

1 **Donnan Dialysis for Phosphate Recovery from**
2 **Diverted Urine**

3 *Water Research*

4 Revised: October 17, 2022

5 Stephanie N. McCartney^a, Hanqing Fan^a, Nobuyo Watanabe^b, Yuxuan Huang^a, and
6 Ngai Yin Yip^{*a,c}

7 ^a Department of Earth and Environmental Engineering, Columbia University, New
8 York, New York 10027-6623, United States

9 ^b Department of Chemistry, Barnard College, New York, New York 10027-6598,
10 United States

11 ^c Columbia Water Center, Columbia University, New York, New York 10027-6623,
12 United States

13 * Corresponding author: Email: n.y.yip@columbia.edu, Phone: +1 212 8542984

14 **Abstract**

15 There is a critical need to shift from existing linear phosphorous management practices to a more
16 sustainable circular P economy. Closing the nutrient loop can reduce our reliance on phosphate
17 mining, which has well-documented environmental impacts, while simultaneously alleviating P
18 pollution of aquatic environments from wastewater discharges that are not completely treated. The
19 high orthophosphate, $H_xPO_4^{(3-x)-}$, content in source-separated urine offers propitious opportunities
20 for P recovery. This study examines the use of Donnan dialysis (DD), an ion-exchange membrane-
21 based process, for the recovery of orthophosphates from fresh and hydrolyzed urine matrixes.
22 $H_2PO_4^-$ transport against an orthophosphate concentration gradient was demonstrated and
23 orthophosphate recovery yields up to 93% were achieved. By adopting higher feed to receiver
24 volume ratios, DD enriched orthophosphate in the product stream as high as $\approx 2.5 \times$ the initial urine
25 feed concentration. However, flux, selectivity, and yield of orthophosphate recovery were
26 detrimentally impacted by the presence of SO_4^{2-} and Cl^- in fresh urine, and the large amount of
27 HCO_3^- rendered hydrolyzed urine practically unsuitable for P recovery using DD. The detrimental
28 effects of sulfate ions can be mitigated by utilizing a monovalent ion permselective membrane,
29 improving selectivity for $H_2PO_4^-$ transport over SO_4^{2-} by $3.1 \times$ relative to DD with a conventional
30 membrane; but the enhancement was at the expense of reduced orthophosphate flux. Critically,
31 widely available and low-cost/waste resources with sufficiently high Cl^- content, such as seawater
32 and waste water softening regenerant rinse, can be employed to improve the economic viability of
33 orthophosphate recovery. This study shows the promising potential of DD for P recovery and
34 enrichment from source-separated urine.

35 Keywords: phosphorous, nutrient recovery, Donnan dialysis, urine, circular economy

36 **1. Introduction**

37 Global food security is indispensably dependent on the sufficient supply of bioavailable phosphate
38 for fertilizers. The growing global population is projected to drive a \approx 50–85% increase in
39 phosphate fertilizer demand by 2050 (Mogollóna et al., 2018). At the same time, the prevailing
40 practice for phosphorus (P) fertilizer production, phosphate rock mining, relies on finite and
41 diminishing deposits (reserves are predicted to last only 50–100 years, with production projected
42 to decline after 2033) (Elser and Bennett, 2011; Smil, 2000). Furthermore, phosphate rock mining
43 and beneficiation require significant energy inputs of 0.80–1.66 kWh/kg-P (2002; Reta et al.,
44 2018). In addition to the substantial energy required for industrial P production, downstream
45 anthropogenic waste streams require further chemical and energy inputs for phosphate
46 management (Bleiwas, 2011; Maurer et al., 2003; Schaubroeck et al., 2015). On average, a human
47 excretes 820–1,200 mg-P daily, with 67% in urine and the remainder in feces (H. Jönsson, 2004;
48 Karak and Bhattacharyya, 2011; Mihelcic et al., 2011). But due to the high costs, wastewater
49 treatment plants (WWTPs) in the U.S. are not commonly equipped with advanced treatments
50 dedicated to phosphorous removal (Larsen et al., 2009). Without adequate elimination at WWTPs,
51 the nutrient is discharged into aquatic ecosystems, which results in eutrophication, harmful algal
52 blooms, and hypoxic dead zones (Anderson et al., 2008; Conley et al., 2009; Diaz and Rosenberg,
53 2008; Michalak et al., 2013). These ecotoxic environments harm aquatic organisms and can pose
54 public health threats from algal and cyanobacterial toxins in recreational waterbodies and drinking
55 water supplies (Brooks et al., 2016; Hitzfeld et al., 2000). For these reasons, the biogeochemical
56 flow of phosphate is flagged as exceeding the safe operating space for humanity and poses high
57 risks under the planetary boundaries framework (Steffen et al., 2015). The current approach for P

58 management has clear shortcomings and a new paradigm that is more sustainable is urgently
59 needed (Guest et al., 2009; Li et al., 2015; Verstraete et al., 2009).

60 There has been considerable efforts to separate phosphorus from waste streams at WWTPs,
61 (Blackall et al., 2002; Larsen et al., 2007; Oehmen et al., 2007; Yeoman et al., 1988) but the focus
62 of most methods is P removal without capture. Such approaches can mitigate the downstream
63 environmental problems, but still operate as an inefficient take-make-dispose linear economy
64 model. Instead, orthophosphate, $H_xPO_4^{(3-x)-}$, can be simultaneously removed and recovered from
65 anthropogenic wastewaters within a circular economy model, specifically, phosphorous is
66 captured from wastewater and recycled back into the food chain (Commoner, 1971; McCartney et
67 al., 2020; Stahel, 2016; W. McDonough, 2002; Webster, 2015). Closing the nutrient loop can ease
68 the demand for phosphate mining to strengthen food security and alleviate P pollution of aquatic
69 environments, thereby represents a transformative evolution to a more sustainable approach for
70 phosphorous management.

71 The theoretical minimum energy for P recovery, governed by thermodynamic principles,
72 is substantially lower for the feed of source-separated urine (i.e., the liquid is diverted away from
73 black water and isolated) compared with other wastewaters (McCartney et al., 2021). For instance,
74 recovery of orthophosphate from urine is $\approx 13\text{--}34\%$ less energy-intensive than treated wastewater
75 effluent (McCartney et al., 2021). This is because urine is rich in P (total orthophosphate, TOP =
76 $19\text{--}48 \times 10^{-3}$ mol/L), (Fittschen and Hahn, 1998; Larsen et al., 2013; Simha and Ganesapillai, 2017;
77 Udert et al., 2003a) whereas treated wastewater effluent is over 1–2 orders of magnitude more
78 dilute. There has been considerable efforts to study the recovery of orthophosphates from urine
79 and significant strides have been made, with the primary approach being mineral precipitation of
80 slow-release fertilizers, such as struvite and magnesium potassium phosphate (Liu et al., 2013;

81 Maurer et al., 2006; Rahman et al., 2014; Randall and Naidoo, 2018; Ronteltap et al., 2007b; Udert
82 et al., 2003a; Udert et al., 2003b; Wang et al., 2005). However, the technique has potential risks
83 for contamination by pharmaceuticals, endocrine disrupting compounds, and pathogens (Boer et
84 al., 2018; Kemacheevakul et al., 2015; Lahr et al., 2016; Mullen et al., 2017; Ronteltap et al., 2007a;
85 Tang et al., 2019). Alternatively, sorbents, e.g., metal (oxy)hydroxide, (Karageorgiou et al., 2007;
86 Lu et al., 2013; Tanada et al., 2003; Xie et al., 2014; Zhang et al., 2009) can be used to separate
87 orthophosphate from other constituents in urine. But sorbent regeneration is chemically costly and
88 the technique is further disadvantaged by the unavoidable generation of waste brines that cannot
89 be easily disposed (Maul et al., 2014).

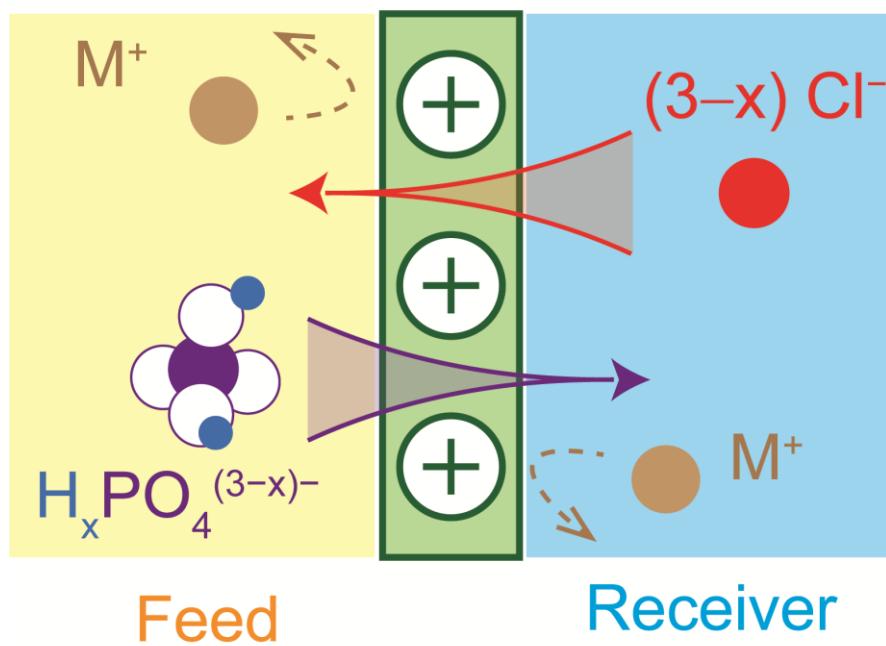
90 Ion exchange membrane (IEM) processes offer viable options for orthophosphate
91 separation from urine without being encumbered by the above limitations. Donnan dialysis (DD)
92 using IEMs has demonstrated promising potential for orthophosphate separation from other
93 wastewaters besides urine, achieving high recovery yields (up to 98.4%) (Chen et al., 2014;
94 Shashvatt et al., 2021; Trifi et al., 2009). However, the previous studies examined orthophosphate
95 recovery from solutions containing only orthophosphate anions, i.e., no other co-ions are included
96 in the water chemistry (Chen et al., 2014; Shashvatt et al., 2021; Trifi et al., 2009). Actual waste
97 streams, including urine, are complex water matrices with many anions, cations, and uncharged
98 species. In particular, the ionic composition of urine is uniquely different from, say, raw sewage
99 or treated secondary effluent, with significantly greater amounts of SO_4^{2-} , Cl^- , and HCO_3^- . Based
100 on the general understanding of Donnan equilibrium theory, the presence of other anions in
101 addition to orthophosphate is expected to have non-negligible and potentially detrimental effects
102 on the process. In a past DD study, the presence of co-ions was shown to have deleterious impacts

103 on arsenate removal from groundwater, (Zhao et al., 2010) underscoring the need to better
104 understand these effects to enable P recovery from urine using DD.

105 In this study, the performance of Donnan dialysis to drive the separation and recovery of
106 orthophosphate from diverted human urine is assessed. First, the working principles of anion
107 exchange membranes and Donnan dialysis are introduced. The exchange of $H_2PO_4^-$ and Cl^- across
108 an anion-exchange membrane is then examined with DD experiments driven by the ion
109 concentration gradients between an orthophosphate feed solution and a receiver solution of high
110 chloride content. Next, the impact of receiver solution chloride concentration on P recovery is
111 analyzed using simulated streams of brackish water, seawater, and desalination brine. The
112 capability of DD to enrich orthophosphate in the receiver solution above the initial urine feed
113 concentration is evaluated by adopting higher feed to receiver volume ratios. Then, the influence
114 of other anions in urine on orthophosphate flux and recovery yield is studied, specifically, SO_4^{2-}
115 and Cl^- in fresh urine, and SO_4^{2-} , Cl^- , and HCO_3^- in hydrolyzed urine. Enhancements in selectivity
116 for orthophosphate transport over other anions using a monovalent ion permselective membrane
117 are assessed and the potential of DD to harvest fertilizer products of aqueous orthophosphate
118 solutions is investigated. Finally, implications of Donnan dialysis for P separation and recovery
119 from urine are discussed.

120 **2. Working Principles of Donnan Dialysis**

121 *2.1. Ion Exchange in Donnan Dialysis*


122 In Donnan dialysis, DD, flux of driver ions down a concentration gradient, across an ion-
123 exchange membrane (IEM), sets up an electrochemical potential to drive the transport of target
124 ions in the opposite direction (Sarkar et al., 2010; Strathmann, 1995; Tanaka, 2015). IEMs are

125 polymeric thin-films with a high density of charged functional groups to allow the selective
126 permeation of oppositely-charged counterions, while retaining like-charged co-ions (cation and
127 anion exchange membranes, CEMs and AEMs, are selective for cation and anion transport,
128 respectively) (Strathmann, 2004; Strathmann, 2010). The IEM separates the feed solution (FS) and
129 receiver solution (RS). Driver counterions permeate from the higher concentration RS to the lower
130 concentration FS. Because co-ions are rejected by the charge-selective membrane, target
131 counterions in the FS migrate across the membrane in the opposite direction, into the RS, to
132 preserve electroneutrality (Asante-Sackey et al., 2021; Chen et al., 2014; Hichour et al., 2000;
133 Sarkar et al., 2010; Shashvatt et al., 2021; Velizarov, 2013; Yan et al., 2018). I.e., the
134 electrochemical potential gradient across the IEM drives the exchange of counterions between the
135 FS and RS in DD, with co-ions retained in the initial solutions (Sarkar et al., 2010). Note that the
136 charge fluxes of driver and target ions must be equal to maintain electroneutrality. Importantly, an
137 adequately large driver ion concentration difference across the membrane can enable migration of
138 target ions against a concentration gradient, to achieve “uphill” transport (Tanaka, 2015).

139 In DD recovery of orthophosphates, $H_xPO_4^{(3-x)-}$, an AEM is employed to exchange
140 $H_xPO_4^{(3-x)-}$ target ions from the FS with driver anions in the RS (Chen et al., 2014; Shashvatt et
141 al., 2021; Trifí et al., 2009). Chloride is a suitable driver ion because Cl^- is present in high
142 concentrations in low-cost or waste streams that are widely available, such as brackish water,
143 seawater, desalination brine, and waste effluent from water softening regeneration. Critically, Cl^-
144 concentrations in these streams are significantly higher than in urine ($>200 \times 10^{-3}$ mol/L, compared
145 to $\approx 100 \times 10^{-3}$ mol/L), to establish a sufficiently large electrochemical potential gradient across the
146 AEM for uphill transport of $H_xPO_4^{(3-x)-}$. Therefore, this study will investigate DD recovery of
147 orthophosphates using chloride as the RS driver counterion. Figure 1 depicts the DD separation of

148 orthophosphates from other constituents in urine feed solution and capture in the chloride-rich
 149 receiver solution: $H_xPO_4^{(3-x)-}$ in the FS exchanges with Cl^- in the RS across the AEM, while
 150 cations, M^+ , are rejected by the charge-selective membrane. Note that one $H_xPO_4^{(3-x)-}$ ion
 151 exchanges with $(3-x) Cl^-$ ion(s) to maintain electroneutrality.

Anion Exchange Membrane

152
153 **Figure 1.** Schematic depicting Donnan dialysis recovery of orthophosphates. Exchange of counterions
154 (anions) across an anion exchange membrane (AEM) is driven by an electrochemical potential gradient
155 across the membrane, while co-ions (cations, M^+) are rejected by the charge-selective membrane and
156 retained in initial solutions. Driver ions, Cl^- , transport down a concentration gradient from the high
157 concentration RS to low concentration FS. The positively-charged AEM excludes M^+ cations. Therefore,
158 to maintain electroneutrality, target ions, $H_xPO_4^{(3-x)-}$, transport in the opposite direction, i.e., from FS
159 to RS. The charge fluxes of driver and target ions must be equal to maintain electroneutrality, i.e.,
160 $H_xPO_4^{(3-x)-}$ exchanges with $(3-x) Cl^-$ ions.

161 2.2. *Orthophosphate Recovery at Donnan Equilibrium*

162 Target and driver counterions in the FS and RS exchange until Donnan equilibrium is
 163 reached, i.e., electrochemical potential gradient across the membrane = 0. For the system with
 164 $\text{H}_x\text{PO}_4^{(3-x)-}$ and Cl^- as target and driver ions, respectively, concentrations in the FS and RS at
 165 Donnan equilibrium are governed by eq 1 (derivation is detailed in eqs S1–4 of the Supplementary
 166 Material):

$$167 \frac{[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{FS},f}}{[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}} \approx \left(\frac{[\text{Cl}^-]_{\text{FS},f}}{[\text{Cl}^-]_{\text{RS},f}} \right)^{(3-x)} \quad (1)$$

168 where subscripts FS and RS denote feed and receiver solutions, respectively, and *f* signifies final
 169 equilibrium. Note that eq 1 assumes perfect cation rejection and negligible water transport across
 170 the AEM.

171 To determine final target and driver ion concentrations at Donnan equilibrium using known
 172 initial concentrations, the principles of electroneutrality and material balances can be applied and
 173 are represented by eqs S5–8 of the Supplementary Material. For equivalent FS and RS volumes
 174 (i.e., $V_{\text{FS}} = V_{\text{RS}}$), $\text{H}_x\text{PO}_4^{(3-x)-}$ as the sole initial anion in the FS, and Cl^- as the sole initial anion in
 175 the RS, eq 2 describes the relationship between initial concentrations and final concentrations at
 176 Donnan equilibrium:

$$177 \frac{[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{FS},0} - [\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}}{[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}} \approx \left(\frac{(3-x)[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}}{[\text{Cl}^-]_{\text{RS},0} - (3-x)[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}} \right)^{(3-x)} \quad (2)$$

178 $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ can be determined using initial concentrations $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},0}$ and
 179 $[\text{Cl}^-]_{\text{FS},0}$. The moles of orthophosphate recovered is the product of concentration and volume of

180 the final RS solution, $[H_xPO_4^{(3-x)-}]_{RS}/V_{RS}$. Eqs S9–17 of the Supplementary Material are the
181 Donnan equilibrium expressions for systems with different initial conditions, specifically multiple
182 anions in the FS ($H_xPO_4^{(3-x)-}$, SO_4^{2-} , and Cl^-) and non-equivolume scenarios ($V_{FS} \neq V_{RS}$).

183 **3. Materials and methods**

184 *3.1. Materials and chemicals*

185 Commercial anion exchange membranes of Selemion AMV and Selemion ASVN, a
186 monovalent ion-selective AEM, were procured from Asahi Glass Co. (Japan). Four DD cells with
187 different chamber volumes were fabricated using Mars Pro MSLA 3D Printer acquired from
188 Elegoo (China). The solutions in each chamber were constantly stirred using magnetic stirring bars.
189 The feed and receiver chamber volumes, respectively, are: 20 and 20 mL; 40 and 20 mL; 80 and
190 20 mL; and 40 and 40 mL, for feed to receiver solution volume ratios of 1:1, 2:1, 4:1, and 2:2,
191 respectively. The effective membrane areas in all cells are 9.0 cm^2 . $Na_2HPO_4 \cdot 7H_2O$,
192 $Na_3PO_4 \cdot 12H_2O$, $NaCl$, $MgCl_2 \cdot 6H_2O$, $MgSO_4 \cdot 7H_2O$, and NH_4Cl salts were obtained from Alfa
193 Aesar (Ward Hill, MA). KCl salt, 85% H_3PO_4 solution, and 2.5 M H_2SO_4 were acquired from Lab
194 Chem (Zelienople, PA), Fisher Scientific (Waltham, MA), and Titripur (St. Louis, MO),
195 respectively. All chemicals are ACS grade and were used as received. All solutions were prepared
196 using deionized (DI) water from a Milli-Q ultrapure water purification system (Millipore Co.,
197 Burlington, MA).

198 *3.2. Orthophosphate and Chloride Exchange in Donnan Dialysis*

199 To demonstrate the exchange of $H_2PO_4^-$ in a feed solution, FS, with Cl^- in a receiver
200 solution, RS, DD experiments were conducted with 30×10^{-3} mol/L $H_2PO_4^-$ initial FS (16.5×10^{-3}

201 mol/L $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ and 13.5×10^{-3} mol/L H_3PO_4 ; pH = 6.0) and 600×10^{-3} mol/L Cl^- (as NaCl)
202 initial RS. The 20:20 mL cell was utilized. H_2PO_4^- concentrations in the FS and RS and Cl^-
203 concentrations in the RS were measured at 1.0 h intervals for 6.0 h. 175 μL samples were collected
204 from each solution and the anion concentrations were analyzed using ion chromatography, IC
205 (Dionex Aquion, Thermo Fisher Scientific, Waltham, MA).

206 *3.3. Characterization of Orthophosphate Recovery at Donnan Equilibrium*

207 Orthophosphate, sulfate, and bicarbonate transport from FS to RS and chloride transport
208 from RS to FS were evaluated in different DD operations. Three FS were utilized in
209 orthophosphate recovery experiments: i. feed solution with the total orthophosphate, TOP,
210 concentration and pH of fresh urine, (Fittschen and Hahn, 1998; Larsen et al., 2013; Simha and
211 Ganesapillai, 2017; Udert et al., 2003a) but without other anions (16.5×10^{-3} mol/L $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$
212 and 13.5×10^{-3} mol/L H_3PO_4 ; pH = 6.0), ii. simulated fresh urine with the TOP, sulfate, and chloride
213 concentrations, and pH of actual fresh urine (Fittschen and Hahn, 1998; Larsen et al., 2013; Simha
214 and Ganesapillai, 2017; Udert et al., 2003a) (24×10^{-3} mol/L $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$, 6×10^{-3} mol/L
215 $\text{Na}_3\text{PO}_4 \cdot 12\text{H}_2\text{O}$, 100×10^{-3} mol/L NaCl, and 16×10^{-3} mol/L H_2SO_4), and iii. simulated hydrolyzed
216 urine with the TOP, sulfate, chloride, and bicarbonate concentrations, and pH of actual hydrolyzed
217 urine (Fittschen and Hahn, 1998; Udert et al., 2003a) (30×10^{-3} mol/L $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$, 100×10^{-3}
218 mol/L NaCl, 144×10^{-3} mol/L Na_2CO_3 , and 106×10^{-3} mol/L NaHCO_3), as presented in Table 1. All
219 solutions simulated the TOP concentration of undiluted urine (i.e., not mixed with flush water).
220 Note that hydrolyzed urine is formed when urea, $\text{CO}(\text{NH}_2)_2$, in urine hydrolyses to form
221 ammoniacal nitrogen and bicarbonate, which in turn increases the pH from ≈ 6.0 to ≈ 9.2 (Udert et
222 al., 2003a; Udert et al., 2003b). At those pHs, the predominant orthophosphate species in simulated
223 fresh and hydrolyzed urine solutions are H_2PO_4^- and HPO_4^{2-} , respectively. Three receiver

224 solutions with NaCl concentrations of 200×10^{-3} mol/L, 600×10^{-3} mol/L, and $1,000 \times 10^{-3}$ mol/L
225 were utilized to simulate brackish water, seawater, and seawater desalination brine, respectively.
226 DD cells with feed chamber volumes of 20, 40, and 80 mL were employed for orthophosphate
227 recovery experiments with different feed to receiver solution volume ratios. In summary, FS anion
228 composition and RS Cl⁻ concentration were the parameters assessed in different FS to RS volume
229 ratios. Unless stated otherwise, AMV membranes were used in the experiments. Pressure and
230 temperature were at ambient conditions in all experiments.

231 **Table 1.** Anion compositions and pHs of feed solution containing only orthophosphate, simulated fresh
232 urine, and simulated hydrolyzed urine.

Solution	Ion Concentration ($\times 10^{-3}$ mol/L)				pH
	[H _x PO ₄ ^{(3-x)-}]	[SO ₄ ²⁻]	[Cl ⁻]	[HCO ₃ ⁻]	
TOP-only	30	0	0	0	6.0
Fresh urine	30	16	100	0	6.0
Hydrolyzed urine	30	16	100	250	9.2

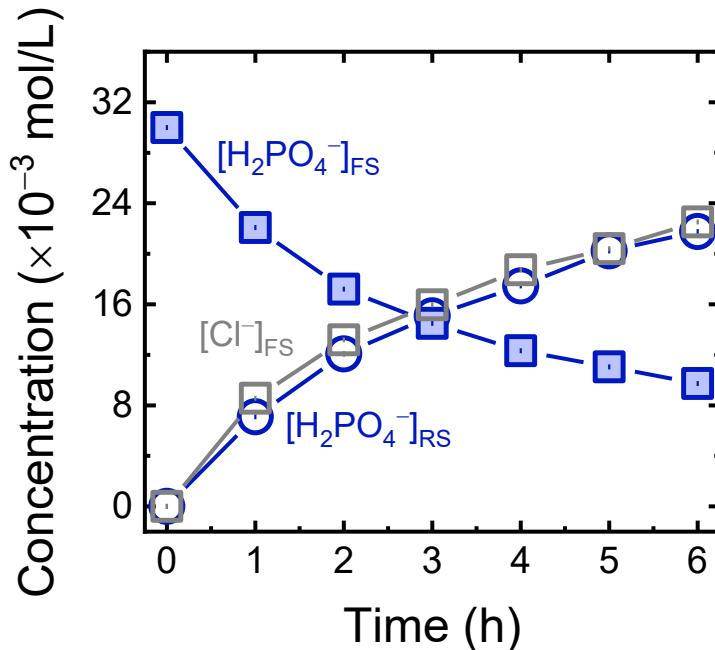
233 Total orthophosphate, sulfate, and bicarbonate concentrations in the FS and RS, and
234 chloride concentration in the FS were sampled and analyzed using ion chromatography. The
235 measurement intervals were 12, 24, or 48 h for experiments with FS to RS volume ratios of 1, 2,
236 and 4, respectively, with longer time allotted for experiments with higher ratios to approach
237 equilibrium. The experiments were considered to have effectively equilibrated when the moles of
238 exchanged orthophosphate ions remained consistent over three consecutive measurements (< 5%
239 change); experimental duration is $< \approx 300$ h for the longest run (FS to RS volume ratio of 4). Note
240 that the sampling times are relatively long because the solution volumes are large compared to the
241 effective membrane area. Additionally, the equilibration is asymptotic and, hence, the ions

242 exchange rates slow significantly as the process approaches equilibrium. Water transport was
243 assessed by measuring feed and receiver solution volumes at the end of each experiment. Recovery
244 yield, Y , is defined as the moles of TOP in the final RS normalized by the moles in the initial FS.

245 *3.4. Evaluation of Anion Transport Kinetics*

246 Anion fluxes from FS to RS were examined in DD kinetic experiments, i.e., final Donnan
247 equilibria were not reached in the tests. Fluxes were determined from the rate of change of
248 anion concentrations in the RS over 2.0 and 8.0 h for the AMV and ASVN membranes,
249 respectively. The sampling durations were selected for sufficient ions to permeate across the small
250 membrane areas of the benchscale setup such that the solution concentrations were above detection
251 limits of the IC (the ASVN experiments required more time because anion fluxes are relatively
252 lower). Water transport across the AEMs during the kinetic experiments was not observed and
253 deemed to be practically negligible. The change in moles of anion in the RS over time normalized
254 by the membrane area yields flux, J_i . Flux selectivity, J_i/J_T , is defined as J_i normalized by the sum
255 of all anion fluxes from feed to receiver solution.

256 Anion fluxes and flux selectivities were assessed for the AMV membrane using 600×10^{-3}
257 mol/L NaCl RS with the three FS of TOP-only solution, simulated fresh urine, and simulated
258 hydrolyzed urine. J_i and J_i/J_T were determined for the ASVN membrane using simulated fresh and
259 hydrolyzed urine as FS and RS of 600×10^{-3} mol/L NaCl. To demonstrate the potential of DD to
260 recover orthophosphate and yield aqueous products, experiments were conducted using the ASVN
261 membrane, simulated fresh urine as FS, and four different RS. The RS investigated are: i. 600×10^{-3}
262 mol/L NaCl, ii. 600×10^{-3} mol/L KCl to simulate aqueous potash fertilizer, iii. waste water
263 softening regenerant rinse, WWSRR (547×10^{-3} mol/L KCl and 48×10^{-3} mol/L $MgCl_2 \cdot 6H_2O$), iv.
264 and simulated diluted bittern, DB (252×10^{-3} mol/L $MgCl_2 \cdot 6H_2O$, 77×10^{-3} mol/L KCl, 25×10^{-3}


265 mol/L $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 26×10^{-3} mol/L NaCl, and 8×10^{-3} mol/L NH₄Cl). Further information on the
266 composition of WSRW and DB can be found in the Supplementary Material. Table S5 of the
267 Supplementary Material summarizes the conditions for experiments presented in the following
268 Figures.

269 **4. Results and discussion**

270 *4.1. Driver Ion Concentration Gradient Drives Transport of Orthophosphate Across the* 271 *Anion Exchange Membrane*

272 Donnan dialysis experiments were conducted using an initial FS of 30×10^{-3} mol/L H₂PO₄⁻
273 and RS of 600×10^{-3} mol/L Cl⁻. Note that the FS simulates the pH and [H₂PO₄⁻] of fresh urine,
274 with H₂PO₄⁻ being the predominant form of orthophosphate species at pH = 6.0. The RS replicates
275 [Cl⁻] in seawater. Figure 2 shows [H₂PO₄⁻] in the feed and receiver solutions, indicated by
276 subscripts FS and RS, respectively (solid blue square and open blue circle symbols), and [Cl⁻] in
277 the FS (open gray square symbols) as a function of time during DD operation. Because of the large
278 driver ion concentration difference across the membrane, i.e., [Cl⁻]_{RS,0} - [Cl⁻]_{FS,0}, Cl⁻ permeates
279 from the RS to the lower concentration FS. Na⁺ cations are rejected by the AEM; thus, to maintain
280 electroneutrality, one H₂PO₄⁻ ion from the FS exchanges with one Cl⁻ ion from the RS, as
281 demonstrated by nearly equal [H₂PO₄⁻]_{RS} and [Cl⁻]_{FS} throughout the DD experiment ($< 1.5 \times 10^{-3}$
282 mol/L difference). Further, [H₂PO₄⁻]_{FS} decreases at the same rate as [H₂PO₄⁻]_{RS} increases, i.e.,
283 mole balance is satisfied, with [H₂PO₄⁻]_{FS}V_{FS} + [H₂PO₄⁻]_{RS}V_{RS} within 5% of [H₂PO₄⁻]_{FS,0}V_{FS,0}. As
284 more H₂PO₄⁻ and Cl⁻ ions are exchanged, the electrochemical potential gradient across the AEM
285 decreases. The reduced driving force lessens the rate of anion exchange, i.e., slopes of the
286 concentration profiles become less steep. Importantly, even after [H₂PO₄⁻]_{RS} exceeds [H₂PO₄⁻]_{FS}

287 (at ≈ 3 h), H_2PO_4^- continues to be transported from the feed to receiver solution, achieving uphill
288 transport of orthophosphates. Approximately 73% of H_2PO_4^- from the FS was recovered in the RS
289 after 6 h of DD operation in batch mode.

290

291 **Figure 2.** Concentrations of H_2PO_4^- and Cl^- in the FS (solid blue and open gray square symbols,
292 respectively) and H_2PO_4^- concentration in the RS (open blue circles) as a function of time during DD
293 orthophosphate recovery. Feed and receiver solution concentrations are denoted by subscripts FS and
294 RS, respectively. The initial feed and receiver solutions consist of 30×10^{-3} mol/L H_2PO_4^- at pH = 6.0
295 (16.5×10^{-3} mol/L $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ and 13.5×10^{-3} mol/L H_3PO_4) and 600×10^{-3} mol/L NaCl , respectively.
296 Both feed and receiver solution volumes are 20 mL and effective AMV membrane area is 9.0 cm^2 .

297 *4.2. Higher Receiver Solution Chloride Concentrations Increase Orthophosphate
298 Recovery*

299 Donnan dialysis experiments were conducted using FS with 30×10^{-3} mol/L TOP, i.e., the
300 $\text{H}_x\text{PO}_4^{(3-x)-}$ concentration in fresh urine where H_2PO_4^- is the predominant orthophosphate species,

301 and various initial $[Cl^-]_{RS}$ to investigate the influence of chloride driver ion concentration on
302 orthophosphate recovery. Receiver solutions of 200, 600, and $1,000 \times 10^{-3}$ mol/L NaCl were
303 utilized to simulate potential widely-available low-cost/waste streams of brackish water, seawater,
304 and seawater desalination brine, respectively. Figure 3A presents experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ at
305 the end of 72 h and predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ at Donnan equilibrium calculated using eq 2
306 (patterned and empty blue columns, respectively). Labels above these columns denote percentage
307 difference of experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ relative to the prediction at Donnan equilibrium.

308 Theoretical orthophosphates captured in the receiver solution at Donnan equilibrium
309 increase with greater feed concentrations of driver chloride ions: predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ are
310 26.1, 28.6, and 29.1×10^{-3} mol/L for $[Cl^-]_{RS,0}$ of 200, 600, and $1,000 \times 10^{-3}$ mol/L, respectively. The
311 FS is constant across all operations. Therefore, higher $[Cl^-]_{RS,0}$ generates larger driver ion
312 concentration gradients, i.e., $[Cl^-]_{RS} - [Cl^-]_{FS}$, and results in increased driving forces for Cl^-
313 permeation from the high concentration FS to the lower concentration RS. Correspondingly, there
314 is a greater exchange of $H_xPO_4^{(3-x)-}$ ions to the RS (eq 2). The DD experiments exhibited this
315 increasing trend of $[H_xPO_4^{(3-x)-}]_{RS,f}$ with larger $[Cl^-]_{RS,0}$ (patterned blue columns of Figure 3A).
316 However, the observed $[H_xPO_4^{(3-x)-}]_{RS,f}$ were below the predicted values by $\approx 8-15\%$, with the
317 improvements being less marked at greater $[Cl^-]_{RS,0}$, e.g., raising $[Cl^-]_{RS,0}$ from 200 to $1,000 \times 10^{-3}$
318 mol/L increases $[H_xPO_4^{(3-x)-}]_{RS,f}$ by 3.7%, lower than the theoretical enhancement of 11.3%.

319 $[H_xPO_4^{(3-x)-}]_{RS,f}$ for the three different $[Cl^-]_{RS,0}$ are lower than theoretical final
320 concentrations due to dilution by simultaneous water transport from FS to RS and imperfect cation
321 exclusion by the AEM. The high concentration of NaCl in the RS generates an osmotic pressure
322 gradient that drives water permeation from FS to RS, i.e., osmosis. Additionally, electro-osmosis,
323 where water molecules are dragged along with the permeating charged ions, contributes to water

324 transport (J. Veermana et al., 2009; Spiegler, 1958; Yip and Elimelech, 2012). Electro-osmosis
325 due to $H_xPO_4^{(3-x)-}$ flux from FS to RS is opposite in direction to water transport by Cl^- flux (and
326 Na^+ flux, explained next) from RS to FS. Net electro-osmosis is <10% of the measured water
327 permeation; therefore, the contribution from the phenomenon is relatively minor and osmosis is
328 the primary driver of water transport. The RS volume increased by 5.3–21% at the end of the DD
329 experiments performed here. Water flux dilutes the RS and consequently lowers the TOP
330 concentration. Note that, in contrast, minimal water transport was measured for the experiment
331 presented in Figure 2 because the experiment duration was comparatively shorter (6.0 h instead of
332 72 h).

333 Additionally, co-ions are not completely rejected by ion-exchange membranes (Beck and
334 Ernst, 2015; Pessoa-Lopes et al., 2016). The Na^+ concentration gradient set up by the high $[NaCl]$
335 in the RS results in Na^+ permeation from RS to FS, i.e., co-ion (cation) leakage. To maintain
336 electroneutrality, every Na^+ ion that leaks across the AEM compels one Cl^- ion to permeate in the
337 same direction; therefore $H_2PO_4^-$ and Cl^- are transported below equimolar ratio and
338 $[Cl^-]_{FS,f} + [H_xPO_4^{(3-x)-}]_{FS,f} > [H_xPO_4^{(3-x)-}]_{FS,0}$. The cation leakage reduces Cl^- ions in RS that are
339 available to exchange with $H_xPO_4^{(3-x)-}$ ions in the FS, thus detrimentally lowering $[H_xPO_4^{(3-x)-}]_{RS,f}$.
340 Na^+ transport was not specifically characterized in the experiments, but was estimated to be in the
341 approximate region of 5% of anion transport, based on the membrane permselectivity of ≈ 0.95
342 reported in the manufacturer's specifications. Both water and co-ion leakage are not accounted for
343 in eq 2 and cause the experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ to deviate below the predicted Donnan
344 equilibrium. Note that transport of Cl^- from RS to FS and $H_2PO_4^-$ from FS to RS were nearly
345 identical during the 6 h of DD operation presented in Figure 2; however, given the relatively longer
346 duration of the phosphate recovery experiments presented in Figure 3A (72 h), cumulative co-ion

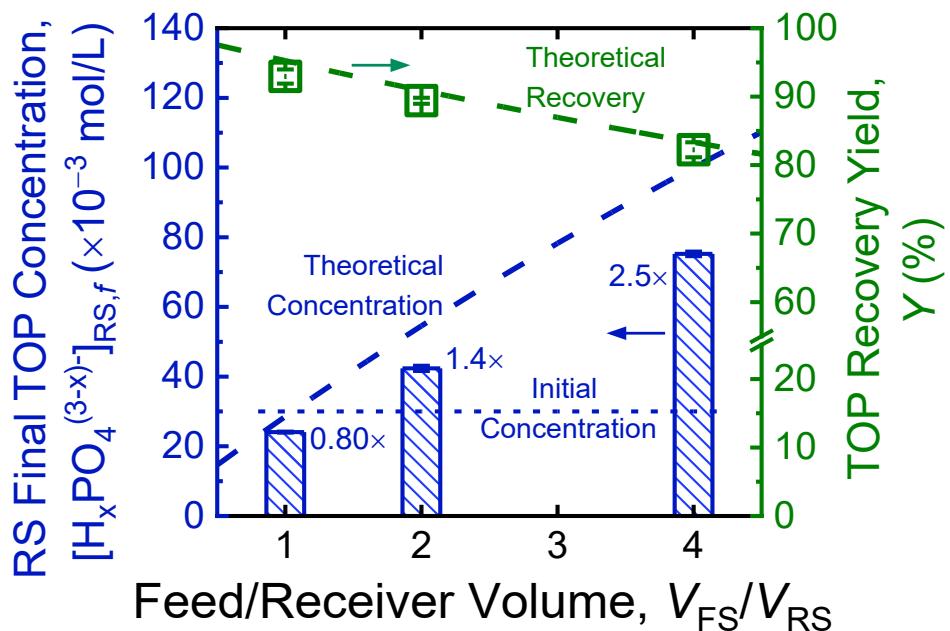
347 transport is more pronounced. Additionally, the ballpark estimate of cation leakage is consistent
 348 with the deviations between experimental and predicted orthophosphate concentrations.

349

350 **Figure 3.** A) $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ and $[\text{Cl}^-]_{\text{FS},f}$ (patterned blue and gray columns, respectively) in DD with
 351 different initial NaCl concentrations in the receiver solution. Predicted $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ at Donnan
 352 equilibrium, calculated using eq 2, are depicted by the empty blue columns. Labels above the columns
 353 indicate the percentage of predicted $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ experimentally captured in the RS. B)
 354 Experimental and predicted orthophosphate recovery yields, Y , (patterned and empty green columns,
 355 respectively) in DD with the different $[\text{Cl}^-]_{\text{RS},0}$. The experimental Y were calculated from measured

356 $[H_xPO_4^{(3-x)-}]_{RS,f}$ and accounting for osmotic water flux the FS to the RS. Labels above the columns
357 signify the percent decrease in $H_xPO_4^{(3-x)-}$ experimentally captured in the RS relative to theoretical
358 prediction (based on eq 2). Initial feed solution contains 30×10^{-3} mol/L $H_2PO_4^-$ at pH = 6.0 (i.e., same
359 composition as the FS of Figure 2). Receiver solutions with initial concentrations of 200, 600, and
360 $1,000 \times 10^{-3}$ mol/L NaCl to simulate brackish water, seawater, and seawater desalination brine,
361 respectively, were investigated. In all operations V_{FS}/V_{RS} is 1:1. All experiments utilized AMV
362 membranes. Data points and error bars are means and standard deviations, respectively, of duplicate
363 experiments.

364 $H_xPO_4^{(3-x)-}$ experimentally captured in the RS are 7.91%, 15.1%, and 14.6% lower than
365 predicted for $[Cl^-]_{RS,0}$ of 200, 600, and $1,000 \times 10^{-3}$ mol/L, respectively. Deviations of the
366 experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ from theoretical values (eq 2) are larger with $[Cl^-]_{RS,0}$ of 600 and
367 $1,000 \times 10^{-3}$ mol/L compared to 200×10^{-3} mol/L (experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ of $[Cl^-]_{RS,0} = 1,000$
368 mol/L being marginally smaller than $[Cl^-]_{RS,0} = 600$ mol/L is likely attributed to inevitable
369 experimental uncertainties inherent to the measurement techniques). The greater deficits are due
370 to both water permeation from FS to RS (quantified by measuring changes in the solution volumes)
371 and cation leakage from RS to FS being more prominent in operations with higher $[Cl^-]_{RS,0}$.
372 Osmotic pressure is essentially proportional to $[NaCl]$ and are 9.91, 29.7, and 49.6 bar for 200,
373 600, and $1,000 \times 10^{-3}$ mol/L NaCl, respectively. As a result of the greater osmotic pressure
374 difference between the RS and FS, increased water permeation is observed when $[Cl^-]_{RS,0}$ is higher;
375 net water fluxes are 1.93×10^{-2} , 6.37×10^{-2} , and 7.10×10^{-2} L/m²h for initial RS of 200, 600, and
376 $1,000 \times 10^{-3}$ mol/L NaCl, respectively. Additionally, Na^+ leakage is more exacerbated with
377 conditions of higher initial RS $[NaCl]$ due to increased Na^+ concentration gradients.(Beck and
378 Ernst, 2015; Pessoa-Lopes et al., 2016) Consequently, the undesired co-permeation of Cl^- is
379 elevated. In principle, $[Cl^-]_{FS,f}$ (gray columns in Figure 3A) should be equivalent to


380 $[H_xPO_4^{(3-x)-}]_{RS,f}$ because the predominant form of orthophosphate in the FS is monovalent $H_2PO_4^-$,
381 and therefore electroneutrality dictates a 1:1 exchange of Cl^- and $H_2PO_4^-$. However,
382 experimentally, $[Cl^-]_{FS,f} > [H_xPO_4^{(3-x)-}]_{RS,f}$ due to the Na^+ and Cl^- leakage from RS to FS and water
383 flux from FS to RS. Furthermore, the divergences between $[Cl^-]_{FS,f}$ and $[H_xPO_4^{(3-x)-}]_{RS,f}$ are larger
384 at higher $[Cl^-]_{RS,0}$ as co-ion leakage and osmosis, are more exacerbated. Although increasing
385 $[Cl^-]_{RS,0}$ resulted in higher TOP concentrations recovered in the receiver solution, the greater
386 deviations between experimental and predicted DD performance also indicate that the
387 inefficiencies of water and co-ion leakage are more pronounced.

388 Recovery yield, Y , is defined as the percentage of orthophosphate moles from the initial FS
389 that are recovered in the RS and is presented in Figure 3B, with patterned and empty green columns
390 denoting experimental and predicted Y , respectively. Experimental Y is calculated using the
391 product of TOP concentration and solution volume at the end of the test ($[H_xPO_4^{(3-x)-}]_{RS,f}V_{RS,f}$),
392 i.e., the effects of osmotic and electro-osmotic water transport are accounted for. Labels above the
393 columns are the differences between experimental and predicted Y . The experimental
394 orthophosphate recovery yields are very close to Y s predicted at Donnan equilibrium using eq 2
395 (within 5%). The minor shortfalls in recovery yield are attributed to Na^+ leakage and Cl^- co-
396 permeation. Despite the imperfect permselectivity of the AEM, experimental Y s are high and
397 exceed 90% for $[Cl^-]_{RS,0}$ of 600×10^{-3} and $1,000 \times 10^{-3}$ mol/L. Even the lowest $[Cl^-]_{RS,0}$ of 200×10^{-3}
398 mol/L produced Y of 83%. The high yields achieved signify that DD can be a promising technique
399 for orthophosphate recovery. Increasing $[Cl^-]_{RS,0}$ improves Y , but with diminishing returns. For
400 example, raising $[Cl^-]_{RS,0}$ from 200×10^{-3} to 600×10^{-3} mol/L increases experimental Y by 9.5%.
401 However, further increasing $[Cl^-]_{RS,0}$ to $1,000 \times 10^{-3}$ mol/L only marginally improved the
402 orthophosphate recovery yield by 1.4% (this trend is also predicted by the Donnan equilibrium

403 theory of eq 2). Subsequent phosphate recovery experiments will, thus, utilize $[Cl^-]_{RS,0} = 600 \times 10^{-3}$
 404 mol/L.

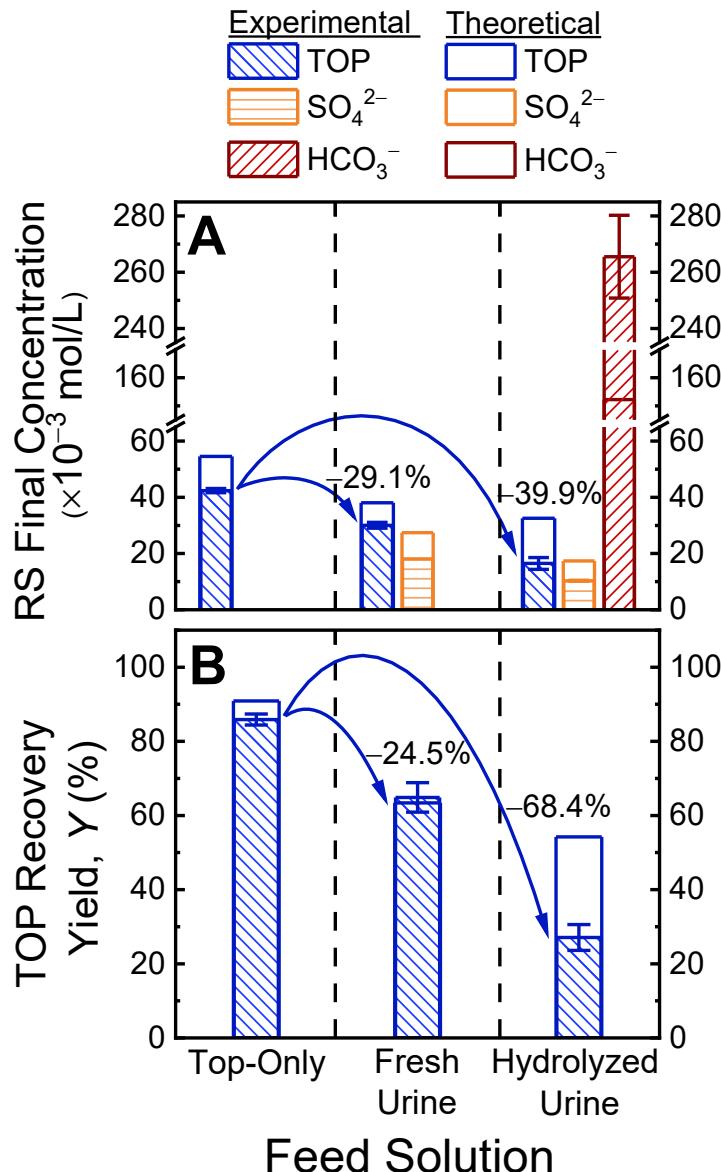
405 *4.3. Donnan Dialysis can Enrich Orthophosphate in the Receiver Solution*

406 It is advantageous to produce concentrated orthophosphate solutions to be utilized in
 407 downstream applications as fertilizer. Orthophosphate can be enriched in the RS (i.e.,
 408 $[H_xPO_4^{(3-x)-}]_{RS,f} > [H_xPO_4^{(3-x)-}]_{FS,0}$) by using a smaller RS volume relative to FS, based on the
 409 Donnan equilibrium (eqs S14–17 of the Supplementary Material). DD experiments were
 410 conducted using different V_{FS}/V_{RS} of 1, 2, and 4. The FS contains 30×10^{-3} mol/L of $H_xPO_4^{(3-x)-}$
 411 and the RS has 600×10^{-3} mol/L of Cl^- . Figure 4 presents experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ as patterned
 412 blue columns, and predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ are indicated by the blue dashed line (left vertical
 413 axis). Labels in the columns denote enrichment factors, defined as
 414 $[H_xPO_4^{(3-x)-}]_{RS,f}/[H_xPO_4^{(3-x)-}]_{FS,0}$. Experimental and predicted recovery yields of $H_xPO_4^{(3-x)-}$, Y ,
 415 are green square symbols and green dashed line, respectively (right vertical axis).

416

417 **Figure 4.** Receiver solution final TOP concentration, $[H_xPO_4^{(3-x)-}]_{RS,f}$ (blue columns, left vertical axis),
418 and orthophosphate recovery yields, Y (green square symbols, right vertical axis), as a function of
419 V_{FS}/V_{RS} . Experimental Y is calculated using $[H_xPO_4^{(3-x)-}]_{RS,f}V_{RS,f}$ and, therefore, accounts for water
420 transport from the FS to the RS due to osmosis and electro-osmosis. Predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ and
421 recovery yields at Donnan equilibrium, calculated using eqs S14–17 in the Supplementary Material,
422 are depicted as blue and green dashed lines, respectively. The initial feed and receiver solutions are the
423 same as the FS and RS of Figure 2. For comparison, the initial total orthophosphate concentration in the
424 simulated urine feeds is depicted as a dotted blue line. Enrichment factors, defined as
425 $[H_xPO_4^{(3-x)-}]_{RS,f}/[H_xPO_4^{(3-x)-}]_{FS,0}$, are indicated in the blue columns. Experimental Y is
426 $[H_xPO_4^{(3-x)-}]_{RS,f}V_{RS,f}$ and, therefore, accounts for osmotic water flux from the FS to the RS. All
427 experiments utilized AMV membranes. Data points and error bars are means and standard deviations,
428 respectively, of duplicate experiments.

429 Because DD can enable uphill transport of ions from FS to RS, the recovered
430 orthophosphate can be concentrated in a small volume of RS. Enrichment factors of 1.4 and 2.5
431 were achieved in experiments with V_{FS}/V_{RS} of 2 and 4, respectively. However, experimental
432 $[H_xPO_4^{(3-x)-}]_{RS,f}$ and enrichment factors are lower than predictions by Donnan equilibrium. Eq S8
433 predicts enrichment factors of 1.8 and 3.3 at Donnan equilibrium with $V_{FS}/V_{RS} = 2$ and 4,
434 respectively. These deviations are primarily due to water permeation diluting the orthophosphates
435 captured in the RS. Furthermore, the dilution effect is more pronounced at higher V_{FS}/V_{RS} , where
436 osmotic water flux from FS to RS mixes with relatively smaller volumes of RS. As a result, the
437 deviations of experimental $[H_xPO_4^{(3-x)-}]_{RS,f}$ from predicted values are detrimentally elevated with
438 increased V_{FS}/V_{RS} and are -15.7% , -22.3% , and -24.8% for V_{FS}/V_{RS} of 1, 2, and 4, respectively.
439 However, similar to the results presented in Figure 3, experimental recovery yields (green square
440 symbols in Figure 4) are comparable to theoretical Y at Donnan equilibrium (<3% difference
441 between green square symbols and green dashed lines), as water permeation is accounted for in


442 the determination of moles of TOP recovered. This minor difference is attributed to Na^+ leakage
443 and Cl^- co-permeation, i.e., imperfect AEM permselectivity,(Beck and Ernst, 2015; Pessoal-Lopes
444 et al., 2016) which results in reduced driving force available for $\text{H}_x\text{PO}_4^{(3-x)-}$ transport.

445 Varying $V_{\text{FS}}/V_{\text{RS}}$ produces a tradeoff between enrichment and recovery yield, as predicted
446 by the Donnan equilibrium theory (eq S14–17): increasing $V_{\text{FS}}/V_{\text{RS}}$ enhances the enrichment factor,
447 but the recovery yield is slightly compromised (dashed blue line and dashed green line in Figure
448 4 exhibit positive and negative slopes, respectively). This is because with a relatively smaller
449 receiver solution volume, the initial ratio of moles of Cl^- in the RS to moles of $\text{H}_x\text{PO}_4^{(3-x)-}$ in the
450 FS (i.e., $[\text{Cl}^-]V_{\text{RS}}:[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{FS},0}V_{\text{FS}}$) is lower. Therefore, there are fewer available driver Cl^- ions
451 to exchange with target H_2PO_4^- ions, and the achievable Y is decreased. Nevertheless, it can be
452 overall advantageous to use a higher $V_{\text{FS}}/V_{\text{RS}}$, if the benefit from a greater enrichment factor
453 outweighs the loss in recovery yield. For example, compared to $V_{\text{FS}}/V_{\text{RS}} = 1$, experimental
454 enrichment factor increased by 76.0% and 212.4% at $V_{\text{FS}}/V_{\text{RS}}$ of 2 and 4, respectively, while
455 experimental Y only decreased by 5.9% and 11.7%. Furthermore, the highest enrichment factor (at
456 $V_{\text{FS}}/V_{\text{RS}} = 4$) was still achieved with adequately high orthophosphate recovery >80%.

457 *4.4. Competing Anions in the Urine Feed Solutions Lower Orthophosphate Transport and*
458 *Recovery*

459 Results presented thus far utilized a feed solution with TOP concentration of fresh urine,
460 i.e., orthophosphate as the sole anion. However, actual fresh urine contains orthophosphate, sulfate,
461 and chloride anions, and hydrolyzed urine additionally has significant bicarbonate concentration
462 (Fittschen and Hahn, 1998; Larsen et al., 2013; Simha and Ganesapillai, 2017; Udert et al., 2003a).
463 To examine the effects of other anions on orthophosphate recovery, DD experiments were

464 conducted using simulated fresh urine and hydrolyzed urine (anion compositions are summarized
465 in Table 1), for comparison with the TOP-only solution. In all operations, the RS has 600×10^{-3}
466 mol/L of Cl^- . Figure 5A shows experimental $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$, $[\text{SO}_4^{2-}]_{\text{RS},f}$, and $[\text{HCO}_3^-]_{\text{RS},f}$ as
467 patterned blue, orange, and red columns, respectively. Empty columns of the respective colors
468 signify concentrations in the RS at Donnan equilibrium (determined using eqs S9–13 of the
469 Supplementary Material). Labels above the arrows designate the percent change in experimental
470 $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ achieved in DD relative to orthophosphate-only feed solution.

471

472 **Figure 5.** A) Final RS concentrations, $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$, $[\text{SO}_4^{2-}]_{\text{RS},f}$, and $[\text{HCO}_3^-]_{\text{RS},f}$, and B)
473 orthophosphate recovery yields in TOP recovery experiments with different urine matrices as initial
474 feed solutions. The three FS are: orthophosphate anion-only, fresh urine, and hydrolyzed urine.
475 $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{FS},0}$ of all three FS are 30×10^{-3} mol/L. Simulated fresh urine contains 16×10^{-3} mol/L SO_4^{2-}
476 and 100×10^{-3} mol/L Cl^- anions as well as $\text{H}_x\text{PO}_4^{(3-x)-}$, whereas simulated hydrolyzed urine additionally
477 has 250×10^{-3} mol/L HCO_3^- . Note that the transport of water from feed solution to receiver solution is
478 accounted for in the experimental orthophosphate recovery yields. Predicted final RS concentrations

479 and predicted orthophosphate recovery yields at Donnan equilibrium, calculated using eqs S14–17 in
480 the Supplementary Material, are depicted as empty columns. The labels above the columns indicate the
481 change relative to the orthophosphate-only FS. All experiments were operated with V_{FS}/V_{RS} equal to 2
482 and 600×10^{-3} mol/L NaCl as the receiver solution. All experiments utilized AMV membranes. Data
483 points and error bars are means and standard deviations, respectively, of duplicate experiments.

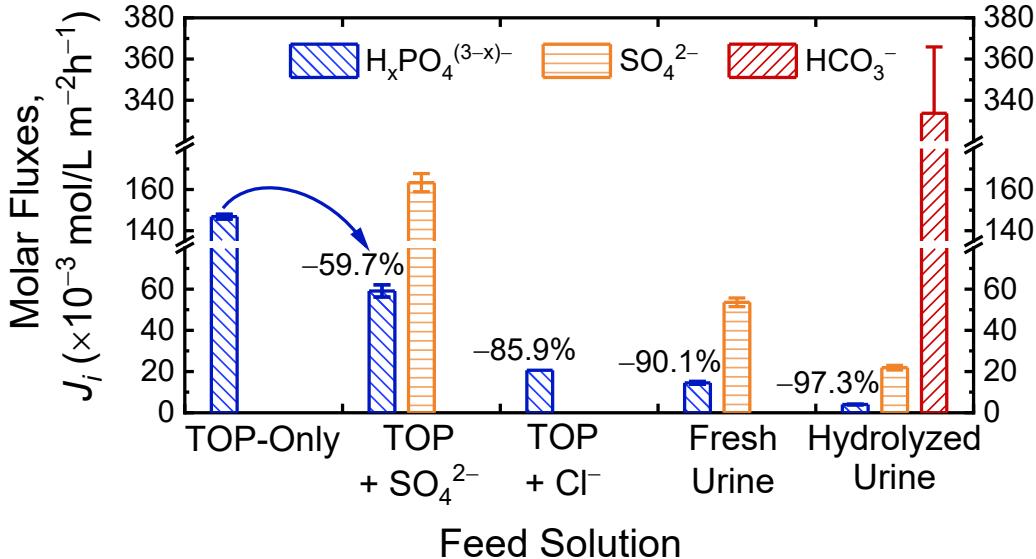
484 Theoretical $[H_xPO_4^{(3-x)-}]_{RS,f}$ are 30.3% and 40.3% lower in operations with fresh and
485 hydrolyzed urine, respectively, relative to TOP-only FS (empty blue columns in Figure 5A). In
486 DD with fresh urine, both SO_4^{2-} and $H_xPO_4^{(3-x)-}$ ions can transport from the FS to the RS to balance
487 Cl^- transport from RS to FS and maintain net electroneutrality. Therefore, SO_4^{2-} ions compete
488 with target $H_xPO_4^{(3-x)-}$ ions to exchange with Cl^- ions. Moreover, SO_4^{2-} is a divalent anion. Thus,
489 two Cl^- ions are required to exchange with one SO_4^{2-} ion to achieve charge balance, which further
490 limits Cl^- ions available to exchange with $H_xPO_4^{(3-x)-}$. Additionally, the inclusion of Cl^- ions in
491 the fresh urine matrix also decreases the chloride concentration gradient, $[Cl^-]_{RS} - [Cl^-]_{FS}$, which
492 lowers the total Cl^- ions that will be transported from RS to FS at Donnan equilibrium. The
493 decreased driver ion transport further decreases the transport of target ion $H_xPO_4^{(3-x)-}$ from the FS
494 to RS. Thus, both the competition with SO_4^{2-} ions and the weakened driving force give rise to the
495 decline of predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ in operations with fresh urine relative to TOP-only.

496 In DD with hydrolyzed urine, HCO_3^- ions pose additional competition for exchange with
497 the driver Cl^- ions, which leads to further reduction of predicted $[H_xPO_4^{(3-x)-}]_{RS,f}$ relative to FS of
498 TOP-only. For the same reason, predicted $[SO_4^{2-}]_{RS,f}$ in operations with hydrolyzed urine is 36.7%
499 lower than with fresh urine (HCO_3^- ion competition also impacts SO_4^{2-} transport). The
500 concentration of HCO_3^- in hydrolyzed urine, 250×10^{-3} mol/L, is nearly 1 order of magnitude
501 higher than $H_xPO_4^{(3-x)-}$ and over 1 order of magnitude higher than SO_4^{2-} (30×10^{-3} mol/L and 16
502 $\times 10^{-3}$ mol/L, respectively). As a result, the exchange of HCO_3^- with Cl^- is expected to dominate

503 over the exchange with other anions in the FS, yielding predicted $[\text{HCO}_3^-]_{\text{RS},f} \gg [\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f} \gg$
504 $[\text{SO}_4^{2-}]_{\text{RS},f}$. To uncouple the relative impact of these three factors (i.e., i) competition with SO_4^{2-}
505 ions, ii) competition with HCO_3^- ions, and iii) the weakened driving force due to Cl^- ions in the
506 FS) on orthophosphate recovery, further analysis was performed (detailed in the Supplementary
507 Material), and the competition posed by HCO_3^- in hydrolyzed urine was found to be the main
508 reason projected $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ is significantly lower than in DD with TOP-only FS (Figure S1
509 of the Supplementary Material).

510 Consistent with the Donnan equilibrium predictions, experimental $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ in DD
511 with fresh and hydrolyzed urine are 29.1% and 39.9% lower, respectively, relative to TOP-only
512 feed solution (Figure 5A). However, all experimental $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ are lower than theoretical
513 values at Donnan equilibrium (−22.3%, −21.0%, and −49.4% with TOP-only FS, fresh urine, and
514 hydrolyzed urine, respectively). Similarly, $[\text{SO}_4^{2-}]_{\text{RS},f}$ in operations with fresh and hydrolyzed
515 urine are 34.1% and 40.5% lower, respectively, than predicted. As discussed earlier, these
516 differences are caused by water permeation from FS to RS diluting the ions captured in the RS and
517 co-ion leakage of Na^+ from RS to FS lowering anion transport from FS to RS.

518 However, experimental $[\text{HCO}_3^-]_{\text{RS},f}$ with hydrolyzed urine is significantly higher than
519 predicted (+60.9%, red columns in Figure 5A). At the same time, experimental $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ in
520 DD with hydrolyzed urine resulted in considerably larger deviations from Donnan equilibrium
521 values (−49.4%) than with TOP-only feed solution and fresh urine (−22.3% and −21.0%,
522 respectively). One possible explanation for these observations is that the hydrolyzed urine
523 experiments were terminated prior to actual equilibrium. The experimental protocol used
524 $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS}}$ to assess the progress of ions transport in DD, with test runs ending when
525 orthophosphate concentrations stagnated (< 5% change over three consecutive measurements). If


526 the transport of HCO_3^- ions from the FS to RS is much faster than the transport of $\text{H}_x\text{PO}_4^{(3-x)-}$ ions
 527 in the same direction, $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS}}$ can appear to level-off and trigger premature termination of
 528 the experiments. Ion transport kinetics will be further evaluated in the following subsection. To
 529 explore this postulation, $\left(\left[\text{H}_x\text{PO}_4^{(3-x)-} \right]_{\text{FS}} / \left[\text{H}_x\text{PO}_4^{(3-x)-} \right]_{\text{RS}} \right)^{1/(3-x)}$ and $[\text{HCO}_3^-]_{\text{FS}} / [\text{HCO}_3^-]_{\text{RS}}$
 530 were calculated using concentrations at the end of the experimental runs (note that the predominant
 531 form of $\text{H}_x\text{PO}_4^{(3-x)-}$ in hydrolyzed urine of pH = 9.2 is HPO_4^{2-} and, therefore, $x = 1$). At Donnan
 532 equilibrium, the fractions should be equal. However, the values for HPO_4^{2-} and HCO_3^- are 1.15
 533 and 0.445, respectively, indicating that the system has not fully equilibrated at the end point of the
 534 experiment. Furthermore, $[\text{HCO}_3^-]_{\text{FS}} / [\text{HCO}_3^-]_{\text{RS}} < \left([\text{HPO}_4^{2-}]_{\text{FS}} / [\text{HPO}_4^{2-}]_{\text{RS}} \right)^{1/2}$ suggests
 535 that experimental $[\text{HCO}_3^-]_{\text{RS}}$ at end of the test run is higher than theoretical concentration at
 536 Donnan equilibrium. Allowing the DD experiments to proceed further can possibly result in
 537 redistribution of the ions between the FS and RS, such that $[\text{HCO}_3^-]_{\text{FS}} / [\text{HCO}_3^-]_{\text{RS}}$ and
 538 $\left([\text{HPO}_4^{2-}]_{\text{FS}} / [\text{HPO}_4^{2-}]_{\text{RS}} \right)^{1/2}$ are similar.

539 Figure 5B presents experimental and predicted orthophosphate recovery yields, Y
 540 (patterned and empty blue columns, respectively); note that Y accounts for water transport (as
 541 discussed earlier). Labels above the arrows designate the percent reduction in experimental Y
 542 relative to orthophosphate-only FS. Recovery yield trends are generally similar to $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$
 543 trends. Specifically, Y are 24.5% and 68.4% lower with fresh and hydrolyzed urine, respectively,
 544 relative to DD with TOP-only FS, which qualitatively agrees with theoretical predictions of 30.3%
 545 and 40.3% reduction. Experimental DD with TOP-only feed solutions and fresh urine deviate
 546 slightly from predicted Y at Donnan equilibrium (<3%). As previously discussed, Na^+ leakage

547 from RS to FS results in less $H_xPO_4^{(3-x)-}$ ion transport from FS to RS, which explains the
548 experimental Y being slightly lower than the predicted value for DD with TOP-only FS. For fresh
549 urine, co-ion leakage is lower because the Na^+ present in the FS reduces the Na^+ concentration
550 gradient, which drives co-ion permeation. Therefore, the experimental and predicted Y s are
551 comparable for DD with fresh urine (minor difference is due to unavoidable random fluctuations
552 in experimental measurements). In contrast, Y is significantly lower than the theoretical recovery
553 yield at Donnan equilibrium for hydrolyzed urine (50.0% lower). As conjectured in the preceding
554 paragraph, the substantially greater discrepancy is possibly explained by the premature termination
555 of the DD experiment before the ion concentrations were fully equilibrated.

556 *4.5. Orthophosphate Fluxes are Diminished by the Competing Anions*

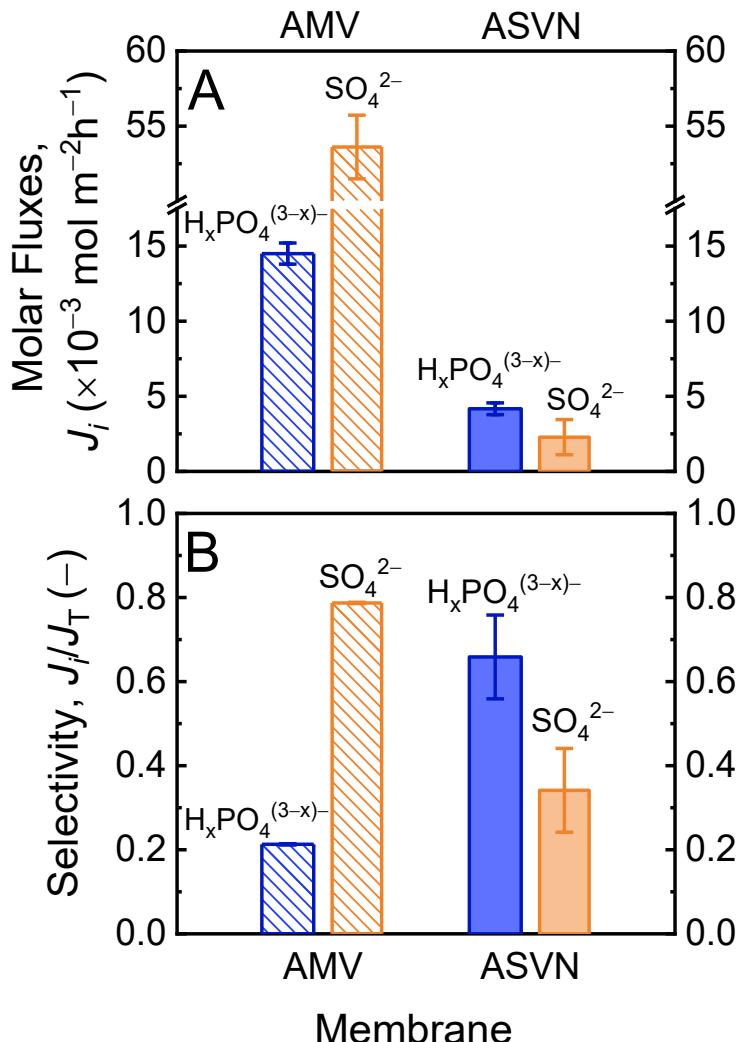
557 Parallel DD kinetics experiments were conducted with the same initial feed solutions
558 presented in Figure 5, i.e., TOP-only FS, fresh urine, and hydrolyzed urine. To elucidate the
559 impacts of individual ionic species in the urine matrix on ion fluxes, additional DD kinetic
560 experiments were carried out with feed solutions of $H_xPO_4^{(3-x)-} + SO_4^{2-}$ and $H_xPO_4^{(3-x)-} + Cl^-$. In
561 all operations, the RS has 600×10^{-3} mol/L of Cl^- and $V_{FS}/V_{RS} = 1$. Figure 6 shows molar ion fluxes,
562 J_i , of $H_xPO_4^{(3-x)-}$, SO_4^{2-} , and HCO_3^- from FS to RS (subscript i is P, S, and C, respectively) as
563 patterned blue, orange, and red columns, respectively; labels above blue columns indicate
564 reduction in J_P relative to DD with the orthophosphate-only FS.

565

566 **Figure 6.** $\text{H}_x\text{PO}_4^{(3-x)-}$, SO_4^{2-} , and HCO_3^- anion fluxes from FS to RS, J_i , in kinetic experiments with
 567 different urine matrices as initial feed solutions. The anions of the five FS are: i) orthophosphate only,
 568 ii) orthophosphate and sulfate, iii) orthophosphate and chloride, iv) orthophosphate, sulfate, and chloride
 569 (fresh urine), and v) orthophosphate, sulfate, bicarbonate, and chloride (hydrolyzed urine). Labels above
 570 the columns indicate the change in flux relative to the orthophosphate-only feed solutions.
 571 $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{FS},0}$ of all FS are 30×10^{-3} mol/L. When present in the FS, SO_4^{2-} , Cl^- , and
 572 HCO_3^- concentrations are 16×10^{-3} , 100×10^{-3} , and 250×10^{-3} mol/L, respectively. $V_{\text{FS}}/V_{\text{RS}} = 1$ and
 573 receiver solutions are 600×10^{-3} mol/L NaCl for all experiments. All experiments utilized AMV
 574 membranes. Data points and error bars are means and standard deviations, respectively, of duplicate
 575 experiments.

576 As observed with experimental $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ and Y (Figures 5A and B), J_{P} is reduced in
 577 DD with simulated fresh or hydrolyzed urine relative to orthophosphate-only FS (90.1% and 97.3%
 578 lower, respectively). However, the decreases in anion fluxes with the inclusion of SO_4^{2-} , Cl^- , and
 579 HCO_3^- are more drastic than the observed decreases in $[\text{H}_x\text{PO}_4^{(3-x)-}]_{\text{RS},f}$ and Y . Introducing SO_4^{2-}
 580 to the FS containing only orthophosphate ions diminishes J_{P} by 59.7%, whereas the isolated
 581 inclusion of Cl^- decreases J_{P} by 85.9%. These reductions in J_{P} qualitatively mirror the reductions

582 in $[H_xPO_4^{(3-x)-}]_{RS,f}$ at Donnan equilibrium, i.e., presence of Cl^- and SO_4^{2-} in the FS both lower
583 fluxes and final concentrations, but the influence of Cl^- ions is greater in magnitude. The effects
584 of the competing ions on J_P are similar to the impacts on $[H_xPO_4^{(3-x)-}]_{RS,f}$: the presence of SO_4^{2-}
585 poses competition for $H_xPO_4^{(3-x)-}$ permeation from FS to RS, whereas Cl^- in the FS reduces the
586 electrochemical potential gradient driving Cl^- transport from RS to FS and consequently lowers
587 $H_xPO_4^{(3-x)-}$ permeation. Further analysis indicates that the lessened $\Delta[H_xPO_4^{(3-x)-}]$ does not fully
588 explain the diminished J_P (see Supplementary Material for detailed discussion and results, Table
589 S6 and Figure S2).


590 Instead, the observed differences in J_P could possibly be explained by different affinities
591 of the various ions to sorb into the anion exchange membrane. Specifically, if other anions in the
592 FS, such as SO_4^{2-} and Cl^- , more preferentially partition into the membrane than $H_xPO_4^{(3-x)-}$, the
593 relative concentration of orthophosphate ions within the IEM will be disproportionately lower
594 compared to the feed solution (Malewitz et al., 2007). As flux is directly proportional to the ion
595 concentration in the IEM, J_P will consequently be depressed. Additionally, the higher charge of
596 multivalent ions favors sorption into the charged membrane more than monovalent ions (Galizia
597 et al., 2017). Hence, partitioning of $H_2PO_4^-$, the predominant orthophosphate species, into the IEM
598 matrix can be further hindered by the presence of divalent SO_4^{2-} . To assess this postulation,
599 sorption experiments were conducted for each of the feed solutions (method detailed in the
600 Supplementary Material). Figure S3 in the Supplementary Material presents sorption coefficients,
601 X_i , for $H_xPO_4^{(3-x)-}$, SO_4^{2-} , and Cl^- (subscript i is P, S, and Cl, respectively) with feed solutions
602 containing different anions. Sorption coefficient is defined as ions sorbed into a unit volume of the
603 membrane normalized by molar concentration in the feed solution. If the AEM does not
604 differentiate between the different ions and ion sorption is solely determined by ion concentrations

605 in the feed solution, X_i should be similar for the three ions ($H_xPO_4^{(3-x)-}$, SO_4^{2-} , and Cl^-) and across
606 different feed solution compositions. However, experiments utilizing fresh urine FS result in
607 different sorption coefficients with $X_{Cl} > X_S > X_P$. These results demonstrate relative affinities of
608 each ion to the AEM, e.g., sorption coefficient for SO_4^{2-} is $4.26 \times$ higher than $H_xPO_4^{(3-x)-}$ in the
609 fresh urine FS. Furthermore, the analysis reveals different sorption coefficients for the same ion
610 across various feed solutions. For example, X_P is 85.0% and 92.8% lower in FS with SO_4^{2-} and
611 Cl^- , respectively, relative to FS containing only orthophosphate. This supports the postulation that
612 SO_4^{2-} and Cl^- ions in the FS significantly outcompete $H_xPO_4^{(3-x)-}$ in sorption into the AEM.
613 Aligned with the observed J_P trend, the addition of Cl^- ions suppresses orthophosphate sorption
614 more than the addition of SO_4^{2-} ions. The high concentration of HCO_3^- ions in hydrolyzed urine
615 lowers J_S by 59.2% relative to fresh urine (further analysis on the detrimental impact of bicarbonate
616 ions can be found in the Supplementary Material). Therefore, it is more advantageous for DD to
617 target fresh urine for orthophosphate recovery.

618 *4.6. Monovalent Ion Permselective Membranes can Improve Selectivity for $H_2PO_4^-$ over*
619 *other Anions in Urine*

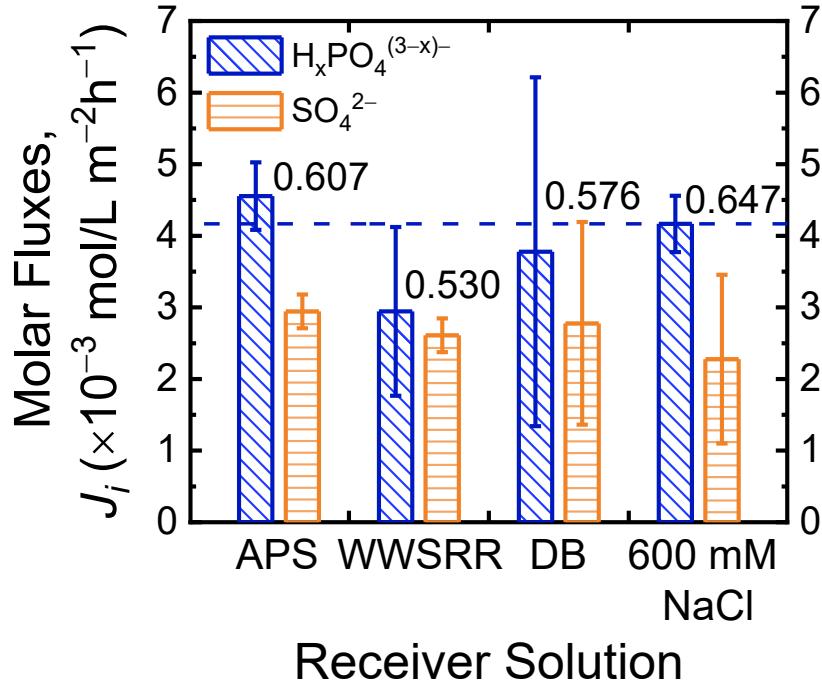
620 Despite fresh urine having a higher concentration of $H_2PO_4^-$ than SO_4^{2-} , sulfate flux in
621 Donnan dialysis is still greater than orthophosphate flux (Figure 6). The conventional anion
622 exchange membrane, Selemion AMV, preferentially permeates SO_4^{2-} over $H_2PO_4^-$ primarily
623 because the membrane has greater affinity to sorb divalent SO_4^{2-} than monovalent $H_2PO_4^-$ (Figure
624 S3). To selectively transport and capture $H_xPO_4^{(3-x)-}$ over SO_4^{2-} , we investigate the use of
625 monovalent ion permselective membranes (MIPMs), specifically Selemion ASVN, for DD
626 recovery of orthophosphates from fresh urine. MIPMs are selective for transport of monovalent

627 ions, such as H_2PO_4^- , over multivalent ions, such as SO_4^{2-} (details on the mechanisms of valence-
628 selectivity can be found in literature) (Fan et al., 2022; Lu et al., 2011; Saracco, 1997; Saracco and
629 Zanetti, 1994). Because the predominant orthophosphate species in fresh urine is H_2PO_4^- , DD with
630 the ASVN MIPM is expected to improve selectivity for $\text{H}_x\text{PO}_4^{(3-x)-}$ over SO_4^{2-} relative to the
631 conventional AMV. DD kinetic experiments were conducted with the AMV and ASVN
632 membranes using simulated fresh urines as FS, 600×10^{-3} mol/L Cl^- for RS, and $V_{\text{FS}}/V_{\text{RS}} = 1$. Figure
633 7A presents the ion fluxes from FS to RS, J_i , and Figure 7B shows ion flux selectivity, defined as
634 the molar ion flux normalized by the sum of two fluxes, J_i/J_T . H_2PO_4^- and SO_4^{2-} fluxes are denoted
635 by blue and orange columns, respectively, whereas patterned and solid columns signify AMV and
636 ASVN, respectively.

637

638 **Figure 7.** A) Orthophosphate and sulfate molar fluxes from feed solution to receiver solution, J_i , and B)
 639 flux selectivity in DD kinetic experiments for conventional anion exchange membrane, AMV, and
 640 monovalent ion selective membrane, ASVN. Flux selectivity, J_i/J_T , is defined as flux of the component,
 641 J_i , normalized by sum of the two anion fluxes. Blue and orange columns denote H_2PO_4^- and SO_4^{2-} ,
 642 respectively, whereas patterned and solid columns signify AMV and ASVN, respectively. All
 643 experiments were operated with $V_{\text{FS}}/V_{\text{RS}}$ of 1. The feed solution is simulated fresh urine, i.e., 30×10^{-3}
 644 mol/L $\text{H}_x\text{PO}_4^{(3-x)-}$, 16×10^{-3} mol/L SO_4^{2-} , and 100×10^{-3} mol/L Cl^- anions, and 600×10^{-3} mol/L NaCl
 645 was used as the receiver solution. Data points and error bars are means and standard deviations,
 646 respectively, of duplicate experiments.

647 Similar to the results presented in Figure 6, Figure 7A shows $J_P < J_S$ in DD with the AMV
648 membrane. Flux selectivity J_P/J_T is 0.21 (Figure 7B), which signifies approximately four SO_4^{2-}
649 ions permeate across the AEM for every H_2PO_4^- ion recovered. In contrast, DD with the
650 monovalent ion-selective ASVN membrane resulted in a reversal in the flux trend, i.e., $J_P > J_S$,
651 with flux selectivity for H_2PO_4^- , $J_P/J_T = 0.66$. That is, for every two H_2PO_4^- ions recovered,
652 roughly only one SO_4^{2-} anion permeated across. Overall, the ASVN membrane achieved $3.1 \times$
653 higher selectivity for H_2PO_4^- than the AMV membrane. Therefore, ASVN preferentially selected
654 for H_2PO_4^- transport over SO_4^{2-} , resulting in H_2PO_4^- being the predominant anion exchanging
655 from FS to RS with Cl^- in DD orthophosphate recovery.


656 However, it can be observed from Figure 7A that DD with the ASVN membrane resulted
657 in lower H_2PO_4^- fluxes compared to operation with the AMV membrane. More generally, both ion
658 fluxes are significantly diminished with the MIPM relative to the conventional AEM (71.3 and
659 95.8% lower for J_P and J_S , respectively). The monovalent ion selective coating on the ASVN
660 membrane is composed of highly crosslinked resin, which creates additional steric hindrance for
661 permeating ions (Fan et al., 2022; Lu et al., 2011; Saracco, 1997; Saracco and Zanetti, 1994).
662 Consequently, the overall ASVN membrane has greater resistance for ion transport compared to
663 the AMV membrane (this is reflected in the manufacturer's specifications on resistance with
664 various salt solutions, summarized in Table S7). Thus, there exists a tradeoff between ion
665 selectivity and permeability: using MIPMs instead of conventional AEMs yields improved
666 monovalent ion selectivity but reduced ion fluxes. In applications of DD for orthophosphate
667 recovery, MIPMs can improve TOP yield, but at the expense of slower kinetics; a lower J_P would
668 necessitate larger membrane areas for the same productivity of orthophosphate recovery.

669 4.7. Orthophosphate can be Captured as a Fertilizer Solution using Donnan Dialysis

670 The previously presented results utilized receiver solutions with high Cl^- concentrations to
671 demonstrate the potential of Donnan dialysis to separate orthophosphate from urine, which can
672 have contaminants, e.g., pharmaceuticals, endocrine disrupting compounds, and opportunistic
673 pathogens, that prohibit the direct application of urine for fertilization. Orthophosphate was
674 captured in receiver streams of NaCl solutions for the experiments. However, Na^+ is not well
675 tolerated by most plant species at concentrations $> 4.3\text{--}13 \times 10^{-3}$ mol/L, (Genc et al., 2007;
676 Kronzucker et al., 2013) i.e., the eventual DD receiver solutions contain too much sodium. One
677 option to exclude Na^+ is to precipitate phosphate fertilizers as mineral solids, such as struvite,
678 $\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O}$, and potassium magnesium phosphate, $\text{KMgPO}_4 \cdot 6\text{H}_2\text{O}$, from the TOP-enriched
679 RS by adding Mg^{2+} and NH_4^+ or K^+ . As highlighted in the Introduction section, some studies
680 reported the presence of contaminants in phosphate minerals directly precipitated from urine (Boer
681 et al., 2018; Kemacheevakul et al., 2015; Lahr et al., 2016; Mullen et al., 2017; Ronteltap et al.,
682 2007a; Tang et al., 2019). The anion exchange membrane in DD serves as a barrier, retaining the
683 contaminants of concern in the urine feed (Arola et al., 2019; Banasiaka et al., 2011; Ma et al.,
684 2021a; Ma et al., 2021b; Pronk et al., 2006; Vanoppen et al., 2015). Therefore, utilizing Donnan
685 dialysis to separate orthophosphate from the urine matrix prior to mineral precipitation can sidestep
686 the issue of possible pollutants contaminating the fertilizer products. Future studies need to be
687 conducted to better understand the rejection of pharmaceuticals by AEMspharmaceutical.

688 An alternative method to circumvent both the sodium and product contamination issues is
689 to recover the orthophosphates in DD receiver solutions with little or no Na^+ . In this approach,
690 initial receiver solutions that contain sufficiently high concentrations of Cl^- but with cations other
691 than Na^+ are used. Additionally, the cations can be K^+ and NH_4^+ to further valorize nutrient content
692 of the fertilizer product. For instance, aqueous solutions of potash fertilizer, $\text{KCl}_{(\text{aq})}$, can be used

693 as the RS (simulated as 600×10^{-3} mol/L KCl here), to draw additional value through the exchange
694 of orthophosphate and Cl^- . Another RS option is waste water softening regenerant rinse (WWSRR),
695 which contains a high concentration of chloride anions and potassium and magnesium as the
696 cations (approximately 547×10^{-3} mol/L K^+ , 48×10^{-3} mol/L Mg^{2+} , and 643×10^{-3} mol/L Cl^-).
697 Diluted bittern (DB), a concentrated byproduct of table salt production from seawater, is yet
698 another alternative. DB contains approximately 77×10^{-3} mol/L K^+ , 252×10^{-3} mol/L Mg^{2+} , 25×10^{-3}
699 mol/L SO_4^{2-} , 8×10^{-3} mol/L NH_4^+ , 615×10^{-3} mol/L Cl^- , and 26×10^{-3} mol/L Na^+ . Note that the
700 concentration of Na^+ in diluted bittern is sufficiently low and can be tolerated by some plant species,
701 such as beets (Kronzucker et al., 2013; Lawlor and Milford, 1973). DD experiments were
702 conducted using simulated aqueous potash solutions (APS), WWSRR, and DB, with the ASVN
703 membrane, simulated fresh urine as FS, and $V_{\text{FS}}/V_{\text{RS}}$ of 1. Figure 8 presents fluxes of $\text{H}_x\text{PO}_4^{(3-x)-}$
704 and SO_4^{2-} from FS to RS.

705

706 **Figure 8.** Fluxes of $H_xPO_4^{(3-x)-}$ and SO_4^{2-} (blue and orange columns, respectively) in kinetic
 707 experiments with different initial receiver solutions of simulated aqueous potash solution (APS, $[Cl^-] =$
 708 600×10^{-3} mol/L), simulated waste water softening regenerant rinse, (WWSRR, $[Cl^-] = 643 \times 10^{-3}$ mol/L),
 709 and simulated diluted bitttern (DB, $[Cl^-] = 615 \times 10^{-3}$ mol/L). Fluxes with RS of 600×10^{-3} mol/L NaCl
 710 are included for comparison. For all experiments simulated fresh urine was used as the FS and V_{FS}/V_{RS}
 711 = 1. Labels above the $H_xPO_4^{(3-x)-}$ columns denote the selectivity for orthophosphate, J_P/J_T . Horizontal
 712 line is orthophosphate flux in DD with 600×10^{-3} mol/L NaCl. All experiments utilized ASVN
 713 membranes. Data points and error bars are means and standard deviations, respectively, of duplicate
 714 experiments.

715 In general, J_P (and J_s) of the different simulated receiver solutions are comparable with the
 716 600×10^{-3} mol/L NaCl RS. Similar J_P are expected because all operations utilized the same FS and
 717 have fairly similar $[Cl^-]_{RS,0}$ (< 7% difference). Importantly, DD with the monovalent ion selective
 718 membrane (ASVN) consistently achieved selectivity for $H_xPO_4^{(3-x)-}$ flux over SO_4^{2-} for all the
 719 simulated receiver solutions ($J_P/J_T = 0.53-0.61$). This highlights the flexibility of DD to utilize

720 different Cl^- -rich streams, including waste and low-cost sources, as the receiver solution for
721 orthophosphate recovery from fresh urine. Additionally, the RS can be rationally selected to
722 promote mineral precipitation, to enable recovery of solid orthophosphates. For instance,
723 precipitated phosphate salts of calcium and magnesium can be further isolated from the liquid
724 stream when Ca^{2+} - and Mg^{2+} -rich WWSRR is used as the RS.

725 5. Implications

726 The current P management practices are unsustainable. Phosphate is mined and processed
727 from diminishing reserves at immense energy costs. P-rich excretions are heavily diluted in the
728 traditional wastewater system, which contributes to the high energy and chemical expenditures in
729 efforts to remove the phosphates from wastewaters. When not adequately removed, P is released
730 into the environment, causing ecological harm and public health concerns. Further compounding
731 to these issues are environmental problems associated with phosphate fertilizer manufacturing, in
732 particular, the radioactive byproducts that are generated. Improper storage and management of the
733 radioactive wastes pose leakage risks (Nelson et al., 2021; Sandhu et al., 2018). These hazards
734 were starkly exposed in March 2021 when the Piney Point, Florida, production plant leaked
735 radioactive phosphogypsum into Tampa Bay because of an engineering failure in the aged
736 infrastructure. Residents of the surrounding area were evacuated due to risks of contact with the
737 contaminated waters (Nelson et al., 2021). The inefficient linear economy approach and this
738 unfortunate incident underscore the need for a paradigm shift to a circular P economy with
739 sustainable phosphate capture and reuse.

740 The high concentrations of orthophosphate anion in human urine offer propitious
741 opportunities for recovery. Donnan dialysis can utilize driver ions to exchange for $\text{H}_x\text{PO}_4^{(3-x)-}$ in

742 the urine feed, capturing P in the receiver solution for application as fertilizer. This study
743 demonstrates that Donnan dialysis can i) recover orthophosphate from urine, ii) enrich
744 orthophosphate in the receiver solution, iii) selectively capture orthophosphate over other anions
745 by utilizing fresh urine and monovalent ion permselective membranes, and iv) leverage on widely
746 available and low-cost/waste resources to drive orthophosphate recovery. Importantly, using
747 receiver streams with adequately high driver ion concentrations in DD (Cl^- in this study) can
748 enable orthophosphate transport against a concentration gradient and attain “uphill transport” to
749 reach practically feasible recovery yields ($> 80\%$ demonstrated in this investigation). By
750 employing a smaller receiver solution volume relative to the feed, DD can achieve enrichment of
751 orthophosphate, i.e., P concentration in the product is higher than in fresh urine. A fertilizer product
752 with high orthophosphate concentrations is of greater economic value and additionally facilitates
753 transportation. The analysis also reveals the rationale for using fresh, rather than hydrolyzed urine,
754 for P recovery. Specifically, the high bicarbonate content of the latter source is detrimental to
755 orthophosphate flux and selectivity. This indicates that DD orthophosphate recovery should be
756 performed immediately after urine diversion and collection, prior to urea hydrolysis. Alternatively,
757 dosing with inhibitory compounds, electrochemical treatment, or acid/base addition can inactivate
758 the urease enzyme, (Hellström et al., 1999; Ikematsu et al., 2007; Lv et al., 2020; Randall et al.,
759 2016; Saettaab et al., 2020; Svane et al., 2020; Udert et al., 2003a; Udert et al., 2003b) thus
760 suppressing bicarbonate formation.

761 Besides bicarbonate, sulfate can compete with orthophosphate anions to exchange with
762 driver chloride ions, hence reducing recovery efficiency. The study highlights the applicability of
763 using monovalent ion permselective membrane to drive more selective transport of orthophosphate
764 over sulfate. However, the improvements in selectivity are at the cost of decreased kinetics.

765 Therefore, the overall DD process would need to simultaneously consider TOP recovery yields
766 and membrane requirements, i.e., tradeoffs between with economic benefits with capital and
767 operating costs. Thoughtful selection of the receiver stream offers flexibility in tailoring the water
768 chemistry and nutrient profile of the fertilizer product. Critically, economic viability of P recovery
769 with DD can be enhanced by utilizing waste/low-cost streams as the receiver solution. For example,
770 waste water softening regenerant rinse generated in residential buildings can be repurposed to
771 supply the high chloride concentrated needed in the receiver solution, to drive DD recovery of
772 orthophosphate from diverted urine from the same premises. Future investigations will be needed
773 to understand the potential impacts of other compounds in urine, such as pharmaceuticals,
774 pathogens, and other contaminants, on DD performance and phosphate recovery (including
775 membrane fouling).

776 The insights from this study are broadly applicable to other DD processes for resource
777 recovery or contaminant removal, particularly for streams with multiple anions and/or cations.
778 Some examples are NH_4^+ recovery from wastewater, metal ion recovery from electroplating rinse,
779 and removal of NO_3^- and $\text{H}_x\text{AsO}_4^{(3-x)-}$ from drinking water. The approach for determining ion
780 concentrations in feed and receiver solutions at Donnan equilibrium presented here (eqs S9–13)
781 can be utilized to project target ion recovery potential or contaminant removal efficiency from
782 mixed electrolyte solutions. Furthermore, the systematic analysis of factors influencing fluxes of
783 different ions underscores the role of competitive ion sorption on transport kinetics and can
784 elucidate ion transport behavior in solutions with complex compositions. In applications where
785 multivalent species are present together with the monovalent target ion, as in NH_4^+ recovery from
786 wastewater or NO_3^- removal from drinking water, MIPMs may be useful to improve selectivity
787 for the target species with an acceptable sacrifice in permeation flux.

788 **Acknowledgements**

789 This material is based upon work supported by the National Science Foundation under Grant No.
790 1903705 and the Science Pathways Scholars Program of Barnard College. Any opinions, findings,
791 and conclusions or recommendations expressed in this material are those of the author(s) and do
792 not necessarily reflect the views of the National Science Foundation or Barnard College.

793 **References**

794 2002 ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry Department of
795 Energy, Office of Energy Efficiency & Renewable Energy.

796 Anderson, D.M., Burkholder, J.M., Cochlan, W.P., Glibert, P.M., Gobler, C.J., Heil, C.A., Kudela,
797 R., Parsons, M.L., Rensel, J.E., Townsend, D.W., Trainer, V.L. and Vargo, G.A. 2008.
798 Harmful algal blooms and eutrophication: Examining linkages from selected coastal
799 regions of the United States. *Harmful Algae* 8(1), 39-53.

800 Arola, K., Ward, A., Mänttäri, M., Kallioinen, M. and Batstone, D. 2019. Transport of
801 pharmaceuticals during electrodialysis treatment of wastewater. *Water Res* 161, 496-504.

802 Asante-Sackey, D., Rathilal, S., Tetteh, E.K., Ezugbe, E.O. and Pillay, L.V. 2021. Donnan
803 Membrane Process for the Selective Recovery and Removal of Target Metal Ions—A Mini
804 Review. *Membranes* 11(358).

805 Banasiaka, L.J., Bruggen, B.V.d. and Schäfer, A.I. 2011. Sorption of pesticide endosulfan by
806 electrodialysis membranes. *Chem Eng J* 116(1), 233-239.

807 Beck, A. and Ernst, M. 2015. Kinetic modeling and selectivity of anion exchange in Donnan
808 dialysis. *J. Membr. Sci.* 479, 132-140.

809 Blackall, L.L., Crocetti, G.R., Saunders, A.M. and Bond, P.L. 2002. A review and update of the
810 microbiology of enhanced biological phosphorus removal in wastewater treatment plants.
811 *Antonie Van Leeuwenhoek* 81(1-4), 681-691.

812 Bleiwas, D.I. 2011 Estimates of Electricity Requirements for the Recovery of Mineral
813 Commodities, with Examples Applied to Sub-Saharan Africa, Reston, VA.

814 Boer, M.A.d., Hammerton, M. and Slootweg, J.C. 2018. Uptake of pharmaceuticals by sorbent-
815 amended struvite fertilisers recovered from human urine and their bioaccumulation in
816 tomato fruit. *Water Res* 133, 19-26.

817 Brooks, B.W., Lazorchak, J.M., Howard, M.D.A., Johnson, M.V.V., Morton, S.L., Perkins,
818 D.A.K., Reavie, E.D., Scott, G.I., Smith, S.A. and Steevens, J.A. 2016. Are Harmful Algal
819 Blooms Becoming the Greatest Inland Water Quality Threat to Public Health and Aquatic
820 Ecosystems? *Environ. Toxicol. Chem.* 35(1), 6-13.

821 Chen, S.Y., Shi, Z., Song, Y., Li, X.R. and Hu, Y.L. 2014. Phosphate removal from aqueous
822 solution by Donnan dialysis with anion-exchange membrane. *J Cent South Univ* 21(5),
823 1968-1973.

824 Commoner, B. (1971) *The Closing Circle: Nature, Man, and Technology*, Random House, New
825 York.

826 Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot,
827 C. and Likens, G.E. 2009. *Ecology - Controlling eutrophication: Nitrogen and phosphorus*.
828 *Science* 323, 1014-1015.

829 Diaz, R.J. and Rosenberg, R. 2008. Spreading dead zones and consequences for marine
830 ecosystems. *Science* 321, 926-929.

831 Elser, J. and Bennett, E. 2011. A broken biogeochemical cycle. *Nature* 478(7367), 29-31.

832 Fan, H., Huang, Y., Billinge, I.H., Bannon, S.M., Geise, G.M. and Yip, N.Y. 2022. Counterion
833 Mobility in Ion-Exchange Membranes: Spatial Effect and Valency-Dependent
834 Electrostatic Interaction. *ACS EST Engg.*

835 Fittschen, I. and Hahn, H.H. 1998. Characterization of the municipal wastewaterpart human urine
836 and a preliminary comparison with liquid cattle excretion. *Water Sci. Technol.* 38(6), 9-16.

837 Galizia, M., Benedetti, F.M., Paula, D.R. and Freeman, B.D. 2017. Monovalent and divalent ion
838 sorption in a cation exchange membrane based on cross-linked poly (p-styrene sulfonate-
839 co-divinylbenzene). *J. Membr. Sci.* 525, 132-142.

840 Genc, Y., McDonald, G.K. and Tester, M. 2007. Reassessment of tissue Na⁺ concentration as a
841 criterion for salinity tolerance in bread wheat. *Plant Cell Environ* 30, 1-23.

842 Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J.,
843 Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van
844 Loosdrecht, M.C.M., Yeh, D. and Love, N.G. 2009. A new planning and design paradigm
845 to achieve sustainable resource recovery from wastewater. *Environ. Sci. Technol.*

846 H. Jönsson, B.V. 2004 Adapting the nutrient content of urine and faeces in different countries
847 using FAO and Swedish data, pp. 7-11.

848 Hellström, D., Johannson, E. and Grennberg, K. 1999. Storage of human urine: acidification as a
849 method to inhibit decomposition of urea. *Ecol. Eng.* 12(3-4), 253-269.

850 Hichour, M., Persin, F., Sandeaux, J. and Gavach, C. 2000. Fluoride removal from waters by
851 Donnan dialysis. *Separation and Purification Technology* 18(1), 1-11.

852 Hitzfeld, B.C., Hoger, S.J. and Dietrich, D.R. 2000. Cyanobacterial toxins: Removal during
853 drinking water treatment, and human risk assessment. *Environ Health Persp* 108, 113-122.

854 Ikematsu, M., Kaneda, K., Iseki, M. and Yasuda, M. 2007. Electrochemical treatment of human
855 urine for its storage and reuse as flush water. *Sci. Total Environ.* 382(1), 159-164.

856 J. Veermana, J., de Jong, R.M., M., S., Metz, S.J. and Harmsen, G.J. 2009. Reverse electrodialysis:
857 Comparison of six commercial membrane pairs on the thermodynamic efficiency and
858 power density. *y. J. Membr. Sci.* 2 343(1-2), 7-15.

859 Karageorgiou, K., Paschalis, M. and Anastassakis, G.N. 2007. Removal of phosphate species
860 from solution by adsorption onto calcite used as natural adsorbent. *Journal of Hazardous
861 Materials* 139(3), 447-452.

862 Karak, T. and Bhattacharyya, P. 2011. Human urine as a source of alternative natural fertilizer in
863 agriculture: A flight of fancy or an achievable reality. *Resour Conserv Recy* 55(4), 400-
864 408.

865 Kemacheevakul, P., Chuangchote, S., Otani, S., Matsuda, T. and Shimizu, Y. 2015. Effect of
866 magnesium dose on amount of pharmaceuticals in struvite recovered from urine. *Water Sci.
867 Technol.* 72(7), 1102-1110.

868 Kronzucker, H.J., Coskun, D., Schulze, L.M., Wong, J.R. and Britto, D.T. 2013. Sodium as
869 nutrient and toxicant. *Plant Soil* 369, 1-23.

870 Lahr, R.H., Goetsch, H.E., Haig, S.J., Noe-Hays, A., Love, N.G., Aga, D.S., Bott, C.B., Foxman,
871 B., Jimenez, J., Luo, T., Nace, K., Ramadugu, K. and Wigginton, K.R. 2016. Urine
872 Bacterial Community Convergence through Fertilizer Production: Storage, Pasteurization,
873 and Struvite Precipitation. *Environ. Sci. Technol.* 50, 11619-11626.

874 Larsen, T.A., Alder, A.C., Eggen, R.I.L., Maurer, M. and Lienert, J. 2009. Source separation:
875 Will we see a paradigm shift in wastewater handling? *Environ. Sci. Technol.* 43(16), 6121.

876 Larsen, T.A., Maurer, M., Udert, K.M. and Lienert, J. 2007. Nutrient cycles and resource
877 management: implications for the choice of wastewater treatment technology. *Water Sci.
878 Technol.* 56(5), 229-237.

879 Larsen, T.A., Udert, K.M. and Lienert, J. (2013) Source separation and decentralization for
880 wastewater management, Iwa Publishing.

881 Lawlor, D.W. and Milford, G.F.J. 1973. The effect of sodium on growth of water-stressed sugar-
882 beet. *Ann. Bot.* 37(3), 597-604.

883 Li, W.W., Yu, H.Q. and Rittmann, B.E. 2015. Chemistry: Reuse water pollutants. *Nature*
884 528(7580), 29-31.

885 Liu, Y., Kumar, S., Kwag, J.H. and Ra, C. 2013. Magnesium ammonium phosphate formation,
886 recovery and its application as valuable resources: a review. *J Chem Technol Biot* 88(2),
887 181-189.

888 Lu, H.-Y., Lin, C.-S., Lee, S.-C., Ku, M.-H., Hsu, J.-P., Tseng, S. and Lin, S.-H. 2011. Preparation
889 of Mineral Source Water From Deep Sea Water: Reduction of Sulfate Ion Using Selemon
890 ASV Membrane. *AIChE Journal* 5(4), 1033-1042.

891 Lu, J.B., Liu, H.J., Liu, R.P., Zhao, X., Sun, L.P. and Qu, J.H. 2013. Adsorptive removal of
892 phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent. *Powder Technol* 233,
893 146-154.

894 Lv, Y., Li, Z., Zhou, X., Cheng, S. and Zheng, L. 2020. Stabilization of source-separated urine
895 by heat-activated peroxydisulfate. *Sci. Total Environ.* 749.

896 Ma, L., Gutierrez, L., Verbeke, R., D'Haese, A., Waqas, M., Dickmann, M., Helm, R., Vankelecom,
897 I., Verliefde, A. and Cornelissen, E. 2021a. Transport of organic solutes in ion-exchange

membranes: Mechanisms and influence of solvent ionic composition. *Water Res* 190, 116756.

Ma, L., Gutierrez, L., Vooren, T.V., Vanoppen, M., Kazemabad, M., Verliefde, A. and Cornelissen, E. 2021b. Fate of organic micropollutants in reverse electrodialysis: Influence of membrane fouling and channel clogging. *Desalination* 512, 115114.

Malewitz, T., Pintauro, P.N. and Rear, D. 2007. Multicomponent absorption of anions in commercial anion-exchange membranes. *J. Membr. Sci.* 301, 171-179.

Maul, G.A., Kim, Y., Amini, A., Zhang, Q. and Boyer, T.H. 2014. Efficiency and life cycle environmental impacts of ion-exchange regeneration using sodium, potassium, chloride, and bicarbonate salts. *Chem Eng J* 254, 198-209.

Maurer, M., Pronk, W. and Larsen, T.A. 2006. Treatment processes for source-separated urine. *Water Res.* 40(17), 3151-3166.

Maurer, M., Schwegler, P. and Larsen, T.A. 2003. Nutrients in urine: energetic aspects of removal and recovery. *Water Sci. Technol.* 48(1), 37-46.

McCartney, S.N., Watanabe, N.S. and Yip, N.Y. 2021. Thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. *Environ. Sci.: Water Res. Technol.* 7(11), 2075-2088.

McCartney, S.N., Williams, N., Boo, C., Chen, X. and Yip, N.Y. 2020. Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine. *ACS Sustain. Chem. Eng.* 8(19), 7324-7334.

Michalak, A.M., Anderson, E.J., Beletsky, D., Boland, S., Bosch, N.S., Bridgeman, T.B., Chaffin, J.D., Cho, K., Confesor, R., Daloglu, I., DePinto, J.V., Evans, M.A., Fahnenstiel, G.L., He, L., Ho, J.C., Jenkins, L., Johengen, T.H., Kuo, K.C., LaPorte, E., Liu, X., McWilliams, M.R., Moore, M.R., Posselt, D.J., Richards, R.P., Scavia, D., Steiner, A.L., Verhamme, E., Wright, D.M. and Zagorski, M.A. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. *Proc. Natl. Acad. Sci.* 110(16), 6448-6452.

Mihelcic, J.R., Fry, L.M. and Shaw, R. 2011. Global potential of phosphorus recovery from human urine and feces. *Chemosphere* 84(6), 832-839.

Mogollóna, J.M., Beusenab, A.H.W., H.J.Mvan Grinsvenb, H.J., Westhoekb, H. and Bouwmanab, A.F. 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. *Glob. Environ. Change* 50, 149-163.

Mullen, R.A., Wigginton, K.R., Noe-Hays, A., Nace, K., Love, N.G., Bott, C.B. and Aga, D.S. 2017. Optimizing extraction and analysis of pharmaceuticals in human urine, struvite, food crops, soil, and lysimeter water by liquid chromatography-tandem mass spectrometry. *Anal. Methods* 9.

Nelson, N.G., Cuchiara, M.L., Hendren, C.O., Jones, J.L. and Marshall, A.-M. 2021. Hazardous Spills at Retired Fertilizer Manufacturing Plants Will Continue to Occur in the Absence of Scientific Innovation and Regulatory Enforcement. *Environ. Sci. Technol.* 55(24), 16267-16269.

938 Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L. and Reis, M.A. 2007.
939 Advances in enhanced biological phosphorus removal: from micro to macro scale. *Water*
940 Res. 41(11), 2271-2300.

941 Pessoa-Lopes, M., Crespo, J.G. and Velizarov, S. 2016. Arsenate removal from sulphate-
942 containing water streams by an ion-exchange membrane process. *Sep. Purif. Technol.* 166,
943 125-134.

944 Pronk, W., Biebow, M. and Boller, M. 2006. Electrodialysis for Recovering Salts from a Urine
945 Solution Containing Micropollutants. *Environ. Sci. Technol.* 40(7), 2414–2420.

946 Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M. and Ra, C.S. 2014.
947 Production of slow release crystal fertilizer from wastewaters through struvite
948 crystallization - A review. *Arab. J. Chem.* 7(1), 139-155.

949 Randall, D.G., Krähenbühl, M., Köpping, I., Larsen, T.A. and Udert, K.M. 2016. A novel
950 approach for stabilizing fresh urine by calcium hydroxide addition. *Water Res* 95, 361-369.

951 Randall, D.G. and Naidoo, V. 2018. Urine: The liquid gold of wastewater. *J. Environ. Chem. Eng.*
952 6(2), 2627-2635.

953 Reta, G., Dong, X., Li, Z., Su, B., Hu, X., Bo, H., Yu, D., Wan, H., Liu, J., Li, Y., Xu, G., Wang,
954 K. and Xu, S. 2018. Environmental impact of phosphate mining and beneficiation: review.
955 *Int. J. Hydrol. Sci.* 2(4), 424-431.

956 Ronteltap, M., Maurer, M. and Gujer, W. 2007a. The behaviour of pharmaceuticals and heavy
957 metals during struvite precipitation in urine. *Water Res* 41(9), 1859-1868.

958 Ronteltap, M., Maurer, M. and Gujer, W. 2007b. Struvite precipitation thermodynamics in
959 source-separated urine. *Water Res.* 41(5), 977-984.

960 Saettaab, D., Zhengab, C., Leyvaac, C. and Boyer, T.H. 2020. Impact of acetic acid addition on
961 nitrogen speciation and bacterial communities during urine collection and storage. *Sci.*
962 *Total Environ.* 745.

963 Sandhu, D., Singh, A., Duranceau, S.J., Nam, B.H., Mayo, T. and Wang, D. 2018. Fate and
964 transport of radioactive gypsum stack water entering the Floridan aquifer due to a sinkhole
965 collapse. *Sci. Rep.* 8.

966 Saracco, G. 1997. Transport properties of monovalent-ion-permselective membranes. *Chem. Eng.*
967 *Sci.* 52(17), 3019-3031.

968 Saracco, G. and Zanetti, M.C. 1994. Ion transport through monovalent-anion-permselective
969 membranes. *Ind Eng Chem Res* 33(1), 96-101.

970 Sarkar, S., Sengupta, A.K. and Prakash, P. 2010. The Donnan Membrane Principle: Opportunities
971 for Sustainable Engineered Processes and Materials. *Environ. Sci. Technol.* 44(4), 1161-
972 1166.

973 Schaubroeck, T., De Clippeleir, H., Weissenbacher, N., Dewulf, J., Boeckx, P., Vlaeminck, S.E.
974 and Wett, B. 2015. Environmental sustainability of an energy self-sufficient sewage
975 treatment plant: Improvements through DEMON and co-digestion. *Water Res.* 74, 166-
976 179.

977 Shashvatt, U., Amurrio, F., Portner, C. and Blaney, L. 2021. Phosphorus recovery by Donnan
978 dialysis: Membrane selectivity, diffusion coefficients, and speciation effects. *Chem. Eng.*
979 *J.* 419.

980 Simha, P. and Ganesapillai, M. 2017. Ecological Sanitation and nutrient recovery from human
981 urine: How far have we come? A review. *Sustain. Environ. Res* 27(3), 107-116.

982 Smil, V. 2000. Phosphorus in the Environment: Natural Flows and Human Interferences. *Annu.*
983 *Rev. Environ. Resour.* 25, 53-88.

984 Spiegler, K.S. 1958. Transport processes in ionic membranes. *Trans. Faraday Soc.* 54, 1408-1428.

985 Stahel, W.R. 2016. The circular economy. *Nature* 531(7595), 435-438.

986 Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R.,
987 Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M.,
988 Persson, L.M., Ramanathan, V., Reyers, B. and Sorlin, S. 2015. Planetary boundaries:
989 Guiding human development on a changing planet. *Science* 347(6223).

990 Strathmann, H. (1995) Membrane Science and Technology. Noble, R.D. and Stern, S.A. (eds), pp.
991 213-281, Elsevier.

992 Strathmann, H. (2004) Ion-Exchange Membrane Separation Processes, Elsevier.

993 Strathmann, H. 2010. Ion-Exchange Membrane Processes in Water Treatment. Sustainable Water
994 for the Future: Water Recycling Versus Desalination 2, 141-199.

995 Svane, S., Sigurdarson, J.J., Finkenwirth, F., Eitinger, T. and Karring, H. 2020. Inhibition of
996 urease activity by different compounds provides insight into the modulation and
997 association of bacterial nickel import and ureolysis. *Sci. Rep.* 10.

998 Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M. and Tamura, T.
999 2003. Removal of phosphate by aluminum oxide hydroxide. *J Colloid Interf Sci* 257(1),
1000 135-140.

1001 Tanaka, Y. (2015) Ion Exchange Membranes: Fundamentals and Applications, pp. 445-457, IEM
1002 Research, Ibaraki, Japan.

1003 Tang, C., Liua, Z., Penga, C., Chaia, L.-Y., Kurodac, K., Okidoc, M. and Song, Y.-X. 2019. New
1004 insights into the interaction between heavy metals and struvite: Struvite as platform for
1005 heterogeneous nucleation of heavy metal hydroxide. *Chem Eng J* 365, 60-69.

1006 Trifi, I.M., Trifi, B., Ayed, S.B. and Hamrouni, B. 2009. Removal of phosphate by Donnan
1007 dialysis coupled with adsorption onto calcium alginate beads. *Water Sci. Technol.* 80(1).

1008 Udert, K.M., Larsen, T.A., Biebow, M. and Gujer, W. 2003a. Urea hydrolysis and precipitation
1009 dynamics in a urine-collecting system. *Water Res.* 37(11), 2571-2582.

1010 Udert, K.M., Larsen, T.A. and Gujer, W. 2003b. Estimating the precipitation potential in urine-
1011 collecting systems. *Water Res.* 37(11), 2667-2677.

1012 Vanoppen, M., Bakelants, A.F.A.M., Gaublomme, D., Schoutteten, K.V.K.M., Bussche, J.V.,
1013 Vanhaecke, L. and Verliefde, A.R.D. 2015. Properties Governing the Transport of Trace
1014 Organic Contaminants through Ion-Exchange Membranes. *Environ. Sci. Technol.* 49(1),
1015 489-497.

1016 Velizarov, S. 2013. Transport of arsenate through anion-exchange membranes in Donnan dialysis.
1017 J. Membr. Sci. 425, 243-250.

1018 Verstraete, W., de Caveye, P.V. and Diamantis, V. 2009. Maximum use of resources present in
1019 domestic "used water". Bioresour. Technol. 100(23), 5537-5545.

1020 W. McDonough, M.B. (2002) Cradle to Cradle: Remaking the Way We Make Things, North Point
1021 Press, New York.

1022 Wang, J., Burken, J.G., Zhang, X.Q. and Surampalli, R. 2005. Engineered struvite precipitation:
1023 Impacts of component-ion molar ratios and pH. J Environ Eng 131(10), 1433-1440.

1024 Webster, K. (2015) The Circular Economy: a Wealth of Flows, Ellen MacArthur Foundation, Isle
1025 of Wight.

1026 Xie, J., Wang, Z., Lu, S.Y., Wu, D.Y., Zhang, Z.J. and Kong, H.N. 2014. Removal and recovery
1027 of phosphate from water by lanthanum hydroxide materials. Chem Eng J 254, 163-170.

1028 Yan, G.J., Bao, Y., Tan, M., Cui, Q., Lu, X.L. and Zhang, Y. 2018. Defluorination by Donnan
1029 Dialysis with seawater for seafood processing. J Food Eng 238, 22-29.

1030 Yeoman, S., Stephenson, T., Lester, J.N. and Perry, R. 1988. The removal of phosphorus during
1031 wastewater treatment: a review. Environ. Pollut. 49(3), 183-233.

1032 Yip, N.Y. and Elimelech, M. 2012. Thermodynamic and energy efficiency analysis of power
1033 generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci.
1034 Technol. 46(9), 5230-5239.

1035 Zhang, G.S., Liu, H.J., Liu, R.P. and Qu, J.H. 2009. Removal of phosphate from water by a Fe-
1036 Mn binary oxide adsorbent. J. Colloid Interface Sci. 335(2), 168-174.

1037 Zhao, B., Zhao, H. and Ni, J. 2010. Arsenate removal by Donnan dialysis: Effects of the
1038 accompanying components. Sep. Purif. Technol. 72(3), 250-255.