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A B S T R A C T

Many processes in nature such as conformal changes in biomolecules and clusters of interacting
particles, genetic switches, mechanical or electromechanical oscillators with added noise, and
many others are modeled using stochastic differential equations with small white noise. The
study of rare transitions between metastable states in such systems is of great interest and
importance. The direct simulation of rare transitions is difficult due to long waiting times.
Transition path theory is a mathematical framework for the quantitative description of rare
events. Its crucial component is the committor function, the solution to a boundary value
problem for the backward Kolmogorov equation. The key fact exploited in this work is that
the optimal controller constructed from the committor leads to the generation of transition
trajectories exclusively. We prove this fact for a broad class of stochastic differential equations.
Moreover, we demonstrate that the committor computed for a dimensionally reduced system
and then lifted to the original phase space still allows us to construct an effective controller
and estimate the transition rate with reasonable accuracy. Furthermore, we propose an all-the-
way-through scheme for computing the committor via neural networks, sampling the transition
trajectories, and estimating the transition rate without meshing the space. We apply the
proposed methodology to four test problems: the overdamped Langevin dynamics with Mueller’s
potential and the rugged Mueller potential in 10D, the noisy bistable Duffing oscillator, and
Lennard-Jones-7 in 2D.

. Introduction

The study of rare events in stochastic systems is crucial for understanding natural phenomena such as conformal changes in
iomolecules and clusters of interacting particles, protein folding, noise-driven transitions in nonlinear oscillator systems, genetic
witches, and many others. Often rare events in such systems are associated with transitions between metastable states separated
y high energetic barriers. Direct simulations of rare events are difficult due to long waiting times. Deterministic approaches based
n solving partial differential equations are hampered by the high dimensionality of phase space or other numerical issues. In this
ork, we propose an approach for sampling transition trajectories between metastable states based on optimal control and use them

o calculate transition rates. This approach is inspired by a remarkable fact demonstrated in a recent work by Zhang, Sahai, and
arzouk [1] that a highly effective controller for a broad class of stochastic systems can be obtained using a rough approximation
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to the solution of an appropriate partial differential equation. The theoretical foundation of this approach is motivated by work [2]
of Lu and Nolen and recent work [3] of Gao, Li, Li, and Liu detailing the case of overdamped Langevin dynamics.

1.1. An overview

Numerical methods for the study of rare events can be divided into two large classes: deterministic and stochastic.
Stochastic methods include direct simulation suitable only for the case where the noise is relatively large [4] as well as

arious enhanced sampling algorithms. These include methods aimed at sampling rare transitions e.g. transition path sampling [5–
], milestoning [8], weighted ensemble [9], and adaptive splitting methods [10,11], and methods for the exploration of the
onfigurational space e.g. metadynamics [12,13] and machine learning-assisted techniques — see [14,15] and references therein.

The class of deterministic methods can be subdivided into several categories. First, there are methods aiming at finding
aximum likelihood transition paths via a gradient descent in the path space [16–21] and via using control theory and a shooting

pproach [22,23]. While they are computationally cheap and suitable for high dimensions, these methods produce a single transition
ath along which the transition flux is focused as the noise amplitude tends to zero, and are only able to give an asymptotic scaling
or the exponential factor of the transition rate in the limit of noise coefficient approaching zero. Second, methods for computing the
uasipotential on a mesh are useful for visualization of the effective potential for two- or three-dimensional systems with nongradient
rifts — see [24–27]. Third, there are methods using the framework of transition path theory [28,29] where the key component
s the numerical solution of the committor problem, a boundary-value problem for the stationary backward Kolmogorov equation.

Novel techniques developed for accomplishing this task in dimensions higher, and even in some cases, much higher than three,
include those based on training neural networks [30–32], crafting diffusion maps [33–35], or representing the solution by tensor
trains [36].

1.2. Optimal control

The first two categories of deterministic methods, i.e. methods for finding maximum likelihood transition paths in the vanishing
noise limit and methods for computing the quasipotential, are connected via the deterministic optimal control. For example, consider
a system evolving according to an SDE of the form

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)
√

𝜖𝑑𝑊𝑡, (1)

where the drift field 𝑏 is smooth and has a finite number of attractors lying within a ball of a finite radius around the origin, the
atrix function 𝜎 is smooth, and 𝜖 is a small parameter. Let  be an attractor of the corresponding ODE 𝑥̇ = 𝑏(𝑥). The escape
roblem from the attractor  can be viewed as an optimal control problem where an optimal realization of the Brownian motion 𝑊𝑡
riving the process out of the basin of  is sought. Therefore, the controlled ODE with a controller 𝑢 is

𝑥̇ = 𝑏(𝑥) + 𝜎(𝑥)𝑢, 𝑥(0) ∈ . (2)

he cost functional is derived in the large deviations theory [37,38]. If 𝜎 is nonsingular everywhere, the cost functional defined for
all absolutely continuous paths 𝜙(⋅) is given by

𝑆𝑇 (𝜙) =
1
2 ∫

𝑇

0
‖𝑢(𝜙(𝑡))‖2𝑑𝑡 ≡ 1

2 ∫

𝑇

0
‖𝜎−1(𝜙)[𝜙̇ − 𝑏(𝜙)]‖2𝑑𝑡. (3)

The last expression is exactly the Freidlin–Wentzell action functional for SDE (1) [38]. The optimal controller 𝑢 is given by

𝑢 = 𝜎⊤∇𝑈, where 𝑈 (𝑥) = inf
𝜙,𝑇

{

𝑆𝑡(𝜙) ∣ 𝜙(0) ∈ , 𝜙(𝑇 ) = 𝑥
}

(4)

is the quasipotential. The infimum in (4) taken over all paths and all final times is always achieved at 𝑇 = ∞ since 𝜙(0) ∈  [38].
Plugging this optimal controller to ODE (2) results in the ODE governing the optimal escape path from the attractor  [39,40]

𝑥̇ = 𝑏(𝑥) + 𝜎(𝑥)𝜎(𝑥)⊤∇𝑈 (𝑥). (5)

In practice, if the quasipotential is found, one can find the optimal escape path from the basin of  by integrating ODE (5) backward
in time starting at the point at the boundary of the basin of  where the quasipotential 𝑈 is minimal. Therefore, the quasipotential
determines the optimal controller for finding the most probable escape path in the zero noise limit, and the escape path is governed by
ODE (5).

A similar connection via stochastic optimal control exists between transition path sampling and methods relying on solving the
committor problem. These two approaches address the case where the noise is small but finite. The study of stochastic optimal
control problems in the context of molecular dynamics applications was started by Hartmann and collaborators in 2012 [41]. In
contrast to seeking an optimal realization of the Brownian motion as in the deterministic optimal control problem outlined above, the
setting of the stochastic optimal control problem leaves the noise term unchanged. Instead, it aims at finding a minimal modification
to the drift term of the governing SDE that would make all trajectories accomplish the desired transition. For example, suppose a system
is governed by the overdamped Langevin dynamics

𝑑𝑋 = −∇𝑉 (𝑋 )𝑑𝑡 +
√

2𝛽−1𝑑𝑊 , (6)
2

𝑡 𝑡 𝑡
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where 𝑉 (𝑥) is a smooth and coercive potential with a finite number of isolated minima and 𝛽−1 is a small parameter often interpreted
in chemical physics applications as the temperature. Let 𝐴 and 𝐵 be open disjoint sets surrounding local minima 𝑥𝐴 and 𝑥𝐵 of 𝑉 (𝑥),
and let 𝑞(𝑥) be the committor function, i.e., the probability that the process governed by (6) and starting at 𝑥 will first reach 𝐵
ather than 𝐴. The committor function determines the optimal controller for stochastic dynamics. Precisely, the dynamics of transition
aths from 𝐴 to 𝐵 are governed by [2]

𝑑𝑋𝑡 =
[

−∇𝑉 (𝑋𝑡) + 2𝛽−1∇ log 𝑞(𝑥)
]

𝑑𝑡 +
√

2𝛽−1𝑑𝑊𝑡, 𝑋0 ∈ 𝜕𝐴. (7)

The function 2𝛽−1∇ log 𝑞(𝑥) is the optimal controller with respect to the cost functional [3,42]

𝐶(𝑢) = E𝑃

[

1
2 ∫

𝜏𝐴𝐵

0
‖𝑢(𝑋𝑡)‖2𝑑𝑡 + 𝑔(𝑋𝜏𝐴𝐵 )

]

, where 𝑔(𝑥) =

{

+∞, 𝑥 ∈ 𝜕𝐴
0, 𝑥 ∈ 𝜕𝐵

(8)

is the exit cost, 𝜏𝐴𝐵 = inf{𝑡 > 0 ∣ 𝑋𝑡 ∈ 𝐴̄ ∪ 𝐵̄} is the stopping time, and 𝑃 is probability measure on the path space of SDE (6).

1.3. Applications

In this work, we are especially interested in applications coming from chemical physics and mechanical engineering.
In chemical physics, molecular motion is often modeled by Langevin dynamics in R6𝑁 where 𝑁 is the number of atoms. To

alleviate the problem of high dimensionality and make results more interpretable, physically motivated collective variables are
often introduced. Collective variables (CVs) are functions of atomic coordinates effectively capturing the main dynamical modes.
Common choices of CVs are dihedral angles along the backbone of a studied biomolecule, interatomic distances between particular
key atoms, etc. The dynamics in collective variables 𝑍𝑡 ∈ R𝑑 , 𝑑 ≪ 6𝑁 , are often modeled by the overdamped Langevin dynamics in
collective variables

𝑑𝑍𝑡 =
[

−𝑀(𝑍𝑡)∇𝐹 (𝑍𝑡) + 𝛽−1∇ ⋅𝑀(𝑍𝑡)
]

𝑑𝑡 +
√

2𝛽−1𝑀1∕2(𝑍𝑡)𝑑𝑊𝑡 (9)

here 𝑀(𝑍𝑡) and 𝐹 (𝑍𝑡) are the diffusion tensor and the free energy found by standard techniques using molecular dynamics (MD)
ata [19]. The computation of 𝑀 and 𝐹 is detailed in Appendix A of [34]. We note that the dynamics of SDE (9) do not necessarily
ccurately represent the dynamics of the CVs evaluated along the trajectory governed by the original SDE even if the original SDE
s merely the overdamped Langevin dynamics (6) and with only one collective variable [43]. It is shown in [43] that the level sets of

the collective variable should be normal to the manifold along which the dynamics of the original system are focused for an accurate
estimate of residence time near metastable states using the reduced system, i.e., SDE (9) with 𝑋𝑡 being a scalar function.

Among mechanical engineering models, we are interested in nonlinear oscillators with small added noise:
{

𝑑𝑋𝑡 = 𝑚−1𝑃𝑡𝑑𝑡
𝑑𝑃𝑡 =

[

−𝛾𝑃𝑡 − ∇𝑉 (𝑋𝑡)
]

𝑑𝑡 +
√

2𝛾𝑚𝜖𝑑𝑊𝑡,
(10)

where 𝜖 is the parameter regulating the noise amplitude, 𝛾 is the friction coefficient, and 𝑉 is the potential energy function.
Note that SDEs (9) and (10) are of the form of SDE (1) with a matrix function 𝜎(⋅) being 𝑑 × 𝑟 where 𝑑 is the dimension of the

hase space and 𝑟 ≤ 𝑑 is the rank of 𝜎, i.e., the matrix function 𝜎 has linearly independent columns. In this case, 𝑊𝑡 is the standard
-dimensional Brownian motion.

.4. Goals and summary of main results

The goal of this work is two-fold. The first objective is to establish the connection between the committor and the optimal control
or a broad class of SDEs. The second objective is to develop a methodology based on optimal control and transition path theory
or sampling transition paths from a metastable region 𝐴 to a metastable region 𝐵 and finding the transition rate from 𝐴 to 𝐵.

We develop a workflow that allows one to generate the transition trajectories and compute the transition rate without meshing
he ambient space. Our Python codes implementing this workflow are posted on GitHub [44,45].

1. Theoretical result: the solution to the optimal control problem. We have proven a theorem (Theorem 3.1) that established
he relationship between the committor and the optimal control for SDE (1) with 𝜎(⋅) being 𝑑 × 𝑟, 𝗋𝖺𝗇𝗄(𝜎) = 𝑟. The optimally controlled
ynamics are found to be of the form

𝑑𝑋𝑡 =
[

𝑏(𝑋𝑡) + 𝜎𝜎⊤𝑣∗(𝑋𝑡)
]

𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡, (11)

where the optimal control 𝜎⊤𝑣∗ satisfies

𝜎⊤𝑣∗ = 𝜎⊤∇ log 𝑞+ (12)

where 𝑞+ is the forward committor (17). This is a generalization of Theorem 3.3 in [3] and is related to the results in [1,2].
2. Compute the committor. In MD applications, it is challenging to compute the committor 𝑞(𝑥) accurately for the dynamics

of interest due to high dimensionality. Therefore, we compute it for the reduced dynamics in CVs (9) and then lift it to the original
phase space assuming that the dynamics in it is overdamped Langevin (6). It is also difficult to obtain an accurate solution to
the committor problem for SDE (10) due to the degeneracy of the elliptic PDE. Therefore, in both cases, we expect to have an
approximate solution to the committor problem.
3
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Neural network-based solvers for the committor problem have several advantages. First, they find a globally defined smooth
olution function whose gradient needed for the controller 𝑣∗ is readily accessible via automatic differentiation. Second, they do not
equire artificial boundary conditions on the outer boundary of the computational domain unlike finite difference and finite element
ethods. Finally, they do not require meshing the space which makes them more amenable to promotion to higher dimensions. Our
eural network-based solver for the committor problem for SDE (9) is similar to the one by Li, Lin, and Ren [31] that exploits
he variational formulation and sets up a solution model that automatically satisfies the boundary conditions. The committor
roblem for SDE (10) does not admit a variational formulation. Therefore, we use the PINNs framework by Raissi, Perdikaris,
nd Karniadakis [46].

3. Sample transition trajectories. The transition path theory framework allows one to compute the transition rate once the
ommittor is available. However, if the committor is inexact e.g., due to suboptimal or insufficient set of CVs, the transition rate
etermined in this way is likely to be highly inaccurate [35,43]. On the other hand, even a rough approximation to the solution of
he backward Kolmogorov equation yields a very good controller. Therefore, we use the found committor to construct a controller
ccording to (11)–(12) and sample transition trajectories.

4. Estimate the transition rate. The transition rate 𝜈𝐴𝐵 is defined as the average number of transitions from 𝐴 to 𝐵 observed
per unit time. We propose to estimate it as

𝜈𝐴𝐵 =
𝜌𝐴𝐵

E[𝜏𝐴𝐵]
, (13)

where 𝜌𝐴𝐵 is the probability of a trajectory being reactive i.e. on its way from 𝐴 to 𝐵, and E[𝜏𝐴𝐵] is the expected crossover time from
to 𝐵 found by simulating the controlled process (11)–(12). The probability 𝜌𝐴𝐵 is estimated using the computed committor.
5. Validation. We apply the proposed methodology to four test problems: the overdamped Langevin equation with Mueller’s

otential in 2D and with the rugged Mueller potential in 10D as in [31], a single bistable Duffing oscillator as in [1], and
ennard-Jones cluster of 7 particles in 2D (LJ7) as in [34,47]. We assess the accuracy and demonstrate the efficacy of the proposed
ethodology. In all test cases, the estimates of the transition rate by formula (13) are consistent with those found by brute force

ven if the committor is not very accurate as in the case of LJ7. On the other hand, the transition rate estimated directly using the
omputed committor is notably less accurate. An explanation for this phenomenon is offered.

The paper is organized as follows. Section 2 provides the necessary background on transition path theory and the transition path
rocess. Sections 3 and 4 contains our theoretical results. Section 5 describes the numerical methods used in this work. Section 6
resents the application of the proposed methodology to three benchmark test problems. Section 7 summarizes the results and gives
erspectives for future work. The proof of the main theorem (Theorem 3.1) as well as a number of technical aspects are elaborated
n appendices.

. Background

In this section, we will provide the necessary theoretical background on transition path theory (TPT) and the transition path
rocess.

.1. Transition path theory

Transition Path Theory (TPT) is a celebrated mathematical framework for the quantitative description of rare transitions in
tochastic systems [28,29]. Suppose a system is evolving according to SDE

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡, 𝑋𝑡 ∈ 𝛺 ⊆ R𝑑 , 𝑥 ∈ 𝛺 ⊂ R𝑑 . (14)

Throughout this work, we will adopt the following assumptions about SDE (14).

Assumption 1. The domain 𝛺 is either R𝑑 or a manifold without boundary with metric being locally Euclidean.

For example, 𝛺 can be a 𝑑-dimensional ‘‘flat’’ torus, T𝑑 , or a direct product T𝑘 × R𝑑−𝑘, 1 ≤ 𝑘 ≤ 𝑑 − 1.

Assumption 2. The drift field 𝑏 ∶ 𝛺 → R𝑑 is a smooth vector function. The corresponding ODE 𝑥̇ = 𝑏(𝑥) has a finite number of
attractors and all its trajectories approach one of the attractors as 𝑡 → ∞.

Assumption 3. The matrix function 𝜎 ∶ 𝛺 → R𝑑×𝑟, 𝑟 ∶= 𝗋𝖺𝗇𝗄(𝜎), is smooth. The entries of 𝜎(𝑥) are bounded, and 𝗋𝖺𝗇𝗄(𝜎) is the
ame for all 𝑥 ∈ 𝛺. The singular values of 𝜎 are bounded from above and from below in 𝛺.

ssumption 4. There exists a unique invariant density 𝜇(𝑥), and the system is ergodic.

The infinitesimal generator  of the process governed by SDE (14) is defined as

𝑓 (𝑥) = 𝑏 ⋅ ∇𝑓 + 1
2
𝗍𝗋
(

𝜎𝜎𝑇∇∇𝑓
)

. (15)

he invariant density is the solution to ∗𝜇 = 0, ∫ 𝜇𝑑𝑥 = 1, where ∗ is the adjoint to the generator (15).
4
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Suppose we want to study transitions between two disjoint open sets 𝐴 and 𝐵 in 𝛺. For example, if we are interested in
transitions between neighborhoods of two distinct attractors of the ODE 𝑥̇ = 𝑏(𝑥), we choose 𝐴 and 𝐵 to be these neighborhoods.
Let {𝑋𝑡 ∣ −∞ < 𝑡 < ∞} be an infinitely long trajectory of (14). Due to ergodicity, it will visit 𝐴 and 𝐵 infinitely many times. TPT
studies statistics of pieces of such a trajectory that start at 𝜕𝐴 and next hit 𝜕𝐵 without returning to 𝐴̄1 in between. Such pieces are
called the reactive trajectories, and 𝐴 and 𝐵 are called the reactant and product sets respectively. Key concepts of TPT are forward
and backward committors 𝑞+(𝑥) and 𝑞−(𝑥). The forward committor 𝑞+(𝑥) is defined as the probability that the process starting at 𝑥
will first hit 𝐵̄ rather than 𝐴̄. The backward committor is the probability that the process arriving at 𝑥 has hit 𝐴̄ last rather than 𝐵̄.
Specifically, let 𝜏+𝐷 (𝜏−𝐷) be the first (last) hitting time of region 𝐷̄ for trajectory starting (arriving) at 𝑥, and 𝜏−𝐷 be the last hitting
time of region 𝐷̄ for trajectory arriving at 𝑥. Equivalently, 𝜏−𝐷 is the first hitting time of 𝐷̄ for the time-reversed process of 𝑋̂𝑡 = 𝑋−𝑡:

⎧

⎪

⎨

⎪

⎩

𝜏+𝐷(𝑥) = inf{𝑡 ≥ 0 ∶ 𝑋𝑡 ∈ 𝐷̄, 𝑥(0) = 𝑥}

𝜏−𝐷(𝑥) = inf{𝑡 ≥ 0 ∶ 𝑋̂𝑡 ∈ 𝐷̄, 𝑥̂(0) = 𝑥}.
(16)

Given two disjoint regions 𝐴 and 𝐵, the forward committor function 𝑞+(𝑥) and backward committor function 𝑞−(𝑥) are defined as
follows

⎧

⎪

⎨

⎪

⎩

𝑞+ ∶ 𝛺 → [0, 1], 𝑞+(𝑥) = P{𝜏+𝐵 (𝑥) < 𝜏+𝐴 (𝑥)}

𝑞− ∶ 𝛺 → [0, 1], 𝑞−(𝑥) = P{𝜏−𝐴 (𝑥) < 𝜏−𝐵 (𝑥)}.
(17)

The region 𝛺 with removed sets 𝐴̄ and 𝐵̄ will be denoted by 𝛺𝐴𝐵 :

𝛺𝐴𝐵 ∶= 𝛺∖(𝐴̄ ∪ 𝐵̄). (18)

The forward and backward committors 𝑞+ and 𝑞− are the solutions to the following boundary value problems (BVPs) [28]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑞+ = 0 𝑥 ∈ 𝛺𝐴𝐵

𝑞+(𝑥) = 0 𝑥 ∈ 𝜕𝐴

𝑞+(𝑥) = 1 𝑥 ∈ 𝜕𝐵,
𝜕𝑞+

𝜕𝑛̂ = 0, 𝑥 ∈ 𝜕𝛺,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

†𝑞− = 0 𝑥 ∈ 𝛺𝐴𝐵

𝑞−(𝑥) = 1 𝑥 ∈ 𝜕𝐴

𝑞−(𝑥) = 0 𝑥 ∈ 𝜕𝐵,
𝜕𝑞−

𝜕𝑛̂ = 0, 𝑥 ∈ 𝜕𝛺.

(19)

We will refer to the BVP for the forward committor as the committor problem. Here,  is the infinitesimal generator (15). † is the
infinitesimal generator of the corresponding time-reversed process [29]

†𝑓 (𝑥) = −𝑏 ⋅ ∇𝑓 + 1
𝜇
𝖽𝗂𝗏(𝜎𝜎𝑇 𝜇) + 1

2
𝗍𝗋
(

𝜎𝜎𝑇∇∇𝑓
)

, (20)

here 𝖽𝗂𝗏(𝜎𝜎𝑇 𝜇) is the divergence of the matrix 𝜎𝜎𝑇 𝜇, i.e., a vector with components
[

𝖽𝗂𝗏(𝜎𝜎𝑇 𝜇)
]

𝑖 =
∑

𝑗 𝜕𝑥𝑗 (𝜎𝜎
𝑇 𝜇)𝑗𝑖, 1 ≤ 𝑖 ≤ 𝑑. The

omogeneous Neumann boundary conditions on 𝜕𝛺 in (19) are relevant if 𝛺 has a reflecting boundary; 𝑛̂ is the external unit normal
o 𝜕𝛺. Note that for both SDEs of our interest, (9) and (10), the invariant density 𝜇 is known. For overdamped Langevin dynamics
n CVs (9),

𝜇(𝑥) = 𝑍𝐹 𝑒
−𝛽𝐹 (𝑥), 𝑍𝐹 = ∫𝛺

𝑒−𝛽𝐹 (𝑥)𝑑𝑥 for SDE (9) (21)

nd for Langevin dynamics (10),

𝜇(𝑥, 𝑝) = 𝑍𝐻𝑒−𝐻(𝑥,𝑝)∕𝜖 , 𝐻(𝑥, 𝑝) =
𝑝2

2𝑚
+ 𝑉 (𝑥), (22)

𝑍𝐻 = ∫𝛺
𝑒−𝐻(𝑥,𝑝)∕𝜖𝑑𝑥𝑑𝑝 for SDE (10).

The generators for SDEs (9) and (10), respectively, are

𝑓 = 𝛽−1𝑒𝛽𝐹∇ ⋅
(

𝑒−𝛽𝐹𝑀∇𝑓
)

(23)

and

𝑓 =
𝑝
𝑚

⋅ ∇𝑥𝑓 − ∇𝑥𝑉 ⋅ ∇𝑝𝑓 − 𝛾𝑝 ⋅ ∇𝑝𝑓 + 𝛾𝑚𝜖𝛥𝑝𝑓, (24)

where ∇𝑥 and ∇𝑝 denote gradients with respect to the coordinates and momenta respectively, and 𝛥𝑝 is the Laplacian with respect
to momenta.

1 The bar above a set denotes its closure.
5
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If the governing SDE is time-reversible, e.g. the overdamped Langevin dynamics (6) and the overdamped Langevin dynamics
n collective variables (9), the backward committor is readily found from the forward committor: 𝑞−(𝑥) = 1 − 𝑞+(𝑥). Langevin
ynamics (10) is not time-reversible, however, there is a nice relationship between the forward and backward committors [29]:
−(𝑥, 𝑝) = 1 − 𝑞+(𝑥,−𝑝).

The time-reversible SDE (9) admits a variational formulation for the committor problem [19] that motivates the construction of
he loss function for neural network-based committor solvers [30,31]:

𝑞+(𝑥) = arg min
𝑓∈ ∫𝛺𝐴𝐵

∇𝑓 (𝑥)⊤𝑀(𝑥)∇𝑓 (𝑥)𝜇(𝑥)𝑑𝑥, (25)

where 𝜇 is the invariant density given by (21) and  is the set of all continuously differentiable functions 𝑓 satisfying the boundary
conditions 𝑓 (𝑥) = 0, for 𝑥 ∈ 𝜕𝐴, and 𝑓 (𝑥) = 1, for 𝑥 ∈ 𝜕𝐵.

The probability density of reactive trajectories is given by

𝜇𝐴𝐵 = 𝜇𝑞+𝑞−. (26)

The integral of 𝜇𝐴𝐵 over 𝛺𝐴𝐵 ,

𝜌𝐴𝐵 = ∫𝛺𝐴𝐵

𝜇𝑞+𝑞−𝑑𝑥 (27)

is the probability that a stochastic trajectory at a randomly picked time is reactive, i.e., is on its way from 𝐴 to 𝐵.
The transition rate from 𝐴 to 𝐵, 𝜈𝐴𝐵 , is defined as

𝜈𝐴𝐵 = lim
𝑇→∞

𝑁𝐴𝐵
𝑇

, (28)

where 𝑁𝐴𝐵 is the number of transitions from 𝐴 to 𝐵 observed during the time interval [0, 𝑇 ]. The escape rate from 𝐴 is defined as

𝑘𝐴𝐵 = lim
𝑇→∞

𝑁𝐴𝐵
𝑇𝐴

≡
𝜈𝐴𝐵
𝜌𝐴

, (29)

where 𝑇𝐴 is the total time within [0, 𝑇 ] during which the system last hit 𝐴 and 𝜌𝐴 is the probability that an infinitely long trajectory
at any randomly picked moment of time has last hit 𝐴̄. The probability 𝜌𝐴 is equal to

𝜌𝐴 = ∫𝛺
𝜇(𝑥)𝑞−(𝑥)𝑑𝑥. (30)

The reactive current is a vector field such that its flux through any surface separating 𝐴 and 𝐵 is the transition rate 𝜈𝐴𝐵 . For
DEs (9) and (10), it is given, respectively, by

𝐽𝐴𝐵 = 𝛽−1𝑍−1𝑒−𝛽𝐹𝑀∇𝑞+ (31)

nd

𝐽𝐴𝐵 = 𝑍−1
𝐻 𝑒−𝐻∕𝜖𝑞+𝑞−

(

𝑝
−∇𝑥𝑉

)

+ 𝜖𝛾𝑍−1
𝐻 𝑒−𝐻∕𝜖

(

0
𝑞− 𝜕𝑞+

𝜕𝑝 − 𝑞+ 𝜕𝑞−

𝜕𝑝

)

. (32)

A natural choice of a surface separating 𝐴 and 𝐵 is an isocommittor surface 𝛴𝛼 ∶= {𝑥 ∈ 𝛺 ∣ 𝑞+(𝑥) = 𝛼} for any 𝛼 ∈ [0, 1]. The
transition rate can be expressed as (Proposition 6 in [28]):

𝜈𝐴𝐵 = 1
2 ∫𝛺𝐴𝐵

𝜇[∇𝑞+]⊤𝜎𝜎⊤∇𝑞+𝑑𝑥 = 1
2 ∫𝛺𝐴𝐵

𝜇[∇𝑞−]⊤𝜎𝜎⊤∇𝑞−𝑑𝑥. (33)

In particular, for SDEs (9) and (10), the transition rates, respectively, are

𝜈𝐴𝐵 = 𝛽−1𝑍−1
𝐹 ∫𝛺𝐴𝐵

(∇𝑞+)⊤𝑀∇𝑞+𝑒−𝛽𝐹 𝑑𝑥 (34)

and

𝜈𝐴𝐵 = 𝜖𝛾𝑍−1
𝐻 ∫𝛺𝐴𝐵

[

∇𝑝𝑞
+]⊤ 𝑚

[

∇𝑝𝑞
+] 𝑒−𝐻∕𝜖𝑑𝑥𝑑𝑝, (35)

where 𝑚 is the diagonal mass matrix.

2.2. Transition path process

TPT received an interesting development in the paper ‘‘Reactive trajectories and the transition path process’’ by Lu and Nolen
(2015) [2]. It is proven in [2] that the dynamics of the reactive trajectories for SDE (14), with matrix 𝜎𝜎⊤ satisfying the strong
ellipticity condition, are governed by the SDE

𝑑𝑋 =
[

𝑏(𝑋 ) + 𝜎(𝑋 )𝜎⊤(𝑋 )∇ log 𝑞+(𝑋 )
]

𝑑𝑡 + 𝜎(𝑋 )𝑑𝑊 , (36)
6
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and this expression was suggested by the Doob ℎ-transform. The process governed by (36) is called the transition path process. Though
we do not assume strong ellipticity condition for 𝜎𝜎⊤, most results in [2] can be extended to the processes considered in this paper
.e., evolving according to SDE (14) with Assumptions 1–4.

The equilibrium unnormalized density of reactive trajectories on 𝜕𝐴 is

𝜂𝐴 = 𝜇(𝑥)𝑞+(𝑥) = −𝜇(𝑥)𝑛̂(𝑥)⊤𝜎(𝑥)𝜎⊤(𝑥)∇𝑞+(𝑥), 𝑥 ∈ 𝜕𝐴, (37)

where 𝑛̂(𝑥) is the unit normal pointing inside 𝐴. Note that while 𝑞+ = 0 in 𝛺𝐴𝐵 ≡ 𝛺∖(𝐴̄ ∪ 𝐵̄), it does not need to be zero on
𝜕𝐴. Eq. (37) should be understood as the rate at which transition paths exit 𝐴. The equilibrium unnormalized density of reactive
trajectories on 𝜕𝐵 is

𝜂𝐵 = −𝜇(𝑥)𝑛̂(𝑥)⊤𝜎(𝑥)𝜎⊤(𝑥)∇𝑞−(𝑥), 𝑥 ∈ 𝜕𝐵, (38)

where 𝑛̂(𝑥) is the unit normal pointing inside 𝐵.
The expected crossover time E[𝜏𝐴𝐵] of the reactive trajectories is defined as

E[𝜏𝐴𝐵] = lim
𝑁𝐴𝐵→∞

1
𝑁𝐴𝐵

𝑁𝐴𝐵−1
∑

𝑘=0

(

𝜏+𝐵,𝑘 − 𝜏−𝐴,𝑘
)

, (39)

where 𝑁𝐴𝐵 is the number of transitions from 𝐴 to 𝐵 and 𝜏+𝐵,𝑘 and 𝜏−𝐴,𝑘 are 𝑘th entrance time to 𝐵 and 𝑘th exit time from 𝐴,
respectively, registered for a long trajectory of SDE (14) initiated at 𝑥 ∈ 𝐴. The expected crossover time is the ratio of the probability
𝜌𝐴𝐵 (27) and the transition rate [2] (also see Appendix A)

E[𝜏𝐴𝐵] =
𝜌𝐴𝐵
𝜈𝐴𝐵

. (40)

This relationship is very important for this work as it will be used for restoring the transition rate using sampled transition trajectories
(see Section 4).

The transition path process governed by SDE (36) can be thought of as a process in which the trajectories are killed as they
reach 𝜕𝐵 and reintroduced at 𝜕𝐴 after a waiting time at the rate 𝜈𝐴𝐵 . Moreover, the trajectories entering 𝛺𝐴𝐵 through the boundary
of 𝐴 are distributed according to (37).

The probability density of reactive trajectories 𝜇𝐴𝐵 is an invariant measure of the transition path process [2,28]. Indeed, the
backward and forward Kolmogorov operators for (36) are, respectively,

𝐴𝐵𝑓 =
[

𝑏 + 𝜎𝜎⊤∇ log 𝑞+
]

⋅ ∇𝑓 + 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑓
)

and (41)

∗
𝐴𝐵𝑓 = −∇ ⋅

[

(𝑏 + 𝜎𝜎⊤∇ log 𝑞+)𝑓 − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝑓
)

]

. (42)

ne can check that

∗
𝐴𝐵𝜇𝐴𝐵 = −∇ ⋅

[

(𝑏 + 𝜎𝜎⊤∇ log 𝑞+)𝜇𝑞+𝑞− − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇𝑞+𝑞−
)

]

= −∇ ⋅
[(

𝑏𝜇 − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇
)

)

𝑞+𝑞− + 1
2
𝜇𝜎𝜎⊤

(

𝑞−∇𝑞+ − 𝑞+∇𝑞−
)

]

(43)

= −∇ ⋅ 𝐽𝐴𝐵 = 0. (44)

The symbol 𝐽𝐴𝐵 is the reactive current [29]. A calculation showing that −∇ ⋅ 𝐽𝐴𝐵 = 0 in 𝛺𝐴𝐵 is detailed in Appendix B. In order
o make the transition path process an equilibrium process we assume that the transition trajectories that have reached 𝜕𝐵 are
ransported back to 𝜕𝐴 as shown in Fig. 1. A similar construction was used for Markov jump processes in [48].

The probability to find the system at 𝑠𝐴𝐵 at a randomly picked moment of time is 1 − 𝜌𝐴𝐵 . As a result, the invariant measure of
he transition path process becomes

𝜇𝐴𝐵 =

{

𝜇𝑞+𝑞−, 𝑥 ∈ 𝛺𝐴𝐵

1 − 𝜌𝐴𝐵 , 𝑥 = 𝑠𝐴𝐵 .
(45)

t follows from (19) and (43) that the reactive current 𝐽𝐴𝐵 on the boundaries 𝜕𝐴 and 𝜕𝐵 of 𝑠𝐴𝐵 is [2]

𝐽𝐴𝐵 =

⎧

⎪

⎨

⎪

⎩

1
2𝜇𝜎𝜎

⊤∇𝑞+, 𝑥 ∈ 𝜕𝐴

− 1
2𝜇𝜎𝜎

⊤∇𝑞−, 𝑥 ∈ 𝜕𝐵.
(46)

Since ∇ ⋅ 𝐽𝐴𝐵 = 0 in 𝛺𝐴𝐵 we have

∫𝜕𝐴
𝐽𝐴𝐵 ⋅ 𝑛̂𝑑𝑠 + ∫𝜕𝐵

𝐽𝐴𝐵 ⋅ 𝑛̂𝑑𝑠 = 0

where 𝑛̂ is the outer unit normal and 𝑑𝑠 is the surface element. Eq. (46) is consistent with (37) and (38).

3. Optimally controlled dynamics

In this section, we show that SDE (36) governing the transition path process can be obtained as the solution to a stochastic
7

optimal control problem. Precisely, we generalize Theorem 3.3 proven in [3] for the case of the overdamped Langevin dynamics.
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Fig. 1. An illustration for the transition path process. Transition trajectories appear at the boundary of the region 𝐴, travel to the region 𝐵 without returning
to 𝐴, and disappear at the boundary of 𝐵. To complete the dynamics of transition trajectories to an equilibrium process, the trajectories absorbed at 𝜕𝐵 must
be transported back to 𝜕𝐴. The pipe in the figure symbolizes this reverse transport.

3.1. The general Ito SDE

We consider the dynamics governed by the general Ito SDE (14) where the drift field 𝑏 and the diffusion matrix 𝜎 are as described
at the beginning of Section 2. The controlled dynamics are set to be of the form

𝑑𝑌𝑡 =
[

𝑏(𝑌𝑡) + 𝜎(𝑌𝑡)𝜎⊤(𝑌𝑡)𝑣(𝑌𝑡)
]

𝑑𝑡 + 𝜎(𝑌𝑡)𝑑𝑊𝑡 (47)

where 𝑣 ∶ [0,∞) → 𝛺 ⊂ R𝑑 is to be chosen in an optimal manner. The form of the modification to the drift, 𝜎𝜎⊤𝑣, is borrowed
from [1] and is motivated as follows. We are seeking a drift term that will make all trajectories of the resulting process obey the
same statistics as the transition trajectories of the original process (14). This means that all trajectories of the controlled process
can be observed in the original process at particular noise realizations. Hence, the span of the modification to the drift at every
point should match the span of the noise term which is the column space of the matrix-valued function 𝜎(⋅). That is why there is
the factor 𝜎 on the left of 𝜎𝜎⊤𝑣. The factor 𝜎⊤ is used for convenience so that the control 𝑣 is of the same dimension as the process
𝑋𝑡.

We have chosen the cost functional to be

𝐶𝑥[𝑣(⋅)] = E𝑃

[

1
2 ∫

𝜏𝐴𝐵

0
‖𝜎⊤(𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠 + 𝑔(𝑌𝜏 ) ∣ 𝑋0 = 𝑥

]

, (48)

where 𝑃 is the probability measure on the path space of SDE (14),

𝜏𝐴𝐵 = inf{𝑡 > 0 ∣ 𝑌𝑡 ∈ (𝐴̄ ∪ 𝐵̄)} (49)

is the stopping time, and 𝑔 is the exit cost defined by

𝑔(𝑥) =

{

+∞, 𝑥 ∈ 𝐴
0, 𝑥 ∈ 𝐵.

(50)

Cost functional (48) gives finite cost only if the trajectory leaves 𝛺𝐴𝐵 via the boundary of 𝐵. The function 𝜎⊤𝑣 is the standard
form in which the optimal control is sought [49]. The optimal control problem is to find the function 𝑣(⋅) that minimizes the cost
functional (48). Its solution is given in the following theorem.

Theorem 3.1. Let 𝑋𝑡 be a process governed by SDE (14) satisfying Assumptions 1–4 and let 𝑌𝑡 be the corresponding controlled process
governed by SDE (47). In addition, we assume that 𝛺 is compact with a reflecting boundary and 𝜕𝐴 and 𝜕𝐵 are smooth. The infimum of
the cost functional (48) is given by

𝑐∗(𝑥) ∶= inf
𝑣∈

𝐶𝑥[𝑣(⋅)] = − log 𝑞+(𝑥), (51)

where  is the set of admissible controls

 ∶=
{

𝑣 ∈ 𝐶1(𝛺𝐴𝐵) ∣ E𝑃

[

exp
(

∫

𝜏𝐴𝐵

0

1
2
‖𝜎𝑇 (𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠

)]

< ∞
}

, (52)

𝑃 is the measure on the path space of (14), and 𝑞+ is the forward committor for SDE (14). The corresponding optimal control 𝑣∗ satisfies

𝜎⊤𝑣∗ = 𝜎⊤∇ log 𝑞+. (53)
8
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The proof of Theorem 3.1 combines ideas from Gao et al. ([3], the proof of Theorem 3.3) and L. C. Evans’s notes on the control
heory [50]. It is found in Appendix C.

emark 1. Theorem 3.1 shows that the optimally controlled dynamics are governed by SDE (36) for the transition path process.
herefore, all facts about the transition path process stated in Section 2.2 are valid for the optimally controlled dynamics.

emark 2. The requirement that the domain 𝛺̄ is compact is often implemented in numerical simulations: the computational
domain is always bounded. Deterministic techniques always use meshes or point clouds of finite size. In stochastic simulations,
particles are often put in a box. Therefore, the assumption that 𝛺 is compact is not practically restrictive.

Remark 3. Theorem 3.1 suggests a new approach for finding the committor via minimization of the cost functional (51). We leave
the investigation into the viability of this approach for the future.

3.2. Overdamped Langevin equation in collective variables

Theorem 3.1 has an immediate application to a practical scenario: overdamped Langevin equation in collective variables (9).
The diffusion matrix 𝑀(𝑥) in (9) is symmetric positive definite everywhere in 𝛺. Applying Theorem 3.1 to SDE (9) results in the
following corollary.

Corollary 3.1.1. For the overdamped Langevin equation in collective variables (9) the optimal controller is

𝑣∗(𝑥) = ∇ log 𝑞+(𝑥), (54)

and the controlled process is

𝑑𝑋𝑡 = [−𝑀(𝑋𝑡){∇𝐹 (𝑋𝑡) − 2𝛽−1∇ log 𝑞+} + 𝛽−1∇ ⋅𝑀(𝑋𝑡)]𝑑𝑡

+
√

2𝛽−1𝑀(𝑋𝑡)
1
2 𝑑𝑊𝑡. (55)

3.3. Full Langevin equations

The Langevin dynamics (10) can be written as follows

𝑑
[

𝑋𝑡
𝑃𝑡

]

=
[

𝑚−1𝑃𝑡
−(∇𝑈 (𝑋𝑡) + 𝛾𝑃𝑡)

]

𝑑𝑡 +
√

2𝛾𝜖𝑚
(

0
𝐼

)

𝑑𝑊𝑡 (56)

here the diffusion matrix is

𝜎(𝑋𝑡) =
√

2𝛾𝜖𝑚
(

0
𝐼

)

∈ R2𝑑×𝑑 . (57)

The application of Theorem 3.1 to SDE (56) gives the following controlled process.

Corollary 3.1.2. For the Langevin dynamics (56), the optimal controller 𝑣∗ can be chosen to be

𝑣∗(𝑥, 𝑝) = ∇𝑝 log 𝑞+(𝑥, 𝑝) (58)

and the corresponding controlled process is
{

𝑑𝑋𝑡 = 𝑚−1𝑃𝑡𝑑𝑡
𝑑𝑃𝑡 =

(

−∇𝑈 (𝑋𝑡) − 𝛾𝑃𝑡 + 2𝛾𝜖𝑚∇𝑝 log 𝑞
)

𝑑𝑡 +
√

2𝛾𝜖𝑚𝑑𝑊𝑡.
(59)

The form of the optimal controller 𝑣∗ follows from (53) and (57). Note that (53) and (57) do not define 𝑣∗ uniquely as 𝑣∗ can
ave arbitrary first 𝑑 components corresponding to the coordinate subspace. However, the control in SDE (59) is of the form 𝜎𝜎⊤𝑣∗

here

𝜎𝜎⊤ = 2𝛾𝛽−1𝑚
[

0 0
0 1

]

.

ence the components of 𝑣∗ in the coordinate subspace are eliminated in SDE (59).

. Estimation of the transition rate

The problem of estimating the transition rate between metastable states has been one of the central problems addressed by
hemists, physicists, and mathematicians working on quantifying rare events and remains a subject of active research [51,52].
ractical methods for finding transition rates can be roughly divided into two categories, splitting and reweighting.

Splitting methods, e.g. transition interface sampling [53] and forward flux sampling [54], stratify 𝛺𝐴𝐵 using level sets of a
9

eaction coordinate. The level sets are denoted by 𝜆𝑖, 𝑖 = 0,… , 𝑛, where 𝜆0 = 𝜕𝐴 and 𝜆𝑛 = 𝜕𝐵. Next, the transition probabilities
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P(𝜆𝑖+1|𝜆𝑖) to reach 𝜆𝑖+1 starting from 𝜆𝑖 before returning to 𝐴 are estimated. Then the escape rate from 𝐴 to 𝐵 is calculated according
o the formula

𝑘𝐴𝐵 =
𝜈𝐴,𝜆1
𝜌𝐴

𝑛−1
∏

𝑖=1
P(𝜆𝑖+1|𝜆𝑖), (60)

here 𝜈𝐴,𝜆1 is the average number of transitions from 𝐴 to 𝜆1 per unit time and 𝜌𝐴 is the probability that the system has last visited
𝐴 rather than 𝐵. It was shown in Ref. [47] that these methods can suffer from an unfortunate choice of the reaction coordinate.

Reweighting methods use enhanced sampling techniques and restore the statistics of unbiased transition paths using an
appropriate reweighting scheme. These include weighted ensemble [9] and the Girsanov reweighting [55]. The Girsanov reweighting
was used in [1] in combination with optimal control with a fixed stopping time.

The settings in which we need to determine the transition rate are different than those in the works mentioned above. We plan to
compute the committor for the system under consideration or for its reduced model. This means that we can compute the transition
rate using (33) provided that the invariant density 𝜇 is known.

However, the rate computed in this manner may be inaccurate due to

• an inaccurate estimate of the normalization constant for the invariant density (see Section 6.1) and/or
• a suboptimal choice set of collective variables when model reduction is used.

he issue with the normalization constant for the invariant density can be eliminated if the escape rate from the set 𝐴 is computed
instead — see Eq. (63) below. The problem with the choice of collective variables can be hard to overcome if the system is
complicated. If the underlying dynamics are time-reversible, i.e. given by (9), and 𝜉(𝑥) is the set of collective variables then the
ransition rate 𝜈̃𝐴𝐵 estimated in the space of collective variables 𝜉 is always exaggerated and relates to the original transition rate
𝐴𝐵 via (Proposition 6 in Zhang, Hartmann, Schuette (2016) [56])

𝜈𝐴𝐵 ≤ 𝜈̃𝐴𝐵 = 𝜈𝐴𝐵 + 1
𝛽 ∫𝛺𝐴𝐵

∇[𝑞(𝑥) − 𝑞(𝜉(𝑥))]⊤𝑀(𝑥)∇[𝑞(𝑥) − 𝑞(𝜉(𝑥))]𝜇(𝑥)𝑑𝑥, (61)

here 𝑞 and 𝑞 are the committors computed for the original and reduced systems respectively. Eq. (61) shows that if the set of the
ollective variables 𝜉 were perfect, i.e., if 𝑞(𝑥) = 𝑞(𝜉(𝑥)), then 𝜈𝐴𝐵 = 𝜈̃𝐴𝐵 . In particular, this means that the lowering dimensionality
er se does not lead to an error in the transition rate. Otherwise, there will be a model reduction error in the transition rate.

We propose the following scheme utilizing the fact that the controlled SDE (47) with the optimal controller (51) exactly matches
DE (36) that governs the transition trajectories of SDE (14). In particular, this means that the expected crossover time E[𝜏𝐴𝐵] for
rajectories of SDE (47) with (51) is the same as that for the transition trajectories of (14). Therefore, first one needs to generate
set of transition trajectories using the optimally controlled dynamics (47) with (51). This allows us to compute the expected

rossover time E[𝜏𝐴𝐵] and find the transition rate 𝜈𝐴𝐵 :

𝜈𝐴𝐵 =
𝜌𝐴𝐵

E[𝜏𝐴𝐵]
. (62)

The expected escape time from 𝐴 can be readily found as well using (29) and (62):

E[𝜏𝐴] = E[𝜏𝐴𝐵]
𝜌𝐴
𝜌𝐴𝐵

. (63)

The probabilities 𝜌𝐴 and 𝜌𝐴𝐵 will be estimated using the computed committors and formulas (27) and (30). The error in their
estimates due to model reduction via imperfect collective variables is less impaired than the error in the rate. The reason is that the
formula for the rate uses the gradient of the committor while the formulas for 𝜌𝐴 and 𝜌𝐴𝐵 involve only the committors. The error
in the gradient of the committor is amplified due to the differentiation. This effect can be illustrated using an example from [43]
found in Appendix D. Moreover, the estimate of the expected crossover time E[𝜏𝐴𝐵] from the controlled dynamics (47) remains
reasonably accurate even if the estimate of the committor is rough. This issue is explored in Appendix E.

5. Numerical solution to the committor problem

This section offers descriptions of numerical methods that we have used for finding the committors for the test problems reported
in Section 6. As mentioned in Section 1.4, neural network-based (NN-based) solvers have several advantages. First, they yield a
globally defined smooth solution whose derivative is readily available due to automatic differentiation. Second, they do not require
artificial boundary conditions on the outer boundary of 𝛺𝐴𝐵 . Finally, they do not require meshing the space which makes them more
amenable for promotion to higher dimensions. The finite element method (FEM) is used for validation of the committors computed
using NN-based methods. Its implementation for the time-reversible dynamics (9) and for the Langevin dynamics is detailed in
Appendix F.

5.1. NN-solver based on the variational form of the committor problem

Two NN-based solvers for the committor problem (19) for the overdamped Langevin dynamics (6) based on the variational
formulation (25) were proposed by Khoo, Lu, and Ying (2018) [30] and Li, Lin, and Ren (2019) [31]. These solvers both use the
10

loss function motivated by the minimizing property of the committor (25) and require only the first derivatives of the committor.
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They use different solution models for the committor and enforce the boundary conditions at 𝜕𝐴 and 𝜕𝐵 in different ways. In [30], the
solution model involves Green’s function for Laplace’s equation and the boundary conditions are implemented via penalty terms in
the loss function. In [31], the solution model is designed similarly to the first NN-based PDE solver (Lagaris et al. (1998) [57]) so that
it automatically satisfies the boundary conditions. In this work, we chose to use the NN-based solver by Li, Lin, and Ren [31] as it is
simpler and its extension to the committor problem for the overdamped Langevin dynamics in collective variables is straightforward.

Since the overdamped Langevin dynamics (6) and the overdamped Langevin dynamics in collective variables (9) are time-
reversible, the forward and backward committor are related via 𝑞− = 1 − 𝑞+. Therefore, for brevity, we use the notation 𝑞 for
he forward committor whenever the underlying dynamics is time-reversible.

Following [31], we use the following solution model to the committor problem (19)

𝑞(𝑥; 𝜃) = (1 − 𝜒𝐴(𝑥))[(1 − 𝜒𝐵(𝑥)) (𝑥; 𝜃) + 𝜒𝐵(𝑥)], 𝑥 ∈ 𝛺𝐴𝐵 , (64)

where  (𝑥; 𝜃) is the output of a fully connected neural network (NN) and 𝜒𝐴(𝑥) and 𝜒𝐵(𝑥) are smooth approximations to the
indicator functions of 𝜕𝐴 and 𝜕𝐵. In this work, we use fully connected neural networks with 𝐿 hidden layers with 𝗍𝖺𝗇𝗁 activation
functions and the outer layer with the sigmoid function 𝗌𝗂𝗀𝗆𝗈𝗂𝖽(𝑥) = (1 + 𝑒−𝑥)−1. For example, for 𝐿 = 1 and 𝐿 = 2, the neural
networks are

{

 (𝑥; 𝜃) = 𝗌𝗂𝗀𝗆𝗈𝗂𝖽
[

𝑊2𝗍𝖺𝗇𝗁(𝑊1𝑥 + 𝑏1) + 𝑏2
]

, 𝐿 = 1,
 (𝑥; 𝜃) = 𝗌𝗂𝗀𝗆𝗈𝗂𝖽

(

𝑊3𝗍𝖺𝗇𝗁
[

𝑊2𝗍𝖺𝗇𝗁(𝑊1𝑥 + 𝑏1) + 𝑏2
]

+ 𝑏3
)

, 𝐿 = 2.
(65)

The argument 𝜃 comprises all entries of the matrices 𝑊𝑗 and the shift vectors 𝑏𝑗 .
The loss function is derived from the minimizing property of the committor (25):

𝑞(𝑥) = argmin∫𝛺𝐴𝐵

∇𝑓 (𝑥)⊤𝑀(𝑥)∇𝑓 (𝑥)𝑒−𝛽𝐹 (𝑥)𝑑𝑥, (66)

where the minimum is taken among all functions 𝑓 ∈ 1(𝛺𝐴𝐵) (the Sobolev space) such that 𝑓 (𝜕𝐴) = 0 and 𝑓 (𝜕𝐵) = 1. The integral
in (66) is the expectation of ∇𝑓 (𝑥)⊤𝑀(𝑥)∇𝑓 (𝑥) where 𝑥 is a random variable with invariant density proportional to 𝑒−𝛽𝐹 (𝑥) supported
in 𝛺̄𝐴𝐵 :

∫𝛺𝐴𝐵

∇𝑓 (𝑥)⊤𝑀(𝑥)∇𝑓 (𝑥)𝑒−𝛽𝐹 (𝑥)𝑑𝑥 = E 𝑥∈𝛺𝐴𝐵
𝑥∼𝑒−𝛽𝐹

[

∇𝑓⊤𝑀∇𝑓
]

. (67)

If we want 𝑥 to be distributed according to a density 𝜌, we rewrite this expectation as

E 𝑥∈𝛺𝐴𝐵
𝑥∼𝑒−𝛽𝐹

[

∇𝑓⊤𝑀∇𝑓
]

= E 𝑥∈𝛺𝐴𝐵
𝑥∼𝜌

[

∇𝑓⊤𝑀∇𝑓 𝑒−𝛽𝐹

𝜌

]

. (68)

The last expectation can be approximated as a sample mean. Hence, if the training points 𝑥𝑘 ∈ 𝛺𝐴𝐵 , 1 ≤ 𝑘 ≤ 𝐾, are sampled from
a density 𝜌, then the loss function is defined by

𝖫𝗈𝗌𝗌(𝜃) = 1
𝐾

𝐾
∑

𝑘=1

[

∇𝑞(𝑥𝑘; 𝜃)⊤𝑀(𝑥𝑘)∇𝑞(𝑥𝑘; 𝜃)
𝑒−𝛽𝐹 (𝑥𝑘)

𝜌(𝑥𝑘)

]

. (69)

We found that it is advantageous to create the set of training points in two stages. First, a large point cloud is generated using the
metadynamics algorithm [12] (also see [31]). Then this point cloud is rarefied into a delta-net [58,59], i.e., a spatially quasiuniform
set of points obtained as follows. Let {𝑥𝑖}𝑁𝑖=1 be the generated point cloud and 𝛿 be the desired distance between the nearest neighbors
in the training set. Initially, we assign labels 0 to all points. We take 𝑥1, compute the distance from 𝑥1 to all other points in the
oint cloud, assign label keep to 𝑥1 and labels discard to all points at distance less than 𝛿. Then we find the point with the smallest
ndex that has label 0, compute the distance from it to all points with label 0, and change its label to keep and labels of all points
t distance less than 𝛿 from it to discard. And so we continue until there are no more points with labels 0. All points labeled as
eep will form the training set. The resulting set of training points is spatially quasiuniform. Therefore we set 𝜌(𝑥𝑘) = 1 in the loss
unction (69).

The loss function is minimized using the stochastic Adam optimizer [60]. Our codes are written in Python and use the PyTorch
ibrary for the implementation of neural networks and automatic differentiation [44].

.2. PINNs for Langevin dynamics

The Langevin SDE (10) is not time-reversible and its generator (24) is not self-adjoint. As a result, the variational formulation of
he committor problem is not available. In this case, we opt to use the NN-based solver called the physics-informed neural networks
PINNs) proposed by Raissi, Perdikaris, and Karniadakis (2019) [46] (also see [61]). In this solver, the loss function is the sum of the
ean squared discrepancy between the left- and right-hand side of the PDE and the mean squared error at the Dirichlet boundary

f the domain:

𝖫𝗈𝗌𝗌(𝜃) = 1
𝐾

∑

(𝑥𝑘 ,𝑝𝑘)∈𝛺𝐴𝐵

|

|

 (𝑥𝑘, 𝑝𝑘; 𝜃)||
2 (70)

+ 1
𝐾

∑

| (𝑥𝑘, 𝑝𝑘)|2 +
1

𝐾
∑

| (𝑥𝑘, 𝑝𝑘) − 1|2.
11

𝜕𝐴 (𝑥𝑘 ,𝑝𝑘)∈𝜕𝐴 𝜕𝐵 (𝑥𝑘 ,𝑝𝑘)∈𝜕𝐵
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Here, 𝐾, 𝐾𝜕𝐴, and 𝐾𝜕𝐵 are the numbers of training points in 𝛺𝐴𝐵 , 𝜕𝐴, and 𝜕𝐵 respectively,  is the generator given by (24),
and  (𝑥𝑘, 𝑝𝑘; 𝜃) is a neural network defined similar to (65). As before, the loss function is minimized using the stochastic Adam
optimizer.

6. Test problems

In this section, we demonstrate the effectiveness of the proposed methodology on the following four test problems:

1. the overdamped Langevin dynamics with Mueller’s potential, a common 2D test problem in chemical physics,
2. the overdamped Langevin dynamics with the rugged Mueller potential in 10D with settings as in Ref. [31],
3. the bistable Duffing oscillators with added white noise, and
4. the overdamped Langevin dynamics in collective variables for the Lennard-Jones-7 system in 2D.

The codes for these examples are available on GitHub:

• neural network-based committor solvers and sampling algorithms for the transition path process [44];
• Finite element committor solvers [45].

The dynamics in test problems 1, 2, and 4 are time-reversible. Therefore, as mentioned in Section 5.1, the forward and backward
committors are related via 𝑞− = 1 − 𝑞+. Hence, it suffices to compute only the forward committor in these problems. For brevity,
we will denote the forward committor simply by 𝑞 in Sections 6.1, 6.2, and 6.4 containing test problems 1, 2, and 4 respectively.

6.1. Mueller’s potential

We first consider an overdamped Langevin equation with Mueller’s potential (see Fig. 2)

𝑉 (𝑥1, 𝑥2) =
4
∑

𝑖=1
𝐷𝑖 exp

{

𝑎𝑖(𝑥1 −𝑋𝑖)2 + 𝑏𝑖(𝑥1 −𝑋𝑖)(𝑥2 − 𝑌𝑖) + 𝑐𝑖(𝑥2 − 𝑌𝑖)2
}

(71)

here

[𝑎1, 𝑎2, 𝑎3, 𝑎4] = [−1,−1,−6.5, 0.7]

[𝑏1, 𝑏2, 𝑏3, 𝑏4] = [0, 0, 11, 0.6]

[𝑐1, 𝑐2, 𝑐3, 𝑐4] = [−10,−10,−6.5, 0.7]

[𝐷1, 𝐷2, 𝐷3, 𝐷4] = [−200,−100,−170, 15]

[𝑋1, 𝑋2, 𝑋3, 𝑋4] = [1, 0,−0.5,−1]

[𝑌1, 𝑌2, 𝑌3, 𝑌4] = [0, 0.5, 1.5, 1]

.1.1. Computing the committor
The two deepest minima of Mueller’s potential are located near 𝑎 = (−0.558, 1.441) and 𝑏 = (0.623, 0.028). Following [31], the

ets 𝐴 and 𝐵 are chosen to be the balls centered at 𝑎 and 𝑏 respectively with radius 𝑟 = 0.1, and the smoothed indicator function
unctions of 𝜕𝐴 and 𝜕𝐵 are defined as

𝜒𝐴(𝑥) =
1
2
− 1

2
tanh

[

1000(‖𝑥 − 𝑎‖2 − (𝑟 + 0.02)2)
]

,

𝜒𝐵(𝑥) =
1
2
− 1

2
tanh

[

1000(‖𝑥 − 𝑏‖2 − (𝑟 + 0.02)2)
]

.

he temperature is set to be 𝛽−1 = 10 as in [31]. At this temperature, the transitions between 𝐴 and 𝐵 are rare.
We compute the committor using FEM (see Appendix F.1) and the NN-based approach employing the variational formulation of

the committor problem (variational NN — see Section 5.1). For FEM, the domain 𝛺 is defined as

𝛺 = {𝑥 ∈ R2 ∣ 𝑉 (𝑥) ≤ 250} (72)

and triangulated using the DistMesh algorithm [62]. We also discretized 𝛺 using mesh2d [63] and found that the difference
between the committor computed on these two meshes was about 10−4 in the max norm. The committor computed using FEM is
displayed in Fig. 2(a).

At 𝛽 = 0.1, sampling from the invariant Gibbs density leaves the transition region severely underresolved. Therefore, a
set of training points for the variational NN-based solver was generated using a standard enhanced sampling algorithm called
metadynamics [12] with settings used in [31]. Metadynamics is implemented as follows. The overdamped Langevin dynamics (1) is
simulated with the time step 𝛥𝑡 = 10−5, and Gaussian functions of the form

𝑔𝑗 (𝑥) = 𝑤 exp

(

−
(𝑥1 − 𝑥1(𝑡𝑗 ))2

2
−

(𝑥2 − 𝑥2(𝑡𝑗 ))2

2

)

12
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Fig. 2. The committor for the overdamped Langevin dynamics with Mueller’s potential is computed by (a) FEM and (b) NN at 𝛽−1 = 10. The level sets of
Mueller’s potential are superimposed. The computational domain is larger than the shown box in both cases.

Table 1
Errors wMAE and wRMSE in the forward committor for the overdamped Langevin dynamics with Mueller’s
potential at temperature 𝛽−1 = 10 computed using the variational NN solver with a spatially quasiuniform set of
approximately 16 000 training points. The parameter 𝐿 indicates the number of hidden layers (see (65)), and 𝑊
indicates the number of neurons per hidden layer.
Temperature NN structure wMAE wRMSE

𝛽−1 = 10 𝐿 = 2, 𝑊 = 40 2.6e−3 4.1e−3

with height 𝑤 = 5 and 𝜎1 = 𝜎2 = 0.05 are added to the potential at times 𝑡𝑗 = 500𝑗𝛥𝑡, 1 ≤ 𝑗 ≤ 𝑁𝑔 = 2000. Then, the overdamped
Langevin dynamics in the modified potential 𝑉 +

∑

𝑗 𝑔𝑗 is simulated with the same time step 𝛥𝑡 = 10−5, and the initial set of points
is recorded. Finally, the obtained set of points is converted into a spatially quasi-uniform set, a delta-net with 𝛿 = 0.015, as described
in Section 5.1. The resulting training set contains a total of 𝑁𝗍𝗋𝖺𝗂𝗇 = 15 466 points.

The solution model is given by (64) with a neural network (65) with 𝐿 = 2 hidden layers and 𝑁 = 40 neurons in each layer.
The neural network was trained for 1000 epochs at learning rate 𝜂 = 10−4. The resulting solution is shown in Fig. 2(b).

To assess numerical errors in the computed committor, we use error measures weighted by the probability density of transition
trajectories: the weighted mean absolute error (wMAE) and the weighted root mean squared error (wRMSE):

wMAE =
𝑁𝗍𝖾𝗌𝗍
∑

𝑖=1
𝑤(𝑥𝑖) |

|

𝑞𝗇𝗇(𝑥𝑖) − 𝑞𝖿𝖾𝗆(𝑥𝑖)|| (73)

wRMSE =

√

√

√

√

𝑁𝗍𝖾𝗌𝗍
∑

𝑖=1
𝑤(𝑥𝑖) |

|

𝑞𝗇𝗇(𝑥𝑖) − 𝑞fem(𝑥𝑖)|
|

2 (74)

where 𝑞𝖿𝖾𝗆 and 𝑞𝗇𝗇 are the forward committors computed by FEM and the NN-based solver respectively, 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁𝗍𝖾𝗌𝗍 are the test
points, and the weights 𝑤(𝑥𝑖) are defined so that they are proportional to 𝜇𝐴𝐵 and their sum is one:

𝑤(𝑥𝑖) =
𝑞𝖿𝖾𝗆(𝑥𝑖)(1 − 𝑞𝖿𝖾𝗆(𝑥𝑖))𝜇(𝑥𝑖)

∑𝑁𝗍𝖾𝗌𝗍
𝑗=1 𝑞𝖿𝖾𝗆(𝑥𝑗 )(1 − 𝑞𝖿𝖾𝗆(𝑥𝑗 ))𝜇(𝑥𝑗 )

. (75)

The subset of the nodes of the FEM mesh lying within the box [−1.5, 1] × [−0.5, 2] was used as the test point set.
Table 1 shows the wMAE and wRMSE for the variational NN solver with 𝐿 = 2 hidden layers and 𝑊 = 40 neurons per layer.

6.1.2. Estimation of the transition rate using the controlled process
The transition rate 𝜈𝐴𝐵 is computed by Eq. (62). The expected crossover time E[𝜏𝐴𝐵] is calculated by averaging crossover times

of 250 sampled transition trajectories governed by the controlled process

𝑑𝑋𝑡 =
(

−∇𝑉 (𝑋𝑡) + 2𝛽−1
∇𝑞𝗇𝗇(𝑋𝑡)
𝑞𝗇𝗇(𝑋𝑡)

)

𝑑𝑡 +
√

2𝛽−1𝑑𝑊𝑡. (76)

The initial points of these trajectories are sampled according to (37) as follows. First, 𝑁𝜕𝐴 points 𝑥𝑗 equispaced on a circle of
radius 𝑟 + 𝛿𝑟 where 𝑟 is the radius of 𝐴 and 𝛿𝑟 is a small positive number. Then weights are assigned 𝑤𝑗 to these points according
to

𝑤𝑗 =
𝑒−𝛽𝑉 (𝑥𝑗 )

|𝑛̂(𝑥𝑗 ) ⋅ ∇𝑞𝗇𝗇(𝑥𝑗 )|
∑𝑁𝜕𝐴 −𝛽𝑉 (𝑥 )

(77)
13

𝑘=1 𝑒 𝑘
|𝑛̂(𝑥𝑘) ⋅ ∇𝑞𝗇𝗇(𝑥𝑘)|
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Fig. 3. The probability distribution of the starting points of transition trajectories on the boundary of 𝐴 for the overdamped Langevin dynamics in Mueller’s
potential is shown by color code. The gray curves are level sets of Mueller’s potential.

Fig. 4. Comparison of three controlled (a) and uncontrolled (b) processes with the same initial positions and noise realizations at 𝛽−1 = 10. Each trajectories
consist of 5000 time steps, with time step 𝛥𝑡 = 10−5. The sets 𝐴 and 𝐵 are marked by blue and orange circles of radius 𝑟 = 0.1 respectively.

where 𝑛̂(𝑥𝑗 ) is the outer unit normal to 𝐵𝑟+𝛿𝑟(𝑎) at 𝑥𝑗 . Then the points 𝑥𝑗 are sampled according to their probability weights 𝑤𝑗
visualized in Fig. 3. We used 𝑟 = 0.1, 𝛿𝑟 = 10−3, and 𝑁𝜕𝐴 = 1000.

Three samples of trajectories of (76) are displayed in Fig. 4(a). Three trajectories of

𝑑𝑋𝑡 = −∇𝑉 (𝑋𝑡)𝑑𝑡 +
√

2𝛽−1𝑑𝑊𝑡 (78)

with the same realizations of the Brownian motion are shown in Fig. 4(b) for comparison.
Given the FEM committor 𝑞𝖿𝖾𝗆 and the triangulated domain 𝛺𝐴𝐵 , 𝜌𝐴𝐵 is computed directly from (27). Given 𝑞𝗇𝗇 and the set of

training points 𝑥𝑗 quasiuniformly distributed in 𝛺𝐴𝐵 , 𝜌𝐴𝐵 is obtained by means of Monte Carlo integration:

𝜌𝐴𝐵 = 1
𝑁𝗍𝗋𝖺𝗂𝗇

𝑁𝗍𝗋𝖺𝗂𝗇
∑

𝑗=1
𝑍−1

𝑉 𝑒−𝛽𝑉 (𝑥𝑗 )𝑞𝗇𝗇(𝑥𝑗 )(1 − 𝑞𝗇𝗇(𝑥𝑗 )). (79)

The normalization constant 𝑍𝑉 is computed as

𝑍𝑉 = 1
𝑁𝗍𝗋𝖺𝗂𝗇

𝑁𝗍𝗋𝖺𝗂𝗇
∑

𝑗=1
𝑒−𝛽𝑉 (𝑥𝑗 ). (80)

We first generated a total of 105 points by running metadynamics [12] and then subsampling it into a spatially quasi-uniform
delta-net with 𝛿 = 0.005. The resulting set of 56 322 points is shown in Fig. 5.

We also calculate the transition rate 𝜈𝐴𝐵 using (33) adapted for the overdamped Langevin dynamics (78)

𝜈𝐴𝐵 = 𝛽−1𝑍−1
𝑉 ∫𝛺𝐴𝐵

‖∇𝑞(𝑥)‖2𝑒−𝛽𝑉 (𝑥)𝑑𝑥 (81)

with the committors 𝑞𝖿𝖾𝗆 and 𝑞𝗇𝗇. The results are presented in Table 2. The computation of the 95% confidence interval is detailed
in Appendix G.

The discrepancy between the estimates for 𝜌𝐴𝐵 obtained using the committors 𝑞𝗇𝗇 and 𝑞𝖿𝖾𝗆 and Eqs. (79) and (27) is about 3%.
The difference between the transition rates 𝜈 obtained using 𝑞 with Monte Carlo integration and 𝑞 with formula (28) is less
14
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Fig. 5. The set of points for Mueller’s potential used for finding the normalization constant for the invariant density and the probability 𝜌𝐴𝐵 .

Table 2
Estimates for 𝜌𝐴𝐵 , E[𝜏𝐴𝐵 ] and 𝜈𝐴𝐵 for the overdamped Langevin dynamics in Mueller’s potential at 𝛽−1 = 10 computed using
three schemes. The value for 𝜈𝐴𝐵 = 4.80𝑒− 3 is obtained with 𝜌𝐴𝐵 = 2.43𝑒− 4. The 95% confidence interval is obtained using the
error estimate for E[𝜏𝐴𝐵 ].

Simulations, optimal control TPT, NN TPT, FEM

𝜌𝐴𝐵 NA 2.43e−4 2.36e−4
E[𝜏𝐴𝐵 ] 5.05e−2 ± 0.42e−2 NA NA
𝜈𝐴𝐵 4.80e−3, [4.43e−3, 5.23e−3] 4.99e−3 4.93e−3

then 2%. The expected crossover time E[𝜏𝐴𝐵] computed using the controlled process (76) and 𝑞𝗇𝗇 is used for computing the transition
rate using 𝜌𝐴𝐵 obtained using (40) with 𝑞𝗇𝗇 and Monte Carlo integration. The result differs from the other rate values by less than
4%. Thus, we conclude that

• the values for the transition rate obtained in three different ways are all consistent; all of them fall into the 95% confidence
interval of the rate value computed using (40);

• the method for estimating 𝜌𝐴𝐵 and 𝜈𝐴𝐵 using the neural network solver and Monte Carlo integration can be promoted to higher
dimensions.

Finally, we remark that the estimate for 𝜈𝐴𝐵 is sensitive to the normalization constant 𝑍𝑉 in (80). It is important to estimate it
accurately. For example, Mueller’s potential has rather large region in which the potential energy 𝑉 is relatively low — see Fig. 5.
Sampling points for determining 𝑍𝑉 from a smaller region (a lower sublevel set of 𝑉 ) leads to a notable discrepancy in the transition
rate estimate. At the same time, the estimate for 𝜌𝐴𝐵 is much less sensitive to the accuracy of 𝑍𝑉 . The reason in the difference of
sensitivity is that 𝜈𝐴𝐵 has the gradient of the committor in its integral, while 𝜌𝐴𝐵 has the committor itself.

6.2. The rugged Mueller potential in 10D

The test problem with Mueller’s potential can be upgraded by making it 10-dimensional and perturbing its energy landscape
with an oscillatory function:

𝑉 (𝑥) = 𝑉0(𝑥1, 𝑥2) + 𝛾 sin(2𝑘𝜋𝑥1) sin(2𝑘𝜋𝑥2) +
1
𝜎2

10
∑

𝑖=3
𝑥2𝑖 . (82)

Here, 𝑉0(𝑥1, 𝑥2) is Mueller’s potential (71) and 𝛾 = 9, 𝑘 = 5, 𝜎 = 0.05 as in [31]. Following [31], the set 𝐴 and 𝐵 are chosen to be
cylinders centered at 𝑎 = (−0.558, 1.441) and 𝑏 = (0.623, 0.028) with radius 𝑟 = 0.1. The exact solution to the committor problem for
with 𝑉 given by (82) and such sets 𝐴 and 𝐵 is independent of 𝑥3,… , 𝑥10. This allows us to use the FEM solver in 2D to test the
solution computed using the variational NN-based solver in 10D.

6.2.1. Computing the committor
We compute the committor using the same procedure as detailed in Section 6.1.1. For the FEM solver, the computational domain

is 𝛺 = {𝑥 ∈ R2 ∣ 𝑉 (𝑥) ≤ 250}. For the variational NN-based solver, a training set of 𝑁𝗍𝗋𝖺𝗂𝗇 = 64 882 points is generated by sampling
2.1 × 105 points in 10D and rarefying them into a delta-net with 𝛿 = 0.005. The neural network in the solution model (64) has 𝐿 = 3
hidden layers and 𝑁 = 10 neurons in each layer. The committors computed by the FEM and variational NN-based solvers are shown
in Fig. 6(a) and (b) respectively.

We compute wMAE (73) and wRMSE (74) to assess numerical errors. A set of 𝑁𝗍𝖾𝗌𝗍 = 44 938 test points in 10D is generated using
metadynamics and delta-net postprocessing. The variational NN solution is evaluated at these test points and projected onto the 2D
space (𝑥 , 𝑥 ) to compare with the FEM solution. The resulting wMAE and wRMSE are reported in Table 3.
15
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Fig. 6. The committor for the overdamped Langevin dynamics with the rugged Mueller potential (82) is computed by (a) FEM in 2D and (b) by variational NN
in 10D. The temperature is 𝛽−1 = 10. The level sets of the potential are superimposed.

Table 3
Errors wMAE and wRMSE in the forward committor for the overdamped Langevin dynamics with rugged Mueller’s potential
in 10D at temperature 𝛽−1 = 10 computed using the variational NN solver with a spatially quasiuniform set of 64 882 training
points. The parameter 𝐿 indicates the number of hidden layers, and 𝑊 indicates the number of neurons per hidden layer.
Temperature NN structure wMAE wRMSE

𝛽−1 = 10 𝐿 = 3, 𝑊 = 10 1.08e−2 3.13e−2

Fig. 7. The probability distribution of the starting points of transition trajectories on the boundary of 𝐴 for the overdamped Langevin dynamics in the rugged
Mueller potential (82) is shown by color code. The gray curves are level sets of the potential.

6.2.2. Estimation of the transition rate using the controlled process
The transition rate 𝜈𝐴𝐵 is found using Eq. (62).
The expected crossover time E[𝜏𝐴𝐵] is estimated by averaging crossover times of 250 transition trajectories sampled using the

controlled process (76) in 10D. The initial points of the trajectories are sampled according to (37) as in the previous test problem.
First, 𝑁𝜕𝐴 points are equispaced on the circle of radius 𝑟+𝛿𝑟 centered at 𝑎 lying in the subspace (𝑥1, 𝑥2). The weights of these points
assigned according to (77) are shown in Fig. 7. Then these points are sampled based on their probability weight. Three samples of
trajectories of the controlled and uncontrolled processes in 10D with the same initial state and the same realizations of the Brownian
motion projected onto the (𝑥1, 𝑥2)-subspace are visualized in Fig. 8 for comparison.

The probability 𝜌𝐴𝐵 is computed using (27) for both committors 𝑞𝖿𝖾𝗆 and 𝑞𝗇𝗇. Monte Carlo integration is used with 𝑞𝗇𝗇 over the
set of 𝑁𝗍𝖾𝗌𝗍 = 44 938 test points as described in Section 6.1.2.

The transition rate 𝜈𝐴𝐵 is also estimated using (81) and the committors 𝑞𝖿𝖾𝗆 and 𝑞𝗇𝗇 for comparison. The results are presented
in Table 4.

The discrepancy between the estimates for 𝜌𝐴𝐵 obtained using the committors 𝑞𝗇𝗇 in 10D and 𝑞𝖿𝖾𝗆 in 2D and Eqs. (27) and
(79) is about 4.5%. The difference between the transition rates 𝜈 obtained using 𝑞 with Monte Carlo integration and 𝑞 with
16
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Fig. 8. Comparison of three controlled (a) and uncontrolled (b) trajectories for the rugged Mueller potential in 10D with the same initial positions and the same
noise realizations at 𝛽−1 = 10 projected onto the (𝑥1 , 𝑥2)-subspace. Each trajectory consists of 5000 time steps, with time step 𝛥𝑡 = 10−5. The sets 𝐴 and 𝐵 are
marked by blue and orange circles of radius 𝑟 = 0.1 respectively.

Table 4
Estimates for 𝜌𝐴𝐵 , E[𝜏𝐴𝐵 ] and 𝜈𝐴𝐵 for the overdamped Langevin dynamics in the rugged Mueller potential (82) at 𝛽−1 = 10 in R10 computed using three schemes.
The value for 𝜈𝐴𝐵 = 4.31𝑒 − 3 is obtained with 𝜌𝐴𝐵 = 2.56𝑒 − 4. The 95% confidence interval is obtained using the error estimate for E[𝜏𝐴𝐵 ].

Simulations, optimal control TPT, NN TPT, FEM

𝜌𝐴𝐵 NA 2.56e−4 2.45e−4
E[𝜏𝐴𝐵 ] 5.94e−2 ± 0.46e−2 NA NA
𝜈𝐴𝐵 4.31e−3, [4.0e−3,4.67e−3] 5.23e−3 4.61e−3

formula (28) is approximately 13%. On the other hand, the transition rate computed via (62) uses the expected crossover time and
𝜌𝐴𝐵 acquired from 𝑞𝗇𝗇, resulting in a transition rate that differs from the FEM rate by 6.5%. Hence we conclude that our proposed
scheme for estimating 𝜌𝐴𝐵 and 𝜈𝐴𝐵 with a neural network solver yields a reasonable accuracy in higher dimensions.

6.3. Duffing oscillator in 1D

Now we test the proposed methodology on the bistable Duffing oscillator with mass 𝑚 = 1, friction coefficient 𝛾 = 0.5, and the
potential energy function 𝑉 (𝑥) = 0.25(𝑥2 − 1)2. The dynamics are governed by the Langevin SDE

𝑑

[

𝑋𝑡

𝑃𝑡

]

=

[

𝑃𝑡

−𝑋𝑡(𝑋2
𝑡 − 1) − 1

2𝑃𝑡

]

𝑑𝑡 +
√

𝜖

[

0

𝑑𝑊𝑡

]

. (83)

The system has two stable equilibria 𝑎 = (−1, 0) and 𝑏 = (1, 0) and an unstable equilibrium at the origin. The full energy of the
system is 𝐻(𝑥, 𝑝) = 1

2 𝑝
2 +𝑉 (𝑥). The invariant probability density is 𝜇(𝑥, 𝑝) = 𝑍−1

𝐻 exp(−𝐻(𝑥, 𝑝)∕𝜖). The sets 𝐴 and 𝐵 are chosen to be
ellipses with radii 𝑟𝑥 = 0.3 and 𝑟𝑦 = 0.4 centered at 𝑎 and 𝑏 respectively. Two values of the noise coefficient are used: 𝜖 = 0.1 and
𝜖 = 0.05.

6.3.1. Computation of forward and backward committor functions
Since the dynamics (83) are not time-reversible, we implement the Physics-Informed Neural Network (PINN) approach detailed

in Section 5.2 to solve the committor problem. A uniform grid with a total of 16 000 points in the rectangle [−2.5, 2.5] × [−2, 2] is
taken as training data. The architecture of the neural network is as in Eq. (65) with a single hidden layer, 𝐿 = 1, and 𝑊 = 40
neurons in it. The Adam optimizer is used with the learning rate 10−3 for 500 epochs. We also compute the committors using FEM
as described in Appendix F.2. The computed forward and backward committors, 𝑞+(𝑥, 𝑝) and 𝑞−(𝑥, 𝑝), for 𝜖 = 0.1 and 𝜖 = 0.05 are
displayed in Figs. 9 and 10 respectively. The theoretical relationship between them is 𝑞−(𝑥, 𝑝) = 1 − 𝑞+(𝑥,−𝑝). However, we still
computed 𝑞− using FEM because the FEM mesh is not symmetric.

We call the discrepancies between the FEM and PINN solutions computed by (73) the weighted mean absolute difference (wMAD)
and the weighted root mean square difference (wRMSD) with weights at the training points (𝑥𝑖, 𝑝𝑖) given by

𝑤(𝑥𝑖, 𝑝𝑖) =
𝑞+(𝑥𝑖, 𝑝𝑖)𝑞−(𝑥𝑖, 𝑝𝑖)𝑒−𝐻(𝑥𝑖 ,𝑝𝑖)∕𝜖

∑𝑁𝗍𝗋𝖺𝗂𝗇
𝑗=1 𝑞+(𝑥𝑗 , 𝑝𝑗 )𝑞−(𝑥𝑗 , 𝑝𝑗 )𝑒

−𝐻(𝑥𝑗 ,𝑝𝑗 )∕𝜖
, 𝑖 = 1,… , 𝑁𝗍𝗋𝖺𝗂𝗇. (84)

Table 5 shows the wMAD and wRMSD for forward and backward committors computed using PINN and FEM for 𝜖 = 0.1 and 𝜖 = 0.05.
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Fig. 9. Comparison of contours of forward committor computed using FEM and PINNs, marked in solid and dashed lines respectively for Duffing Oscillator at
𝜖 = 0.1 and 𝜖 = 0.05.

Fig. 10. Comparison of contours of backward committor computed using FEM and PINNs, marked in solid and dashed lines respectively for Duffing Oscillator
at 𝜖 = 0.1 and 𝜖 = 0.05.

Table 5
Comparison of the numerical solutions for the forward and backward committors computed using PINNs and FEM. Metrics wMAD and wRMSD are used. The
parameter 𝐿 indicates the number of hidden layers (see (65)), and 𝑊 indicates the number of neurons per hidden layer.
𝜖 NN structure 𝑞+, wMAD 𝑞+, wRMSD 𝑞−, wMAD 𝑞−, wRMSD

𝜖 = 0.1 𝐿 = 1, 𝑊 = 40 1.6e−2 2.0e−2 1.8e−2 2.2e−2
𝜖 = 0.05 𝐿 = 1, 𝑊 = 40 1.3e−2 2.0e−2 1.3e−2 2.0e−2

6.3.2. Estimation of the transition rate using the controlled process
The optimally controlled process for the Langevin dynamics is governed by

⎧

⎪

⎨

⎪

⎩

𝑑𝑋𝑡 = 𝑃𝑡𝑑𝑡

𝑑𝑃𝑡 = −
[

𝑋𝑡(𝑋2
𝑡 − 1) + 1

2𝑃𝑡 − 𝜖 𝜕
𝜕𝑝 log(𝑞

+
𝗇𝗇)

]

𝑑𝑡 +
√

𝜖𝑑𝑊 .
(85)

Fig. 11 shows three sampled trajectories with and without the influence of the optimal control starting at the same initial position
and the same realizations of the Brownian motion for 𝜖 = 0.1 (Fig. 11(a,b)) and 𝜖 = 0.05 (Fig. 11(c,d)). The trajectories governed
by the original Langevin dynamics stay near region 𝐴. In contrast, the trajectories governed by the optimally controlled dynamics
(85) leave 𝐴 and reach region 𝐵.

Next, we find the transition rate 𝜈𝐴𝐵 at 𝜖 = 0.1 and 𝜖 = 0.05 in four ways. The results are summarized in Tables 6 and 7.

1. Simulations with optimal control. The expected crossover time E[𝜏𝐴𝐵] is averaged over 250 trajectories governed by (85). The
distribution of the starting points of these trajectories defined by (37) is obtained as described in Section 6.1.2. It is displayed
18
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Fig. 11. Comparison of three uncontrolled and controlled processes with the same initial random position for Duffing oscillator at 𝜖 = 0.1 and 𝜖 = 0.05. (a) and
(c) shows three trajectories under the original dynamics at 𝜖 = 0.1 and 𝜖 = 0.05 respectively. (b) and (d) shows three trajectories under the original dynamics
for the two cases respectively. 5000 time steps are sampled with 𝛥𝑡 = 10−3. Region 𝐴 and 𝐵 are ellipses colored in blue and orange.

Fig. 12. The probability distribution of the starting points of transition trajectories on the boundary of 𝐴 for the Duffing oscillator is shown by color code. The
gray curves are level sets of Hamiltonian.

Table 6
Comparison of the estimates for 𝜌𝐴𝐵 , E[𝜏𝐴𝐵 ] and 𝜈𝐴𝐵 for Duffing oscillator at 𝜖 = 0.1.

Duffing oscillator 𝜖 = 1∕10
Simul., o/c Simul., w/o o/c TPT, NN TPT, FEM

𝜌𝐴𝐵 NA 4.31e−2 ± 0.12e−2 3.97e−2 4.04e−2
E[𝜏𝐴𝐵 ] 6.88 ± 0.34 7.32 ± 0.14 NA NA
𝜈𝐴𝐵 [5.50e−3,6.07e−3] [5.76e−3,6.01e−3] 4.53e−3 5.74e−3

Table 7
Comparison of the estimates for 𝜌𝐴𝐵 , E[𝜏𝐴𝐵 ] and 𝜈𝐴𝐵 for Duffing oscillator at 𝜖 = 0.05.

Duffing oscillator 𝜖 = 1∕20
Simul., o/c Simul., w/o o/c TPT, NN TPT, FEM

𝜌𝐴𝐵 NA 4.5e−3 ± 0.4e−3 4.23e−3 4.07e−3
E[𝜏𝐴𝐵 ] 7.34 ± 0.33 7.48 ± 0.49 NA NA
𝜈𝐴𝐵 [5.53e−4,6.06e−4] [5.49e−4,6.51e−4] 4.72e−4 5.49e−4

PINN committors and the PINN training points are used for Monte Carlo integration. The normalization constant for the
invariant density is also found using Monte Carlo integration. Then formula (62) is used to find 𝜈𝐴𝐵 .

2. Simulations without optimal control. Direct simulations of the uncontrolled Langevin dynamics (83) are used to find 𝜈𝐴𝐵 . Ten
simulations of 107 time steps each with timestep 𝛥𝑡 = 5 × 10−3 were performed.

3. TPT, NN. The rate 𝜈𝐴𝐵 was found by (35) using the gradient of the committor computed using PINNs.
4. TPT, FEM. Likewise, except for the FEM committor was used.
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Fig. 13. The free energy of LJ7 in 2D in CVs second and third central moment of coordination number 𝜇2 , 𝜇3 and the four geometrically distinct local minima.

The results in Tables 6 and 7 show that the 95% confidence intervals for the transition rate 𝜈𝐴𝐵 at 𝜖 = 0.1 and 𝜖 = 0.05 estimated
by means of simulations with and without optimal control largely overlap. The 95% confidence intervals expected crossover times
E[𝜏𝐴𝐵] largely overlap for 𝜖 = 0.05 and slightly overlap for 𝜖 = 0.1. The estimates for probability 𝜌𝐴𝐵 that a trajectory at a random
time is reactive obtained by direct simulations of uncontrolled dynamics and TPT&NN and TPT&FEM are all consistent for 𝜖 = 0.05
and both TPT-based estimates for 𝜌𝐴𝐵 are smaller than those by direct simulations for 𝜖 = 0.1. At both values of 𝜖, the TPT estimates
for 𝜌𝐴𝐵 obtained using the FEM and PINN committors are consistent, while there is a notable discrepancy between the estimates
for 𝜈𝐴𝐵 by TPT&NN and TPT&FEM. This discrepancy must be caused by the fact that 𝜈𝐴𝐵 uses the gradient of the committors while
𝜌𝐴𝐵 involves the committors themselves as shown in Appendix D. At both values of 𝜖, the TPT&FEM estimate for 𝜈𝐴𝐵 falls into the
95% confidence intervals obtained using simulations, controlled or uncontrolled, while the TPT&NN seems to underestimate the
transition rate.

6.4. Lennard-Jones-7 in 2D

Finally, we apply the proposed methodology to estimate the transition rate between the trapezoidal and the hexagonal
configurations of the Lennard-Jones-7 cluster (LJ7) in a plane. This is a popular test problem in chemical physics [64–67]. In
this example, we will compute the committor for the reduced model 2D and use it to construct an approximation to the optimal
controller in the original 14D model. The expected crossover time for the original 14D model and the estimate for 𝜌𝐴𝐵 for the 2D
model will be used to determine the transition rate. The result will be compared with those obtained via brute force simulations of
the original uncontrolled dynamics in 14D.

We consider seven two-dimensional particles interacting according to the Lennard-Jones pair potential

𝑉𝗉𝖺𝗂𝗋(𝑟) = 4𝑎
[

(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]

(86)

where 𝜎 > 0 and 𝑎 > 0 are parameters controlling the range and strength of interparticle interaction respectively. We set 𝜎 = 1 and
𝑎 = 1. The potential energy of the system

𝑉𝖫𝖩(𝑥) =
7
∑

𝑖,𝑗=1
𝑖<𝑗

𝑉𝗉𝖺𝗂𝗋(‖𝑥𝑖 − 𝑥𝑗‖) (87)

has four geometrically distinct local minima denoted by 𝐶0, 𝐶1, 𝐶2, 𝐶3 shown in Fig. 13.
We assume that the original system is evolving according to the overdamped Langevin dynamics (6). This choice is dictated by

our wish to construct a controller using the committor for the reduced model in collective variables. Since the collective variables
are functions only of 𝑥, the committor for the reduced model lifted to the original phase space will depend only on 𝑥 and not on
the momenta 𝑝. Therefore, it cannot give an approximation to the optimal control for the Langevin dynamics — see Eq. (59). We
set 𝛽 = 5 as in [34].

6.4.1. The reduced model
Following [34,68,69], we pick the 2nd and 3rd central moments of the coordination numbers as the collective variables (CVs)

for LJ7. The coordinate number of particle 𝑖 is a smooth function approximating the number of nearest neighbors of 𝑖:

𝑐𝑖(𝑥) =
∑ 1 − ( 𝑟𝑖𝑗

1.5𝜎 )
8

𝑟𝑖𝑗 16
, 𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖. (88)
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Fig. 14. The forward committor for LJ7 in 2D computed in the space of collective variables at 𝛽 = 5 using (a) FEM and (b) the variational NN-based solver.
The gray curves in (b) are level sets of the free energy.

The 𝑘th central moment of 𝑐𝑖(𝑥) is defined by

𝜇𝑘(𝑥) =
1
7

7
∑

𝑖=1
(𝑐𝑖(𝑥) − 𝑐(𝑥))𝑘, where 𝑐(𝑥) = 1

7

7
∑

𝑗=1
𝑐𝑗 (𝑥). (89)

The reduced model is governed by the overdamped Langevin dynamics in collective variables (9)

𝑑
[

𝜇2
𝜇3

]

=
[

−∇𝑀(𝜇2, 𝜇3)𝐹 (𝜇2, 𝜇3) + 𝛽−1 ⋅ ∇𝑀(𝜇2, 𝜇3)
]

𝑑𝑡

+
√

2𝛽−1𝑀1∕2(𝜇2, 𝜇3)
[

𝑑𝑤1
𝑑𝑤2

]

. (90)

The corresponding generator is given by (23). Fig. 13 displays the free energy2 𝐹 (𝜇2, 𝜇3). The diffusion matrix 𝑀(𝜇2, 𝜇3) varies
significantly throughout the accessible free energy region (see Fig. 8 in [34]). The computation of 𝐹 (𝜇2, 𝜇3) and 𝑀(𝜇2, 𝜇3) is detailed
in Appendix A in [34].

Regions 𝐴𝖢𝖵 and 𝐵𝖢𝖵 are chosen around minima 𝐶3 (the trapezoid) and 𝐶0 (the hexagon) respectively. We use the subscript to
CV to indicate that these regions are defined in the set of collective variables. Region 𝐴𝖢𝖵 is a circle centered at (0.5526,−0.0935)
of radius 𝑟 = 0.1 and while region 𝐵𝖢𝖵 is a tilted ellipse defined by the equation

(

(𝑥 − 𝑐𝑥) cos 𝜃 + (𝑦 − 𝑐𝑦) sin 𝜃
)2

𝑟2𝑥
+

(

(𝑥 − 𝑐𝑥) sin 𝜃 + (𝑦 − 𝑐𝑦) cos 𝜃
)2

𝑟2𝑦
= 1 (91)

where (𝑐𝑥, 𝑐𝑦) = (0.7184, 1.1607), 𝑟𝑥 = 0.15, 𝑟𝑦 = 0.03 and 𝜃 = 5𝜋∕12.

6.4.2. Computation of the committor for the reduced model
The committor for the reduced model is computed in two ways: using FEM and the variational NN-based solver described in

Section 5.1. For the variational NN, the neural network (65) with 𝐿 = 2 hidden layers and 𝑊 = 10 neurons per layer has been used
to minimize the loss (69). The training points were 104 trajectory data projected to the space (𝜇2, 𝜇3) and assumed to be distributed
according to the invariant density e.g., 𝜌 ∼ 𝑒𝛽𝐹 where 𝐹 is the free energy in (𝜇2, 𝜇3) – see Section 4.2.2 in Ref. [34] for more
details. The resulting loss to be minimized hence becomes

𝖫𝗈𝗌𝗌(𝜃) = 1
𝐾

𝐾
∑

𝑖=𝑘

[

∇𝑞(𝑥𝑘; 𝜃)⊤𝑀(𝑥𝑘)∇𝑞(𝑥𝑘; 𝜃)
]

. (92)

The results are displayed in Fig. 14. The wMAE and wRMSE are given in Table 8.

6.4.3. Estimation of the transition rate using the reduced model and the controlled process
We set up the controlled process in the original 14-dimensional coordinate space as

𝑑𝑋𝑡 =
(

−∇𝑉𝖫𝖩(𝑋𝑡) + 2𝛽−1∇𝑥 ln 𝑞𝗇𝗇(𝜇2(𝑋𝑡), 𝜇3(𝑋𝑡))
)

𝑑𝑡 +
√

2𝛽−1𝑑𝑊𝑡, (93)

2 We thank Dr. Luke Evans for sharing with us the free energy and the diffusion matrix in CVs 𝜇 , and 𝜇 .
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Table 8
The errors wMAE and wRMSE of the committor function for LJ7 computed using the variational NN-based solver
for the two-dimensional reduced model. The committor computed using FEM is taken as the ground truth.
Temperature NN structure wMAE wRMSE

𝛽 = 5 𝐿 = 2, 𝑊 = 10 1.5e−2 2.4e−2

Fig. 15. The probability distribution of the starting points of transition trajectories on the boundary of 𝐴 for LJ7 is shown by color code. The gray curves are
level sets of the free energy.

where 𝑉𝖫𝖩 is defined by (87) and 𝑞𝗇𝗇 is the committor computed for the reduced model using the variational NN-based solver. The
Metropolis-Adjusted Langevin Algorithm (MALA) [70] with the time step 𝛥𝑡 = 5×10−5 has been used for time integration to prevent
very large moves of the system that can occur due to extremely strong repulsive forces.

The sets 𝐴 and 𝐵 in the original coordinate space R14 are defined by lifting the sets 𝐴𝖢𝖵 and 𝐵𝖢𝖵:

𝐴 ∶= {𝑥 ∈ R14 ∣ (𝜇2(𝑥), 𝜇3(𝑥)) ∈ 𝐴𝖢𝖵},

𝐵 ∶= {𝑥 ∈ R14 ∣ (𝜇2(𝑥), 𝜇3(𝑥)) ∈ 𝐵𝖢𝖵}.

Three trajectories of the controlled process (93) and three trajectories of the uncontrolled overdamped Langevin dynamics (6)
in the 14D with the same three realizations of the Brownian motion projected to the space (𝜇2, 𝜇3) are displayed in Fig. 16(a) and
(b) respectively.

The expected crossover time E[𝜏𝐴𝐵] is averaged over 254 trajectories of SDE (93). The starting points for these trajectories near
the boundary of 𝐴 are sampled as follows. First, the probability weights of the points on the boundary of 𝐴𝖢𝖵 are computed as
described in Section 6.1.2 (see Fig. 15). Then, points on 𝜕𝐴𝖢𝖵 are sampled according to these weights and lifted to the original
coordinate space by running biased simulations as described in Appendix A of [34] (see equations (A.3) and (A.4) there).

We compute the transition rate 𝜈𝐴𝐵 in four ways analogous to those for the Duffing oscillator (Section 6.3.2).

1. Simulations, optimal control, 14D. The rate is calculated using (62). The expected crossover time is estimated as described
above using the controlled process (93) in 14D. The probability 𝜌𝐴𝐵 is obtained for the reduced 2D model using (79)–(80)
with the committor computed by the variational NN-based solver and a uniform grid of points rather than the actual training
points for the neural network.

2. Simulations without optimal control, 14D. Ten runs of direct simulations of the uncontrolled overdamped Langevin dynamics
(6) in 14D of 108 timesteps with 𝛥𝑡 = 5 ⋅ 10−5 were executed. The numbers of transitions from 𝐴 to 𝐵 that occurred in these
runs were 28, 138, 160, 146, 93, 63, 158, 165, 171, and 160.

3. TPT, NN. The rate 𝜈𝐴𝐵 was found by (28) for the reduced 2D model using the gradient of the committor computed using the
variational NN-based solver.

4. TPT, FEM. Likewise, except for the FEM committor was used.

The results are displayed in Table 9. The following observations can be made.

1. For the transition rates obtained using controlled and uncontrolled simulations in the 14D, the relative error is about 14%.
There is a large overlap of the 95% confidence intervals.

2. There is a discrepancy in the expected crossover time E[𝜏𝐴𝐵] computed using controlled and uncontrolled simulations in
the 14D: the expected crossover time for the controlled process exceeds that for the uncontrolled process by approximately
35%. This discrepancy is primarily caused by the fact that the controller obtained by lifting the committor computed for the
reduced model is not optimal. It still drives the trajectories away from the boundary of 𝐴 but, unlike the optimal controller,
somewhat affects the statistics for the transition trajectories.

3. The rates obtained using the reduced 2D model are highly exaggerated (by the factor of approximately four) as one can expect
given the Zhang–Hartmann–Schuette rate formula (61). Indeed, the collective variables 𝜇 and 𝜇 are chosen due to their
22
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Fig. 16. Three trajectories of (a) the controlled process (93) and (b) the uncontrolled process projected into the space of collective variables, i.e., the overdamped
Langevin dynamics (6) in the 14D projected into the space of collective variables with the same starting points and the same realizations of Brownian motion.

Table 9
Comparison of the estimated 𝜌𝐴𝐵 , E(𝜏𝐴𝐵 ) and 𝜈𝐴𝐵 for LJ7 at 𝛽 = 5.

Simul., o/c Simul., w/o o/c TPT, NN TPT, FEM

Dimension 14D 14D 2D 2D
𝜌𝐴𝐵 NA 0.080 ± 0.024 0.106 0.108
E[𝜏𝐴𝐵 ] 4.88 ± 0.48 3.16 ± 0.21 NA NA
𝜈𝐴𝐵 0.022, [0.020, 0.024] 0.025, [0.019, 0.033] 0.097 0.086

ability to separate the four geometrically distinct local minima of LJ7 while there is no indication that they are supposed to
represent the dynamics accurately.

4. The values of 𝜌𝐴𝐵 and 𝜈𝐴𝐵 computed for the reduced 2D model using the FEM and the variational NNs are in good agreement
with each other.

7. Conclusion

In this work, we have proposed a methodology for sampling transition trajectories and estimating transition rates in systems
governed by SDEs using optimal control and perhaps model reduction.

Our main theoretical contribution is the proof of Theorem 3.1 establishing the optimality of the control obtained from the
committor via the Doob ℎ-transform for a broad class of processes including the Langevin dynamics and the overdamped Langevin
dynamics in collective variables.

We have elaborated on a number of practical aspects related to the use of neural network-based solvers, finite element methods,
and sampling reactive trajectories.

We have conducted in-depth case studies of three benchmark systems. In particular, we have demonstrated that the optimal
control and the estimate for the probability of a trajectory to be reactive at a random moment of time obtained for the reduced
model result is a reasonably good estimate of the transition rate even if the collective variables do not represent the dynamics
accurately.

Our codes are published on GitHub [44,45].
Further improvement of the proposed methodology can be done in the following two directions. First, the design of collective

variables is important for an accurate representation of the dynamics. Autoencoders (see e.g. [15] and references therein) with an
appropriate choice of the loss function seem to be a promising tool. Second, the neural network-based techniques for solving the
committor problem are promotable to higher dimensions. In this work, we intentionally calculated all required quantities for the use
of the transition path theory without meshing the space. We did not attempt, though, to use these techniques in higher dimensions.
We are leaving these research topics for future work.
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ppendix A. Proof of Eq. (40): 𝝂𝑨𝑩 = 𝝆𝑨𝑩∕E[𝝉𝑨𝑩]

roof. Let 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 , be a long trajectory. We decompose the interval [0, 𝑇 ] into two subsets [0, 𝑇 ] = 𝐴 ∪ 𝐵 where

⎧

⎪

⎨

⎪

⎩

𝐴([0, 𝑇 ]) ∶= {𝑡 ∈ [0, 𝑇 ] ∣ 𝜏−𝐴 (𝑋𝑡) < 𝜏−𝐵 (𝑋𝑡)},

𝐵([0, 𝑇 ]) ∶= {𝑡 ∈ [0, 𝑇 ] ∣ 𝜏−𝐵 (𝑋𝑡) < 𝜏−𝐴 (𝑋𝑡)}.
(A.1)

In words, 𝐴([0, 𝑇 ]) is the set of all moments of time 𝑡 in the interval [0, 𝑇 ] such that the trajectory at time 𝑡, 𝑋𝑡, last visited 𝐴̄
rather than 𝐵̄. The set 𝐵([0, 𝑇 ]) is described likewise. Let 𝑇𝐴 and 𝑇𝐵 be the total lengths of 𝐴([0, 𝑇 ]) and 𝐵([0, 𝑇 ]) respectively.
The probabilities 𝜌𝐴 and 𝜌𝐵 that the trajectory at a randomly picked moment of time last visited 𝐴 or 𝐵 are, respectively,

𝜌𝐴 = lim
𝑇→∞

𝑇𝐴
𝑇

, 𝜌𝐵 = lim
𝑇→∞

𝑇𝐵
𝑇

. (A.2)

The set 𝐴([0, 𝑇 ]) is further decomposed into two subsets 𝐴([0, 𝑇 ]) = 𝐴𝐴([0, 𝑇 ])∪𝐴𝐵([0, 𝑇 ]) of total lengths 𝑇𝐴𝐴 and 𝑇𝐴𝐵 respectively
where

⎧

⎪

⎨

⎪

⎩

𝐴𝐴([0, 𝑇 ]) ∶= {𝑡 ∈ [0, 𝑇 ] ∣ 𝜏−𝐴 (𝑋𝑡) < 𝜏−𝐵 (𝑋𝑡) & 𝜏+𝐴 (𝑋𝑡) < 𝜏+𝐵 (𝑋𝑡)},

𝐴𝐵([0, 𝑇 ]) ∶= {𝑡 ∈ [0, 𝑇 ] ∣ 𝜏−𝐴 (𝑋𝑡) < 𝜏−𝐵 (𝑋𝑡) & 𝜏+𝐵 (𝑋𝑡) < 𝜏+𝐴 (𝑋𝑡)}.
(A.3)

I.e., 𝐴𝐴([0, 𝑇 ]) is the set of moments of times 𝑡 ∈ [0, 𝑇 ] such that the trajectory at time 𝑡, 𝑋𝑡, last visited 𝐴̄ rather than 𝐵̄ and
oing to hit next 𝐴̄ rather than 𝐵̄, while 𝐴𝐵([0, 𝑇 ]) is the subset of moments of time 𝑡 ∈ [0, 𝑇 ] such that the trajectory is reactive.

Respectively, the probability 𝜌𝐴𝐴 that a trajectory at a randomly picked time 𝑡 last hit 𝐴̄ rather than 𝐵̄ and is not reactive and the
probability 𝜌𝐴𝐵 that a trajectory at a randomly picked time 𝑡 is reactive are given by

𝜌𝐴𝐴 = lim
𝑇→∞

𝑇𝐴𝐴
𝑇

, 𝜌𝐴𝐵 = lim
𝑇→∞

𝑇𝐴𝐵
𝑇

. (A.4)

Now we recall the definitions of the transition rate 𝜈𝐴𝐵 and the expected crossover time E[𝜏𝐴𝐵]:

𝜈𝐴𝐵 = lim
𝑇→∞

𝑁𝐴𝐵
𝑇

, E[𝜏𝐴𝐵] = lim
𝑇→∞

𝑇𝐴𝐵
𝑁𝐴𝐵

. (A.5)

Hence the expected crossover time E[𝜏𝐴𝐵] can be written as

𝜈𝐴𝐵 = lim
𝑁𝐴𝐵 = lim

𝑁𝐴𝐵 𝑇𝐴𝐵 =
𝜌𝐴𝐵 . □ (A.6)
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Appendix B. Proof that −𝛁 ⋅ 𝑱𝑨𝑩 = 𝟎 in 𝜴𝑨𝑩

Let us show that the divergence of the reactive current, or, equivalently, the stationary current of the transition path process,
vanishes in 𝛺𝐴𝐵 . We will need a formula for the divergence of a matrix–vector product. It can be checked directly that for any
𝐴 ∈ R𝑑×𝑑 and any 𝑦 ∈ R𝑑 ,

∇ ⋅ (𝐴𝑦) = 𝖽𝗂𝗏𝐴 ⋅ 𝑦 + 𝗍𝗋 (𝐴∇𝑦) , where ∇𝑦 =
⎡

⎢

⎢

⎣

∇𝑦⊤1
⋮

∇𝑦⊤𝑑

⎤

⎥

⎥

⎦

. (B.1)

Using (B.1) we calculate:

∇ ⋅ 𝐽𝐴𝐵 = −∇ ⋅
[(

𝑏𝜇 − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇
)

)

𝑞+𝑞− + 1
2
𝜇𝜎𝜎⊤

(

𝑞−∇𝑞+ − 𝑞+∇𝑞−
)

]

= 𝑞+𝑞−∇ ⋅
(

𝑏𝜇 − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇
)

)

+
(

𝑏𝜇 − 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇
)

)

⋅
(

𝑞+∇𝑞− + 𝑞−∇𝑞+
)

+ 1
2
𝖽𝗂𝗏

(

𝜎𝜎⊤𝜇
)

⋅
(

𝑞+∇𝑞− − 𝑞−∇𝑞+
)

+ 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑞+
)

𝜇𝑞−+

+ 1
2
𝗍𝗋
(

𝜎𝜎⊤𝜇∇𝑞−[∇𝑞+]⊤
)

− 1
2
𝗍𝗋
(

𝜎𝜎⊤𝜇∇𝑞+[∇𝑞−]⊤
)

− 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑞−
)

𝜇𝑞+

= 𝑞+𝑞−∇ ⋅ 𝐽 + 𝜇𝑞−𝑞+ − 𝜇𝑞+†𝑞− = 0.

n the last expression, 𝐽 is the stationary current for the invariant density 𝜇, and hence ∗𝜇 = −∇ ⋅ 𝐽 = 0 in 𝛺. The last two terms
re zero as by (19).

ppendix C. Proof of Theorem 3.1

roof. This proof combines ideas from Gao et al. ([3], the proof of Theorem 3.3) and L. C. Evans’s notes on the control theory [50]
Step 1. Regularization. We first consider a regularized optimal control problem in which the exit cost (50) is replaced with a

inite exit cost

𝑔𝑁 (𝑥) =

{

𝑁, 𝑥 ∈ 𝐴
0, 𝑥 ∈ 𝐵,

where 𝑁 is a large number. (C.1)

Let 𝑐∗𝑁 (𝑥) be the infimum of the cost functional 𝐶𝑥[𝑁 ; 𝑣(⋅)] with the regularized exit cost (C.1) among all admissible controls.
Note that the admissible set  is not empty because the time 𝜏𝐴𝐵 < ∞ almost surely since the system is ergodic and the
domain 𝛺 is compact. Furthermore, 𝑐∗𝑁 (𝑥) < ∞ as 𝑣 ≡ 0 is an admissible control and the corresponding cost functional is
𝐶𝑥[𝑁 ; 𝑣(⋅)] = 𝑁(1 − 𝑞+(𝑥)) < ∞. Indeed, if 𝑣 ≡ 0, then the process hits 𝜕𝐵 first with probability 𝑞+(𝑥) and scores zero and hits
𝜕𝐴 first with probability 1 − 𝑞+(𝑥) and scores 𝑁 .

We also define a regularized forward committor as the solution to the following boundary-value problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑞+𝑁 = 0, 𝑥 ∈ 𝛺𝐴𝐵 ,

𝑞+𝑁 = 𝑒−𝑁 , 𝑥 ∈ 𝜕𝐴

𝑞+𝑁 = 1, 𝑥 ∈ 𝜕𝐵
𝜕𝑞+𝑁
𝜕𝑛̂ = 0, 𝑥 ∈ 𝜕𝛺,

(C.2)

here  is the generator for (14). It is easy to check that

𝑞+𝑁 = 𝑞+ + (1 − 𝑞+)𝑒−𝑁 . (C.3)

Step 2. Show that 𝑐∗𝑁 ≥ − log 𝑞+𝑁 . The regularized forward committor can be written as

𝑞+𝑁 (𝑥) = E𝑃

[

𝑒−𝑔𝑁 (𝑋𝜏𝐴𝐵 ) ∣ 𝑋0 = 𝑥
]

≡ E𝑃 ,𝑥

[

𝑒−𝑔𝑁 (𝑋𝜏𝐴𝐵 )
]

. (C.4)

ndeed, the process 𝑋𝑡 governed by (14) with 𝑋0 = 𝑥 reaches 𝜕𝐴 at time the stopping time 𝜏𝐴𝐵 with probability (1 − 𝑞+) and scores
−𝑁 , and reaches 𝜕𝐵 at 𝜏𝐴𝐵 and scores 1. This results in the expectation given by the right-hand side of (C.3) which is equal to
+
𝑁 (𝑥).

Let 𝑌𝑡 be the controlled process governed by (47) with a control 𝜎𝑣, 𝑣 ∈ 𝐶1𝛺𝐴𝐵 , satisfying Novikov’s condition

E𝑃

[

exp
( 𝜏𝐴𝐵 1

‖𝜎𝑇 (𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠
)]

< ∞ (C.5)
25
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and 𝑃𝑣 be the probability measure on the path space of this process. According to the Girsanov theorem (Theorem 8.6.5, p.158
in [71]),

E𝑃 ,𝑥

[

𝑒−𝑔𝑁 (𝑋𝜏𝐴𝐵 )
]

= E𝑃𝑣 ,𝑥

[

𝑒−𝑔𝑁 (𝑌𝜏𝐴𝐵 )
]

= E𝑃 ,𝑥

[

𝑒−𝑔𝑁 (𝑌𝜏𝐴𝐵 ) 𝑑𝑃𝑣
𝑑𝑃

]

, (C.6)

here the Radon–Nikodym derivative
𝑑𝑃𝑣
𝑑𝑃

= exp
{

−∫

𝜏𝐴𝐵

0
𝜎⊤𝑣(𝑌𝑠) ⋅ 𝑑𝑊𝑠 −

1
2 ∫

𝜏𝐴𝐵

0
‖𝜎⊤𝑣(𝑌𝑠)‖2𝑑𝑠

}

> 0 P − a.s. (C.7)

Therefore,

E𝑃 ,𝑥

[

𝑒−𝑔𝑁 (𝑋𝜏𝐴𝐵 )
]

= E𝑃 ,𝑥

[

𝑒−𝑔𝑁 (𝑌𝜏𝐴𝐵 )−∫ 𝜏𝐴𝐵
0 𝜎⊤𝑣(𝑌𝑠)⋅𝑑𝑊𝑠−

1
2 ∫ 𝜏𝐴𝐵

0 ‖𝜎⊤𝑣(𝑌𝑠)‖2𝑑𝑠
]

. (C.8)

By Jensen’s inequality, for any smooth convex function 𝜙 and a random variable 𝑍 we have 𝜙(E[𝑍]) ≤ E[𝜙(𝑍)]. Applying it to the
right-hand side of (C.8) we get

𝑒−E𝑃 ,𝑥

[

𝑔𝑁
(

𝑌𝜏𝐴𝐵
)

+∫ 𝜏𝐴𝐵
0 𝜎⊤𝑣(𝑌𝑠)𝑑𝑊𝑠+

1
2 ∫ 𝜏𝐴𝐵

0 ‖𝜎⊤𝑣(𝑌𝑠)‖2𝑑𝑠
]

≤ E𝑃 ,𝑥

[

𝑒−𝑔𝑁
(

𝑋𝜏𝐴𝐵

)]

. (C.9)

Since the expectation of the Ito stochastic integral is zero, i.e.,

E𝑃 ,𝑥

[

∫

𝜏𝐴𝐵

0
𝜎⊤𝑣(𝑌𝑠) ⋅ 𝑑𝑊𝑠

]

= 0,

and the cost functional 𝐶𝑥[𝑁 ; 𝑣] defined in (48) is exactly

𝐶𝑥[𝑁 ; 𝑣] ≡ E𝑃 ,𝑥

[

𝑔𝑁
(

𝑌𝜏𝐴𝐵
)

+ 1
2 ∫

𝜏𝐴𝐵

0
‖𝜎⊤𝑣(𝑌𝑠)‖2𝑑𝑠

]

,

and recalling (C.4) we get

𝑒−𝐶𝑥[𝑁 ;𝑣] ≤ E𝑃 ,𝑥

[

𝑒−𝑔𝑁
(

𝑋𝜏𝐴𝐵

)]

≡ 𝑞+𝑁 (𝑥). (C.10)

Taking logarithms of the left- and right-hand side of (C.10) and multiplying the result by −1 we obtain the following lower bound
for the cost functional: for any control 𝜎⊤𝑣 satisfying Novikov’s condition (C.5),

𝐶𝑥[𝑁 ; 𝑣] ≥ − log 𝑞+𝑁 (𝑥). (C.11)

Since the admissible set  is closed, the bound (C.11) holds for any admissible 𝑣. This means that for any 𝑣 ∈  ,

𝑐∗𝑁 (𝑥) ≥ − log 𝑞+𝑁 (𝑥). (C.12)

Step 3. Derive the Hamilton–Jacobi–Bellman equation for the minimal cost 𝑐∗𝑁 .
This upper bound will be derived via the Hamilton–Jacobi–Bellman equation. Let 𝑣(𝑥) ∈ 𝐶1(𝛺𝐴𝐵) be such that Novikov’s

condition (C.5) holds and let ℎ be a small positive number. Then for the process 𝑌𝑡 governed by the controlled SDE (47) with
the control 𝜎⊤𝑣 we have the following upper bound:

𝑐∗𝑁 (𝑥) ≤ E𝑃 ,𝑥

[

1
2 ∫

ℎ∧𝜏𝐴𝐵

0
‖𝜎𝑇 (𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠 + 𝑐∗𝑁 (𝑌ℎ∧𝜏𝐴𝐵 )

]

. (C.13)

The equality is reached if 𝑣 is an optimal controller. We observe that if 𝑣 ≡ 0 than 𝐶𝑥[𝑁 ; 0] = 𝑁(1 − 𝑞+(𝑥)) < 𝑁 for 𝑥 ∈ 𝛺𝐴𝐵 .
Therefore, 𝑐∗𝑁 (𝑥) ≤ 𝐶𝑥[𝑁 ; 0] < 𝑁 < ∞. Therefore, we subtract 𝑐∗𝑁 (𝑥) from both sides of the inequality (C.13) and get

0 ≤ E𝑃 ,𝑥

[

1
2 ∫

ℎ∧𝜏𝐴𝐵

0
‖𝜎𝑇 (𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠 + 𝑐∗𝑁 (𝑌ℎ∧𝜏𝐴𝐵 ) − 𝑐∗𝑁 (𝑥)

]

(C.14)

= E𝑃 ,𝑥

[

1
2 ∫

ℎ∧𝜏𝐴𝐵

0
‖𝜎𝑇 (𝑌𝑠)𝑣(𝑌𝑠)‖2𝑑𝑠

]

+ E𝑃 ,𝑥

[

𝑐∗𝑁 (𝑌ℎ∧𝜏𝐴𝐵 )
]

− 𝑐∗𝑁 (𝑥). (C.15)

ividing by ℎ and letting ℎ → 0 we obtain:

0 ≤ 1
2
‖𝜎⊤𝑣(𝑥)‖2 + lim

ℎ→0

E𝑃 ,𝑥
[

𝑐∗𝑁 (𝑌ℎ)
]

− 𝑐∗𝑁 (𝑥)
ℎ

. (C.16)

ere we took into account that the optimal control is continuously differentiable in 𝛺𝐴𝐵 and 𝑏 and 𝜎 are smooth. Therefore the
drift and the diffusion in (47) are finite and hence the probability that 𝜏𝐴𝐵 < ℎ tends to zero as ℎ → 0. Furthermore, we note that

lim
ℎ→0

E𝑃 ,𝑥
[

𝑐∗𝑁 (𝑌ℎ)
]

− 𝑐∗𝑁 (𝑥)
ℎ

= lim
ℎ→0

E𝑃𝑣 ,𝑥
[

𝑐∗𝑁 (𝑌ℎ)
]

− 𝑐∗𝑁 (𝑥)
ℎ

= 𝑣𝑐
∗
𝑁 (𝑥), (C.17)

where 𝑣 is the generator of the controlled process (47). The equality (C.17) follows from the fact that

E𝑃 ,𝑥
[

𝑐∗ (𝑌ℎ)
]

= E𝑃 ,𝑥

[

𝑑𝑃𝑣 𝑐∗ (𝑌ℎ)
]

,
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where
𝑑𝑃𝑣
𝑑𝑃

= exp
{

−∫

ℎ

0
𝜎⊤𝑣(𝑌𝑠) ⋅ 𝑑𝑊𝑠 −

1
2 ∫

ℎ

0
‖𝜎⊤𝑣(𝑌𝑠)‖2𝑑𝑠

}

→ 1 a.s. as ℎ → 0.

Therefore, (C.16) is equivalent to
1
2
‖𝜎⊤𝑣‖2 +

[

𝑏 + 𝜎𝜎⊤𝑣
]

⋅ ∇𝑐∗𝑁 + 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑐∗𝑁
)

≥ 0. (C.18)

urthermore, the equality is reached if and only if the control 𝑣 is optimal, i.e.,

inf
𝑣∈

[ 1
2
‖𝜎⊤𝑣‖2 + 𝜎𝜎⊤𝑣 ⋅ ∇𝑐∗𝑁

]

+ 𝑏 ⋅ ∇𝑐∗𝑁 + 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑐∗𝑁
)

= 0. (C.19)

he function in the square brackets in (C.19) is convex quadratic in 𝑣. To minimize it, we take its gradient and set it to zero:

∇𝑣

[

𝜎𝜎⊤𝑣 ⋅ ∇𝑐∗𝑁 + 1
2
𝑣⊤𝜎𝜎⊤𝑣

]

= 𝜎𝜎⊤∇𝑐∗𝑁 + 𝜎𝜎⊤𝑣 = 0. (C.20)

herefore, a minimizer 𝑣∗𝑁 must satisfy 𝜎𝜎⊤(∇𝑐∗𝑁 +𝑣∗𝑁 ) = 0. Since columns of 𝜎 are linearly independent, this condition is equivalent
o

𝜎⊤(∇𝑐∗𝑁 + 𝑣∗𝑁 ) = 0 or 𝜎⊤𝑣∗𝑁 = −𝜎⊤∇𝑐∗𝑁 . (C.21)

lugging this into (C.19) we obtain the following equation for the minimal cost 𝑐∗𝑁 :

0 = 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑐∗𝑁
)

+ 𝑏 ⋅ ∇𝑐∗𝑁 − 𝜎𝜎⊤∇𝑐∗𝑁 ⋅ ∇𝑐∗𝑁 + 1
2
(∇𝑐∗𝑁 )⊤𝜎𝜎⊤∇𝑐∗𝑁

= 1
2
𝗍𝗋
(

𝜎𝜎⊤∇∇𝑐∗𝑁
)

+ 𝑏 ⋅ ∇𝑐∗𝑁 − 1
2
(∇𝑐∗𝑁 )⊤𝜎𝜎⊤∇𝑐∗𝑁 . (C.22)

Step 4. Show that 𝑐∗𝑁 = − log 𝑞+𝑁 (𝑥) is the solution to the HJB equation. Plugging 𝑐∗𝑁 = − log 𝑞+𝑁 into (C.22) we get

− 1
2𝑞+𝑁

𝗍𝗋
(

𝜎𝜎⊤∇∇𝑞+𝑁
)

+ 1
2(𝑞+𝑁 )2

‖

‖

‖

𝜎⊤∇𝑞+𝑁
‖

‖

‖

2
− 𝑏 ⋅ ∇ log 𝑞+𝑁 − 1

2(𝑞+𝑁 )2
‖

‖

‖

𝜎⊤∇𝑞+𝑁
‖

‖

‖

2
=

− 1
2𝑞+𝑁

𝗍𝗋
(

𝜎𝜎⊤∇∇𝑞+𝑁
)

− 𝑏 ⋅ ∇ log 𝑞+𝑁 =

− 1
𝑞+𝑁

𝑞+𝑁 = 0.

The last equality follows from the fact that 𝑞+𝑁 = 0 in 𝛺𝐴𝐵 . The boundary conditions for 𝑐∗𝑁 = − log 𝑞+𝑁 are readily checked:
− log 𝑞+𝑁 = 𝑁 on 𝜕𝐴, − log 𝑞+𝑁 = 0 on 𝜕𝐵, and

𝜕
𝜕𝑛̂

(

− log 𝑞+𝑁
)

= − 1
𝑞+𝑁

𝜕𝑞+𝑁
𝜕𝑛̂

= 0, 𝑥 ∈ 𝜕𝛺.

The optimal control associated with 𝑐∗𝑁 = − log 𝑞+𝑁 (𝑥) given by (C.21) is

𝜎⊤𝑣∗𝑁 = −𝜎⊤∇𝑐∗𝑁 = 𝜎⊤∇ log 𝑞+𝑁 . (C.23)

Step 5. Show that the control 𝜎⊤𝑣∗𝑁 = 𝜎⊤ log 𝑞+𝑁 is admissible. Eq. (C.3) implies that

𝜎⊤𝑣∗𝑁 = −𝜎⊤∇𝑐∗𝑁 = 𝜎⊤∇ log 𝑞+𝑁 = 𝜎⊤
[

∇𝑞+
(

1 − 𝑒−𝑁
)

𝑞+
(

1 − 𝑒−𝑁
)

+ 𝑒−𝑁

]

. (C.24)

ence
‖

‖

‖

𝜎⊤𝑣∗𝑁
‖

‖

‖

≤ 𝑒𝑁 max
𝑥∈𝛺𝐴𝐵

‖

‖

‖

∇𝑞+𝑁 (𝑥)‖‖
‖

< ∞. (C.25)

The stopping time 𝜏𝐴𝐵 < ∞ a.s. as the system is ergodic and the domain is compact. Therefore

1
2 ∫

𝜏𝐴𝐵

0
‖𝜎⊤𝑣∗𝑁 (𝑌𝑠)‖2𝑑𝑠 < ∞ a.s.

and hence

E𝑃 ,𝑥

[

𝑒
1
2 ∫ 𝜏𝐴𝐵

0 ‖𝜎⊤𝑣∗𝑁 (𝑌𝑠)‖2𝑑𝑠
]

< ∞, (C.26)

i.e. 𝑣∗𝑁 is admissible.
Step 6. Take the limit 𝑁 → ∞. Letting 𝑁 → ∞ in (C.12) and taking into account the explicit expression (C.3) for 𝑞+𝑁 (𝑥) we

conclude that

𝑐∗(𝑥) ≥ − log 𝑞+(𝑥). (C.27)
27
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On the other hand, as we have shown in Step 3, (C.12) is actually an equality, and the corresponding optimal control satisfies

𝜎⊤𝑣∗𝑁 = −𝜎⊤∇𝑐∗𝑁 = 𝜎⊤∇ log 𝑞+𝑁 = 𝜎⊤
[

∇𝑞+
(

1 − 𝑒−𝑁
)

𝑞+
(

1 − 𝑒−𝑁
)

+ 𝑒−𝑁

]

. (C.28)

aking limit 𝑁 → ∞ we obtain

𝜎⊤𝑣∗ = 𝜎⊤
∇𝑞+

𝑞+
= 𝜎⊤∇ log 𝑞+. (C.29)

ince the admissible set  is closed, 𝑣∗ = ∇ log 𝑞+ ∈  . One can readily check that the corresponding solution the Hamilton–Jacobi–
ellman Eq. (C.19) with the boundary conditions 𝑐∗ = +∞ on 𝜕𝐴, 𝑐∗ = 0 on 𝜕𝐵, and 𝜕𝑐∗

𝜕𝑛̂ = 0 on 𝜕𝛺 is

𝑐∗(𝑥) = − log 𝑞+(𝑥). (C.30)

his completes the proof of Theorem 3.1. □

ppendix D. Errors due to model reduction: an example

We will illustrate the error due to model reduction in the transition rate 𝜈𝐴𝐵 as well as in the probabilities 𝜌𝐴 and 𝜌𝐴𝐵 on the
xample used in [43]. A system is evolving according to the overdamped Langevin dynamics (6) with the potential given by

𝑉 (𝑥, 𝑦) = (𝑥2 − 1)2 + 𝜖−1(𝑦 + 𝑥2 − 1)2, (D.1)

here 𝜖 is a small parameter. The second term in (D.1) effectively restricts the dynamics to a small neighborhood of the parabola
= 1 − 𝑥2. It is shown in [43] that 𝑥 is a suboptimal choice of a collective variable because the gradient of 𝑥 with respect to (𝑥, 𝑦)

s not orthogonal to the normal vector to the manifold near which the dynamics live.
Let us consider the signed arclength parameter along the parabola 𝑦 = 1 − 𝑥2

𝑠(𝑥) = ∫

𝑥

0

√

1 + 4𝑧2𝑑𝑧 = 1
2
𝑥
√

1 + 4𝑥2 + 1
4
log(2𝑥 +

√

1 + 4𝑥2) (D.2)

as a collective variable. The function 𝑠(𝑥) is monotone and hence invertible. In the limit 𝜖 → 0, the dynamics are one-dimensional
and governed by

𝑑𝑠 = −
𝑑𝑉0(𝑥(𝑠))

𝑑𝑠
𝑑𝑡 +

√

2𝛽−1𝑑𝑤, (D.3)

where 𝑉0 ∶= (𝑥2 − 1)2. We set 𝛽 = 3 choose the sets 𝐴 and 𝐵 as in [43]:

𝐴 = {𝑥 < 𝑎}, 𝐵 = {𝑥 > 𝑏}, 𝑎 = −0.5, 𝑏 = 0.5. (D.4)

We calculate the committor 𝑞(𝑠) and 𝑞(𝑥) using the exact formula for the one-dimensional case:

𝑞(𝑠) =
∫ 𝑠
𝑠(𝑎) 𝑒

𝛽𝑉0(𝑥(𝑠′))𝑑𝑠′

∫ 𝑠(𝑏)
𝑠(𝑎) 𝑒𝛽𝑉0(𝑥(𝑠′))𝑑𝑠′

, 𝑞(𝑥) =
∫ 𝑥
𝑎 𝑒𝛽𝑉0(𝑥′)𝑑𝑥′

∫ 𝑏
𝑎 𝑒𝛽𝑉0(𝑥′)𝑑𝑥′

. (D.5)

Using the inverse of 𝑠(𝑥), we obtain 𝑞(𝑥(𝑠)). The plots of 𝑞(𝑠) and 𝑞(𝑥(𝑠)) and their derivatives in 𝑠 are displayed in Fig. D.17(left). It
is evident that the difference between their derivatives is notably larger. Next, we use 𝑞(𝑠) and 𝑞(𝑥) to calculate the transition rate
𝜈𝐴𝐵 from 𝐴 to 𝐵 via (33) and the probability 𝜌𝐴𝐵 via (27). The notation with tilde will indicate the results obtained using 𝑥 as a
ollective variable. We get:

𝜈𝐴𝐵 = 9.46 ⋅ 10−3, 𝜌𝐴𝐵 = 9.47 ⋅ 10−3,

𝜈̃𝐴𝐵 = 2.19 ⋅ 10−2, 𝜌̃𝐴𝐵 = 7.98 ⋅ 10−3.

he transition rate estimated using 𝑥 as a collective variable exceeds to true rate by the factor of approximately 2.3, while the error
n the estimate of the probability to be reactive is about 16%.

ppendix E. Robustness of the crossover time: an example

In this appendix, we will examine how the quality of the committor estimate affects the crossover time in the controlled dynamics
n the example of the bistable Duffing oscillator (83) with 𝜖 = 0.05. The controlled dynamics of the Duffing oscillator are governed

by SDE (85) where 𝑞+𝗇𝗇 is the estimate to the forward committor computed using PINN.
The PINN committor solver computes the committor via an optimization process called training the neural network. The number

of training steps is measured in epochs.3 Stopping the training process too early results in a rough approximation to the forward

3 One epoch comprises the number of iterations necessary to use all training data 𝑁𝗍𝗋𝖺𝗂𝗇 one time. For example, if the optimization algorithm is deterministic
nd all training data are used for computing the gradient of the objective function in each iteration, then one epoch is equal to one iteration. If an optimizer is
tochastic and a subset, a batch, of 𝑁𝖻𝖺𝗍𝖼𝗁 training data is used at each iteration to evaluate the direction of the step, then one epoch consists of 𝗋𝗈𝗎𝗇𝖽(𝑁𝗍𝗋𝖺𝗂𝗇∕𝑁𝖻𝖺𝗍𝖼𝗁)
28

terations.
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Fig. D.17. An illustration to Appendix D.

Fig. E.18. Test case: the bistable Duffing oscillator with 𝜖 = 0.05. The growth of the relative error in the expected crossover time E[𝜏𝐴𝐵 ] versus the relative growth
f the weighted mean absolute difference (wMAD) of the ‘‘undertrained’’ approximations to the forward committors and the FEM committor. The approximate
ommittors 𝑞+𝗇𝗇 are obtained by evaluating the solution model after 100, 125, 150, 300, and 500 epochs of training.

committor. The results reported in Section 6.3 are obtained as a result of training the neural network for 500 epochs. Hence, we
form a sequence of approximations to the forward committor by evaluating the solution model after 100, 125, 150, 300, and 500
epochs of training visualized in the figures in Table E.10 using dashed contour plots. The solution becomes progressively closer to
the final solution 𝑞+𝗇𝗇 evaluated at 500 epochs, which, in turn, in close to the FEM solution depicted using solid contour plots. The
discrepancies MAD and RMSD between the FEM forward committor and the approximations to it progressively shrink.

For each of these ‘‘undertrained’’ solutions, we evaluate the expected crossover time E[𝜏𝐴𝐵] by averaging the crossover times
of 250 transition trajectories governed by the controlled SDE (85) with the corresponding ‘‘undertrained’’ forward committor. The
results are shown in the last column of Table E.10.

Table E.10 shows that as the accuracy of the committor decreases, the expected crossover time E[𝜏𝐴𝐵] increases. Nonetheless,
the relative increment in E[𝜏𝐴𝐵] is notably smaller compared to the discrepancy in the committors as evident from Fig. E.18. In
summary, this investigation suggests that the estimate of the expected crossover time obtained by means of sampling controlled
trajectories remains reasonably accurate even if the approximation to the forward committor is rough.

Appendix F. Finite element method for the committor problem

F.1. Time-reversible dynamics

If the governing SDE is time-reversible as it is in the case of the overdamped Langevin dynamics (6) or the overdamped Langevin
dynamics in collective variables (9), the committor problem (19) with the generator (23) is self-adjoint. In this case, we proceed in
the standard way detailed in [72]. First, we decompose the committor 𝑞 into 𝑞 = 𝑞1 + 𝑞0 where is a prescribed function such that
𝑞1 = 1 on 𝜕𝐵 and 𝑞1 = 0 outside a small neighborhood of 𝜕𝐵 and 𝑞0 needs to be found. The boundary value problem for 𝑞0 is
29

𝑞0 = −𝑞1, 𝑥 ∈ 𝛺𝐴𝐵 , (F.1)
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Table E.10
Estimates of wMAD, wRMSD and E[𝜏𝐴𝐵 ] computed for five different approximations to the forward committor (dashed contours) of the bistable Duffing oscillator
(83) with 𝜖 = 0.05 obtained at various stages of training the neural network-based solution model with the PINN loss function. The FEM forward committor
(solid contours) and the corresponding E[𝜏𝐴𝐵 ] = 𝟕.𝟒𝟖 ± 𝟎.𝟒𝟗 are treated as the ground truth.

𝑞0 = 0, 𝑥 ∈ 𝜕𝐴 ∪ 𝜕𝐵, (F.2)
𝜕𝑞0
𝜕𝑛̂

= 0, 𝑥 ∈ 𝜕𝛺. (F.3)
30
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Second, we multiply (F.1) by a test function 𝑤 ∈ 𝐻1
0 (𝛺̄) where the subscript 0 means that 𝑤 = 0 on 𝜕𝐴 ∪ 𝜕𝐵, integrate over 𝛺𝐴𝐵

and apply the generalized divergence theorem to both parts. The result is the following integral equation for 𝑞0 that must hold for
all 𝑤 ∈ 𝐶1

0 (𝛺̄):

∫𝛺𝐴𝐵

𝑒−𝛽𝐹 (𝑥)𝑤(𝑥)⊤𝑀(𝑥)∇𝑞0 = −∫𝛺𝐴𝐵

𝑒−𝛽𝐹 (𝑥)𝑤(𝑥)⊤𝑀(𝑥)∇𝑞1. (F.4)

Next, we triangulate 𝛺𝐴𝐵 and denote the associated finite element space by 𝑆ℎ with the standard piecewise-linear basis {𝑣𝑗 (𝑥)}𝑖∈
where  is the set of vertices of the triangles [72]. The subset of vertices that do not belong to 𝜕𝐴 ∪ 𝜕𝐵 is denoted by f ree. We
choose 𝑞1 ∈ 𝑆ℎ so that 𝑞1 = 1 only at the nodes lying on 𝜕𝐵 and 𝑞1 = 0 at all other nodes. We seek the finite element solution for
𝑞0 of the form

𝑞0 =
∑

𝑘∈f ree

𝑣𝑘(𝑥)(𝑞0)𝑘 (F.5)

where the vector {(𝑞0)𝑘}𝑘∈𝑓𝑟𝑒𝑒 is the solution to the linear system
∑

𝑘∈f ree

𝖠𝑗𝑘(𝑞0)𝑘 = −
∑

𝑘∈𝜕𝐵
𝖠𝑗𝑘 (F.6)

with the matrix elements 𝖠𝑗𝑘 given by

𝖠𝑗𝑘 = ∫𝛺𝐴𝐵

𝑒−𝛽𝐹 (𝑥)∇𝑣𝑗 (𝑥)⊤𝑀(𝑥)∇𝑣𝑘(𝑥)𝑑𝑥. (F.7)

The integral in (F.7) is the sum of the integrals over all triangles. In each triangle, the gradients of the basis functions are constant,
and 𝐹 (𝑥) and 𝑀(𝑥) are approximated by their values at the center of mass. Finally, the finite element solution 𝑞𝖿𝖾𝗆 is found at the
sum 𝑞𝖿𝖾𝗆 = 𝑞0 + 𝑞1.

F.2. The Langevin dynamics

For the Langevin dynamics (10), the committor problem (19) with the generator (24) is hypoelliptic, and the application of the
finite element method (FEM) requires care. We design a FEM solver for this case motivated by the article by Morton on FEM for
non-self-adjoint problems [73] that suggests to make the problem as close to self-adjoint as possible. Since in the case of Langevin
dynamics FEM is practical only if the space (𝑥, 𝑝) is two-dimensional, 𝑥 and 𝑝 will be one-dimensional in the presentation below.

As in Appendix F.1, we start by decomposing 𝑞+ into 𝑞+ = 𝑞+0 + 𝑞+1 . The boundary value problem for 𝑞+0 is of the form (F.1)–(F.3)
except for 𝑥 is replaced with (𝑥, 𝑝). Then we multiply the PDE for 𝑞+0 by 𝜖−1 exp

(

− 𝑝2

2𝜖

)

and get:

𝑒−
𝑝2
2𝜖

𝜖
𝑞+0 = 𝑒−

𝑝2
2𝜖

𝜖

[

𝑝
𝑚

𝑑𝑞0
𝑑𝑥

− 𝑉 ′(𝑥)
𝑑𝑞+0
𝑑𝑝

]

+ 𝛾 𝑑
𝑑𝑝

(

𝑒−
𝑝2
2𝜖

𝑑𝑞+0
𝑑𝑝

)

= − 𝑒−
𝑝2
2𝜖

𝜖
𝑞+1 . (F.8)

We denote (𝑥, 𝑝) by 𝑧 and the gradient with respect to 𝑧 by ∇ and rewrite (F.8) in a matrix form:

𝛾∇ ⋅
(

𝑒−
𝑝2
2𝜖

[

0 0
0 𝑚

]

∇𝑞+0

)

+ 𝑒−
𝑝2
2𝜖

𝜖

[

𝑝∕𝑚
𝑉 ′(𝑥)

]

⋅ ∇𝑞+0 = − 𝑒−
𝑝2
2𝜖

𝜖
𝑞+1 . (F.9)

Then we follow the steps in Appendix F.1. We multiply (F.9) by a test function 𝑤(𝑧) ∈ 𝐻1
0 (𝛺̄𝐴𝐵), integrate over 𝛺𝐴𝐵 and apply the

eneralized divergence theorem. This results in the following integral equation for 𝑞+0 that must hold for all 𝑤(𝑧) ∈ 𝐻1
0 (𝛺̄𝐴𝐵):

𝛾 ∫𝛺𝐴𝐵

𝑒−
𝑝2
2𝜖 ∇𝑤⊤

[

0 0
0 𝑚

]

∇𝑞+0 𝑑𝑥 − 𝑒−
𝑝2
2𝜖

𝜖 ∫𝛺𝐴𝐵

𝑤
[

𝑝∕𝑚
𝑉 ′(𝑥)

]

⋅ ∇𝑞+0

= − 𝛾 ∫𝛺𝐴𝐵

𝑒−
𝑝2
2𝜖 ∇𝑤⊤

[

0 0
0 𝑚

]

∇𝑞+1 𝑑𝑥 + 𝑒−
𝑝2
2𝜖

𝜖 ∫𝛺𝐴𝐵

𝑤
[

𝑝∕𝑚
𝑉 ′(𝑥)

]

⋅ ∇𝑞+1 𝑑𝑥. (F.10)

Then we triangulate 𝛺𝐴𝐵 , introduce the standard FEM basis {𝑣𝑖}𝑖∈ in 𝑆ℎ, and represent 𝑞+0 (𝑧) as a linear combination of the basis
unctions associated with the nodes not in 𝜕𝐴 ∪ 𝜕𝐵, and obtain the following linear system for the coefficients (𝑞+0 )𝑘:

∑

𝑘∈f ree

𝖠𝑗𝑘(𝑞+0 )𝑘 −
∑

𝑘∈f ree

𝖡𝑗𝑘(𝑞+0 )𝑘 = −
∑

𝑘∈𝜕𝐵
𝖠𝑗𝑘 +

∑

𝑘∈𝜕𝐵
𝖡𝑗𝑘. (F.11)

he matrix elements in (F.11) are given by

𝖠𝑗𝑘 = 𝛾 ∫𝛺𝐴𝐵

𝑒−
𝑝2
2𝜖 ∇𝑣⊤𝑗

[

0 0
0 𝑚

]

∇𝑣𝑘𝑑𝑥, 𝖡𝑗𝑘 = 𝑒−
𝑝2
2𝜖

𝜖 ∫𝛺𝐴𝐵

𝑣𝑗

[

𝑝∕𝑚
𝑉 ′(𝑥)

]

⋅ ∇𝑣𝑘𝑑𝑥. (F.12)

omputing the integrals in (F.12) over each triangle, all nonlinear functions are approximated by their values at the centers of mass
+ + + − +
31

f the triangle. Finally, 𝑞
𝖿𝖾𝗆

= 𝑞0 + 𝑞1 . The backward committor is readily found by 𝑞
𝖿𝖾𝗆

(𝑥, 𝑝) = 1 − 𝑞
𝖿𝖾𝗆

(𝑥,−𝑝).
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Appendix G. Confidence interval

To compute confidence intervals for simulated transition time from 𝐴 to 𝐵, we first compute mean 𝜏𝐴𝐵 and standard error of the
ean se𝜏 using scipy.stats.sem, which is the sample standard deviation divided by square root of the sample size: se𝜏 = 𝜎

√

𝑛
.

The confidence interval then is obtained using t distribution:

confidence interval = [𝜏𝐴𝐵 − se𝜏 𝑡(𝛼), 𝜏𝐴𝐵 + se𝜏 𝑡(𝛼)] (G.1)

where 𝑡(𝛼) satisfies ∫ ∞
𝑡(𝛼) 𝑓 (𝑥)𝑑𝑥 = 𝛼, and can be found using scipy.stats.t.ppf. For all examples, 95% confidence intervals

are used.
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