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Many processes in nature such as conformal changes in biomolecules and clusters of interacting
particles, genetic switches, mechanical or electromechanical oscillators with added noise, and
many others are modeled using stochastic differential equations with small white noise. The
study of rare transitions between metastable states in such systems is of great interest and
importance. The direct simulation of rare transitions is difficult due to long waiting times.
Transition path theory is a mathematical framework for the quantitative description of rare
events. Its crucial component is the committor function, the solution to a boundary value
problem for the backward Kolmogorov equation. The key fact exploited in this work is that
the optimal controller constructed from the committor leads to the generation of transition
trajectories exclusively. We prove this fact for a broad class of stochastic differential equations.
Moreover, we demonstrate that the committor computed for a dimensionally reduced system
and then lifted to the original phase space still allows us to construct an effective controller
and estimate the transition rate with reasonable accuracy. Furthermore, we propose an all-the-
way-through scheme for computing the committor via neural networks, sampling the transition
trajectories, and estimating the transition rate without meshing the space. We apply the
proposed methodology to four test problems: the overdamped Langevin dynamics with Mueller’s
potential and the rugged Mueller potential in 10D, the noisy bistable Duffing oscillator, and
Lennard-Jones-7 in 2D.

1. Introduction

The study of rare events in stochastic systems is crucial for understanding natural phenomena such as conformal changes in
biomolecules and clusters of interacting particles, protein folding, noise-driven transitions in nonlinear oscillator systems, genetic
switches, and many others. Often rare events in such systems are associated with transitions between metastable states separated
by high energetic barriers. Direct simulations of rare events are difficult due to long waiting times. Deterministic approaches based
on solving partial differential equations are hampered by the high dimensionality of phase space or other numerical issues. In this
work, we propose an approach for sampling transition trajectories between metastable states based on optimal control and use them
to calculate transition rates. This approach is inspired by a remarkable fact demonstrated in a recent work by Zhang, Sahai, and
Marzouk [1] that a highly effective controller for a broad class of stochastic systems can be obtained using a rough approximation
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to the solution of an appropriate partial differential equation. The theoretical foundation of this approach is motivated by work [2]
of Lu and Nolen and recent work [3] of Gao, Li, Li, and Liu detailing the case of overdamped Langevin dynamics.

1.1. An overview

Numerical methods for the study of rare events can be divided into two large classes: deterministic and stochastic.

Stochastic methods include direct simulation suitable only for the case where the noise is relatively large [4] as well as
various enhanced sampling algorithms. These include methods aimed at sampling rare transitions e.g. transition path sampling [5-
71, milestoning [8], weighted ensemble [9], and adaptive splitting methods [10,11], and methods for the exploration of the
configurational space e.g. metadynamics [12,13] and machine learning-assisted techniques — see [14,15] and references therein.

The class of deterministic methods can be subdivided into several categories. First, there are methods aiming at finding
maximum likelihood transition paths via a gradient descent in the path space [16-21] and via using control theory and a shooting
approach [22,23]. While they are computationally cheap and suitable for high dimensions, these methods produce a single transition
path along which the transition flux is focused as the noise amplitude tends to zero, and are only able to give an asymptotic scaling
for the exponential factor of the transition rate in the limit of noise coefficient approaching zero. Second, methods for computing the
quasipotential on a mesh are useful for visualization of the effective potential for two- or three-dimensional systems with nongradient
drifts — see [24-27]. Third, there are methods using the framework of transition path theory [28,29] where the key component
is the numerical solution of the committor problem, a boundary-value problem for the stationary backward Kolmogorov equation.
Novel techniques developed for accomplishing this task in dimensions higher, and even in some cases, much higher than three,
include those based on training neural networks [30-32], crafting diffusion maps [33-35], or representing the solution by tensor
trains [36].

1.2. Optimal control

The first two categories of deterministic methods, i.e. methods for finding maximum likelihood transition paths in the vanishing
noise limit and methods for computing the quasipotential, are connected via the deterministic optimal control. For example, consider
a system evolving according to an SDE of the form

dX, = b(X,)dt + 6(X)\/edW,, ®

where the drift field b is smooth and has a finite number of attractors lying within a ball of a finite radius around the origin, the
matrix function ¢ is smooth, and ¢ is a small parameter. Let A be an attractor of the corresponding ODE x = b(x). The escape
problem from the attractor A can be viewed as an optimal control problem where an optimal realization of the Brownian motion W,
driving the process out of the basin of A is sought. Therefore, the controlled ODE with a controller u is

X =b(x)+o(xu, x(0)€ A. 2

The cost functional is derived in the large deviations theory [37,38]. If ¢ is nonsingular everywhere, the cost functional defined for
all absolutely continuous paths ¢(-) is given by

T T
1 1 _ ;
Sr) = 5 / lu(pldr = 5 / lle™" ()l — bl *d1. 3)
0 0
The last expression is exactly the Freidlin-Wentzell action functional for SDE (1) [38]. The optimal controller « is given by
u=0'VU, where U(x)= ipn; {S:(d) | $(0) € A, H(T) = x} (€))]

is the quasipotential. The infimum in (4) taken over all paths and all final times is always achieved at T = oo since ¢(0) € A [38].
Plugging this optimal controller to ODE (2) results in the ODE governing the optimal escape path from the attractor A [39,40]

% = b(x) + 6(x)o(x) T VU(x). (5)

In practice, if the quasipotential is found, one can find the optimal escape path from the basin of .4 by integrating ODE (5) backward
in time starting at the point at the boundary of the basin of .4 where the quasipotential U is minimal. Therefore, the quasipotential
determines the optimal controller for finding the most probable escape path in the zero noise limit, and the escape path is governed by
ODE (5).

A similar connection via stochastic optimal control exists between transition path sampling and methods relying on solving the
committor problem. These two approaches address the case where the noise is small but finite. The study of stochastic optimal
control problems in the context of molecular dynamics applications was started by Hartmann and collaborators in 2012 [41]. In
contrast to seeking an optimal realization of the Brownian motion as in the deterministic optimal control problem outlined above, the
setting of the stochastic optimal control problem leaves the noise term unchanged. Instead, it aims at finding a minimal modification
to the drift term of the governing SDE that would make all trajectories accomplish the desired transition. For example, suppose a system
is governed by the overdamped Langevin dynamics

dX, = —VV(X,)dt + V2p-1dW,, (6)
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where V' (x) is a smooth and coercive potential with a finite number of isolated minima and p~! is a small parameter often interpreted
in chemical physics applications as the temperature. Let A and B be open disjoint sets surrounding local minima x, and xp of V' (x),
and let g(x) be the committor function, i.e., the probability that the process governed by (6) and starting at x will first reach B
rather than A. The committor function determines the optimal controller for stochastic dynamics. Precisely, the dynamics of transition
paths from A to B are governed by [2]

dX, = [-VV(X,) + 267! Viogq(x)] dt + V2p-1dW,, X, € dA. @
The function 28~!V log ¢(x) is the optimal controller with respect to the cost functional [3,42]
1 [TaB 5 400, x €EJA
Cu)=E [— / u(X)||°dt +g(X, )|, where g(x)= 8)
P13/, [l (Xl 8(X,,, g 0.  xcaB

is the exit cost, 7,5 = inf{t > 0 | X, € AU B} is the stopping time, and P is probability measure on the path space of SDE (6).
1.3. Applications

In this work, we are especially interested in applications coming from chemical physics and mechanical engineering.

In chemical physics, molecular motion is often modeled by Langevin dynamics in R®Y where N is the number of atoms. To
alleviate the problem of high dimensionality and make results more interpretable, physically motivated collective variables are
often introduced. Collective variables (CVs) are functions of atomic coordinates effectively capturing the main dynamical modes.
Common choices of CVs are dihedral angles along the backbone of a studied biomolecule, interatomic distances between particular
key atoms, etc. The dynamics in collective variables Z, € R?, d < 6N, are often modeled by the overdamped Langevin dynamics in
collective variables

dZ, = [-M(Z)VF(Z)+ p'V - M(Z)] dt + V2~ M"*(Z)dW, 9)

where M(Z,) and F(Z,) are the diffusion tensor and the free energy found by standard techniques using molecular dynamics (MD)
data [19]. The computation of M and F is detailed in Appendix A of [34]. We note that the dynamics of SDE (9) do not necessarily
accurately represent the dynamics of the CVs evaluated along the trajectory governed by the original SDE even if the original SDE
is merely the overdamped Langevin dynamics (6) and with only one collective variable [43]. It is shown in [43] that the level sets of
the collective variable should be normal to the manifold along which the dynamics of the original system are focused for an accurate
estimate of residence time near metastable states using the reduced system, i.e., SDE (9) with X, being a scalar function.

Among mechanical engineering models, we are interested in nonlinear oscillators with small added noise:

{dX, =m\Pdt

(10
dP, [~y P, = VV(X))] dt + \/2ymed W,

where ¢ is the parameter regulating the noise amplitude, y is the friction coefficient, and V is the potential energy function.

Note that SDEs (9) and (10) are of the form of SDE (1) with a matrix function o(-) being d x r where d is the dimension of the
phase space and r < d is the rank of o, i.e., the matrix function ¢ has linearly independent columns. In this case, W, is the standard
r-dimensional Brownian motion.

1.4. Goals and summary of main results

The goal of this work is two-fold. The first objective is to establish the connection between the committor and the optimal control
for a broad class of SDEs. The second objective is to develop a methodology based on optimal control and transition path theory
for sampling transition paths from a metastable region A to a metastable region B and finding the transition rate from A to B.

We develop a workflow that allows one to generate the transition trajectories and compute the transition rate without meshing
the ambient space. Our Python codes implementing this workflow are posted on GitHub [44,45].

1. Theoretical result: the solution to the optimal control problem. We have proven a theorem (Theorem 3.1) that established
the relationship between the committor and the optimal control for SDE (1) with o(-) being d X r, rank(c) = r. The optimally controlled
dynamics are found to be of the form

dX, = [b(X) + 00T v* (X)) dt + o(X,)dW;, an
where the optimal control ¢"v* satisfies
o'v* =6"Vlioggt (12)

where ¢* is the forward committor (17). This is a generalization of Theorem 3.3 in [3] and is related to the results in [1,2].

2. Compute the committor. In MD applications, it is challenging to compute the committor g(x) accurately for the dynamics
of interest due to high dimensionality. Therefore, we compute it for the reduced dynamics in CVs (9) and then lift it to the original
phase space assuming that the dynamics in it is overdamped Langevin (6). It is also difficult to obtain an accurate solution to
the committor problem for SDE (10) due to the degeneracy of the elliptic PDE. Therefore, in both cases, we expect to have an
approximate solution to the committor problem.
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Neural network-based solvers for the committor problem have several advantages. First, they find a globally defined smooth
solution function whose gradient needed for the controller v* is readily accessible via automatic differentiation. Second, they do not
require artificial boundary conditions on the outer boundary of the computational domain unlike finite difference and finite element
methods. Finally, they do not require meshing the space which makes them more amenable to promotion to higher dimensions. Our
neural network-based solver for the committor problem for SDE (9) is similar to the one by Li, Lin, and Ren [31] that exploits
the variational formulation and sets up a solution model that automatically satisfies the boundary conditions. The committor
problem for SDE (10) does not admit a variational formulation. Therefore, we use the PINNs framework by Raissi, Perdikaris,
and Karniadakis [46].

3. Sample transition trajectories. The transition path theory framework allows one to compute the transition rate once the
committor is available. However, if the committor is inexact e.g., due to suboptimal or insufficient set of CVs, the transition rate
determined in this way is likely to be highly inaccurate [35,43]. On the other hand, even a rough approximation to the solution of
the backward Kolmogorov equation yields a very good controller. Therefore, we use the found committor to construct a controller
according to (11)-(12) and sample transition trajectories.

4. Estimate the transition rate. The transition rate v, is defined as the average number of transitions from A to B observed
per unit time. We propose to estimate it as

PAB
Vap = ST (13)
where p, 5 is the probability of a trajectory being reactive i.e. on its way from A to B, and E[r,] is the expected crossover time from
A to B found by simulating the controlled process (11)-(12). The probability p, 5 is estimated using the computed committor.

5. Validation. We apply the proposed methodology to four test problems: the overdamped Langevin equation with Mueller’s
potential in 2D and with the rugged Mueller potential in 10D as in [31], a single bistable Duffing oscillator as in [1], and
Lennard-Jones cluster of 7 particles in 2D (LJ7) as in [34,47]. We assess the accuracy and demonstrate the efficacy of the proposed
methodology. In all test cases, the estimates of the transition rate by formula (13) are consistent with those found by brute force
even if the committor is not very accurate as in the case of LJ7. On the other hand, the transition rate estimated directly using the
computed committor is notably less accurate. An explanation for this phenomenon is offered.

The paper is organized as follows. Section 2 provides the necessary background on transition path theory and the transition path
process. Sections 3 and 4 contains our theoretical results. Section 5 describes the numerical methods used in this work. Section 6
presents the application of the proposed methodology to three benchmark test problems. Section 7 summarizes the results and gives
perspectives for future work. The proof of the main theorem (Theorem 3.1) as well as a number of technical aspects are elaborated
in appendices.

2. Background

In this section, we will provide the necessary theoretical background on transition path theory (TPT) and the transition path
process.

2.1. Transition path theory

Transition Path Theory (TPT) is a celebrated mathematical framework for the quantitative description of rare transitions in
stochastic systems [28,29]. Suppose a system is evolving according to SDE

dX, = b(X)dt +o(X,)dW,, X,€ QCRY, xeQcR? 14)
Throughout this work, we will adopt the following assumptions about SDE (14).
Assumption 1. The domain  is either RY or a manifold without boundary with metric being locally Euclidean.

For example, £ can be a d-dimensional “flat” torus, T¢, or a direct product T x R4, 1 <k <d — 1.

Assumption 2. The drift field b : 2 — R? is a smooth vector function. The corresponding ODE x = b(x) has a finite number of
attractors and all its trajectories approach one of the attractors as t — oo.

Assumption 3. The matrix function ¢ : 2 — R, r := rank(c), is smooth. The entries of o(x) are bounded, and rank(c) is the
same for all x € Q. The singular values of ¢ are bounded from above and from below in Q.

Assumption 4. There exists a unique invariant density u(x), and the system is ergodic.
The infinitesimal generator £ of the process governed by SDE (14) is defined as
1 T
£f(x)=b~Vf+§tr(cm VVf). (15)

The invariant density is the solution to £*u =0, fg udx =1, where L£* is the adjoint to the generator (15).
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Suppose we want to study transitions between two disjoint open sets A and B in Q. For example, if we are interested in
transitions between neighborhoods of two distinct attractors of the ODE x = b(x), we choose A and B to be these neighborhoods.
Let {X, | —o0 <t < oo} be an infinitely long trajectory of (14). Due to ergodicity, it will visit A and B infinitely many times. TPT
studies statistics of pieces of such a trajectory that start at A and next hit 0B without returning to A' in between. Such pieces are
called the reactive trajectories, and A and B are called the reactant and product sets respectively. Key concepts of TPT are forward
and backward committors q*(x) and ¢~ (x). The forward committor g*(x) is defined as the probability that the process starting at x
will first hit B rather than A. The backward committor is the probability that the process arriving at x has hit A last rather than B.
Specifically, let 7} (z;;) be the first (last) hitting time of region D for trajectory starting (arriving) at x, and 7;, be the last hitting
time of region D for trajectory arriving at x. Equivalently, 7, is the first hitting time of D for the time-reversed process of X, =X_.:

75 (x) =inf(t >0 : X, € D, x(0) = x} 16)
t5(x) =inf{r> 0 : X, € D,%(0) = x}.

Given two disjoint regions A and B, the forward committor function ¢*(x) and backward committor function ¢~ (x) are defined as
follows

g* 1 Q- 1[0,1],¢%(x) = P{zj(x) < 7} ()}

17
g 1 2-1[0,1],g7(x) =P{r (x) < 75(x)}.
The region 2 with removed sets A and B will be denoted by 2, :
Q,p = Q\(AU B). 18)
The forward and backward committors ¢* and ¢~ are the solutions to the following boundary value problems (BVPs) [28]
Lgt=0 x€Q,p Lfg=0 xeQuy
gt (x)=0 x€0A g(x)=1 x€0A
(19)
qgt(x)=1 x€0B, g (x)=0 x€0dB,
W0, xedR, |%Z =0, xeoiQ.

on i

We will refer to the BVP for the forward committor as the committor problem. Here, L is the infinitesimal generator (15). £ is the
infinitesimal generator of the corresponding time-reversed process [29]

LTfx)==b-Vf+ idiv(oojﬂ) + %tr (ea™VVS), (20)

where div(co p) is the divergence of the matrix o7 , i.e., a vector with components [div(co” )], = 3 i axl(aaT W) 1 <i<d. The
homogeneous Neumann boundary conditions on 02 in (19) are relevant if 22 has a reflecting boundary; 7 is the external unit normal
to dL2. Note that for both SDEs of our interest, (9) and (10), the invariant density u is known. For overdamped Langevin dynamics
in CVs (9),

u(x) = Zpe Pr® 7. = / e PF®gx  for SDE (9) (21)
Q

and for Langevin dynamics (10),
ux.p) = Zge 1P/ H(x,p) = % +V (), (22)
Zy = /g e Hxn/egxdp for SDE (10).
The generators for SDEs (9) and (10), respectively, are
Lf=p"efrV- (ePTMVS) (23)
and
Cf:%-fo—VXV~fo—yp~fo+ym€Apf, (24)

where V, and V, denote gradients with respect to the coordinates and momenta respectively, and 4, is the Laplacian with respect
to momenta.

1 The bar above a set denotes its closure.
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If the governing SDE is time-reversible, e.g. the overdamped Langevin dynamics (6) and the overdamped Langevin dynamics
in collective variables (9), the backward committor is readily found from the forward committor: g~ (x) = 1 — ¢*(x). Langevin
dynamics (10) is not time-reversible, however, there is a nice relationship between the forward and backward committors [29]:
a~(x,p)=1~-q*(x,~p).

The time-reversible SDE (9) admits a variational formulation for the committor problem [19] that motivates the construction of
the loss function for neural network-based committor solvers [30,31]:

gt (x) = argmin/ V)T M@V f(x)u)dx, (25)
feQ Q4B

where y is the invariant density given by (21) and Q is the set of all continuously differentiable functions f satisfying the boundary
conditions f(x) =0, for x € dA, and f(x) =1, for x € 0B.
The probability density of reactive trajectories is given by

Hap = Ha 4. (26)
The integral of u,p over 2,5,

/7AB=/ ugtq dx @7
QB

is the probability that a stochastic trajectory at a randomly picked time is reactive, i.e., is on its way from A to B.
The transition rate from A to B, v,p, is defined as

Ny
= lim 2
Vap = im —-=, (28)

where N, is the number of transitions from A to B observed during the time interval [0, T]. The escape rate from A is defined as

N
Zap _ Yap (29)

5

kg = lim
AP e T, Pa

where T is the total time within [0, T'] during which the system last hit A and p, is the probability that an infinitely long trajectory
at any randomly picked moment of time has last hit A. The probability p, is equal to

Pa= / u(x)g™ (x)dx. (30)
Q

The reactive current is a vector field such that its flux through any surface separating A and B is the transition rate v, . For
SDEs (9) and (10), it is given, respectively, by

Jup=ptz e PP MVgT (31)

and
-1 ,-Hfe +_— p —1,-H/e 0
Jap=Z e qq vy teyZy e ot o |- (32)
x q ap q op

A natural choice of a surface separating A and B is an isocommittor surface ¥, := {x € Q | ¢*(x) = «a} for any a € [0, 1]. The
transition rate can be expressed as (Proposition 6 in [28]):

Vg = l/ ulVg*1Teo Vgtdx = l/ ulVg 1"6c Vg dx. (33)

2 Qa8 2 Q4B

In particular, for SDEs (9) and (10), the transition rates, respectively, are

Vap =ﬁ-'z;1/ (Vg MVgte PP dx (34)

Qup

and

Vap =€rZy) / [qu+]T m|V,q*] e /¢dxdp, (35)

Qup

where m is the diagonal mass matrix.
2.2. Transition path process

TPT received an interesting development in the paper “Reactive trajectories and the transition path process” by Lu and Nolen
(2015) [2]. It is proven in [2] that the dynamics of the reactive trajectories for SDE (14), with matrix oo satisfying the strong
ellipticity condition, are governed by the SDE

dX, = [b(X) + (X))o (X,)Vlog gt (X))| dt + o(X,)dW,, (36)
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and this expression was suggested by the Doob A-transform. The process governed by (36) is called the transition path process. Though
we do not assume strong ellipticity condition for oo, most results in [2] can be extended to the processes considered in this paper
i.e., evolving according to SDE (14) with Assumptions 1-4.

The equilibrium unnormalized density of reactive trajectories on dA is

N4 = uXLLT () = —p()A) T o(x)eT (x)Vgt(x), x € 04, (37)

where #i(x) is the unit normal pointing inside A. Note that while £g* = 0 in Q,; = Q\(A U B), it does not need to be zero on
0A. Eq. (37) should be understood as the rate at which transition paths exit A. The equilibrium unnormalized density of reactive
trajectories on 0B is

ng = —pu(x)A(x) o(x)o (x)Vq~(x), x € 9B, (38)

where 7(x) is the unit normal pointing inside B.
The expected crossover time E[z 4] of the reactive trajectories is defined as

1 Nyp—1
= i + -
Sl = i e 8 (). @)

where N,p is the number of transitions from A to B and 7y, and 7, are kth entrance time to B and kth exit time from A,
respectively, registered for a long trajectory of SDE (14) initiated at x € A. The expected crossover time is the ratio of the probability

pap (27) and the transition rate [2] (also see Appendix A)
E[r4p] = Pas, (40)
VAB
This relationship is very important for this work as it will be used for restoring the transition rate using sampled transition trajectories
(see Section 4).

The transition path process governed by SDE (36) can be thought of as a process in which the trajectories are killed as they
reach 0B and reintroduced at dA after a waiting time at the rate v, 5. Moreover, the trajectories entering 2, p through the boundary
of A are distributed according to (37).

The probability density of reactive trajectories u,p is an invariant measure of the transition path process [2,28]. Indeed, the
backward and forward Kolmogorov operators for (36) are, respectively,

Lypf=[b+oc Viegqt] - VS + %tr (6c"VVF) and (41)
Lif=-V- [(b+o-aTV10gq+)f— %div(o-an)]. (42)
One can check that
Lyphap=—V- [(b+ oo ViegqHugtq — %div (aaTuq+q_)]
=-V. [(bll - %div (MTM)) g+ %MO'O'T (q7vg* - q*W")] (43)
=-V-Jup=0. (44

The symbol J,p is the reactive current [29]. A calculation showing that -V - J,5 = 0 in 2, is detailed in Appendix B. In order
to make the transition path process an equilibrium process we assume that the transition trajectories that have reached dB are
transported back to 0A as shown in Fig. 1. A similar construction was used for Markov jump processes in [48].

The probability to find the system at s, at a randomly picked moment of time is 1 — p, 5. As a result, the invariant measure of
the transition path process becomes

HaTqT, xEQ

Hap = A8 (45)
I—pap, Xx=s54p

It follows from (19) and (43) that the reactive current J, 5 on the boundaries dA and 9B of s,p is [2]

%uaaTVqu, X €E0A

Jup = (46)

—%/MO'TVq’, X € 0B.
Since V- J,5 =0 in Q45 we have
/ JAB~ﬁds+/ Jup-fds =0
0A 0B
where 7 is the outer unit normal and ds is the surface element. Eq. (46) is consistent with (37) and (38).
3. Optimally controlled dynamics

In this section, we show that SDE (36) governing the transition path process can be obtained as the solution to a stochastic
optimal control problem. Precisely, we generalize Theorem 3.3 proven in [3] for the case of the overdamped Langevin dynamics.
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Fig. 1. An illustration for the transition path process. Transition trajectories appear at the boundary of the region A, travel to the region B without returning
to A, and disappear at the boundary of B. To complete the dynamics of transition trajectories to an equilibrium process, the trajectories absorbed at 0B must
be transported back to dA. The pipe in the figure symbolizes this reverse transport.

3.1. The general Ito SDE

We consider the dynamics governed by the general Ito SDE (14) where the drift field » and the diffusion matrix ¢ are as described
at the beginning of Section 2. The controlled dynamics are set to be of the form

dY, = [b(Y) + c(¥)o " (Y)u(Y))] dt + o(Y,)dW, (47)

where v : [0,00) - 2 C R is to be chosen in an optimal manner. The form of the modification to the drift, 66" v, is borrowed
from [1] and is motivated as follows. We are seeking a drift term that will make all trajectories of the resulting process obey the
same statistics as the transition trajectories of the original process (14). This means that all trajectories of the controlled process
can be observed in the original process at particular noise realizations. Hence, the span of the modification to the drift at every
point should match the span of the noise term which is the column space of the matrix-valued function o(-). That is why there is
the factor o on the left of 6o "v. The factor o' is used for convenience so that the control v is of the same dimension as the process
X,.
We have chosen the cost functional to be

1 TAB
Clv(I=Ep [E / T (V)u(YIPds +g(Y,) | X = x|, (48)
0
where P is the probability measure on the path space of SDE (14),
T4 =inf{t>0]Y, € (AU B)} (49)

is the stopping time, and g is the exit cost defined by

+00, Xx € Z
(x) = — (50)
& {0, X € B.

Cost functional (48) gives finite cost only if the trajectory leaves 2,5 via the boundary of B. The function ¢'v is the standard
form in which the optimal control is sought [49]. The optimal control problem is to find the function v(-) that minimizes the cost
functional (48). Its solution is given in the following theorem.

Theorem 3.1. Let X, be a process governed by SDE (14) satisfying Assumptions 1-4 and let Y, be the corresponding controlled process
governed by SDE (47). In addition, we assume that Q is compact with a reflecting boundary and dA and dB are smooth. The infinum of
the cost functional (48) is given by

c*(x) := inf C [v(-)] = —log gt (x), (51)
vey

where V is the set of admissible controls

TAB
V= {v € Cl(Q,p) | Ep [exp (/0 %llaT(YS)U(YS)llzdsﬂ < oo}, (52)
P is the measure on the path space of (14), and q* is the forward committor for SDE (14). The corresponding optimal control v* satisfies

c'v* =06"Vliogq™. (53)



J. Yuan et al Communications in Nonlinear Science and Numerical Simulation 129 (2024) 107701

The proof of Theorem 3.1 combines ideas from Gao et al. ([3], the proof of Theorem 3.3) and L. C. Evans’s notes on the control
theory [50]. It is found in Appendix C.

Remark 1. Theorem 3.1 shows that the optimally controlled dynamics are governed by SDE (36) for the transition path process.
Therefore, all facts about the transition path process stated in Section 2.2 are valid for the optimally controlled dynamics.

Remark 2. The requirement that the domain £ is compact is often implemented in numerical simulations: the computational
domain is always bounded. Deterministic techniques always use meshes or point clouds of finite size. In stochastic simulations,
particles are often put in a box. Therefore, the assumption that £ is compact is not practically restrictive.

Remark 3. Theorem 3.1 suggests a new approach for finding the committor via minimization of the cost functional (51). We leave
the investigation into the viability of this approach for the future.

3.2. Overdamped Langevin equation in collective variables

Theorem 3.1 has an immediate application to a practical scenario: overdamped Langevin equation in collective variables (9).
The diffusion matrix M(x) in (9) is symmetric positive definite everywhere in Q. Applying Theorem 3.1 to SDE (9) results in the
following corollary.

Corollary 3.1.1. For the overdamped Langevin equation in collective variables (9) the optimal controller is
v*(x) = Vlog gt (x), (GD)]
and the controlled process is
dX, =[-MX){VF(X,) - Zﬂ_lv loggq™} + ﬂ_lV - M(X,)]dt
1
+ V20 M(X)2dW,. (55)

3.3. Full Langevin equations

The Langevin dynamics (10) can be written as follows

-1
d [X’] = [ m B ] dt ++/2yem (?) dw, (56)

P, —(VU(X,) +7P)

where the diffusion matrix is
o(X,) = \/2yem <(I)> e R4, (57)
The application of Theorem 3.1 to SDE (56) gives the following controlled process.

Corollary 3.1.2. For the Langevin dynamics (56), the optimal controller v* can be chosen to be
v*(x, p) = V,logg*(x,p) (58)
and the corresponding controlled process is

{dX, =m ' Pdt

(59)
dP, = (-VU(X,) —yP, + 2yemV logq) dt + \/2yemd W.

The form of the optimal controller v* follows from (53) and (57). Note that (53) and (57) do not define v* uniquely as v* can
have arbitrary first d components corresponding to the coordinate subspace. However, the control in SDE (59) is of the form o' v*
where

GUT:2yﬂ’1m[ 8 (1) ]

Hence the components of v* in the coordinate subspace are eliminated in SDE (59).
4. Estimation of the transition rate

The problem of estimating the transition rate between metastable states has been one of the central problems addressed by
chemists, physicists, and mathematicians working on quantifying rare events and remains a subject of active research [51,52].
Practical methods for finding transition rates can be roughly divided into two categories, splitting and reweighting.

Splitting methods, e.g. transition interface sampling [53] and forward flux sampling [54], stratify £, using level sets of a
reaction coordinate. The level sets are denoted by 4;, i = 0,...,n, where 4, = dA and 4, = 0B. Next, the transition probabilities
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P(4;4114;) to reach A, starting from A, before returning to A are estimated. Then the escape rate from A to B is calculated according
to the formula

n—1

kap = 22 T BG4 12). (60)
Pa i=1

where v, , is the average number of transitions from A to 4, per unit time and p, is the probability that the system has last visited

A rather than B. It was shown in Ref. [47] that these methods can suffer from an unfortunate choice of the reaction coordinate.

Reweighting methods use enhanced sampling techniques and restore the statistics of unbiased transition paths using an
appropriate reweighting scheme. These include weighted ensemble [9] and the Girsanov reweighting [55]. The Girsanov reweighting
was used in [1] in combination with optimal control with a fixed stopping time.

The settings in which we need to determine the transition rate are different than those in the works mentioned above. We plan to
compute the committor for the system under consideration or for its reduced model. This means that we can compute the transition
rate using (33) provided that the invariant density u is known.

However, the rate computed in this manner may be inaccurate due to

+ an inaccurate estimate of the normalization constant for the invariant density (see Section 6.1) and/or
+ a suboptimal choice set of collective variables when model reduction is used.

The issue with the normalization constant for the invariant density can be eliminated if the escape rate from the set A is computed
instead — see Eq. (63) below. The problem with the choice of collective variables can be hard to overcome if the system is
complicated. If the underlying dynamics are time-reversible, i.e. given by (9), and &(x) is the set of collective variables then the
transition rate v, estimated in the space of collective variables & is always exaggerated and relates to the original transition rate
v, p via (Proposition 6 in Zhang, Hartmann, Schuette (2016) [56])

Vap S Vg = Vap + % /Q Vig(x) = GEEN]T M (x)VIg(x) — §EE)]u)dx, (61)
AB

where g and § are the committors computed for the original and reduced systems respectively. Eq. (61) shows that if the set of the

collective variables £ were perfect, i.e., if g(x) = §(£(x)), then v, = ¥, 5. In particular, this means that the lowering dimensionality

per se does not lead to an error in the transition rate. Otherwise, there will be a model reduction error in the transition rate.

We propose the following scheme utilizing the fact that the controlled SDE (47) with the optimal controller (51) exactly matches
SDE (36) that governs the transition trajectories of SDE (14). In particular, this means that the expected crossover time E[r, ] for
trajectories of SDE (47) with (51) is the same as that for the transition trajectories of (14). Therefore, first one needs to generate
a set of transition trajectories using the optimally controlled dynamics (47) with (51). This allows us to compute the expected
crossover time E[z,;] and find the transition rate v, p:

PAB
=22 62
VaB Eltyg] (62)

The expected escape time from A can be readily found as well using (29) and (62):

Elr,] = Elz, 5] 24 (63)
PAB

The probabilities p, and p,p will be estimated using the computed committors and formulas (27) and (30). The error in their
estimates due to model reduction via imperfect collective variables is less impaired than the error in the rate. The reason is that the
formula for the rate uses the gradient of the committor while the formulas for p, and p,5 involve only the committors. The error
in the gradient of the committor is amplified due to the differentiation. This effect can be illustrated using an example from [43]
found in Appendix D. Moreover, the estimate of the expected crossover time E[z,5] from the controlled dynamics (47) remains
reasonably accurate even if the estimate of the committor is rough. This issue is explored in Appendix E.

5. Numerical solution to the committor problem

This section offers descriptions of numerical methods that we have used for finding the committors for the test problems reported
in Section 6. As mentioned in Section 1.4, neural network-based (NN-based) solvers have several advantages. First, they yield a
globally defined smooth solution whose derivative is readily available due to automatic differentiation. Second, they do not require
artificial boundary conditions on the outer boundary of €. Finally, they do not require meshing the space which makes them more
amenable for promotion to higher dimensions. The finite element method (FEM) is used for validation of the committors computed
using NN-based methods. Its implementation for the time-reversible dynamics (9) and for the Langevin dynamics is detailed in
Appendix F.

5.1. NN-solver based on the variational form of the committor problem
Two NN-based solvers for the committor problem (19) for the overdamped Langevin dynamics (6) based on the variational
formulation (25) were proposed by Khoo, Lu, and Ying (2018) [30] and Li, Lin, and Ren (2019) [31]. These solvers both use the

loss function motivated by the minimizing property of the committor (25) and require only the first derivatives of the committor.

10
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They use different solution models for the committor and enforce the boundary conditions at dA and 9B in different ways. In [30], the
solution model involves Green’s function for Laplace’s equation and the boundary conditions are implemented via penalty terms in
the loss function. In [31], the solution model is designed similarly to the first NN-based PDE solver (Lagaris et al. (1998) [57]) so that
it automatically satisfies the boundary conditions. In this work, we chose to use the NN-based solver by Li, Lin, and Ren [31] as it is
simpler and its extension to the committor problem for the overdamped Langevin dynamics in collective variables is straightforward.

Since the overdamped Langevin dynamics (6) and the overdamped Langevin dynamics in collective variables (9) are time-
reversible, the forward and backward committor are related via g~ = 1 — ¢*. Therefore, for brevity, we use the notation ¢ for
the forward committor whenever the underlying dynamics is time-reversible.

Following [31], we use the following solution model to the committor problem (19)

q(x;0) = (1 = 24 GO = ypCNN(x30) + xp()],  x € 2y, (64

where N (x;0) is the output of a fully connected neural network (NN) and y,(x) and yg(x) are smooth approximations to the
indicator functions of dA and dB. In this work, we use fully connected neural networks with L hidden layers with tanh activation
functions and the outer layer with the sigmoid function sigmoid(x) = (1 + ¢™*)~!. For example, for L = 1 and L = 2, the neural
networks are

N'(x;0) = sigmoid [Watanh(W)x + b)) + by] , L=1, ©65)
N'(x;0) = sigmoid (Witanh [Watanh(Wx + b)) + by| + b3), L=2.
The argument ¢ comprises all entries of the matrices W; and the shift vectors b;.
The loss function is derived from the minimizing property of the committor (25):
g(x) = argmin / Vi) M)V F(x)ePP®dx, (66)
Q48

where the minimum is taken among all functions f € H'(£2,p) (the Sobolev space) such that f(dA) = 0 and f(dB) = 1. The integral
in (66) is the expectation of V f(x)T M(x)V f(x) where x is a random variable with invariant density proportional to e #F™ supported
in Q,p:

/ V)MV f(x)ePFDdx =E weayy [VFTMVS]. (67)
Qap x~e=BF
If we want x to be distributed according to a density p, we rewrite this expectation as
—pF
Escayp [V/TMVS] =Escoyy [VfTMerT] : (68)
x~eBF x~p

The last expectation can be approximated as a sample mean. Hence, if the training points x, € 2,5, 1 < k < K, are sampled from
a density p, then the loss function is defined by

(69)

K _BF(x;)
Loss(®) = = ¥ [Vq(xk;e)TM(waq(xk;e)e - ] :
k=1

B
p(xy)

We found that it is advantageous to create the set of training points in two stages. First, a large point cloud is generated using the
metadynamics algorithm [12] (also see [31]). Then this point cloud is rarefied into a delta-net [58,59], i.e., a spatially quasiuniform
set of points obtained as follows. Let {x; }f;’ , be the generated point cloud and é be the desired distance between the nearest neighbors
in the training set. Initially, we assign labels O to all points. We take x;, compute the distance from x, to all other points in the
point cloud, assign label keep to x; and labels discard to all points at distance less than 5. Then we find the point with the smallest
index that has label 0, compute the distance from it to all points with label 0, and change its label to keep and labels of all points
at distance less than § from it to discard. And so we continue until there are no more points with labels 0. All points labeled as
keep will form the training set. The resulting set of training points is spatially quasiuniform. Therefore we set p(x,) = 1 in the loss
function (69).

The loss function is minimized using the stochastic Adam optimizer [60]. Our codes are written in Python and use the PyTorch
library for the implementation of neural networks and automatic differentiation [44].

5.2. PINNs for Langevin dynamics

The Langevin SDE (10) is not time-reversible and its generator (24) is not self-adjoint. As a result, the variational formulation of
the committor problem is not available. In this case, we opt to use the NN-based solver called the physics-informed neural networks
(PINNs) proposed by Raissi, Perdikaris, and Karniadakis (2019) [46] (also see [61]). In this solver, the loss function is the sum of the
mean squared discrepancy between the left- and right-hand side of the PDE and the mean squared error at the Dirichlet boundary
of the domain:

1
Loss(0)= = X |LN Cegs i 0] (70)
(Xk-PK)ER4R

1 1
+ = Z |N(xk:Pk)|2+K— Z [N G, i) = 112

04 (x;.p)€0A 9B (xy.pr)€dB

11
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Here, K, K,,, and K, are the numbers of training points in £2,5, dA, and 0B respectively, £ is the generator given by (24),
and N (x,, py;0) is a neural network defined similar to (65). As before, the loss function is minimized using the stochastic Adam
optimizer.

6. Test problems

In this section, we demonstrate the effectiveness of the proposed methodology on the following four test problems:

. the overdamped Langevin dynamics with Mueller’s potential, a common 2D test problem in chemical physics,
. the overdamped Langevin dynamics with the rugged Mueller potential in 10D with settings as in Ref. [31],

. the bistable Duffing oscillators with added white noise, and

. the overdamped Langevin dynamics in collective variables for the Lennard-Jones-7 system in 2D.

A WDN -

The codes for these examples are available on GitHub:

+ neural network-based committor solvers and sampling algorithms for the transition path process [44];
+ Finite element committor solvers [45].

The dynamics in test problems 1, 2, and 4 are time-reversible. Therefore, as mentioned in Section 5.1, the forward and backward
committors are related via g~ = 1 — g*. Hence, it suffices to compute only the forward committor in these problems. For brevity,
we will denote the forward committor simply by ¢ in Sections 6.1, 6.2, and 6.4 containing test problems 1, 2, and 4 respectively.

6.1. Mueller’s potential

We first consider an overdamped Langevin equation with Mueller’s potential (see Fig. 2)

4
V(xp,x) = 3 Dyexp {a,(x; — X, +b(x; = X)(x; = ¥) + ¢,(x; = ¥)?} (71)

i=1
where
lay,ay,a3,a4] = [-1,-1,-6.5,0.7]
[by, by, b3, b4]1 =1[0,0,11,0.6]
[e1s 5, €3, ¢4] = [—10,-10,-6.5,0.7]
[D,, D,, D5, D4] = [-200, =100, 170, 15]
[X). X5, X5, X4] =[1,0,-0.5, 1]
[Y},Y,,Y3,Y,] =1[0,05,1.5,1]

6.1.1. Computing the committor

The two deepest minima of Mueller’s potential are located near a = (—0.558,1.441) and b = (0.623,0.028). Following [31], the
sets A and B are chosen to be the balls centered at a and b respectively with radius r = 0.1, and the smoothed indicator function
functions of dA and 9B are defined as

2a(x) = % - % tanh [1000([|x — al|* = (r + 0.02)%)] ,
rp(x) = % - % tanh [1000([|x — b]|* — ( + 0.02)%)] .
The temperature is set to be g~! = 10 as in [31]. At this temperature, the transitions between A and B are rare.

We compute the committor using FEM (see Appendix F.1) and the NN-based approach employing the variational formulation of
the committor problem (variational NN — see Section 5.1). For FEM, the domain ( is defined as

Q={x eR?|V(x) <250} (72)

and triangulated using the DistMesh algorithm [62]. We also discretized 2 using mesh2d [63] and found that the difference
between the committor computed on these two meshes was about 10~# in the max norm. The committor computed using FEM is
displayed in Fig. 2(a).

At p = 0.1, sampling from the invariant Gibbs density leaves the transition region severely underresolved. Therefore, a
set of training points for the variational NN-based solver was generated using a standard enhanced sampling algorithm called
metadynamics [12] with settings used in [31]. Metadynamics is implemented as follows. The overdamped Langevin dynamics (1) is
simulated with the time step At = 1075, and Gaussian functions of the form

G =X @)° (o= xz(tj))2>

g:.(x)=wexp| —
/ P < 2(7? 26;

12
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2.0 ey 1.0

(a) FEM (b) Variational NN

Fig. 2. The committor for the overdamped Langevin dynamics with Mueller’s potential is computed by (a) FEM and (b) NN at g~! = 10. The level sets of
Mueller’s potential are superimposed. The computational domain is larger than the shown box in both cases.

Table 1

Errors wMAE and wRMSE in the forward committor for the overdamped Langevin dynamics with Mueller’s
potential at temperature = = 10 computed using the variational NN solver with a spatially quasiuniform set of
approximately 16 000 training points. The parameter L indicates the number of hidden layers (see (65)), and W
indicates the number of neurons per hidden layer.

Temperature NN structure WMAE WRMSE
p=10 L=2, W =40 2.6e-3 4.1e-3

with height w = 5 and ¢; = o, = 0.05 are added to the potential at times 7; = 500j4¢, 1 < j < N, = 2000. Then, the overdamped
Langevin dynamics in the modified potential V' + 3’; g; is simulated with the same time step 47 = 1073, and the initial set of points
is recorded. Finally, the obtained set of points is converted into a spatially quasi-uniform set, a delta-net with § = 0.015, as described
in Section 5.1. The resulting training set contains a total of N,,;, = 15466 points.

The solution model is given by (64) with a neural network (65) with L = 2 hidden layers and N = 40 neurons in each layer.
The neural network was trained for 1000 epochs at learning rate # = 10~*. The resulting solution is shown in Fig. 2(b).

To assess numerical errors in the computed committor, we use error measures weighted by the probability density of transition
trajectories: the weighted mean absolute error (WMAE) and the weighted root mean squared error (WRMSE):

Ntes!
wMAE = Z W(xi) |qnn(xi) - qfem(xi)l (73)
i=1
Ntest
WRMSE = Z WO |Gy (1) = Gern (XD 79

i=1
where ¢, and q,, are the forward committors computed by FEM and the NN-based solver respectively, x', 1 <i < N, are the test
points, and the weights w(x’) are defined so that they are proportional to u,z and their sum is one:
rem (X1 = Grerm(xN(x')

T G (1 = gam (TN

The subset of the nodes of the FEM mesh lying within the box [—1.5,1] X [-0.5,2] was used as the test point set.
Table 1 shows the wMAE and wRMSE for the variational NN solver with L =2 hidden layers and W = 40 neurons per layer.

w(x') = (75)

6.1.2. Estimation of the transition rate using the controlled process
The transition rate v, 5 is computed by Eq. (62). The expected crossover time E[z,] is calculated by averaging crossover times
of 250 sampled transition trajectories governed by the controlled process

V‘Inn(Xt)
Gon(X})
The initial points of these trajectories are sampled according to (37) as follows. First, Ny, points x; equispaced on a circle of

radius r + ér where r is the radius of A and 6r is a small positive number. Then weights are assigned w; to these points according
to

dx, = <—VV(X,) +2p7! > dt+V2p-1dw,. (76)

_ﬂV(x) A
e Pi(x;) - Vgun(x;
o |AGX;) - Vo (x| o

J N, N
ot eV COLAG) - Vion(x)]
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2.0
0.0040
1.8 0.0035
0.0030
1.6
o 0.0025
<
1.4 1 0.0020
0.0015
1.2
0.0010
1.0 T " r r 0.0005
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Fig. 3. The probability distribution of the starting points of transition trajectories on the boundary of A for the overdamped Langevin dynamics in Mueller’s
potential is shown by color code. The gray curves are level sets of Mueller’s potential.

2.0 2.0
trajectory 1
trajectory 2
1.5 1.54 trajectory 3

roy/ /i
i

X2
X2

0.5

0.0 1
trajectory 2
trajectory 3

-0.5 T T T T 1 -0.5 T T T T 1
-1.5 =10 =05 0.0 0.5 1.0 -15 =10 =05 0.0 0.5 1.0
X1 X1
(a) Controlled SDE (76) (b) Uncontrolled SDE (78)
Fig. 4. Comparison of three controlled (a) and uncontrolled (b) processes with the same initial positions and noise realizations at ! = 10. Each trajectories

consist of 5000 time steps, with time step 47 = 107>, The sets A and B are marked by blue and orange circles of radius r = 0.1 respectively.

where 7(x;) is the outer unit normal to B,,;.(a) at x;. Then the points x; are sampled according to their probability weights w;
visualized in Fig. 3. We used r = 0.1, 6r = 1073, and N,, = 1000.
Three samples of trajectories of (76) are displayed in Fig. 4(a). Three trajectories of

dX, = —VV(X,)dt + \2~1dW, (78)

with the same realizations of the Brownian motion are shown in Fig. 4(b) for comparison.
Given the FEM committor ¢, and the triangulated domain £ ,5, p,5 is computed directly from (27). Given g, and the set of
training points x; quasiuniformly distributed in Q,5, p,5 is obtained by means of Monte Carlo integration:

Nirain

1 1 —BV(x;
Z5 e V0D g ()1 = oo (x;)- (79)

pAB:N_

train j=1
The normalization constant Z, is computed as
1 Nirain

Zy=— Y . (80)
train

Jj=1

We first generated a total of 10° points by running metadynamics [12] and then subsampling it into a spatially quasi-uniform
delta-net with 6 = 0.005. The resulting set of 56322 points is shown in Fig. 5.
We also calculate the transition rate v, using (33) adapted for the overdamped Langevin dynamics (78)

vag =2 / IVa(oIPe? @ dx (81)
Q4B

with the committors ¢, and g,,. The results are presented in Table 2. The computation of the 95% confidence interval is detailed
in Appendix G.

The discrepancy between the estimates for p, obtained using the committors ¢, and ¢, and Egs. (79) and (27) is about 3%.
The difference between the transition rates v, obtained using g,, with Monte Carlo integration and ¢;,,, with formula (28) is less

14
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Fig. 5. The set of points for Mueller’s potential used for finding the normalization constant for the invariant density and the probability p .

Table 2

Estimates for p,p, Elr,;] and v, for the overdamped Langevin dynamics in Mueller’s potential at f~! = 10 computed using
three schemes. The value for v,, = 4.80¢ — 3 is obtained with p,, = 2.43e —4. The 95% confidence interval is obtained using the
error estimate for E[z,z].

Simulations, optimal control TPT, NN TPT, FEM
PaB NA 2.43e-4 2.36e—4
Elz,p] 5.05e-2 + 0.42e-2 NA NA
Vap 4.80e-3, [4.43e-3, 5.23e-3] 4.99¢e-3 4.93e-3

then 2%. The expected crossover time [E[zr, 5] computed using the controlled process (76) and g, is used for computing the transition
rate using p4p obtained using (40) with ¢,, and Monte Carlo integration. The result differs from the other rate values by less than
4%. Thus, we conclude that

« the values for the transition rate obtained in three different ways are all consistent; all of them fall into the 95% confidence
interval of the rate value computed using (40);

+ the method for estimating p, 5 and v, 5 using the neural network solver and Monte Carlo integration can be promoted to higher
dimensions.

Finally, we remark that the estimate for v, is sensitive to the normalization constant Z,, in (80). It is important to estimate it
accurately. For example, Mueller’s potential has rather large region in which the potential energy V is relatively low — see Fig. 5.
Sampling points for determining Z,, from a smaller region (a lower sublevel set of V) leads to a notable discrepancy in the transition
rate estimate. At the same time, the estimate for p, 5 is much less sensitive to the accuracy of Z, . The reason in the difference of
sensitivity is that v, has the gradient of the committor in its integral, while p,, has the committor itself.

6.2. The rugged Mueller potential in 10D

The test problem with Mueller’s potential can be upgraded by making it 10-dimensional and perturbing its energy landscape
with an oscillatory function:

10
V(%) = Vo(xy, X5) + 7 sin(2kzx, ) sin(Rkzx,) + iz Z x2. (82)
L

Here, V(x,.,x,) is Mueller’s potential (71) and y = 9,k = 5,0 = 0.05 as in [31]. Following [31], the set A and B are chosen to be
cylinders centered at a = (—0.558,1.441) and b = (0.623,0.028) with radius r = 0.1. The exact solution to the committor problem for
with V given by (82) and such sets A and B is independent of xs, ..., x;,. This allows us to use the FEM solver in 2D to test the
solution computed using the variational NN-based solver in 10D.

6.2.1. Computing the committor

We compute the committor using the same procedure as detailed in Section 6.1.1. For the FEM solver, the computational domain
is 2 = {x € R? | V(x) < 250}. For the variational NN-based solver, a training set of Ny, = 64 882 points is generated by sampling
2.1x10° points in 10D and rarefying them into a delta-net with = 0.005. The neural network in the solution model (64) has L =3
hidden layers and N = 10 neurons in each layer. The committors computed by the FEM and variational NN-based solvers are shown
in Fig. 6(a) and (b) respectively.

We compute wMAE (73) and wRMSE (74) to assess numerical errors. A set of N, = 44938 test points in 10D is generated using
metadynamics and delta-net postprocessing. The variational NN solution is evaluated at these test points and projected onto the 2D
space (x;,x,) to compare with the FEM solution. The resulting wMAE and wRMSE are reported in Table 3.
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1.0

0.0

(a) FEM (b) Variational NN

Fig. 6. The committor for the overdamped Langevin dynamics with the rugged Mueller potential (82) is computed by (a) FEM in 2D and (b) by variational NN

in 10D. The temperature is f~' = 10. The level sets of the potential are superimposed.
Table 3
Errors wMAE and wRMSE in the forward committor for the overdamped Langevin dynamics with rugged Mueller’s potential
in 10D at temperature f~' = 10 computed using the variational NN solver with a spatially quasiuniform set of 64882 training
points. The parameter L indicates the number of hidden layers, and W indicates the number of neurons per hidden layer.
Temperature NN structure wWMAE WRMSE
p1=10 L=3,W=10 1.08e-2 3.13e-2
2.0
0.005
1.8 1
0.004
1.6
0.003
<
1.4 ’
0.002
1.2 1
0.001
1.0 r , T r
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

X1

Fig. 7. The probability distribution of the starting points of transition trajectories on the boundary of A for the overdamped Langevin dynamics in the rugged
Mueller potential (82) is shown by color code. The gray curves are level sets of the potential.

6.2.2. Estimation of the transition rate using the controlled process

The transition rate v, is found using Eq. (62).

The expected crossover time E[r,3] is estimated by averaging crossover times of 250 transition trajectories sampled using the
controlled process (76) in 10D. The initial points of the trajectories are sampled according to (37) as in the previous test problem.
First, N,, points are equispaced on the circle of radius r+ 6r centered at a lying in the subspace (x, x,). The weights of these points
assigned according to (77) are shown in Fig. 7. Then these points are sampled based on their probability weight. Three samples of
trajectories of the controlled and uncontrolled processes in 10D with the same initial state and the same realizations of the Brownian
motion projected onto the (x|, x,)-subspace are visualized in Fig. 8 for comparison.

The probability p, 5 is computed using (27) for both committors g, and g,,. Monte Carlo integration is used with ¢, over the
set of N, = 44938 test points as described in Section 6.1.2.

The transition rate v, is also estimated using (81) and the committors g, and g, for comparison. The results are presented
in Table 4.

The discrepancy between the estimates for p,, obtained using the committors ¢,, in 10D and ¢, in 2D and Egs. (27) and
(79) is about 4.5%. The difference between the transition rates v, obtained using ¢,, with Monte Carlo integration and g;,,,, with

16



J. Yuan et al Communications in Nonlinear Science and Numerical Simulation 129 (2024) 107701

2.0 2.0 AR
trajectory 1 trajectory 1
trajectory 2 trajectory 2
trajectory 3 trajectory 3

15 15

1.0 1.0

< <
0.5 0.5+
0.0 0.0
-0.5 T T T v -0.5 T T T v
-15 -1.0 -0.5 0.0 0.5 1.0 -15 -1.0 =05 0.0 0.5 1.0
x1 X1
(a) Controlled SDE (76) (b) Uncontrolled SDE (78)

Fig. 8. Comparison of three controlled (a) and uncontrolled (b) trajectories for the rugged Mueller potential in 10D with the same initial positions and the same
noise realizations at ' = 10 projected onto the (x;,x,)-subspace. Each trajectory consists of 5000 time steps, with time step 47 = 1075. The sets A and B are
marked by blue and orange circles of radius r = 0.1 respectively.

Table 4
Estimates for p,,, E[z,5] and v, for the overdamped Langevin dynamics in the rugged Mueller potential (82) at f~' = 10 in R' computed using three schemes.
The value for v, =4.31le -3 is obtained with p,; = 2.56e — 4. The 95% confidence interval is obtained using the error estimate for E[z,,].
Simulations, optimal control TPT, NN TPT, FEM
Pan NA 2.56e—4 2.45¢—4
Elr,p] 5.94e-2 + 0.46e-2 NA NA
Vap 4.31e-3, [4.0e-3,4.67e-3] 5.23e-3 4.61e-3

formula (28) is approximately 13%. On the other hand, the transition rate computed via (62) uses the expected crossover time and
pap acquired from g,,, resulting in a transition rate that differs from the FEM rate by 6.5%. Hence we conclude that our proposed
scheme for estimating p,5 and v, with a neural network solver yields a reasonable accuracy in higher dimensions.

6.3. Duffing oscillator in 1D

Now we test the proposed methodology on the bistable Duffing oscillator with mass m = 1, friction coefficient y = 0.5, and the
potential energy function V' (x) = 0.25(x> — 1)2. The dynamics are governed by the Langevin SDE

X, P, 0
d = d . 83
i e Ea ®

The system has two stable equilibria ¢ = (—1,0) and » = (1,0) and an unstable equilibrium at the origin. The full energy of the
system is H(x, p) = % p* +V(x). The invariant probability density is u(x, p) = Z ;,1 exp(—H(x, p)/¢). The sets A and B are chosen to be
ellipses with radii r, = 0.3 and r, = 0.4 centered at a and b respectively. Two values of the noise coefficient are used: ¢ = 0.1 and
e =0.05.

6.3.1. Computation of forward and backward committor functions

Since the dynamics (83) are not time-reversible, we implement the Physics-Informed Neural Network (PINN) approach detailed
in Section 5.2 to solve the committor problem. A uniform grid with a total of 16 000 points in the rectangle [-2.5,2.5] x [-2,2] is
taken as training data. The architecture of the neural network is as in Eq. (65) with a single hidden layer, L = 1, and W = 40
neurons in it. The Adam optimizer is used with the learning rate 10~3 for 500 epochs. We also compute the committors using FEM
as described in Appendix F.2. The computed forward and backward committors, ¢*(x, p) and ¢~ (x, p), for e = 0.1 and ¢ = 0.05 are
displayed in Figs. 9 and 10 respectively. The theoretical relationship between them is ¢~ (x,p) = 1 — g*(x, —p). However, we still
computed ¢~ using FEM because the FEM mesh is not symmetric.

We call the discrepancies between the FEM and PINN solutions computed by (73) the weighted mean absolute difference (WMAD)
and the weighted root mean square difference (WRMSD) with weights at the training points (x;, p;) given by

q* (x; p)a™ (x;, pp)e” /e

Nirain - ~H(xj.pp/e’
Zj:tl qt(x;,p))q(x;,p))e Hexjp/e

w(xi’pi) = i=1,.. ’Ntrain' (84)

Table 5 shows the wMAD and wRMSD for forward and backward committors computed using PINN and FEM for ¢ = 0.1 and ¢ = 0.05.
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Fig. 9. Comparison of contours of forward committor computed using FEM and PINNs, marked in solid and dashed lines respectively for Duffing Oscillator at
e€=0.1 and € = 0.05.
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Fig. 10. Comparison of contours of backward committor computed using FEM and PINNs, marked in solid and dashed lines respectively for Duffing Oscillator
at e =0.1 and e = 0.05.

Table 5
Comparison of the numerical solutions for the forward and backward committors computed using PINNs and FEM. Metrics wMAD and wRMSD are used. The
parameter L indicates the number of hidden layers (see (65)), and W indicates the number of neurons per hidden layer.

€ NN structure q*t, wMAD q*, wRMSD q~, wMAD q~, wRMSD
e=0.1 L=1, W =40 1.6e-2 2.0e-2 1.8e-2 2.2e-2
€ =0.05 L=1, W =40 1.3e-2 2.0e-2 1.3e-2 2.0e-2

6.3.2. Estimation of the transition rate using the controlled process
The optimally controlled process for the Langevin dynamics is governed by

dX, = Pdt
1 ) (85)
dP, = — [X,(X,2 —D+iR-e2 log(qr']"n)] dt +\JedW.

Fig. 11 shows three sampled trajectories with and without the influence of the optimal control starting at the same initial position
and the same realizations of the Brownian motion for ¢ = 0.1 (Fig. 11(a,b)) and e = 0.05 (Fig. 11(c,d)). The trajectories governed
by the original Langevin dynamics stay near region A. In contrast, the trajectories governed by the optimally controlled dynamics
(85) leave A and reach region B.

Next, we find the transition rate v,z at ¢ = 0.1 and ¢ = 0.05 in four ways. The results are summarized in Tables 6 and 7.

1. Simulations with optimal control. The expected crossover time E[z,] is averaged over 250 trajectories governed by (85). The
distribution of the starting points of these trajectories defined by (37) is obtained as described in Section 6.1.2. It is displayed
in Fig. 12. The probability p, is found by (27) similarly to how it is done in the test problem with Mueller’s potential. The
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Fig. 11. Comparison of three uncontrolled and controlled processes with the same initial random position for Duffing oscillator at ¢ = 0.1 and ¢ = 0.05. (a) and
(c) shows three trajectories under the original dynamics at e = 0.1 and e = 0.05 respectively. (b) and (d) shows three trajectories under the original dynamics
for the two cases respectively. 5000 time steps are sampled with 47 = 107>. Region A and B are ellipses colored in blue and orange.
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Fig. 12. The probability distribution of the starting points of transition trajectories on the boundary of A for the Duffing oscillator is shown by color code. The
gray curves are level sets of Hamiltonian.

Table 6
Comparison of the estimates for p,, E[r,,] and v, for Duffing oscillator at ¢ = 0.1.

Duffing oscillator ¢ = 1/10

Simul., o/c Simul., w/0 o/c TPT, NN TPT, FEM
PaB NA 4.31e-2 + 0.12e-2 3.97e-2 4.04e-2
Elz 5] 6.88 + 0.34 7.32 £ 0.14 NA NA
Vap [5.50e-3,6.07e-3] [5.76e-3,6.01e-3] 4.53e-3 5.74e-3

Table 7
Comparison of the estimates for p,;, E[r,5] and v, for Duffing oscillator at e = 0.05.

Duffing oscillator ¢ = 1/20

Simul., o/c Simul., w/0 o/c TPT, NN TPT, FEM
Pus NA 4.5e-3 = 0.4e-3 4.23e-3 4.07e-3
Elz4p] 7.34 + 0.33 7.48 + 0.49 NA NA
Vap [5.53e—4,6.06e—4] [5.49e—4,6.51e-4] 4.72e-4 5.49¢e-4

PINN committors and the PINN training points are used for Monte Carlo integration. The normalization constant for the
invariant density is also found using Monte Carlo integration. Then formula (62) is used to find v, .

2. Simulations without optimal control. Direct simulations of the uncontrolled Langevin dynamics (83) are used to find v, 5. Ten
simulations of 107 time steps each with timestep At = 5 x 10~ were performed.

3. TPT, NN. The rate v,z was found by (35) using the gradient of the committor computed using PINNSs.

4. TPT, FEM. Likewise, except for the FEM committor was used.
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Fig. 13. The free energy of LJ7 in 2D in CVs second and third central moment of coordination number y,, u; and the four geometrically distinct local minima.

The results in Tables 6 and 7 show that the 95% confidence intervals for the transition rate v,z at ¢ = 0.1 and e = 0.05 estimated
by means of simulations with and without optimal control largely overlap. The 95% confidence intervals expected crossover times
E[z4p] largely overlap for ¢ = 0.05 and slightly overlap for ¢ = 0.1. The estimates for probability p, that a trajectory at a random
time is reactive obtained by direct simulations of uncontrolled dynamics and TPT&NN and TPT&FEM are all consistent for ¢ = 0.05
and both TPT-based estimates for p, are smaller than those by direct simulations for ¢ = 0.1. At both values of ¢, the TPT estimates
for p,p obtained using the FEM and PINN committors are consistent, while there is a notable discrepancy between the estimates
for v, 5 by TPT&NN and TPT&FEM. This discrepancy must be caused by the fact that v, uses the gradient of the committors while
pap involves the committors themselves as shown in Appendix D. At both values of ¢, the TPT&FEM estimate for v, falls into the
95% confidence intervals obtained using simulations, controlled or uncontrolled, while the TPT&NN seems to underestimate the
transition rate.

6.4. Lennard-Jones-7 in 2D

Finally, we apply the proposed methodology to estimate the transition rate between the trapezoidal and the hexagonal
configurations of the Lennard-Jones-7 cluster (LJ7) in a plane. This is a popular test problem in chemical physics [64-67]. In
this example, we will compute the committor for the reduced model 2D and use it to construct an approximation to the optimal
controller in the original 14D model. The expected crossover time for the original 14D model and the estimate for p,5 for the 2D
model will be used to determine the transition rate. The result will be compared with those obtained via brute force simulations of
the original uncontrolled dynamics in 14D.

We consider seven two-dimensional particles interacting according to the Lennard-Jones pair potential

o= ()"~ (2]

where ¢ > 0 and a > 0 are parameters controlling the range and strength of interparticle interaction respectively. We set ¢ = 1 and
a = 1. The potential energy of the system

7
VU = D Vaarlllxi = x;1D (87)
l,‘:[<:jl
has four geometrically distinct local minima denoted by C,, C;, C,, C; shown in Fig. 13.

We assume that the original system is evolving according to the overdamped Langevin dynamics (6). This choice is dictated by
our wish to construct a controller using the committor for the reduced model in collective variables. Since the collective variables
are functions only of x, the committor for the reduced model lifted to the original phase space will depend only on x and not on
the momenta p. Therefore, it cannot give an approximation to the optimal control for the Langevin dynamics — see Eq. (59). We
set # =5 as in [34].

6.4.1. The reduced model
Following [34,68,69], we pick the 2nd and 3rd central moments of the coordination numbers as the collective variables (CVs)
for LJ7. The coordinate number of particle i is a smooth function approximating the number of nearest neighbors of i:

Tij 8
=Y T (88)
= LT A T Tl
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Fig. 14. The forward committor for LJ7 in 2D computed in the space of collective variables at # = 5 using (a) FEM and (b) the variational NN-based solver.
The gray curves in (b) are level sets of the free energy.

The kth central moment of ¢;(x) is defined by

7 7
=2 Y-, where &)= 2 Y ¢,x) (89)
j=1

i=1

The reduced model is governed by the overdamped Langevin dynamics in collective variables (9)

d[ Zi ] = [-VM (. 1) Fptg, 13) + 71+ VM (g, p3)]

+ 2ﬂ-1M1/2(u2’u3)[ Zﬁ; ] (90)

The corresponding generator is given by (23). Fig. 13 displays the free energy® F(u,, us). The diffusion matrix M(u,, u3) varies
significantly throughout the accessible free energy region (see Fig. 8 in [34]). The computation of F(u,, y3) and M (u,, u3) is detailed
in Appendix A in [34].

Regions Acy and By are chosen around minima C; (the trapezoid) and C, (the hexagon) respectively. We use the subscript to
CV to indicate that these regions are defined in the set of collective variables. Region Acy is a circle centered at (0.5526,-0.0935)
of radius r = 0.1 and while region By is a tilted ellipse defined by the equation
2

=1 91)

((x —c,)cosf +(y—cy)sin 0)2 N ((x —¢)sinf +(y —c,)cos 0)

2 2
rx I'y

where (c,, ¢,) = (0.7184,1.1607), 7, = 0.15,r, = 0.03 and 0 = 57z/12.

6.4.2. Computation of the committor for the reduced model
The committor for the reduced model is computed in two ways: using FEM and the variational NN-based solver described in
Section 5.1. For the variational NN, the neural network (65) with L = 2 hidden layers and W = 10 neurons per layer has been used
to minimize the loss (69). The training points were 10* trajectory data projected to the space (u,, u3) and assumed to be distributed
according to the invariant density e.g., p ~ ¢’¥ where F is the free energy in (u,, #3) — see Section 4.2.2 in Ref. [34] for more
details. The resulting loss to be minimized hence becomes
| X
Loss(®) = > [Vl 0)T M(x)Va(x,: 0)] - (92)
i=k
The results are displayed in Fig. 14. The wMAE and wRMSE are given in Table 8.

6.4.3. Estimation of the transition rate using the reduced model and the controlled process
We set up the controlled process in the original 14-dimensional coordinate space as

dX, = (=VVL(X) + 267"V, Ingy, (ua(X), u3(X,)) di + V2p~1a W, (93)

2 We thank Dr. Luke Evans for sharing with us the free energy and the diffusion matrix in CVs u,, and u;.
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Table 8
The errors WMAE and wRMSE of the committor function for LJ7 computed using the variational NN-based solver
for the two-dimensional reduced model. The committor computed using FEM is taken as the ground truth.

Temperature NN structure WMAE WRMSE
p=5 L=2,W=10 1.5e-2 2.4e-2
0.2
0.025
0.14
0.020
0.01 ),
0.015
2 -0.1
0.010
-0.2 4
-0.3 4 0.005
-0.4 T T T T
0.3 0.4 0.5 0.6 0.7 0.8

H2

Fig. 15. The probability distribution of the starting points of transition trajectories on the boundary of A for LJ7 is shown by color code. The gray curves are
level sets of the free energy.

where V| is defined by (87) and g, is the committor computed for the reduced model using the variational NN-based solver. The
Metropolis-Adjusted Langevin Algorithm (MALA) [70] with the time step Ar = 5x 10~ has been used for time integration to prevent
very large moves of the system that can occur due to extremely strong repulsive forces.

The sets A and B in the original coordinate space R'* are defined by lifting the sets Acy and Bgy:

A= {x € R | (uy(x), u3(x)) € Acy ),
B :={x € R™ | (uy(x), u3(x)) € Bey}.

Three trajectories of the controlled process (93) and three trajectories of the uncontrolled overdamped Langevin dynamics (6)
in the 14D with the same three realizations of the Brownian motion projected to the space (y,, yi3) are displayed in Fig. 16(a) and
(b) respectively.

The expected crossover time E[z, ] is averaged over 254 trajectories of SDE (93). The starting points for these trajectories near
the boundary of A are sampled as follows. First, the probability weights of the points on the boundary of A, are computed as
described in Section 6.1.2 (see Fig. 15). Then, points on dAcy are sampled according to these weights and lifted to the original
coordinate space by running biased simulations as described in Appendix A of [34] (see equations (A.3) and (A.4) there).

We compute the transition rate v, in four ways analogous to those for the Duffing oscillator (Section 6.3.2).

1. Simulations, optimal control, 14D. The rate is calculated using (62). The expected crossover time is estimated as described
above using the controlled process (93) in 14D. The probability p, is obtained for the reduced 2D model using (79)—(80)
with the committor computed by the variational NN-based solver and a uniform grid of points rather than the actual training
points for the neural network.

2. Simulations without optimal control, 14D. Ten runs of direct simulations of the uncontrolled overdamped Langevin dynamics
(6) in 14D of 108 timesteps with Ar = 5- 10> were executed. The numbers of transitions from A to B that occurred in these
runs were 28, 138, 160, 146, 93, 63, 158, 165, 171, and 160.

3. TPT, NN. The rate v,z was found by (28) for the reduced 2D model using the gradient of the committor computed using the
variational NN-based solver.

4. TPT, FEM. Likewise, except for the FEM committor was used.

The results are displayed in Table 9. The following observations can be made.

1. For the transition rates obtained using controlled and uncontrolled simulations in the 14D, the relative error is about 14%.
There is a large overlap of the 95% confidence intervals.

2. There is a discrepancy in the expected crossover time E[r, 5] computed using controlled and uncontrolled simulations in
the 14D: the expected crossover time for the controlled process exceeds that for the uncontrolled process by approximately
35%. This discrepancy is primarily caused by the fact that the controller obtained by lifting the committor computed for the
reduced model is not optimal. It still drives the trajectories away from the boundary of A but, unlike the optimal controller,
somewhat affects the statistics for the transition trajectories.

3. The rates obtained using the reduced 2D model are highly exaggerated (by the factor of approximately four) as one can expect
given the Zhang-Hartmann-Schuette rate formula (61). Indeed, the collective variables y, and u; are chosen due to their
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Fig. 16. Three trajectories of (a) the controlled process (93) and (b) the uncontrolled process projected into the space of collective variables, i.e., the overdamped
Langevin dynamics (6) in the 14D projected into the space of collective variables with the same starting points and the same realizations of Brownian motion.

Table 9
Comparison of the estimated p,5, E(z,5) and v, for LJ7 at g =>5.
Simul., o/c Simul., w/0 o/c TPT, NN TPT, FEM
Dimension 14D 14D 2D 2D
Pap NA 0.080 + 0.024 0.106 0.108
El7,p] 4.88 + 0.48 3.16 + 0.21 NA NA
Vap 0.022, [0.020,0.024] 0.025, [0.019,0.033] 0.097 0.086

ability to separate the four geometrically distinct local minima of LJ7 while there is no indication that they are supposed to
represent the dynamics accurately.

4. The values of p, and v,z computed for the reduced 2D model using the FEM and the variational NNs are in good agreement
with each other.

7. Conclusion

In this work, we have proposed a methodology for sampling transition trajectories and estimating transition rates in systems
governed by SDEs using optimal control and perhaps model reduction.

Our main theoretical contribution is the proof of Theorem 3.1 establishing the optimality of the control obtained from the
committor via the Doob A-transform for a broad class of processes including the Langevin dynamics and the overdamped Langevin
dynamics in collective variables.

We have elaborated on a number of practical aspects related to the use of neural network-based solvers, finite element methods,
and sampling reactive trajectories.

We have conducted in-depth case studies of three benchmark systems. In particular, we have demonstrated that the optimal
control and the estimate for the probability of a trajectory to be reactive at a random moment of time obtained for the reduced
model result is a reasonably good estimate of the transition rate even if the collective variables do not represent the dynamics
accurately.

Our codes are published on GitHub [44,45].

Further improvement of the proposed methodology can be done in the following two directions. First, the design of collective
variables is important for an accurate representation of the dynamics. Autoencoders (see e.g. [15] and references therein) with an
appropriate choice of the loss function seem to be a promising tool. Second, the neural network-based techniques for solving the
committor problem are promotable to higher dimensions. In this work, we intentionally calculated all required quantities for the use
of the transition path theory without meshing the space. We did not attempt, though, to use these techniques in higher dimensions.
We are leaving these research topics for future work.
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Appendix A. Proof of Eq. (40): v, = psp/Elt45]

Proof. Let X,, 0 <7 <T, be a long trajectory. We decompose the interval [0, T] into two subsets [0,T] = I, U I where

I,(0.T]) 1= {1 € [0.T]] 7;(X,) < 75(X,)}, "
150, T := {t € [0,T] | 75(X,) < 73(X,)}.

In words, 7,([0,T]) is the set of all moments of time ¢ in the interval [0,T] such that the trajectory at time 1, X,, last visited A
rather than B. The set I5([0,T]) is described likewise. Let T, and T} be the total lengths of 7 ,4([0,T]) and Zz([0,T]) respectively.
The probabilities p, and pp that the trajectory at a randomly picked moment of time last visited A or B are, respectively,
T T,
pamfim 7 on=fim *-)
The set 7 ,4([0, T]) is further decomposed into two subsets Z 4([0, T]) = T44([0, THUZI 45([0, T]) of total lengths T4, and T 5 respectively
where

T,4(00.T]) = {1 € [0,T]| (X)) < 75(X,) & TH(X,) < Th(X )}, a3
T,u5([0.T]) = {1 € [0,T] | 7(X,) < 75(X,) & TH(X,) < TH(X))}.

Le., 1,,([0,T]) is the set of moments of times t € [0,T] such that the trajectory at time ¢, X,, last visited A rather than B and
going to hit next A rather than B, while 7 ,,([0,T]) is the subset of moments of time ¢ € [0,T] such that the trajectory is reactive.
Respectively, the probability p,, that a trajectory at a randomly picked time ¢ last hit A rather than B and is not reactive and the
probability p,p that a trajectory at a randomly picked time ¢ is reactive are given by

Ty

. Ty .
pan=fim o ean=fin T -

Now we recall the definitions of the transition rate v,z and the expected crossover time E[z,p]:
. Nyg . Typ
Vap = lim - E[z,p] = lim N (A.5)
Hence the expected crossover time E[z,5] can be written as

. AB Ny Typ PAB
Vup = lim —4/= = lim —/— — = —/——

= . A.6
T-ooo T T-o TAB T ]E[TAB] ( )

24



J. Yuan et al Communications in Nonlinear Science and Numerical Simulation 129 (2024) 107701

Appendix B. Proof that -V -J,p; =0in Q,;

Let us show that the divergence of the reactive current, or, equivalently, the stationary current of the transition path process,
vanishes in 2,;. We will need a formula for the divergence of a matrix-vector product. It can be checked directly that for any
A € R4 and any y € RY,

Vy]T

V-(Ay) =divA -y +tr(AVy), where Vy= : (B.1)
Vy-dr
Using (B.1) we calculate:

Ve dap=-V-|(bu- %div (00Tu) ) a*a + %mﬂrT (47Va* = q*vq)]
—q"q V- (by - %div (MTﬂ))
+ (by - %div (ooT )) (q*Vg~ +4q7Vq")
+ 34 (00T h) - (¢7V4" = qVa") + 1 (60T VV") g+
+ %tr (66TuVg [Vq*lT) - %tr (6oTuVg* Vg 1) - %tr (60"VVg™) ugt
=qtq V- -J+uqg Lg" —ugtLiq =0.

In the last expression, J is the stationary current for the invariant density u, and hence £*u = -V - J = 0 in Q. The last two terms
are zero as by (19).

Appendix C. Proof of Theorem 3.1

Proof. This proof combines ideas from Gao et al. ([3], the proof of Theorem 3.3) and L. C. Evans’s notes on the control theory [50]
Step 1. Regularization. We first consider a regularized optimal control problem in which the exit cost (50) is replaced with a
finite exit cost

gn(x) = {N’ X € f where N is a large number. (C.1
0, x€B,
Let cy, (x) be the infimum of the cost functional C,[N;uv(-)] with the regularized exit cost (C.1) among all admissible controls.
Note that the admissible set V is not empty because the time 7,5 < oo almost surely since the system is ergodic and the
domain Q is compact. Furthermore, ¢} (x) < oo as v = 0 is an admissible control and the corresponding cost functional is
C.[N;v()] = N(1 — ¢*(x)) < 0. Indeed, if v = 0, then the process hits B first with probability ¢*(x) and scores zero and hits
0A first with probability 1 — g*(x) and scores N.
We also define a regularized forward committor as the solution to the following boundary-value problem

ﬁq}',:O, XE-QAB,

qE=e’N, X €JA

(C.2)
an =1, X € 0B
.
Uv _o, xeoq.
on
where £ is the generator for (14). It is easy to check that
gh =gt +(1—qHe V. (C.3)
Step 2. Show that ¢}, > —loggy,. The regularized forward committor can be written as
a0 =Ep [ Fean) | X = x| 2 Bp, [V Fean)] c4)

Indeed, the process X, governed by (14) with X, = x reaches 0A at time the stopping time r,z with probability (1 — ¢*) and scores
eV, and reaches 0B at 7, and scores 1. This results in the expectation given by the right-hand side of (C.3) which is equal to
g5 ().

Let Y, be the controlled process governed by (47) with a control ov, v € C'Q,,p, satisfying Novikov’s condition

TAB 1 r )
Ep |exp / 5”6 YpvXY)l“ds || < (C.5)
0
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and P, be the probability measure on the path space of this process. According to the Girsanov theorem (Theorem 8.6.5, p.158
in [71]),

Ep, [e—gN(X,AB)] =Ep [e—gN(Y,AB)] =Ep, [e—gN(Y,AE)%] . (C.6)
where the Radon-Nikodym derivative

‘fﬁj =exp {—/Om o Tu(Y,) - dW, — % /OrAB ||z7Tv(YS)||2ds} >0 P-as. (c.7)
Therefore,

Ep, [e—gMX,AB)] —Ep, [e—gmnAB)—/;AB oTu(Y,)dW,~ L 74 ||aTu(mn2ds] . 8

By Jensen’s inequality, for any smooth convex function ¢ and a random variable Z we have ¢(E[Z]) < E[¢(Z)]. Applying it to the
right-hand side of (C.8) we get

T 1 7
o Er[an (Yeu )17 oW S [TAR NoT oIS Ep, [e—g,v (XTAB)] ‘ €9

Since the expectation of the Ito stochastic integral is zero, i.e.,

TAB
Ep. [/ o-Tv(YS).dWS] =0,
0

and the cost functional C,[N;v] defined in (48) is exactly

1 TAB
C,IN: 0l = Ep, [gN () +3 | ||oTu<YS>||2ds],

and recalling (C.4) we get
GV <, [eng(xmB)] = g4 (0. (C.10)
Taking logarithms of the left- and right-hand side of (C.10) and multiplying the result by —1 we obtain the following lower bound
for the cost functional: for any control ¢ v satisfying Novikov’s condition (C.5),
C,[N;v] > —log g, (x). (C.11)
Since the admissible set V is closed, the bound (C.11) holds for any admissible v. This means that for any v € V,
) = —log g, (). (C.12)
Step 3. Derive the Hamilton-Jacobi-Bellman equation for the minimal cost cj,.
This upper bound will be derived via the Hamilton-Jacobi-Bellman equation. Let v(x) € C!(£2,5) be such that Novikov’s
condition (C.5) holds and let 2 be a small positive number. Then for the process Y, governed by the controlled SDE (47) with
the control ¢ v we have the following upper bound:

hnt
() <Ep, [5 /O T (Y )u(Y,)|ds + cN(Y,,A,AB)] . (C.13)

The equality is reached if v is an optimal controller. We observe that if v = 0 than C,[N;0] = N(1 — ¢"(x)) < N for x € Q5.
Therefore, ey () < C[N;0] < N < c0. Therefore, we subtract ey from both sides of the inequality (C.13) and get

1 hnvap T 2 * *
0<Ep, [5/ [[e* (Y )o@l ds+cN(YhATAB)—cN(x)] (C.19
0
1 hAzaz T 2 * *
=K, [5/0 o™ (Y)u(Y,)|ds | + Ep [eN(YhA,AB)] - % (). (C.15)

Dividing by & and letting 4~ — 0 we obtain:
Ep . [ex (V)] — ek (x)
- .
Here we took into account that the optimal control is continuously differentiable in 2, and b and ¢ are smooth. Therefore the
drift and the diffusion in (47) are finite and hence the probability that z,; < h tends to zero as & — 0. Furthermore, we note that
B[y ] —en 0 Ep [ (V)] - ey )
lim = lim
h—0 h h—0 h

(C.16)

1 T 2 .
< =
0< ZlloToIP + lim

= Lo ), (C.17)

where L, is the generator of the controlled process (47). The equality (C.17) follows from the fact that
* dPU *
Ep, [ex )] =Ep WCN(Y;,) ,

26



J. Yuan et al Communications in Nonlinear Science and Numerical Simulation 129 (2024) 107701

where

ap, "oy A 2
=expq — A o' v(Y) - dW, — 3 A llo' v(Y)ll“ds p = 1 as. as h— 0.
Therefore, (C.16) is equivalent to

Ly 712 T 1 T

slotoll® + [b+00T0] - Vey + str(ee'VVey) 2 0. (C.18)
Furthermore, the equality is reached if and only if the control v is optimal, i.e.,

e [1 T2 T 1 T B

inf [zna uiZ +ooTo- Vc;‘\,] +b-Vey + 5t (007 ey ) =0. (C.19)
The function in the square brackets in (C.19) is convex quadratic in v. To minimize it, we take its gradient and set it to zero:

v, [ao-Tu . Vc}‘v + %vTaoTU] = cmTVc;kV +00'v=0. (C.20)

Therefore, a minimizer vj‘v must satisfy GJT(VC;*\, +v}) = 0. Since columns of ¢ are linearly independent, this condition is equivalent
to

o (Ve +v3)=0 or o' vy =-0'Vch,. (C.21)
Plugging this into (C.19) we obtain the following equation for the minimal cost c},:

0= %tr (O'UTVVC;]) +b-Vey, — GUTVC;‘V -Vey + %(VC;[)TUGTVC;[
1

* £ 1 * *
= Etr (GUTVVCN) +b-Vey — E(VCN)TUGTVCN. (C.22)
Step 4. Show that ¢y = —log g}, (x) is the solution to the HJB equation. Plugging c}, = —log gy, into (C.22) we get
1 Tog e L | -To+|>_ 5. +__ L To+|P_
2q;tr(66 VVgl) + 27 ”a VqN” b-Vlogg}, a7 Ha VqNH =
1
—Etr (GUTVVqﬁ) —-b-Vloggy, =
N
! Lqt =0
TNy =Y
N
The last equality follows from the fact that L4}, = 0 in Q,5. The boundary conditions for ¢, = —loggq}, are readily checked:
—loggy, = N on 04, —loggy, =0 on 9B, and
+
0 1 949y
— (=1 + =———=0, € 0Q.
o7 (~lozay) a5 on X
The optimal control associated with ¢}, = —log ¢y, (x) given by (C.21) is
JTU’;\, = —aTVC;‘V =¢'Vlog a3, (C.23)

Step 5. Show that the control ¢'v%, = 6" logg?, is admissible. Eq. (C.3) implies that

Vgt (1-eN)
T,% T * T + T
o vy=-0'Ve¢y, =0 Vlogq, =¢' [ ——m8M8 ™ ——|. (C.24)
N N BN [q+(l—e‘N)+e‘N
Hence
T, % < N + .

Ha UN| <e XrEn!zziZ(E HVqN(x)” < 0. (C.25)
The stopping time 7,5 < oo a.s. as the system is ergodic and the domain is compact. Therefore

1 [ras .

3 /0 lloT v (Y)lPds < o0 aus.
and hence

Ep [e2 7717 OOP] < oo, (C.26)
i.e. v%, is admissible.

N
Step 6. Take the limit N — co. Letting N — oo in (C.12) and taking into account the explicit expression (C.3) for ¢} (x) we

conclude that

¢*(x) 2 —logg*(x). (C.27)
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On the other hand, as we have shown in Step 3, (C.12) is actually an equality, and the corresponding optimal control satisfies

\a (1 - e_N)

T Ty % T + T

c'vi,=—-0 V¢, =0 Vlogqgt, =6 | ——m8m8M8M8M8™—| . (C.28)
N N 8w [q+(1—e‘N)+e‘N

Taking limit N — co we obtain

. Vgt

oTv =0T~ =T Viogg*. (C.29)

q

Since the admissible set V is closed, v* = Vlogg* € V. One can readily check that the corresponding solution the Hamilton-Jacobi-
Bellman Eq. (C.19) with the boundary conditions ¢* = +c0 on 0A, ¢* =0 on dB, and %’ =0on o is

c*(x) = —log g™ (x). (C.30)

This completes the proof of Theorem 3.1. []
Appendix D. Errors due to model reduction: an example

We will illustrate the error due to model reduction in the transition rate v, as well as in the probabilities p, and p,p on the
example used in [43]. A system is evolving according to the overdamped Langevin dynamics (6) with the potential given by

Viny) =G =12 +e (v +x2 - 17, (0.1

where ¢ is a small parameter. The second term in (D.1) effectively restricts the dynamics to a small neighborhood of the parabola
y =1 —x2%. It is shown in [43] that x is a suboptimal choice of a collective variable because the gradient of x with respect to (x, y)
is not orthogonal to the normal vector to the manifold near which the dynamics live.

Let us consider the signed arclength parameter along the parabola y = 1 — x>

X
s(x) = / V1+4z2dz = %x\/ 1+4x2 + %log(2x +V1+4x2) (D.2)
0

as a collective variable. The function s(x) is monotone and hence invertible. In the limit ¢ — 0, the dynamics are one-dimensional
and governed by

_dVy(x(s)
ds

ds = di +V/2p ldw, (D.3)

where V;, := (x> — 1)2. We set § = 3 choose the sets A and B as in [43]:
A={x<a}, B={x>b}, a=-0.5, b=0.5. (D.4)

We calculate the committor ¢(s) and G(x) using the exact formula for the one-dimensional case:

Jia PN g s ) [X e ax!
4q(s) = S0 v 4(x) = b (D.5)
[ Yot g 57 [ Pt dx
s(a) a

Using the inverse of s(x), we obtain §(x(s)). The plots of ¢(s) and §(x(s)) and their derivatives in s are displayed in Fig. D.17(left). It
is evident that the difference between their derivatives is notably larger. Next, we use ¢(s) and g(x) to calculate the transition rate
vp from A to B via (33) and the probability p,p via (27). The notation with tilde will indicate the results obtained using x as a
collective variable. We get:

Vap = 9.46 - 1073, pap =9.47-1073,
Vg =2.19-1072, Fap =798-1073

The transition rate estimated using x as a collective variable exceeds to true rate by the factor of approximately 2.3, while the error
in the estimate of the probability to be reactive is about 16%.

Appendix E. Robustness of the crossover time: an example

In this appendix, we will examine how the quality of the committor estimate affects the crossover time in the controlled dynamics
on the example of the bistable Duffing oscillator (83) with ¢ = 0.05. The controlled dynamics of the Duffing oscillator are governed
by SDE (85) where g is the estimate to the forward committor computed using PINN.

The PINN committor solver computes the committor via an optimization process called training the neural network. The number
of training steps is measured in epochs.® Stopping the training process too early results in a rough approximation to the forward

3 One epoch comprises the number of iterations necessary to use all training data N, one time. For example, if the optimization algorithm is deterministic
and all training data are used for computing the gradient of the objective function in each iteration, then one epoch is equal to one iteration. If an optimizer is
stochastic and a subset, a batch, of N,,., training data is used at each iteration to evaluate the direction of the step, then one epoch consists of round(N,i,/Npacn)
iterations.
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Fig. D.17. An illustration to Appendix D.
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Fig. E.18. Test case: the bistable Duffing oscillator with e = 0.05. The growth of the relative error in the expected crossover time E[r,] versus the relative growth
of the weighted mean absolute difference (WMAD) of the “undertrained” approximations to the forward committors and the FEM committor. The approximate
committors ¢ are obtained by evaluating the solution model after 100, 125, 150, 300, and 500 epochs of training.

committor. The results reported in Section 6.3 are obtained as a result of training the neural network for 500 epochs. Hence, we
form a sequence of approximations to the forward committor by evaluating the solution model after 100, 125, 150, 300, and 500
epochs of training visualized in the figures in Table E.10 using dashed contour plots. The solution becomes progressively closer to
the final solution ¢} evaluated at 500 epochs, which, in turn, in close to the FEM solution depicted using solid contour plots. The
discrepancies MAD and RMSD between the FEM forward committor and the approximations to it progressively shrink.

For each of these “undertrained” solutions, we evaluate the expected crossover time E[z,;] by averaging the crossover times
of 250 transition trajectories governed by the controlled SDE (85) with the corresponding “undertrained” forward committor. The
results are shown in the last column of Table E.10.

Table E.10 shows that as the accuracy of the committor decreases, the expected crossover time E[r,] increases. Nonetheless,
the relative increment in E[z,] is notably smaller compared to the discrepancy in the committors as evident from Fig. E.18. In
summary, this investigation suggests that the estimate of the expected crossover time obtained by means of sampling controlled
trajectories remains reasonably accurate even if the approximation to the forward committor is rough.

Appendix F. Finite element method for the committor problem

F.1. Time-reversible dynamics

If the governing SDE is time-reversible as it is in the case of the overdamped Langevin dynamics (6) or the overdamped Langevin
dynamics in collective variables (9), the committor problem (19) with the generator (23) is self-adjoint. In this case, we proceed in
the standard way detailed in [72]. First, we decompose the committor ¢ into g = g, + g, where is a prescribed function such that
g, =1 on 9B and ¢; = 0 outside a small neighborhood of dB and ¢, needs to be found. The boundary value problem for ¢j is

Lgy=—-Lq, x€EQyp, (F.1)
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Table E.10

Estimates of wMAD, wRMSD and E|[r,,] computed for five different approximations to the forward committor (dashed contours) of the bistable Duffing oscillator
(83) with ¢ = 0.05 obtained at various stages of training the neural network-based solution model with the PINN loss function. The FEM forward committor
(solid contours) and the corresponding E[r,;] =7.48 + 0.49 are treated as the ground truth.

wMAD wRMSD
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Second, we multiply (F.1) by a test function w € HO1 (£2) where the subscript 0 means that w = 0 on dA U 9B, integrate over Q,p
and apply the generalized divergence theorem to both parts. The result is the following integral equation for ¢, that must hold for
all we C}(Q):

0

/ e PO uw(x)T M (x)Vgy = — / e PO ()T M(x)Vg,. (F.4)
Qup

Q48
Next, we triangulate 2, and denote the associated finite element space by S, with the standard piecewise-linear basis {v;(x)};e1
where T is the set of vertices of the triangles [72]. The subset of vertices that do not belong to dA U 0B is denoted by I.. We
choose ¢, € §), so that ¢; = 1 only at the nodes lying on dB and ¢, = 0 at all other nodes. We seek the finite element solution for
qp of the form

d= Y, vk (F.5)
k€Tfree
where the vector {(qy);} KET /e 15 the solution to the linear system
Z Ajgol = — Z Ajk (F.6)
k€T free keoB

with the matrix elements A, given by
Ay = /Q e POV, ()T M (x) Vo (x)dx. (E.7)
AB

The integral in (F.7) is the sum of the integrals over all triangles. In each triangle, the gradients of the basis functions are constant,
and F(x) and M (x) are approximated by their values at the center of mass. Finally, the finite element solution ¢, is found at the

sum ggem = qo + 44+
F.2. The Langevin dynamics

For the Langevin dynamics (10), the committor problem (19) with the generator (24) is hypoelliptic, and the application of the
finite element method (FEM) requires care. We design a FEM solver for this case motivated by the article by Morton on FEM for
non-self-adjoint problems [73] that suggests to make the problem as close to self-adjoint as possible. Since in the case of Langevin
dynamics FEM is practical only if the space (x, p) is two-dimensional, x and p will be one-dimensional in the presentation below.

As in Appendix F.1, we start by decomposing ¢* into g+ = qa' +q;“. The boundary value problem for qa' is of the form (F.1)-(F.3)

except for x is replaced with (x, p). Then we multiply the PDE for qa“ by e ! exp (—‘2’—2) and get:

2

’ 2 + +
% "% | pd dq _2dqg -
e’ £q8,=e |:£_q0_]//(x)_0:|+yi<e & 0)=_e
€

M
BT

Lqt. (F.8)

€ m dx dp

We denote (x, p) by z and the gradient with respect to z by V and rewrite (F.8) in a matrix form:

2
2J0 0]o,\ e[ p/m e e% o,
. % i . =— . F.
yV (e [ 0 m ] Vq0> + " V() qu " Lq] (F.9)

Then we follow the steps in Appendix F.1. We multiply (F.9) by a test function w(z) € Hé (Q,p), integrate over Q,, and apply the
generalized divergence theorem. This results in the following integral equation for q(’)r that must hold for all w(z) € Hé (Q,p):

2
2 b=
_r 0 0 % m
y/ ezveT[O ]ngdx—e—/ w[lf,/ ]~anr
Qup m € Joug (x)

>

) _

:—y/ v [ 8 0 ] Vgldx+ ¢ w [ If//m ] - Vgldx. (F.10)
Q248 m € Jaup )

Then we triangulate £z, introduce the standard FEM basis {v;},c7 in S), and represent g7 (z) as a linear combination of the basis
functions associated with the nodes not in 4 U 0B, and obtain the following linear system for the coefficients (qar Vit

Z Ajlag i = 2 Bji(gp )k == z Aj + Z Bjk- (F.11)
kE€Tfree k€TLtree k€dB k€dB

The matrix elements in (F.11) are given by

2 _r
=10 0 e 2% p/m
Aj = y/ e %V, [ 0 m ] Vordx, By = " / v; [ VI(x) - Vudx. (F.12)
Q48 Q48

Computing the integrals in (F.12) over each triangle, all nonlinear functions are approximated by their values at the centers of mass
of the triangle. Finally, ¢ = qg + g} . The backward committor is readily found by ¢;__(x,p) = 1 — g7, _(x,=p).

fem
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Appendix G. Confidence interval

To compute confidence intervals for simulated transition time from A to B, we first compute mean 7, and standard error of the
mean se, using scipy.stats.sem, which is the sample standard deviation divided by square root of the sample size: se, = —-.

ﬁ

The confidence interval then is obtained using t distribution:
confidence interval = [T, p — se #(a), T4 p + se 1(a)] (G.1)

where t(«a) satisfies /1(02 ) f(x)dx = a, and can be found using scipy.stats.t.ppf. For all examples, 95% confidence intervals
are used.
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