with informational functions, for example, in
genome replication, transcription, and translation, have been subject to horizontal gene transfer between species more
often than genes with operational functions, for example, in metabolism and environmental sensing. In this study, we
perform a genome-wide analysis of transferability, using data obtained from 74 genomes, to show that this pattern
results from differences between informational and operational genes in the number of other proteins with which
they interact, that is, their connectivity, rather than from their functional differences. Our analysis underscores the
need for an exceptionally large data set to detect connectivity effects on transferability, explaining why past experimen-
tal studies failed to replicate the consistent finding from comparative genomic studies.
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Introduction

Horizontal gene transfer (HGT) is a major contributor to
bacterial genome evolution (Skippington and Ragan 2011,
Brito 2021; Arnold et al. 2022), contributing 10-20%
of the protein-coding genes to most bacterial genomes
(Lawrence and Ochman 1998; Nakamura et al. 2004;
Soucy et al. 2015). HGT promotes diversity (Guttman
1997; Baltrus et al. 2011; Polz et al. 2013), facilitating the
evolution of novel phenotypes (Moran and Jarvik 2010),
metabolic pathways (Soyer and Creevey 2010), and species
(Schaack et al. 2010). Numerous instances of rapid adapta-
tion have been attributed to HGT (e.g., Lozupone et al.
2008; Dhillon et al. 2015; Frazédo et al. 2019; Arnold et al.
2020; Woods et al. 2020; reviewed in Arnold et al. 2022).

Comparative studies reveal that the frequency of HGT
varies among genes and among pairs of donor and recipi-
ent species in predictable ways (Nakamura et al. 2004; Pal
et al. 2005; Soucy et al. 2015). For instance, transferability
is observed to depend on gene function (Rivera et al. 1998;
Nakamura et al. 2004), connectivity (i.e., the number of
protein—protein interactions [PPIs]) (Lercher and P&l 2008;
Cohen et al. 2011), and the divergence between donor
and recipient genomes (Tuller et al. 2011; Baltrus 2013;
Soucy et al. 2015).

Two nonexclusive hypotheses have been proposed to ex-
plain why the fitness cost of gene transfer increases with
connectivity: the balance hypothesis (Papp et al. 2003)
and the complexity hypothesis (Jain et al. 1999). These hy-
potheses predict that the fitness costs of HGT arise from
gene misregulation (balance hypothesis) or from the failure
of transferred orthologs to engage in normal PPIs (complex-
ity hypothesis). The central predictions of these hypotheses
are illustrated in figure 1. Whereas costs associated with
gene misregulation are expected regardless of the diver-
gence between the resident and transferred orthologs
(fig. 1A and C), costs associated with PPI failure are ex-
pected to increase in frequency with divergence (fig. 1B
and D). In both hypotheses, the average magnitude of
the fitness cost is expected to increase with connectivity.

Because comparative genomic data often rely on the ex-
istence of sequence divergence to detect HGT, comparative
data can document only cases where gene transfer had the
potential to affect both gene regulation and PPls. HGT of
similar or identical alleles, expected to result in gene misre-
gulation but not PPI failure, would not be detectable by com-
parative methods. Thus, experimental data are needed to
distinguish between these two effects. To date, experimen-
tal data have confirmed that the fitness costs of HGT vary
among genes (Sorek et al. 2007; Knoppel et al. 2014; Acar
Kirit et al. 2020) and depend on the divergence between do-
nor and recipient genomes (Sorek et al. 2007). However,
previous experimental tests have failed to detect an effect
of connectivity on transferability (Acar Kirit et al. 2020).

Here we use a genome-wide quantitative approach to
provide a direct test of the complexity and balance hypoth-
eses. Following Sorek et al. (2007), we analyze the data
generated during whole genome shotgun sequencing of
70 bacterial and 4 archaeal genomes. In the shotgun ap-
proach, random genome fragments were sequenced only
after they were successfully cloned into a plasmid and
transformed (i.e., transferred) into Escherichia coli. Thus,
genes that imposed fitness costs as a result of their inciden-
tal expression from the plasmid may have been underrepre-
sented in the shotgun libraries. Sorek et al. (2007)
investigated qualitative differences in gene representation
(presence or absence) in the shotguns to explain the inabil-
ity of some specific genes from some specific species to
transfer into E. coli. They confirmed experimentally 1) that
most genes in the libraries were expressed after transfer
to E. coli and 2) that their expression was a critical factor
in the absence of certain genes from the libraries. They
also confirmed that 3) the genes’ high copy number on
multicopy cloning plasmids (Chang and Cohen 1978;
Summers 1998) was not the sole determinant of their trans-
ferability, as evidenced by the finding that genes that were
absent from the shotgun libraries tended to be untransfer-
able on single-copy fosmids, as well (Sorek et al. 2007). We
build on their analysis by investigating quantitative differ-
ences in gene representation in the shotgun sequencing
data, to test general hypotheses for differences in transfer-
ability among genes and genomes (as in Kndppel et al.
2014; Acar Kirit et al. 2020). We test the complexity and
balance hypotheses by investigating the effects of connect-
ivity and divergence on the number of times individual
genes, in their entirety, were successfully cloned, trans-
formed, and sequenced in the whole genome shotguns.
The strong statistical power of our genome-wide quantita-
tive approach enabled detection of both a main effect of
connectivity and of an interaction effect between connect-
ivity and divergence on the transferability (representation in
the shotgun data) of individual genes, confirming the cen-
tral predictions of the balance and complexity hypotheses,
respectively (fig. 1).

Results

We acquired the shotgun library sequences of 74 prokary-
otic species (70 bacteria and 4 archaea, described in
supplementary table S1, Supplementary Material online)
from the NCBI Trace Archive, following Sorek et al.
(2007). We then calculated the coverage of each coding se-
guence in each shotgun library as the number of plasmid
inserts in the library that contained the gene in its entirety
(as described in Materials and Methods: Gene Coverage
in the Shotguns). A visual examination of the coverage
variation among genes within individual shotgun libraries
(figs. 2 and S1, Supplementary Material online) revealed
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Fic. 1.—Central predictions of the complexity and balance hypotheses. The balance hypothesis (A) posits that transferred genes with resident orthologs
may cause an imbalance in the expression of genes that participate in multiprotein complexes and must be produced in stoichiometric amounts. The cost of
expression imbalance is predicted to increase with the number of PPIs, but not with divergence. As a result, genes that engage in PPIs (dark gray and black lines)
are less transferable than genes that lack PPIs (light gray line). The complexity hypothesis (B) posits that transferred genes may interfere in the normal PPIs of the
resident ortholog, and that the probability of interference increases with the divergence between the resident and transferred genes. As a result, transferability
decreases with divergence, but only for genes that engage in PPIs (dark gray and black lines). Two testable predictions result from these hypotheses. The central
prediction of the balance hypothesis (C) is that the transferability of a particular gene, averaged over all donor orthologs, should decrease as the connectivity of
the gene increases. In statistical lingo, the balance hypothesis predicts a main effect of connectivity. Points in (C) are mean values of lines of the same shade in
(A) and (B), illustrating that this prediction does not distinguish between the balance (filled circles) and complexity (open circles) hypotheses. The central pre-
diction of the complexity hypothesis (D) is that the effect of divergence on transferability (i.e., the main effect of divergence) should become more negative as
connectivity increases. In statistical lingo, the complexity hypothesis predicts a connectivity x divergence interaction. Points in (D) are slopes of lines of the same
shade in (4) and (B), illustrating that only the complexity hypothesis predicts a connectivity x divergence interaction, shown here as a decreasing main effect of
divergence from light gray to dark gray to black, among the open cirles. The balance hypothesis makes no such prediction: the main effect of divergence does
not differ between the filled circles.

two general patterns: 1) long genes are less well covered
than short genes in all shotguns and 2) genes near the ori-

to which variance in the gene coverage within libraries
could be explained by the particular methods used to gen-

gin of replication are better covered than genes near the
terminus of replication, but to different degrees in different
shotguns. These patterns suggested strong effects of the
particular pretransformation methods used to generate
the shotgun libraries; thus, we first determined the extent

erate the libraries. Below, we first describe how the shot-
gun library methods were likely to bias gene coverage
and how we controlled for these pretransformation meth-
odological effects on variance in coverage. We then de-
scribe our investigation of how biological features—such
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Fic. 2—Methodological effects on coverage (¢;) in whole genome shotguns. As shown here for P. syringae (A) and Pseudoalteromonas atlantica (D), long
genes are substantially less well covered than short genes in all shotguns. By adjusting the raw coverage values of each gene solely by the likelihood of complete
coverage given the gene’s length (to obtain ¢;*; see Materials and Methods), the bias against long genes is dramatically reduced, as shown here for P. syringae
(B)and P. atlantica (E). These adjusted coverage values, ¢;*, show positional biases in some genomes, for example, P. syringae (C), but not others, for example,
P. atlantica (F). In all panels, points represent the coverage or adjusted coverage of individual genes (i.e., coding sequences) in the P. syringae (A-C) or P. atlan-
tica (D—F) shotgun. Solid black lines (A, B, D, E) show the best fit linear relationship between coverage or adjusted coverage and gene length. Dashed lines (C, F)
are the mean adjusted coverage across all genes in the individual shotguns. Solid lines (C, F) are the sine curves that yield the best fit to the adjusted coverage
data. The solid and dashed lines in F are indistinguishable. Supplementary fig. S1, Supplementary Material online, shows analogous data and model fits for the

complete set of genome shotguns.

as connectivity, divergence from the E. coli ortholog, and
their statistical interaction—explain the remaining variance
in coverage; variance that we infer to have resulted from dif-
ferences in transformation efficiency, that is, transferability.

Effect of Gene Length on Coverage

In figures 24, 2D, and S1, Supplementary Material online,
we show the relationship between coverage and gene
length in each shotgun library (note that two species pos-
sess two chromosomes and we analyzed data for each
chromosome separately). It is apparent from these figures
that long genes are less well covered than short genes in
all shotgun libraries. The likely reason is straightforward.
Long genes are less likely to be entirely contained within
short cloned fragments.

To correct for this bias against long genes, we calculated
the expected bias, by, against each gene / from genome j, gi-
ven the length of the gene, L; and the distribution of cloned
fragment lengths from genome j (supplementary fig. S1,
Supplementary Material online; details in Materials and
Methods: Effect of Gene Length on Coverage). We then di-
vided the observed raw coverage value, ¢j, by the expected
bias, bj, to obtain an unbiased, length-corrected estimate

¢;* for that gene (figs. 2B, 2E, and S1, Supplementary
Material online). Before correcting for length bias, the effect
of gene length on coverage was negative for 74 out of 74 bac-
terial chromosomes (supplementary fig. S1, Supplementary
Material online). After correcting for length bias, the effect
of gene length on coverage was negative in 21 and positive
in 53 shotguns (the unbiased expectation is 37 negative and
37 positive) and has a much smaller statistical effect on cover-
age. Whereas gene length explains up to 43% of variance in
raw coverage within individual shotgun libraries (median R* =
0.092; range = 0.0023-0.43), gene length explains only up to
1.8% of variance in length-adjusted coverage (median R* =
0.0020; range = 1.0 x 107°-0.036).

Effect of Gene Position on Coverage

In figures 2C, 2F, and S1, Supplementary Material online,
we show the adjusted coverage values, ¢;*, plotted against
position in the genome for individual shotguns. The most
obvious pattern is that genes near the origin of replication
had higher coverage residuals than genes near the terminus
of replication in some shotguns. Again, the likely reason for
this pattern is straightforward. Because bacterial genome
replication begins at the origin, genes near the origin are
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replicated before genes near the terminus. Thus, in actively
dividing cells, genes near the origin are present in more
copies within the cell than genes near the terminus. We in-
fer that the difference in this pattern between shotguns re-
sulted from a methodological difference in the bacterial
growth phase, exponential or stationary, at the time gen-
omes were harvested for use in the shotgun.

We estimated the positional bias in each genome j by fit-
ting a sine curve to the ¢;* values as a function of the start
position of each gene i (solid red lines in figs. 2C, 2F, and ST,
Supplementary Material online). The sine curves explained
between 0.007% (fig. 2F; Pseudomonas syringae pv. syrin-
gae) and 45% (supplementary fig. S1, Supplementary
Material online; Arthrobacter sp. fb24) of the variance in
¢;* (interquartile range = 1.32-7.57% variance explained).
To correct for this positional bias, we divided the ¢;* values
by the coverage expectation given the position of gene i in
genome j, E(c;* | positiony), obtained from the best fit sine
curve. For all downstream analyses, we consider the effects
of various independent variables on the resulting depend-
ent variable &; = ¢;*/E(c;* | position;), which we refer to
as relative coverage.

Biological Effects on Coverage

We next examined the effect of amino acid divergence be-
tween donor and recipient copies of orthologous transferred
genes on relative coverage in the shotgun libraries. For each
protein-coding gene in the E. coli K12 genome, we identified
likely orthologs within the 74 shotgun libraries (see Effect of
Divergence on Coverage). There was wide variation among
protein-coding genes, in both the number of shotgun librar-
ies that contained a likely ortholog and the divergence (%
amino acid difference) of those orthologs from the E. coli
copy of the gene (supplementary fig. S2, Supplementary
Material online). For each gene, we then calculated mean
relative coverage among its likely orthologs and the slope
of the relationship between relative coverage and diver-
gence. A visual examination of these data for different genes
revealed dramatically higher variance in the estimated rela-
tionship (i.e., slope) between divergence and relative cover-
age among genes with fewer orthologs than among genes
with more orthologs (figs. 3A-3D and S2, Supplementary
Material online). For example, compare the genes shown
in figure 3A-D, which are representative of genes from the
1st (hofC, fig. 2A, green), 25th (yjjP, fig. 2B, yellow), 50th
(fliS, fig. 2C, blue), and 75th (tolB, fig. 2D, orange) percen-
tiles, in terms of their number of likely orthologs. hofC and
yjjP were randomly chosen from among genes with 5 and
13 likely orthologs, respectively, but, like other genes with
few likely orthologs, the estimated effect of divergence on
transferability for these genes (solid green and yellow circles
in fig. 3H and /) is extreme compared with genes with many
likely orthologs (open black circles in fig. 3H and ).

To reduce this source of noise in the data, we limited the
analyses below to protein-coding genes in the E. coli K12
genome for which we identified likely orthologs in a reason-
ably large number of bacterial genomes and for which the
likely orthologs spanned a reasonably wide range of diver-
gence values from the E. coli gene. Specifically, we required
that each set of orthologous genes include at least 16 ortho-
logs and exhibit a standard deviation, among the orthologs,
of greater than 10% amino acid difference. These criteria
were chosen based on a power analysis of the entire
data set (supplementary figs. S3 and S4, Supplementary
Material online; described in Materials and Methods: Power
Analysis) and reduced the data set to 1,295 sets of ortholo-
gous genes. However, the results we present below were
not quantitatively sensitive to the choice of criteria (described
in detail below). Thus, we proceeded with the set of 1,295
genes for which we have relatively high confidence in our es-
timates of both mean relative coverage and the effect of di-
vergence on relative coverage. We investigated the effects of
three biological characteristics of genes—connectivity, the
expression level of the native gene in E. coli, and gene func-
tion as identified in the Clusters of Orthologous Groups of
proteins (COG) database (Tatusov et al. 1997; Galperin
et al. 2015)—on both of these estimates.

For a particular set of orthologous genes, mean relative
coverage (horizontal dashed lines in figs. 3A-3D and S2,
Supplementary Material online) provides a measure of the
average transferability of divergent copies of that ortholog.
Among the most stringent set of 1,295 protein-coding
genes in our data set, all three biological characteristics
had significant effects on this metric of transferability
(table 1). Increasing connectivity and increasing expression
level both had significant negative effects on mean trans-
ferability (fig. 3£ and ), and there was significant variation
among functional categories in their mean transferability
(fig. 3G). Because these three biological characteristics
are correlated with each other (supplementary fig. S5,
Supplementary Material online), we determined the effects
of connectivity, in isolation from the other two characteris-
tics, by examining the deviations (i.e., residuals) of each
gene’s mean transferability from the value that would be
expected given the gene's native expression level and
COG functional category. We found a significant negative
relationship between connectivity and the resulting mean
transferability residuals (fig. 4A; effect estimate =—6.5 x
107, Fi1204=27.5, P=2x 107). Repeating the analysis
using only the 192 genes involved in translation (COG cat-
egory J; the subset of informational genes with the largest
number of highly connected genes) reveals a strong contri-
bution of these genes to the statistical power of the ana-
lysis. Nonetheless, the effect of connectivity on mean
transferability appears to be a general characteristic of all
protein-coding genes, not just informational genes. The ef-
fect is negative and of similar magnitude among the 192
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Fic. 3.—Biological effects on transferability in whole genome shotguns. We first estimated the mean value and the effect of divergence (% amino acid
difference) on transferability among the set of orthologs of each protein-coding gene in the £. coli K12 genome. Estimates for individual genes are illustrated
here for the E. coli genes hofC (A, green), yjiP (B, gold), fliS (C, blue), and tolB (D, orange) that are representative, respectively, of genes in the 1st, 25th, 50th,
and 75th percentiles, in terms of their number of likely orthologs. For each gene, we estimated mean transferability as mean relative coverage (mean ¢j;
dashed colored lines in A-D), and we estimated the effect of divergence on transferability as the slope of the best fit linear relationship between relative cover-
age (¢;) and divergence from the E. coli gene (solid colored lines in A-D). We then examined the effects of connectivity, native expression level, and COG
functional category on the resulting estimates of mean transferability (E-G) and on the effect of divergence on transferability (H-/). Open colored circles
in (AHD) show the relative coverage and divergence from the E. coli gene of likely orthologs of the E. coli gene shown on the corresponding plot. Each
open colored circle in (A)~(D) was estimated from a different genome shotgun library. Filled colored points in (E), (F), (H), and (/) show the mean transferability
and effect of divergence estimated from the gene in (A)~D) with the corresponding color. Each open black circle in panels (E), (F), (H), and (/) shows the mean
transferability and effect of divergence estimated from an individual gene with at least 16 likely orthologs and a standard deviation, among the orthologs, of
greater than 10% amino acid difference. The genes hofC and yjjP are labelled in H and /to highlight that genes with few identified orthologs tended to yeild
extreme estimates for the effect of divergence on transferability.

translation proteins (fig. 4B; connectivity effect estimate =
—83x107% F1199=19.88, P=1.4%x107°) and the 1,102
nontranslation proteins (fig. 4C; connectivity effect esti-
mate=-9.8x 1074, F1.1102=10.54, P=0.0012). These
effect estimates and P values were quantitatively similar
and qualitatively unchanged in analyses of the 2,653 (or
1,883) orthologous gene sets that met the less stringent
criteria of including a minimum of 4 (or 10) orthologs
and a standard deviation greater than 4% (or 7%) amino

acid difference (supplementary table S2, Supplementary
Material online).

For a particular set of orthologous genes, the slope of the
relationship between relative coverage and divergence
from the E. coli gene (solid lines in figs. 3A-3D and S2,
Supplementary Material online) estimates the main effect
of divergence on transferability of the orthologs. Among
the most stringent set of 1,295 protein-coding genes in
our data set, connectivity shows a significant negative
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Table 1

Analysis of Variance Table: Biological Effects on Mean Transferability

Model Parameter df SSE MSE FValue P Value

Connectivity 1 22312 223123 2741  22x107'®

COG functional 20  1.0647 0.05324 6.542 2.2x107"°
category

Native expression 1 0.1656 0.16555 20.34 7.1x107°
level

Residuals 1,273 10.359 0.00814 — —_

Nore.—Statistical model: mean transferability ~ connectivity + COG category
+ native expression level.

interaction with the effect of divergence on transferability
(fig. 3H and table 2). Native expression level and functional
category do not (fig. 3/ and J and table 2). Examining the
deviations (i.e., residuals) of each gene's effect of diver-
gence on transferability from the value that would be ex-
pected given the gene’s native expression level and COG
functional category, we found a significant negative rela-
tionship between connectivity and the effect of divergence
residuals (fig. 4D, effect estimate =—-3.3x 107>, Fi1204=
9.037, P=0.0027). That is, we found a significant diver-
gence x connectivity interaction. Like the main effect of

connectivity, the power of this analysis stems largely from
the translation proteins but the divergence x connectivity
interaction appears to be a general characteristic of all
protein-coding genes. The divergence x connectivity inter-
action is negative and of similar magnitude among the
61 translation proteins (fig. 4E; estimate=-4.0x 107>,
F1102=11.44, P=0.0009) and the 1,102 nontranslation
proteins (fig. 4F; estimate=—-5.6x 107>, F; 1101 =3.98,
P=0.0463). The results described in this and the previous
paragraph do not appear to be constrained to the 1,295
genes we analyzed here. These effect estimates were quan-
titatively similar in analyses of the 2,653 (or 1,883) ortholo-
gous gene sets that met the less stringent criteria of
including a minimum of 4 (or 10) orthologs and a standard
deviation greater than 4% (or 7%) amino acid difference
(supplementary table S3, Supplementary Material online),
but these data sets tended to be too noisy to sufficiently
power the statistical tests.

Discussion

In this paper, we built on the recognition by Sorek et al.
(2007) that the shotgun libraries used to generate the
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Table 2

Analysis of Variance Table: Biological Effects on the Divergence x Connectivity Interaction

Model Parameter df SSE MSE F Value P Value
Connectivity 1 0.002711 0.0027113 42.56 9.87E - 11
COG functional category 20 0.000884 0.0000442 0.694 0.8357
Native expression level 1 0.000117 0.00011658 1.83 0.1764
Residuals 1,273 0.081097 6.371x107° — —

Norte.—Statistical model: effect of divergence ~ connectivity + COG category + native expression level.

earliest whole prokaryotic genome sequences could be
used as experimental tests of the complexity hypothesis.
Sorek et al. (2007) observed across 85 finished microbial
genomes that a subset of genes appeared “unclonable,”
as indicated by an absence of sequencing reads spanning
a gene. They then followed a bottom-up approach, experi-
mentally investigating a modest set of particular genes
from particular genomes that failed to transfer and identi-
fying the molecular mechanism that explained each failure.
Here, we focused on a top-down approach, using the shot-
gun libraries to estimate relative rates of transfer for large
numbers of genes from large numbers of genomes. We
then tested the ability of two general hypotheses—the bal-
ance and complexity hypotheses—to explain differences in
the estimated transfer rates between genes and genomes.
Our quantitative analysis confirmed that 1) transferability
decreased with the connectivity of the transferred gene
and 2) protein sequence divergence between transferred
and native orthologs reduced transferability more for genes
with higher connectivities than for genes with lower connec-
tivities. The first observation is predicted by both the balance
and complexity hypotheses; the second observation is
predicted only by the complexity hypothesis (fig. 1). Thus,
although our analysis is consistent with the balance hypoth-
esis, in that the cost of protein overexpression increases with
connectivity, it provides stronger support for the complexity
hypothesis. Specifically, our analysis suggests that the suc-
cess or failure of a transferred gene to engage in normal
PPIs is an important determinant of which genes successfully
undergo HGT, and that the probability of HGT failure in-
creases via a negative (i.e., synergistic) interaction between
increasing connectivity and increasing divergence.

We note that the complexity and balance hypotheses pre-
dict consequences of horizontal transfer for PPl failure and
misexpression, specifically of genes native to the recipient
bacterium. To test these hypotheses, we had to narrow our
focus to orthologs of genes in the E. coli genome.
Consequently, our support for the complexity hypothesis is
most relevant to its role in phenomena such as the expansion
of protein families and the acquisition of novel gene func-
tions, for which the acquisition of genes with orthologous
native copies is a necessary intermediate. The extent to which
complexity also poses a barrier to HGT of accessory genes
(such as virulence factors or antibiotic resistance genes)

that are not orthologous to any native gene is also of interest
but falls beyond the scope of the work we present here.

Our results highlight several of the difficulties inherent in
testing the balance and complexity hypotheses experimental-
ly: 1) connectivity and divergence are not the only biological
characteristics of genes correlated with transferability, 2)
many of these characteristics are also correlated with each
other (supplementary fig. S5, Supplementary Material on-
line), and 3) gene function and connectivity are poorly under-
stood for many genes. For example, connectivity explains
substantially more of the variance among all genes in their
mean transferability (R* = 0.16 before controlling for the cor-
related effects of native expression level and COG category)
than among their mean transferability residuals (R* =0.02
after controlling for the correlated effects of native expression
level and COG category). Connectivity also explains substan-
tially more of the variance in mean transferability residuals
among the translational proteins (R* = 0.09), for which func-
tion and connectivity are better understood, than among the
nontranslational proteins (R*=0.01), which include many
proteins of unknown function and connectivity. Thus, our
conservative decisions to control for the potentially con-
founding effects of native expression level and COG category
and to include many poorly characterized genes in our ana-
lysis likely resulted in an underestimate of the contributions
of connectivity and divergence to transferability.

Even in a less conservative analysis that includes only the
translational proteins and does not control for the corre-
lated effects of native expression level, connectivity explains
only 31% of the variance in transferability (i.e., R?=0.31)
and 16% of the variance in the effect of divergence on
transferability, leaving most of the variance unexplained.
Other than the fact that genomic data are inherently noisy,
in part because genomes still contain many poorly charac-
terized genes, we do not know what explains the remaining
variance. We examined more closely the set of proteins
with more than 80 PPIs to try to identify differences be-
tween the proteins that fall substantially above and sub-
stantially below the regression lines in figure 4A and D.
Among this set of highly connected genes, the genes that
were more versus less transferable than expected did not
differ in their identities, functions, lengths, number of dis-
ordered regions, or number of identified orthologs in our
collection. The ten most transferable genes among this
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set (ribosomal subunit proteins S4, S8, S11, S15, L17, L28,
L32, and L33 and RNA polymerase subunits alpha and ome-
ga) are, to our eyes, indistinguishable from the ten least trans-
ferable genes among this set (ribosomal subunit proteins S7,
$10,512,S20, L3, L4, L11, and L34 and RNA polymerase sub-
units beta and beta’). However, the differences in mean
transferability and in the effect of divergence on transferabil-
ity (more specifically, the residuals in fig. 4A and B) did de-
pend on the distribution among the orthologs in each gene
set of their divergence from the E. coli gene. Genes whose
orthologs were, on average, more divergent from the E.
coli gene copy were less transferable (effect of mean diver-
gence on the residuals in fig. 4A: estimate = —0.0045, F; s,
=6.781, P=0.012, adjusted R*=0.1). In contrast, genes
whose orthologs exhibited higher variation in divergence
from the E. coli gene copy were more transferable (effect
of the standard deviation of divergence on the residuals in
fig. 4A: estimate=0.0064, F;s,=9.046, P=0.004, ad-
justed R?=0.13). Sets of gene orthologs with higher vari-
ation in their divergence from E. coli also exhibited weaker
(more positive) effects of divergence on transferability (effect
of the standard deviation of divergence on the residuals in fig.
4B: estimate =0.0004, f;5,=11.11, P=0.0016, adjusted
R? = 0.16). These patterns indicate that there are effects of di-
vergence on transferability beyond the divergence x connect-
ivity interaction predicted by the complexity hypothesis.
Because the data for this analysis were originally gathered
for a different purpose, this “experiment” was unavoidably
unbalanced. For instance, we could not ensure a similar distri-
bution of divergence values among genes with low and high
PPIs. As a result, the main effects of divergence contributed to
the difficulties inherent in our test of the complexity hypoth-
esis. We note, however, that these effects of the mean and
standard deviation of divergence were apparent only when
we limited our focus to genes with more than 80 PPIs.
None of these effects was apparent in the full data set.

The difficulties inherent in testing the balance and com-
plexity hypotheses were also highlighted by a previous experi-
mental test (Acar Kirit et al. 2020) that did not detect a
statistically significant main effect of connectivity on transfer-
ability (as defined in fig. 1C), despite the use of a more precise
measure of transferability than ours. Acar Kirit et al. (2020) ex-
amined a substantially smaller number of genes (44 compared
with 1,295) from a smaller number of donor genomes (1
compared with >16 for each gene). Thus, the difference in
outcome is likely to have resulted from the limited statistical
power of their smaller data set to detect a main effect of con-
nectivity on transferability. Although their precise fitness as-
says enabled the detection of fitness costs imposed by two
biological characteristics of genes that we did not detect, in-
creasing the number of disordered regions and the length
of transferred proteins, their use of only a single donor gen-
ome prevented an examination of the statistical interaction
between connectivity and divergence in their effects on

transferability (as in fig. 1D). Because the detection of inter-
action effects requires more statistical power than the detec-
tion of main effects, our ability both to differentiate between
the two hypotheses and to support the complexity hypothesis
was likely only possible because our data set was compiled
from 74 whole genome shotgun libraries.

Indeed, our strongest support of the complexity hypoth-
esis comes from the consistency of the interaction between
divergence and connectivity among both proteins with func-
tions in translation and proteins with other functions (fig. 4).
The complexity hypothesis was proposed to explain the ob-
servation from comparative data that HGT has happened
less often among informational genes, like the subunits of
ribosomes and polymerase complexes, than among oper-
ational genes, like enzymes (Rivera et al. 1998; Jain et al.
1999). The complexity hypothesis posits that the observed
difference in the rate of HGT resulted not from the differ-
ence in function between informational and operational
genes but rather from the large difference in the connectiv-
ities of these different types of genes. Its central prediction is
that increases in connectivity and the divergence between
donor and recipient orthologs will interact synergistically to
reduce transferability. In short, highly divergent genes with
many PPIs will exhibit the lowest rates of HGT, regardless
of function. Thus, our finding that connectivity interacts
with divergence to reduce transferability, not only among
the translation (i.e., informational) genes but also among
nontranslation (i.e., noninformational) genes, supports
both the central prediction of the complexity hypothesis
and its underlying logic that informational genes exhibit low-
er rates of HGT specifically because they are highly con-
nected, not because they perform an informational function.

Our results confirm the central predictions of both of the
two nonexclusive hypotheses used to explain why transfer-
ability should decrease with connectivity. We provide the
strongest support for the role of PPI failure among diver-
gent orthologs of highly connected genes (the complexity
hypothesis). Together, our results support the emerging
“rule” that deleterious interactions among protein partners
in bacteria may govern the frequency with which individual
genes successfully undergo HGT. Given that HGT is a major
contributor to bacterial genome evolution, our work sug-
gests that the complexity hypothesis may shape phenotypic
diversity, drive the expansion of protein families, and affect
the evolution of new phenotypes, new metabolic path-
ways, and new species in bacteria.

Materials and Methods

Data Sources

The complete set of whole genome shotguns and as-
sembled genomes used in this work is described in
supplementary table S1, Supplementary Material online.
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We obtained whole genome shotgun reads from NCBI's
trace archive (ftp:/ftp.ncbi.nih.gov/pub/TraceDB). We in-
cluded all of the shotguns examined in Sorek et al. (2007)
except Candidatus Koribacter versatilis Ellin345, whose
shotgun reads were no longer available in the trace archive.

We obtained complete bacterial genome sequences
from NCBI's microbial genome database (https:/www.
ncbi.nlm.nih.gov/genome/microbes/). From these se-
guence files, we determined the protein sequence, start
position, end position, and length for each coding se-
quence in each genome.

We obtained protein interaction data from the STRING
database version 11.5 (http:/string-db.org). We downloaded
two files containing detailed confidence scores associated
with evidence of PPIs in E. coli strain K12 substrain
MG1655, one including evidence of physical interactions
only (511145 protein.physical.links.detailed.v11.5.txt) and
the other including evidence of both physical and nonphysic-
al interactions (511145.protein.links.detailed.v11.5.txt). For
each gene, we extracted the confidence score from the ex-
perimental column of these files. Confidence scores range
from 0O (low confidence) to 999 (high confidence). We con-
sidered pairs of proteins to be interacting if their confidence
score, based on experimental evidence only, was greater
than a particular threshold value. Our statistical tests of the
balance and complexity hypotheses produced qualitatively
and quantitatively similar conclusions regardless of the
choice to count only physical interactions or both physical
and nonphysical (as represented in the STRING database)
or the choice of confidence score cutoff between 200 and
800 (analyses not shown). For the analysis described here,
we counted both physical and nonphysical interactions and
used an intermediate confidence score threshold of 500.

We obtained expression data for the native copy of each
gene in E. coli from the ASAP database (https:/asap.
genetics.wisc.edu/asap/experiment_data.php). We down-
loaded data from two replicate (PALSP49 and PALSP50) ca-
librated microarray experiments conducted by Allen et al.
(2003) on E. coli strain K12 MG1655, grown to log phase
in LB liquid medium at 37 °C. For each gene, we calculated
native expression level as the mean of the estimated tran-
script copy number across the two replicate experiments.

We obtained the functional category of each gene from
the COG database at https://www.ncbi.nlm.nih.gov/
research/cog/ (Tatusov et al. 1997; Galperin et al. 2015).

We obtained the number of disordered regions for all of
the genes with at least 80 PPIs using the web service
GlobPlot at http:/globplot.embl.de (Linding et al. 2003).

Gene Coverage in the Shotguns

The coverage, ¢j, of gene i in the whole genome shotgun of
species j was calculated as the number of plasmid inserts in
shotgun j that contain gene / in its entirety. Coverage values

were determined by mapping the paired reads from each
whole genome shotgun to the corresponding assembled gen-
ome using the BWA-SW algorithm from the Burrows—
Wheeler Aligner (Li and Durbin 2010). A small minority of
reads mapped to more than one location. We identified
and eliminated most of the incorrectly mapped reads by re-
quiring a phred-scaled map quality score greater than 150
and a distance between paired reads of fewer than
100,000 bases. For the few multiply-mapped reads that re-
mained, one of the mapping locations was chosen at random.
Read pairs for which one read mapped upstream of gene /
and one read mapped downstream of gene i were counted
toward the coverage of gene /. Read pairs that entirely
spanned more than one gene were counted toward all of
the spanned genes. Although we mapped read pairs to
all of the replicons that comprised each genome, only
genes contained on large replicons (i.e., chromosomes)
were included in downstream analyses. We ignored genes
on plasmids because their biology differs from genes on
chromosomes (e.g., their copy number is often higher)
and because their dramatically lower gene content resulted
in dramatically higher variance in coverage and, conse-
guently, much less ability to correct for the known biases
in the data that we describe below.

Effect of Gene Length on Coverage

To control for the bias against long genes, we calculated for
each genome a likelihood of observing a gene of a particu-
lar length, /, given the actual distribution of cloned frag-
ment lengths, f;, that comprised whole genome shotgun .

For an individual cloned fragment of length x, the prob-
ability that it contained the entirety of a gene of length /s
proportional to the difference in the lengths between the
cloned fragment and the gene, if the cloned fragment is
at least as long as the gene, or 0 otherwise:

if x>1
if x<I.

pUx) ~x+1—1

p(lx) =0 M

For each genome j, the likelihood of observing each gene,
gj; of length, [, given the distribution of cloned fragment
lengths, ;, is then calculated by summing these individual
probabilities over all of the observed cloned fragment
lengths x; in the shotgun of genome j:

Lgylf) =" _ plj1x). (2)

For each genome j, the bias against long genes, by(/), was
then calculated as the likelihood of observing a gene of
length / relative to that of the most likely (i.e., the shortest)
gene in the same genome:

bj(l) = L{If)/Lmin()If). ®3)
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For each genome, coverage values for each gene were ad-
justed by the length biases calculated for that genome, so
that the data used for all downstream analysis were of
the form:

«_ G

G = B (4)

Effect of Gene Position on Coverage

To control for the long-range positional biases, we fit the
adjusted coverage data from individual genomes to a sine
curve using the /m function in R (figs. 2C, 2F, and S1D,
Supplementary Material online). For gene i in genome j,
we calculated relative coverage, ¢, by dividing its length-
adjusted coverage value, ¢, by the fitted value at that pos-
ition in the genome, E(c;*|position;):

G = c}j/E(c,’-ﬂposition,-j) (5)

Effect of Divergence on Coverage

For each protein-coding gene in the E. coli K12 genome, we
identified the coding sequences in each shotgun library that
were reciprocal best hits to the £. coli K12 gene using
BLASTp (Altschul et al. 1990). Coding sequences that
were not reciprocal best hits could not be identified as
the most likely ortholog of a particular coding sequence
in E. coli K12 and were, therefore, excluded from down-
stream analyses. The protein sequences of reciprocal best
hits were aligned to the E. coli K12 gene using the software
ProbCons (Do et al. 2005), and the alignments were used to
calculate protein divergence as % amino acid difference
from the E. coli K12 ortholog. For each of the resulting
sets of orthologous genes, we used the /m function from
the stats package in R (version 4.1.2) to determine the
best fit linear relationship between the relative coverage
of each ortholog in the set and its divergence from the E.
coli ortholog.

Statistical Tests of the Balance and Complexity
Hypotheses

We used the Im function from the stats package in R (ver-
sion 4.1.2) to investigate the effects of connectivity and di-
vergence on the transferability into E. coli of orthologs of
the protein-coding genes in the E. coli genome (as illu-
strated in fig. 1). For each E. coli gene, we estimated
mean transferability (the y axis in fig. 1C) as the mean rela-
tive coverage across all orthologs of the gene. We mea-
sured the effect of divergence on transferability (i.e., the
main effect of divergence; y axis in fig. 1D) as the slope of
the linear relationship between relative coverage and diver-
gence for all orthologs of the gene (as described above in
Effect of Divergence on Coverage). In essence, this statistic-
al approach considers connectivity and divergence as fixed

effects and the identity of the E. coli ortholog as a random
effect. The experimental units are the sets of gene ortho-
logs and the analysis considers the individual orthologs in
each set to be repeated measures of a particular ortholo-
gous gene along a divergence gradient.

Power Analysis

A visual examination of the data in supplementary figure
S2, Supplementary Material online, revealed that the high-
est positive and lowest negative estimates of the effects of
divergence on relative coverage were most common
among genes for which the set of identified orthologs
spanned only a narrow range of divergence values or for
which we identified only very few orthologs. In addition,
the smaller sets of orthologous genes often included at
least one gene with an exceptionally high divergence
(>80% amino acid difference) from the E. coli ortholog,
suggesting that these sets included donor genes that
were not true orthologs. To examine the sensitivity of our
statistical tests to the noisy data that resulted from these is-
sues, we repeated the analysis described above, requiring
that each set of orthologous genes includes at least X
orthologs and exhibits a standard deviation greater than
Y% amino acid difference, where X and Y were both varied
between 2 and 22. For each pair of X and Y, we estimated
the number of genes that met both requirements, the main
effect of connectivity on mean transferability, and the F
statistic and P value associated with the statistical test of
the effect (supplementary fig. S3, Supplementary Material
online). For each pair of Xand Y, we also estimated the con-
nectivity x divergence interaction effect (i.e., the effect of
connectivity on the main effect of divergence; see fig.
1D), as well as the F statistic and P value associated with
the statistical test (supplementary fig. S4, Supplementary
Material online).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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Data Availability

The data are publicly available and described in
supplementary table S1, Supplementary Material online.
The analysis pipeline consists of programs written in
Python 3.6 and R version 4.1.2 (R Development Core
Team 2013), and UNIX shell scripts that call those pro-
grams, BEDTools (Quinlan and Hall 2010), and SAMtools
(Li et al. 2009). All of our code and scripts are publically
available at https:/bitbucket.org/cburch/burch-et-al-2023.
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