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Abstract

Despite the recent development in technology, Battery Electric Vehicle (BEV) pose 

several drawbacks including recharging time, limited range, and inadequate num-

ber of charging facilities. In an effort to address these drawbacks, Dynamic Wire-

less Charging (DWC) technology is gaining attention. DWC can be implemented 

by embedding the induction coil under a roadway pavement to dynamically charge 

the BEV in motion without a need to stop. This prompts an important question for 

infrastructure planning of BEVs: how to optimally locate DWC infrastructure in a 

road network. Planning for optimal DWC facility location needs to consider how 

BEV drivers will react to the newly implemented DWC in terms of route choice to 

reflect their unilateral utility minimization objective. Further complexities of DWC 

implementation include availability of zonal surplus electricity. In this paper, we 

propose a bi-level planning approach considering both the objectives of the planners 

and the drivers. The approach explicitly incorporates five elements: system-level 

social costs, travel patterns of individuals, trip completion assurance, zonal DWC 

implementation constraint due to energy availability from grid, and total budget 

availability from the public agency. The proposed framework is first demonstrated 

in a numerical experiment setting using Sioux Falls network. Then the framework is 

also implemented using city of Chicago sketch network to demonstrate its applica-

bility to real-size networks. The numerical results using these two networks provide 

valuable insights for planners for developing an optimal DWC implementation plan.

Keywords Surplus electricity · Regional energy availability, Transportation 

electrification · Range constraint · Inductance-based charging

1 Introduction

In the United States, greenhouse gas emission has been one of the major issues in 

recent years and the transportation sector is responsible for 29% of the total emis-

sion since it uses approximately 29% of the total energy and operates based mainly 
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on fossil fuel, which has a 92% share among other alternatives (USDOE 2018). 

These emissions are generated from the process of burning fossil fuel from Internal 

Combustion Engine Vehicles (ICEV). In contrast to ICEV, Battery Electric Vehi-

cles (BEV) present a solution for alleviating the current state of emission since BEV 

uses electric motor for which electricity can be produced by greener sources like 

solar, hydro and nuclear in contrast to ICEVs that burns fuel to generate propulsion 

force. Moreover, the combination of superior fuel economy efficiency over ICEV, 

relatively low maintenance cost, and tax incentives at Federal and State levels makes 

BEV more appealing to consumers. However, the adoption of BEV has two main 

disadvantages compared to ICEV that deters its market penetration: (i) range con-

straint leading to range anxiety and (ii) long recharging time leading to extended 

charging downtime.

The BEV driving range is defined as the furthest distance a BEV can travel 

using the full state of charge (SOC) of its battery-pack without the need of refu-

eling. Despite recent developments in battery technology the average driving range 

of BEV have been able to reach 190 miles. In addition, assuming fuel capacity of 20 

gallons and fuel economy of 23 miles per gallon, an ICEV has driving range of 460 

miles which is more than twice as compared to BEV. In addition, like ICEV fuel 

tank is typically not always full, BEV’s SOC is not 100%. While the gas stations 

are abundant the charging stations are scarcely located. This results in range anxiety 

which limits the adoption of BEV because travelers are afraid that the vehicle’s SOC 

would not provide enough range to reach destination (Agrawal et al. 2016).

BEV’s motors are powered by high-capacity batteries which are typically charged 

by plugging it into an electric charging point. This conventional plug-in recharg-

ing method suffers from two disadvantages: the BEV is nonoperational during the 

recharging time, which is referred to as charging downtime (Hwang et  al. 2018), 

and extended recharging time. An ICEV with 20 gallons gas tank capacity can be 

refueled within 2–3 min at a gas dispense rate of 5–10 gallons per minute. In addi-

tion, BEV requires at least 25 min to be fully recharged even at the highest level of 

charging (Liu and Wang 2017). The super charging stations with 960 kW or above 

in power can bring the charging time to 5 min recharging time for a 200-mile range 

BEV however, they are impractical given the current charging technology (Fuller 

2016). This leads to an extended charging downtime for BEVs.

To address these two issues related to BEV, researchers have proposed induction 

based dynamic wireless charging (DWC). DWC facility works like electric trans-

former where the primary induction coil is embedded under a roadway pavement 

that can inductively charge the BEV’s battery through the secondary coil sitting in 

vehicles lower part of body while in motion. DWC can potentially reduce or may 

even eliminate the BEV’s charging downtime. Moreover, a proper DWC imple-

mentation in a road-network can satisfy the range requirement of BEVs operating 

in the network and help to relieve range anxiety. However, existing infrastructure 

and electricity availability must also be addressed when integrating DWC since it 

is still a new concept. DWC facility demands a certain amount of available electric-

ity in order to be practically beneficial to the public such as reducing range anxiety 

and addressing charging downtime drawback. It prompts the question on whether 

or not the existing electricity system can support such demand on top of the current 
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industrial and commercial electricity consumption. Therefore, the location and 

length of DWC Facility within a network, referred as the DWC Facility Location 

Problem (DWC-FLP), needs to be planned optimally under multiple constraints 

to derive its maximum benefit and ultimately promote the cleaner transportation 

through adoption of BEV.

There has been a growing interest in DWC in recent past as evident from perti-

nent literature addressing the DWC-FLP (Dong et  al. 2014; García-Vázquez et  al. 

2017; He et al. 2018; Jang 2018; Panchal et al. 2018). However, previous studies in 

DWC related literature generally consider only the transportation planners’ objec-

tives, ignore the regional surplus electricity available for DWC and apply the frame-

work to small-scale network. However, there are other analogous research in the 

domain of FLP although not focusing on DWC, such as on refueling station location 

in networks (Kuby and Lim 2005), and FLP for surveillance of network for planning 

purposes (Matisziw 2019) that consider both planer’s and network users objectives 

and consider real-scale network. Therefore, the objective of this paper is to develop 

an enhanced planning framework, which is capable of solving large scale real-world 

network, to optimally determine the location and length of DWC facility in a road 

network for BEV while simultaneously considering the following elements: govern-

ment planning objective, driver’s behavior, reduce range anxiety, the availability of 

electricity and planning agency’s budget constraint.

The rest of the paper is organized as follows. The Section 2 discusses literature on 

the optimal deployment of DWC facility and BEV users driving behavior. The Section 3 

presents modeling approach and numerical experiments using a small-scale network. 

The Section 4 presents case study and solves the DWC-FLP for the travel demand and 

network data for City of Chicago, Illinois, USA to test the model applicability for prac-

tice and draw inferences from the model’s results. The final section discusses the overall 

performance of the model, its limitations, and avenues for future research.

2  Literature Review

This section summarizes pertinent literature of facility location problems in the con-

text of BEV. The past literature falls into two categories which are optimal loca-

tion of DWC facilities and network flow estimation considering driver behavior. We 

review the literature in these two categories, identify the research gap, and provide 

the corresponding contribution of this research.

2.1  Optimal Location of Charging Facility

Past literature is extensive especially on the topic of charging/refueling location 

problem for BEVs (or alternate fuel vehicles (AFV)). Huang et al. (2015) proposes 

a refueling location model by considering the behaviors of AFV users who are will-

ing to deviate slightly from their most preferred routes to ensure that their AFVs 

with limited travel ranges can be refueled en-route to their destinations. Zheng et al. 

(2017) investigated the BEV traffic equilibrium and optimal deployment of charging 
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locations subject to range limitation. Jang (2018) conducted a survey on the opera-

tion and system issues aspect of wireless charging namely dynamic and quasi-

dynamic and suggested that the wireless charging systems prompt new questions 

with regards to allocation of charging facilities, cost and benefit analysis, and billing 

and pricing. Panchal et al. (2018) reviewed multiple aspects of the wireless electric 

vehicle charging system such as method of charging, wireless transformer topolo-

gies, health and safety standards. Dong et al. (2014) examined the infrastructure cost 

for implementing DWC which takes into account the vehicle and charging system, 

specification and cost of integration into existing roadway. In addition, BEVs also 

differ to ICEVs in fuel efficiency. García-Vázquez et al. (2017) developed a model 

to compare the electricity consumption on three different stretches which are motor-

way, highway and urban. The model considers the area of Cadiz, Spain and their 

results suggest that BEV energy consumption may fluctuate greatly in urban areas 

whereas on highways it may be more stable. He et  al. (2018) created a modified 

electricity consumption model to assess the effect of DWC on link travel time and 

they applied it on a two-lane DWC system.

Later studies cover commercial use of recharging facility for private automo-

biles. Zhang et al. (2017) considered a capacitated flow and multi-period approach 

for locating static supercharging for BEVs while including user demand dynamics 

resulting from charging opportunities prompting from newly implemented facili-

ties. Chen et al. (2016) provided a problem for the optimal deployment of DWC in 

a road network with user equilibrium under trip completion assurance for BEVs. 

Dong et al. (2014) created a multi-level static charging plan for BEV using an activ-

ity based approach. Their approach simulates the driver travel and recharging pat-

tern based on the GPS travel survey in the greater Seattle area and create charging 

plan by minimizing BEV driver range anxiety measured as number of interrupted 

trips and uncompleted vehicle miles. Sathaye and Kelley (2013) created a plan for 

charging infrastructure for plug-in electric vehicles with an objective of minimizing 

budget in terms of public fund while accounting for existing private entity charging 

infrastructure and fluctuation of user demand within the Texas Triangle megaregion. 

Liu and Wang (2017) formulated a Tri-Level model which considers simultaneously 

the following tasks: planning agency’s decision for DWC facility location, users 

vehicle type choice which can be either a plug-in electric vehicle or a full battery 

electric vehicle, and users route choice for their specific trips. For the upper-level 

optimization problem, they adopt a weighted minimization objective function of 

total system travel time and normalized penalty because of failed trips. The decision 

about whether or not to implement DWC for a specific road is reflected by model 

output in the form of binary decision variable. The study demonstrates the model 

application using Nguyen-Dupuis and Sioux Falls test networks. Riemann et  al. 

(2015) proposed a bi-level approach for DWC location problem in which the upper 

level maximizes the amount of traffic flow served by the DWC facilities and the 

lower-level determines network flow using Multinomial Logit based Stochastic User 

Equilibrium principle.

Liu et  al. (2017) and Liu and Song (2017) proposed a framework for deciding 

the optimal location of the DWC facilities and designing the optimal battery sizes 

of electric buses for an electric bus system. However, there are four fundamental 
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differences between this study and that proposed by Liu and Song (2017). First, we 

propose a framework for deciding the optimal location of DWC facility in a trans-

portation network for private vehicles while that by Liu and Song (2017) proposed 

it for electric bus network. The buses operate on fixed route while private vehicles’ 

(cars’) drivers are free to decide their route and select their route based on travel cost 

minimization. Hence, decision of DWC location impacts path choice of BEV driv-

ers but it’s not true for bus network. Second, we proposed a bi-level optimization 

to incorporate BEV driver’s path choice at lower level while Liu and Song (2017) 

used a single level optimization that minimizes total system cost. Third, we consider 

zonal power availability constraint in deciding the DWC location that is not consid-

ered in Liu and Song (2017). Fourth, we adopt a continuous decision variable that 

can take any value between 0 and 1 in contrast to binary decision variable adopted in 

Liu and Song (2017).

2.2  Estimation of Network Flows and Route Decision by BEV Drivers

The planning agency makes the decision about the location of facilities (for exam-

ple charging facility) along the various routes in a transportation network. The BEV 

drivers typically consider the charging locations in addition to travel cost in route 

choice process choose the route that maximizes their utility. These decisions by net-

work users (drivers) collectively affect travel times in a network and determines the 

traffic flow as well. In literature, the aggregate route choice decisions resulting in 

network level flows are often incorporated at the lower-level problem representing 

network user perspective. The literature in this domain indicates that majority of 

studies focuses on the problem of estimating network flows under charging facility 

and range constraint. Xie et  al. (2017) proposed a path-constrained traffic assign-

ment problem for BEV considering stochastic driving ranges. Their research con-

centrated on the tour or trip chaining where customer range anxiety is more likely 

to occur. The BEV’s SOC may be a non-linear function of recharging time in com-

parison to ICEV refueling which is a linear function of fueling time. To address 

this issue, Montoya et al. (2017) suggested a hybrid metaheuristic for BEV routing 

problem that takes into account components developed in earlier studies and specifi-

cally designed components using the non-linear behavior of BEV recharging. Zhang 

et al. (2019) proposed to model the traffic assignment of mixed-vehicular traffic of 

PEVs with two different charging capabilities accounting for PEV range constraints. 

Liu et al. (2016) proposed a model for better fuel efficiency for BEVs by utilizing 

a realistic drive cycle based on the GPS logs of paths travelled by electric vehicles 

in California. Strehler et  al. (2017) determined the shortest path for battery elec-

tric and hybrid vehicle by considering several factors that are not typically consid-

ered in the shortest path problem of ICEVs including extended recharging time, the 

tradeoff between range and speed, and regenerative braking. There has been also 

effort to develop combined mode choice and route choice models. For example, 

Kitthamkesorn and Chen (2017) analyzed the coupled model that includes mode 

choice and traffic assignment by utilizing a nested Weibit model for mode choice 

path-size Weibit model for route choice and demonstrated its superior performance 
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compared to logit models. A BEV driver’s utility (and hence route choice) may 

also be impacted by level of improvement of state of charge (amount of electricity 

recharged) along the route with links enabled with DWC. However, this factor has 

not been considered in majority of past studies related to route choice of BEV driv-

ers and estimation network flows.

2.3  Contribution and Significance of This Study

In the literature, the majority of the studies focus on lower level of the bi-level prob-

lem which is BEV traffic assignment. There are few studies focused on optimal 

DWC facility plan. However, typically these studies have not considered amount of 

electricity recharged by DWC facility and are restricted to small size networks owing 

to expense of computational complexity. In addition, majority of studies focusing 

on optimal DWC facility location problem using bi-level approach generally con-

sider binary decision variable representing whether or not to implement DWC on the 

entire length of a link under consideration. An important limitation of using binary 

decision variable is that it provides less flexibility and does not allow to implement 

DWC on a part of a link and leading to a sub-optimal solution in particular for a 

network containing long links e.g., access-controlled facilities (interstate highways 

and long arterials). Specifically, implementing DWC on an entire length of a high-

way would be an inefficient use of resources. A counter intuitive argument here can 

be that this issue can be addressed by considering the highway as a collection of 

multiple smaller links. However, this argument leads to another issue on how to get 

the optimal lengths of segments for the original links. Recognizing these gaps in lit-

erature Ngo et al. (2020) proposed a model for DWC location problem considering 

electricity recharged by DWC facility and a continuous decision variable represent-

ing a portion of the link in the bi-level optimization model. However, in their study 

similar to past studies, network is treated as a whole which restricts the model’s abil-

ity to account for zonal availability of electricity supply. Further Ngo et al. (2020) in 

their study assumed that there is always sufficient power to meet the energy demand 

by DWC so that all failed paths can be avoided. However, for real-size (large) city 

networks, there might not be surplus power to meet the electricity demand for DWC 

to avoid all failed trips. Hence there is need to relax the failed path constraint and 

account for zonal electricity availability constraint.

This study endeavors to bridge these gaps identified in the literature. There are 

two important theoretical contributions of this study. First, we incorporate zonal 

power availability constraint for DWC planning after meeting domestic, commer-

cial, and industrial electricity demand. Second, our formulation tends to minimize 

the number of failed trips due to insufficient charge of BEV’s battery by range aug-

mentation through DWC. We further relax these two constraints for applicability of 

the model to real-size networks. We explicitly incorporate five important elements 

into our approach which are: system-level network social costs, travel patterns of 

individuals, an effort to limit the number of failed path (trip completion assurance), 

zonal DWC implementation constraint either due to energy availability from grid 

in an electrical district, and total agency budget. And to the best of our knowledge, 
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all of these five elements have not yet been considered in the literature simultane-

ously. Akin to past studies, we develop a sequential bi-level optimization approach 

considering the objectives of the government agency and BEV drivers at upper and 

lower levels respectively. The numerical experiments are conducted using data for 

two real-size networks to gain insights for practical applications. Proposed frame-

work is first demonstrated on a small Sioux Falls network then real-world applica-

tion are conducted using the City of Chicago network developed by the Chicago 

Area Transportation Study (Boyce et al. 1985). The inferences from these numerical 

experiments can benefit the practitioners and planners greatly in developing a DWC 

infrastructure investment plan, within a given budget while minimizing the social 

cost and energy consumption.

3  Methodology

3.1  Modeling Approach

In this study the DWC facility location problem is modeled as bi-level optimiza-

tion problem. In the Upper-Level (UL) we incorporate the planning agency and 

government perspectives. A government/ planning agency has objectives of maxi-

mizing the social benefits resulting from infrastructure investments. In this case we 

assume that objective of planning agency for the implementation of DWC facilities 

is to minimize the network-level total social cost while ensuring that the required 

resources for the implementation does not exceed the agency budget. However, such 

a viewpoint cannot encapsulate different microscopic interpretation of the network 

users benefiting from DWC facility. The government agency can get information 

on traffic flow and travel time, by methods such as travel surveys, passive data, or 

a four-step transportation planning process. Based on the existing data of traffic 

flow and travel time, a typical approach for implementing DWC facility would be 

to locate it on links that carry maximum traffic flows so that more BEVs can be 

recharged. However, drivers react in accordance with the newly implemented DWC, 

and in this case, drivers will prefer the DWC implemented roads. Thus, the road may 

get congested resulting in travel delay, which is not ideal. The approach of using the 

existing network flow data, which does not account for the variation in the network 

flows due to proposed facility location, would not yield the optimal result intended 

for planning. This necessitates feedback to UL problem about impact on network 

condition due to aggregate network user response to DWC-FLP plan.

In the Lower-Level (LL) we consider the variation in network flow resulting from 

the government’s DWC Location Plan that reflects network users’ collective route 

choice behavior assuming network consists of only BEV drivers. Assuming rational 

driver behavior users chose their path by maximizing their utility (or a minimum 

disutility). The users’ disutility is incorporated in the form of normalized travel 

time. The normalized travel time represents the aggregate of the following elements: 

(1) summation of travel time of the links included in the chosen path (disutility), 

and (2) the aggregate benefit to BEV in the form of improvement of their battery’s 

SOC as it receives charge by DWC facilities while they are driven along chosen path 
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in the DWC implemented network. The improvement in SOC may be considered 

as positive utility (or negative disutility) for a path. However, the link travel times 

and hence energy recharged received through DWC are also the functions of link 

flows. This is due the fact that energy transferred to BEV through DWC will depend 

on aggregate time a BEV stays over the primary coil embedded on the links of net-

work. In this study, we assume that link times (travel costs) are separable and link 

travel time depends on the flow of that link only. A higher flow on a link will result 

in higher travel time but also higher energy transferred to BEV through DWC and 

hence higher SOC benefit on that link leading to higher range augmentation of BEV. 

Therefore, BEV drivers are likely to have a trade-off between travel time (a disutil-

ity) and SOC improvement or range augmentation through DWC (a negative disutil-

ity). We formulate DWC-FLP as bi-level optimization problem, and Fig. 1 depicts 

the relationship between the UL and LL problems and their dependencies while 

showing the information exchange between two levels.

Notations

To schematically describe the UL and LL MP formulations, we introduce the fol-

lowing notations and parameters used in the model:

Sets

A  Set of links

W  Set of Origin–Destination pairs

Pw  Set of paths for O–D pair w

Upper Level

Task: Planner decision about 

DWC implementation

Objective: minimize system 

level cost/energy consumed

Lower Level

Task: Estimation of network 

flows resulting from BEV 

drivers’ path choices

Objective: User Equilibrium

DWC facility locations in the 

network (set of links and fraction 

length covered with DWC)
Link flows and link travel times

Budget constraint, Regional 

energy constraint, Per unit length 

cost of DWC implementation …

Network topology, Parameters of 

link performance function, Power 

transfer rate, Cost per unit of 

electricity, Value of time   

Fig. 1  Upper and Lower-Level Relationship
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Q  Set of regions

Parameters

b  Cost of implementing dynamic wireless charging facilities (in Million $/

mile)θAgency budget

r  Rate of range augmentation per unit time spent on DWC facility by BEV 

(in miles/minute)

�   Power transfer rate by DWC facility (in kW)

�  Cost of one unit of electricity (in $/kWh)

�   Value of time (in $/h)

E  Constant for electricity constraint

K  Constant for failed paths constraint

la  Length of link a

�
a
  Negative cost experienced by the driver due to DWC recharging along link 

a (in travel time units, i.e., minutes)

l
e

a
   Length of link a having DWC charging facility (in mile)

capa  Capacity of link a

t
0

a
   Free flow travel time on link a

ta  Travel time on link a

ga  Generalized cost for traveling on link a

�
a
  Coefficient � specifically for link a in the link cost (BPR) function

�
a
  Coefficient � specifically for link a in the BPR function

sa  Average speed on link a (in miles per hour)

�
a
  Average fuel efficiency on link a (in miles per kWh)

�
a
  Energy consumption rate for traversing link a (in kWh)
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�
p
   Vehicle start range using path p

remp  Remaining range of vehicle on path p

q
w
  Total travel demand of O-D pair w

�
w

ap
  Link-path incident parameter, which takes the value 1 if link a belongs to 

path p of O-D pair w and 0 for otherwise

f w
p

   Flow on path p of the O-D pair w

C
m
  Predefined constant for maximum DWC facilities (as total length) in an 

area Qm

�
m
  Fraction reflects zonal surplus electricity

�  Parameter of sigmoid function (positive real number)

%elec
m
  Total non-transportation electricity consumption of area m as a percentage 

of total electricity consumption

Decision Variables

y
a
  Length of DWC facility on link a as a percentage of the length of link a

v
a
  Flow on link a

�
p
  Variable representing whether a path p fails or not

3.2  Upper‑Level of Government Decision Making

At the upper level of the bi-level problem, we consider two different performance 

measurement objectives from planners’ perspective, first to quantify the network 

level social cost in the form of Total System Travel Time (TSTT) and second to 

quantify the network level energy efficiency in the form of Total System Energy 

Consumption (TSEC). The first objective, TSTT can be calculated by taking the 

aggregate sum of (all links within the network) link flows multiplied by travel time. 

TSTT is a frequently used metric in network infrastructure investment studies. The 

second objective, TSEC is determined by taking the aggregate sum of (all links in 

the network) link flows multiplied by average energy consumption for BEVs while 

traversing that link.



689

1 3

Dynamic Wireless Charging Facility Location Problem for Battery…

Model 1: Minimizing total system travel time (TSTT)

Objective Function:

Subject to:

The objective function of Model-1 is represented by Eq. (1) that minimizes the 

total system travel time. The traffic flow ( v
a
 ) in objective function depends on the 

UL decision variable, the DWC plan represented by vector [ y
a
 ]. The travel time ( t

a
 ) 

in objective function depends on the traffic flow ( v
a
 ). Even though the UL decision 

variable [ y
a
 ], is not explicitly present in the objective function, it necessarily affects 

the objective function value through network users’ response. Equation  (2) states 

that the total cost of implementing DWC within the network must not exceed the 

agency budget. We further make a simplifying assumption that all vehicles selecting 

a path p between an O-D pair has a same starting range �
p
 . Equation (3) ensures that 

BEVs’ battery gets sufficient charge through DWC to complete their trips. In other 

words, Eq. (3) ensures that there are no failed trips in the network due to BEV run-

ning out of charge. The second term in Eq. (3) represents the range augmented from 

recharging through DWC facility. In power industry power transfer is measured in 

kW. Multiplying power transfer rate through DWC with the time spent by a BEV 

over the DWC facility, we get the amount of energy in terms of electricity trans-

ferred to the BEV. However, as the second term in Eq. (3) is in distance unit, we uti-

lize the average BEV electricity consumption rate measured in Wh/mile to convert 

it to the equivalent range. For simplification, we introduce a coefficient r that repre-

sents the additional range gained by BEV per minutes of travel over DWC facility. 

With a 120 kW DWC power transfer rate and a 400 Wh/Mile average fuel economy 

of BEV, the value of r is 5 miles/min travel. Equation (4) defines the range of deci-

sion variable y
a
 . In this study we assume that it is a continuous variable representing 

(1)min z
1
=

∑

a�A

vata

(2)b
∑

a�A

yala ≤ �

(3)
�p +

∑

a∈p

(ryata − la) ≥ 0∀p ∈ Pw, w ∈ W

(4)0 ≤ ya ≤ 1∀a ∈ A

(5)ta = t0

a

[

1 + �a

(

va

capa

)�a

]

∀a ∈ A

(6)va = f (ya)

(7)ga = ta + �ava ≥ 0
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the length of the DWC facility in a link expressed as the percentage link length and 

represented as a fraction (hence it lies in closed interval between 0 and 1). Equa-

tion (5) represents the link performance function (this study uses the BPR function) 

that establishes the relation between link travel time ( t
a
 ) and link flow ( v

a
 ). Where, 

t
0

a
 is the free flow travel time and �

a
 , �

a
 , cap

a
 are the parameters of link cost function 

specific to link a . Equation (6) implies traffic flow ( v
a
 ) is a function of DWC plan 

[ y
a
 ]. Taking the output of UL [ y

a
 ] as the input the LL determines link flows satisfy-

ing User Equilibrium. However, there is no mathematical function relating these two 

variables. Equation (7) avoids circular paths by ensuring that no link has negative 

generalized cost.

We add a local electricity constraint which is meant to avoid overloading the local 

electrical network due to excessive power demand by DWC facilities within a dis-

trict. The installation of DWC facilities on the links in a district is restrained by a 

predefined constant. To illustrate this constraint, let Qm , represents a district in a 

study area Q having q mutually exclusive districts, then,

Let the set of links that fall in the district Qm is represented as A
m
 and for each Qm 

there is a predefined constant C
m
 representing surplus electric power from grid after 

meeting the domestic, commercial and industrial demands. Then the Zonal DWC 

implementation constraint can be defined as follows:

Equation (8) states that the total DWC implemented in an electrical district must 

be less than a predefined constant C
m
 for that district. Equation (8) assumes that a 

link is part of only one district Qm and hence A
m
∩ A

n
= ∅ . However, this assump-

tion is not restrictive, and in cases of long links extending to multiple districts, we 

can split the link into multiple links each spanning in one district only. This will be 

typically the case for long arterials and interstate highways. Later we relax failed 

path constraint and zonal DWC constraint represented by Eqs. (3) and (8) for appli-

cability of the model to real-size networks.

Model 2: Minimizing total system energy consumption (TSEC)

Objective Function:

Subject to:

Q1 ∪ Q2 ∪ Q3⋯ ∪ Qm ∪⋯ ∪ Qq = Q, and Qm ∩ Qn = ∅∀Qm, Qn

(8)

∑

a∈Am

yala ≤ Cm∀Qm ∈ Q

(9)min z
2
=

∑

a�A

va�a

(10)s
a
= l

a
∕t

a
∀a ∈ A

(11)fa = h(sa)∀a ∈ A

(12)�
a
= l

a
∕�

a
∀a ∈ A
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and constraint represented by Eqs. (2)–(8)

Equation  (9) represents the objective function of the second scenario which is to 

minimize the total system energy consumption. The Model 2 is also subjected to the 

constraints listed in Model 1. Equation (10) gives the average speed of vehicles travers-

ing on link a of length l
a
 and travel time t

a
 . Equation (11) describes the relationship 

between fuel economy of a link and the average speed. We suggest this relationship to 

be in a form of a quadratic function defined as h
(

s
a

)

= �
0
+ �

1
s

a
+ �

2
s

2

a
 . Equation (12) 

calculates the energy consumption for a BEV traveling on link a.

3.3  Lower‑level Network User Equilibrium

The task of determination of network flows (paths/links flows) resulting due the net-

work users’ path choice decisions as the aggregate response to DWC implementation 

plan of planners are often referred to as a traffic assignment problem. Traffic assign-

ment can be categorized as either static or dynamic traffic assignment. Static assign-

ment assumes that traffic is in a steady-state and hence flows and travel times of links 

can be represented using average conditions. Because of its simple mathematical 

formulation and solution procedure, the static assignment is widely applied for plan-

ning applications. Wardrop’s User equilibrium (UE) principle, which assumes that 

users reach equilibrium when they cannot improve their travel time (cost) unilaterally 

by switching routes, is mostly used for finding the network flows in a transportation 

network. According to Sheffi (Sheffi 1985), the deterministic user equilibrium traffic 

assignment problem can be formulated as a convex optimization problem. In the con-

text of this study, we use the following MP formulation for single class BEV static 

deterministic user equilibrium (BEV-UE) problem by customizing the BEV-UE formu-

lation proposed by Ngo et al. (2020) for a DWC implemented network.

BEV-UE:

Objective Function:

Subject to:

(13)min z
3
=

∑

a∈A

(

∫
va

0

ta

(

xa

)

dx + �ava

)

(14)

∑

k

f w
p
= qw, ∀w ∈ W

(15)
va =

∑

w∈W

∑

p∈Pw

�
w
ap

f w
p

, ∀a ∈ A

(16)f w
p
≥ 0,∀p ∈ Pw, w ∈ W



692 A. Kumar et al.

1 3

Equations  (13)–(18) represents the BEV-UE formulation under the DWC facility. 

Equation (13) is a minimization of the objective function. Equation (14) defines flow 

conservation. Equation (15) defines the relationship between link and path flow. Equa-

tion (16) ensures path flows are non-negative. Equation (17) characterizes the negative 

cost of BEV drivers because of DWC. Equation (18) determines the DWC length on a 

link and relates UL decision variables to LL problem. Here, it is imperative to mention 

the difference between MP formulation proposed by Ngo et al. (2020) and that used 

here. The difference lies in fact that while in BEV-UE proposed by Ngo et al. (2020) 

the power transfer to BEV through DWC on a link is assumed to be proportional to 

length of a link implemented with DWC, in this study we assume that power transfer 

to BEV through DWC on a link is proportional to time traveled on DWC implemented 

portion of link. Hence, owing to congestion effect, higher the link volume, slower is 

the average speed, higher is the power transfer. In BEV-UE formulation of Ngo et al. 

(2020) the effect of congestion on power transfer to BEVs through DWC is ignored.

Next, we show that MP formulation represented by Eqs. (13)–(18) represents BEV-UE. 

For this purpose, we construct the Lagrangian of the minimization problem as follows:

where, �
w
 is the Lagrange multiplier for equality constraint in Eq.  (14). Note that 

definitional constraints (Eqs. (13)–(18)) do not enter in the Lagrange function L(.) . 

At the stationary point of Lagrangian, the following three conditions need to be sat-

isfied in addition to non-negativity constraints:

Noting the fact that partial derivate of x
a
 with respect to f w

p
 is �w

ap
 , and using diagonal 

rule, the partial derivatives of z
3
 with respect to f w

p
 is given as:

(17)�
a
= −

l
e

a

s
a

��

(

60

�

)

,∀a ∈ A

(18)le
a
= yala, ∀a ∈ A
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p

]
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p
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where, g
a
 and Gw

p
 are the generalized cost of traveling on link a and path p respec-

tively. Using above information the partial derivatives of L(.) with respect to f w
p

 is 

given as:

Using the stationarity conditions (20–22) we obtain:

Considering �
w
 as the minimum generalized path cost for the O-D pair w above 

two Eqs. (24) and (25) together imply Wardopian User Equilibrium of BEVs.

3.4  Upper‑Level Model Modification for Real‑World Application

There are major differences in network characteristic between a small test network 

(like Sioux Falls network used in the numerical experiment section) and the real-

size networks (for example Chicago network in the real-world application section). 

In small network, there is an assumption that there is enough budget to implement 

DWC so that all failed trips are avoided. However, it is not the case of large and 

complex networks where the budget needed to cover all trips would be enormous. 

Besides the budget assumption, small networks can strictly restrain the DWC facility 

due to local energy availability. In contrast, in large networks, it may be acceptable 

to relax the energy availability constraint to achieve overall benefit of the network 

users. In particular, some constraints if applied simultaneously can reduce the fea-

sible solution space drastically thereby making the search of optimal solution diffi-

cult, the numerical experiment under such condition is neither feasible nor practical 

when applied to the real-world networks. There are two specific constraints that fall 

into this particular criterion. The first constraint is the trip completion assurance (no 

failed paths) constraint represented by Eq.  (3) and the second is the Zonal DWC 

implementation constraint represented by Eq. (8).

First, we relax the no failed paths constraint in Eq.  (3) for the two reasons: (1) 

given the limited budget, it is not plausible to guarantee that all paths can be cov-

ered with DWC ensuring no failed path, (2) some of the paths are utilized by a few 

drivers or even not utilized at all, thus it may be a waste of budget to invest on those 

(23)
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paths especially under low agency budget. To address this, we modify the failed 

paths constraint so that the total number of failed paths must not exceed an upper 

limit. Each path is attributed with a binary variable �
p
 stating if it fails or not:

However, the use of binary variable is computationally difficult for larger net-

works and therefore we linearize the variable with a set of equations as follows:

Equation (19) gives the remaining range rem
p
 of the vehicle traveling along path 

p. A positive rem
p
 value indicates that the path is covered by any BEV using it and 

negative otherwise. Equation (20) represents the sigmoid function where if rem
p
 is 

negative, �
p
 would take the value approximately to 1 and 0 otherwise. The parameter 

� is a positive (real number) constant for sigmoid function. Equation (21) states that 

the sum of failed paths must be less than a pre-defined constant K . For applicabil-

ity to large networks, the electricity constraint in Eq.  (8) is relaxed to reflect the 

situation where a DWC plan in an electrical district can deviate from its pre-defined 

constant. In particular, for large network, we relax the constraint (8) by so that BEV 

charging through DWC do not over-utilize the electric system in an electrical district 

which already experiences high commercial/industrial consumption, and relaxed 

constraint is represented using Eqs. (22)–(23) as follows:

Constraint in Eq. (22) is based on the sum of the squares of differences between 

two terms. The first term is the total DWC implemented in an electrical district Qm 

expressed as a percentage of total DWC implemented in the entire network (entire 

area Q), and the second term �
m
 reflects zonal surplus electricity. This sum of square 
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∑
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must be less than a pre-defined constant E . Equation (23) states that �
m
 changes in 

opposite direction to the total domestic, industrial, and commercial electricity con-

sumption in a community denoted by %elec
m
 in an area Qm . �

m
 is measured in per-

centage of available energy in an area so that �
m
 sum up to “one” over the entire area 

Q . Although from power grid planning perspective total energy requirement can be 

computed from vehicle miles traveled by BEV and its energy efficiency, they cannot 

provide power demand surge due to DWC at the district level. Zonal grid constraint 

represented by Eqs.  (22) and (23) tend to minimize the zonal imbalance of power 

demand surge due to DWC while ensuring that total power demand from DWC does 

not exceed the available power at the network level.

3.5  Solution Algorithms

The Bi-Level program considered in this study presents a problem of an expensive 

black-box objective function optimization. The term expensive black-box objective 

function refers to the circumstances when the following two criteria appear con-

currently: (1) the decision variable is not present in the objective function regard-

less of its strong impact on the value of the objective function; and (2) the objec-

tive function value can only be calculated via a different optimization process. In 

our upper-level problem, the decision variable, which is the length and location of 

DWC facilities, and the value of the objective function (TSTT or TSEC) are not 

related to each other in an explicit mathematical manner. The value of the objec-

tive function can only be obtained after executing the traffic assignment problem 

to obtain the travel time and flow of each link in the LL problem. The bi-level 

programming is known to be NP-hard (Ben-Ayed and Blair 1990; Deng 1998). In 

order to solve this black-box objective function optimization, we utilize and extend 

the Constrained Local Metric Stochastic Response Surface (ConstrLMSRS) algo-

rithm proposed by Regis (2011). The algorithm works as a feedback loop until 

convergence. It consists of three steps: initialization, exploration, and conclusion. 

The main advantages of this algorithm are two-fold: (1) despite solving the traffic 

assignment problem (LL problem) for each candidate point within an iteration, it 

is computed for only the best candidate point per iteration resulting in a significant 

reduction in computational cost, and (2) it allows decision variables to be con-

tinuous to better represent the flexibility of implementing DWC facilities. The step 

size used in the modified ConstrLMSRS is also continuous to sufficiently cover 

all the possible solutions. We use ConstrLMSRS algorithm to analyse real-world 

networks with reasonable computational cost, however, other algorithms such as 

Memetic Algorithm (Pishvaee et  al. 2010), Differential Evolution (Koh 2007), 

Evolutionary Algorithms (Lau et al. 2009) and Hill climbing (Los and Lardinois 

1982) can also be explored. The psuedo code is provided below:
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Solution Algorithm for Upper-Level Problem

Stage 1. Initialization

Step 1.1. Create a set of initial N training points which satisfies all constraints of the optimization 

problem  . These points do not need to yield the optimal results. Each training 

points has a dimension of which represents cardinality of since in our formulation, the 

upper-level decision variable is the percentage of DWC on various links and its dimension should 

be same as A.

Step 1.2. Calculate the objective function of each training points using the expensive objective 

function . Sort for the minimum value of the: at . 

Set 1.3. Set the initial step size ; Consecutive Success and Failure: ; ; 

and global successive failure 

Stage 2. Exploration. Let g be the index for each global episode (or iteration). 

While the termination condition ( ) is not satisfied do the following:

Step 2.1. Using the training points create or update the 

response surface . The response surface is used to interpolate the objective function value.

Step 2.2. Generate p candidates points for each iteration g: as follow: For j =1…p:

Generate uniform random number in the range [0,1]. Let  . If 

, then select j from the set [1, ... , ] and set 

Generate j-th candidate solution by: where =0 for all and is a 

normal random variable with mean 0 and standard deviation for all 

Step 2.3. For each candidate point 

If the candidate point satisfy all constraints within the optimization, 

Determine the objective function by using the response surface model.            

Let and . Calculate the score for 

each for the response surface: if then 

, else 

Determine the minimum distance from the candidate to training points by                                                  

. The symbol describes the Euclidean norm. Let 

and . Calculate the score for 

distance criterion score for each candidate: if then 

else 

Step 2.4. Calculate the weighted score for each candidate points: . The 

coefficient can be determined as follow: 

and where k is an integer and 
k
v is a series of weights in ascending order within the 

range of [0,1]. Select within the set of candidates points that yields the highest weighted 

score .

Step 2.5. Compute the expensive objective function for the solution to get the value and 

add the point { to the training points poll . Calculate the accuracy of the response 

surface model by: 

Step 2.6. If update the current best solution = , update the consecutive success and 

failures: otherwise .

Step 2.7. Adjusting the step size and counters:  

If exceeds the maximum number of successes , set and reset 

If exceeds the maximum number of successes , set , reset , and set 

=

Set n = n+1

End of while loop.

Step 3. Termination

Return the optimal objective function value and the vector of decision variable when stopping 

criterion is met. The stopping criterion adopted is either the iteration reaches 150 iterations or global 

successive failure reaches 10.
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The LL problem (BEV-UE) is solved by customizing the SPSA algorithm proposed by 

Kumar and Peeta (2014a). The customization aims to incorporate generalized cost includ-

ing negative cost owing to DWC charging. The customized algorithm is a path-based 

algorithm, and it decomposes the solution process into two steps: construct a restricted 

master problem (RMP) and find an equilibrium solution for the RMP. The construc-

tion of RMP in the present context involves identification of the set of UE paths which 

is not known a priori and is constructed assuming free flow conditions in network and 

updated iteratively. In addition, based on insights from Kumar et al. (2012) it updates the 

RMP using simultaneous strategy (simultaneously updates the path sets for all O-D pairs) 

and solves the RMP using origin based strategy. The customized algorithm is labeled 

as Simultaneous RMP update Origin-Based flow update Algorithm (S-RMP-OBA). 

Fig. 2  Sioux Falls Network
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S-RMP-OBA has been implemented using C++ code. This implementation also takes 

insights from Kumar and Peeta (2014b) to improve the link flow and link cost update pro-

cesses in the iterative solution process. The S-RMP-OBA provides link flows and travel 

times at user equilibrium which acts as input to the UL problem. The implementation 

steps of S-RMP-OBA are presented here.

Solution Algorithm for Lower-Level (S-RMP OBA) BEV-UE Model

The steps of solution procedure for solving the BEV-UE Model are as follows:

Step 0: Initialization: Initialize the network by assigning OD demand to shortest paths of network. Set 

iter=1.

Step 1: Update link parameters, link travel time and generalized link costs for each link (using parallel 

processing).

Step 2: Update path sets for all OD pairs (Simultaneous Approach) for the network using following 

steps (parallel processing applicable as various OD based trees are independent of each other):

Step 2.1: Go to first origin.

Step 2.2: Update path sets for all OD pairs rooted at this origin as follows:

(a) Generate shortest paths for all OD pairs rooted at this origin and update generalized 

path costs for all paths in the existing path sets of these OD pairs.

(b) If a generated path is not present in the path set assign zero flows to that path and add 

the generated path to respective path set (for the given OD pair of the network).

Step 2.3: If this is last origin then go to step 3, otherwise, go to next origin and Step 2.2.

Step 3: Find the move direction for path flow updates and update paths flows, followed by link flows and 

link costs using origin-based approach.

Step 3.1: Go to first origin.

Step 3.2: Go to first destination from this origin. Initialize path flow

Step 3.2.1: Find the move directions for this OD pair:

(a) Compute shift factor for each path , with respect to all other paths 

for this OD pair as follows:

(b) The path move factor for path p is given as: 

(c) The move direction is given as 

Step 3.2.2: Compute step size  using line search.

Step 3.2.3: Update flows of paths as:  .

Step 3.2.4: Check for violation of feasible region and project path flows to feasible region 

if violated using following steps:

(a) if path flow then set and compute new candidate step size as 

follows: 

(b) Compute maximum step size as: 

(c) Update flows of paths as:  .

Step 3.2.5: Update link flows and link costs similar to step 1. 

Step 3.2.6: If this is last destination then go to step 4 else go to next destination from this 

origin, update path costs for this OD pair and then, go to Step 3.2.1.

Step 4: If this is last origin then go to Step 5 otherwise, go to next origin and then go to Step 3.2.

Step 5: Check termination criteria. If satisfied, then stop else update and go to Step 2. 

The termination criteria used in this study is (i) Relative gap (Rgap) with termination threshold 1.0E-08 

computed as:
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4  Numerical Study Using a Small Network

4.1  Sioux Falls Network

The proposed framework is first applied to Sioux Falls network, a small-scale net-

work. This helps to demonstrate the numerical analysis on DWC implementation 

plan. The network consists of 24 nodes, all of which are origin and destination 

nodes, 76 links, and 360,900 trips (in Vehicles/Day). Sioux Falls has frequently been 

used in numerous studies (Leblanc 1975; Lee et al. 2014; He et al. 2015; Huang and 

Li (n.d.); Kumar and Mishra 2018; Kumar et al. 2019; Haque et al. 2021). In addi-

tion to the original data, we assign network links to 4 different electrical districts 

based on their location. This assignment is meant to address the local DWC imple-

mentation constraint due to electricity availability. Figure 2 shows the topography of 

the network. The links are color-coded to represent their designated electrical zone 

(district). This zonal distribution is not same as traffic analysis zone (TAZ).

The study makes following simplifying assumptions: (1) the cost of implement-

ing DWC is $4 million per lane per mile and the agency budget is $65 million, (2) 

all vehicle have a starting range of 10 miles, (3) the problem is considered as an un-

capacitated refueling model which states that there is no limitation on the number 

of vehicles being charged at a time, (4) all vehicles are BEV capable of recharging 

through a DWC facility thereby able to increase its range by traveling over links 

installed with DWC, and (5) the pre-defined constants C
m
 for each zone are equal to 

4.07 miles.

4.2  Model Training

The Sioux Falls Case Study is executed in a Dell Precision Tower which has an Intel 

Core i7-6700 CPU at 3.40 GHz with 8 CPUs and 16 GB of RAM. The upper-level is 

scripted in MATLAB version R2019a and the lower-level is modeled and optimized 

in C++. We run both model TSTT and TSEC for 100 iterations and store the real 

value of the objective function. With these settings, the model completed training in 

218.4 and 207.5 min for the TSTT and TSEC respectively. In the solving algorithm, 

the model is utilizing the Radial Basis Function to estimate the black-box objective 

function value instead of solving for the complicated User Equilibrium. This process 

is applied to every candidate solution points and thus it effectively reduces the train-

ing time by a significant margin.

Figure 3a, b show the real objective function value of TSTT and TSEC respec-

tively. In the beginning, both models have only small improvement in the objec-

tive function. This can be attributed to two reasons. First, the initial training 

points have already covered a wide range of solutions and the first best value is 

reasonably low that it is hard for the algorithm to improve upon. Second, given 

the assumption of range and budget, the feasibility region of the model is very 

small that there is little difference between the set of candidate feasible solu-

tions. However, both TSTT and TSEC see an improvement in the middle of the 



700 A. Kumar et al.

1 3

training period which indicates the algorithm explores new area of the feasibil-

ity region. This happened at iteration 46th and 50th respectively. The same phe-

nomenon is repeated near the end of the training at the 84th and 96th iteration. 

The training reaches non-improving objective function or convergence at itera-

tion 108th and 112th  for TSTT and TSEC and the algorithm is stopped by the 

termination criteria. On average, the running time of the lower level is 87.3 s.

4.3  Model Output and Insights

The results of numerical experiment of DWC implementation plan for the Sioux 

Falls Network are presented in Fig.  4 depicting the spatial location and extent of 

DWC facility. Figure 4a, b show the results for the TSTT and TSEC model scenarios 

(a) TSTT objective function by iteration

(b) TSEC objective function by iteration
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respectively. The line thickness in these figures represent the extent (fraction of link 

length) of DWC implementation suggested by proposed framework. The results for 

TSTT scenario indicate that DWCs are implemented more heavily in selected links 

which results in several links not receiving any DWC treatment. In contrast, in TSEC 

model resulted in DWC allocation in a well distributed manner covering most of 

Fig. 4  DWC Implementation 

Plan for Sioux Falls Network

 
(a) DWC plan for TSTT model 

 
(b) DWC plan for TSEC model 
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the links excluding one. The differences between two scenarios are attributed to the 

nature of objective function considered by the planning agency. The common DWC 

allocated links between two models are the critical links serving majority of traffic 

in the network and these links provide the recharging facility for multiple paths and 

ultimately multiple trips. The numerical results show that the proposed model can 

be applied for DWC facility allocation with decision makers’ objective as TSTT or 

TSEC subjected to various infrastructure and electricity availability constraints.

5  Real World Application

5.1  City of Chicago Network

The methodology proposed in this study has also been applied to the City of Chi-

cago network located in Illinois, USA, as the case study to obtain further insights 

on strengths and limitations of the proposed model for a large network. The City 

of Chicago network is based on the Chicago Regional network developed by the 

Chicago Area Transportation Study (Boyce et  al.  1985). The Chicago Regional 

network, which consists of 12,982 nodes, 39,018 links, actually extends beyond 

Chicago city onto other rural areas. For computational flexibility and anticipat-

ing low population density, rural areas are excluded from the original Chicago 

network. The City of Chicago network used in this case study application, only 

considers the nodes, links, and trips within the political region of Chicago city 

with the anticipation that DWC can provide services to more users.

Chicago is the third-largest city in the United States which is home to approxi-

mately 2.7 million residents. The network has 3 main highways running across 

the city which are Interstate 90, 55, and 290. Among these 3 highways, Inter-

state 90 is more important for two reasons: first, it provides access to the Central 

Business District (CBD) for residents located in both the Southern and North-

ern part of Chicago and second it connects the CBD to the O’Hare International 

Airport. Besides these highways, travelers also utilize major arterials such as the 

South Lake Shore Drive which runs North–South of the city and along the Michi-

gan Lake, and North Milwaukee Avenue which runs East–West. In addition, the 

majority of the local road aligns in either the North–South or East–West direc-

tion which provides easy navigation for drivers who do not have access to GPS 

assistance. The City of Chicago is divided into 77 community areas and this divi-

sion was first introduced by the Social Science Research Committee at the Uni-

versity of Chicago in 1920 (Burgess and Newcomb 1920). In addition to Census 

tract, these community areas are introduced for statistical and planning purposes 

because it is a better representation of native neighborhoods in Chicago. These 

community areas are separated by physical barrier (e.g., river, railroad, etc.) 

which then necessarily forms a distinct identity. In relation to our model, these 

community areas are the small district Qm and facilitate the zonal DWC electricity 

Fig. 5  Chicago Network Characteristic ▸
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(a) Network Flow without DWC
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constraint in Eq. (8). The basic premise is each community area has limited elec-

tric power supply C
m

 and the model’s decision on the amount of DWC shall not 

exceed this value. However, the investment capital applies to the entire city of 

Chicago as a whole and there is no regional community budget constraint.

The revised City of Chicago network used in this study consists of 2,514 

nodes, of which 304 are Origin–Destination nodes, 7,393 links, and 86,661 Ori-

gin–Destination pairs with non-zero demand, and a demand of 240,340 trips. It is 

important to first consider the current traffic flow and the electricity consumption 

of the network. Figure 5a shows the base network flows, and the line color and 

thickness represent the amount of traffic flow on a link under no DWC scenario. 

Figure 5b shows the sum of domestic, industrial, and commercial electricity con-

sumption by community area before DWC implementation.

We first apply user equilibrium traffic assignment to compute base traffic flow 

prior to DWC implementation. The base flow helps us identify which links are 

highly utilized. As expected, all three highways I90, I55, and I295 experience a 

higher flow due to its higher capacity than major and minor roads. In addition, the 

South Lake Shore Drive which runs North–South of city also has high flow.

With a population of nearly three million, the electricity demand of Chicago must 

also be considered when implementing DWC charging. The areas at which the total 

energy consumption for non-transportation (domestic, commercial and industrial) 

purposes is high should not be overloaded with more electricity demand from DWC 

implementation because it could result in a costly power outage. We gather the electric-

ity consumption of the city as publicized in the year of 2010 (City of Chicago Energy 

Usage 2010) and calculate the aggregate sum of total electricity consumption meas-

ured in Millions kWh within each community area. As shown in Fig. 5b, electricity 

consumption is highest in the CBD area which consists of the following community 

areas: the Loop, Near West Side, Near North Side, and Near South Side. These areas 

have a high population density, multiple offices and commercial retail spaces and thus  

results in a high demand for electricity. However, Woodlawn, which locates in the 

outer borough, also experiences high electricity consumption. The area is adjacent  

to the University of Chicago which accounts for this high demand.

5.2  Model Output and Insights

The results of TSTT and TSEC model implementation for the Chicago city network 

for DWC facility location are shown in Fig.  6a, b respectively. In the lower-level 

solution at convergence of bi-level problem of the Chicago network case study, 

there was 1,779,116 paths generated for 86,950 OD pairs which results on average 

20.5 paths generated per OD pair at convergence for the TSTT model. The TSEC’s 

model are 1,833,449 paths and on average 21.1 paths per OD pair. The location and 

length of DWC in Fig. 6 are represented by the link color and thickness. In the TSTT 

model, DWC facilities are well distributed throughout the network with a focus on 

primary functional roadway classes such as interstates and arterials, but the local 

roads also receive some DWC. For major arterials, DWC facilities are implemented 

in a continuous manner whereas in local roads, a scattered approach is suggested. 
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(a) DWC Loca�on for TSTT
 

 

(b) DWC Loca�on for TSEC 

Fig. 6  DWC Plan for Chicago Network
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The TSEC model follows a similar, but a distinctly different DWC implementation 

pattern as compared to the TSTT model. This is due to the predominant effect of two 

important constraints namely, limited failed paths and electricity distribution con-

straints. These two constraints narrow down the feasible region of the solution to the 

extent that similar solution [ y∗
a
 ] are optimal under both TSTT and TSEC scenarios. 

As these two constraints are relaxed, we will get significantly different solution set 

[ y∗
a
 ] under TSTT and TSEC scenarios. The majority of the DWC facilities are imple-

mented on the following interstate highways and arterials: Interstate 90, 94, 290, 55, 

The S. Lake Shore Drive, and North Milwaukee Avenue. These roads share three 

common characteristic which are (1) higher capacity, (2) providing access from 

outer boroughs to the CBD area, (3) and experiencing a higher traffic flow than other 

roads. In addition, the majority of the available path go through these roads which is 

preferable for the model since these are considered more cost-effective in satisfying 

the limited failed path constraint. Along these for major arterials and the local roads 

suggested DWC implementation are sparse and well-distributed among electrical 

districts because of two main reasons: providing additional local DWC charging for 

each region and not overloading any area with DWC facility which would raise an 

excessive electricity demand and ultimate power shortage.

An interesting observation is that both North Milwaukee Avenue and Interstate 

90 receives significant DWC treatment although North Milwaukee Avenue receives 

slightly more DWC than Interstate 90. This model outcome can be attributed to two 

main reasons: first, N. Milwaukee can be easily accessed compared to its counter-

part and second, Interstate 90 already receives DWC treatment in the southern part 

and the loop area. Another observation is that the CBD district area receives little 

to none DWC treatment. It may be due the fact that if DWC facility is implemented 

in this area, it would attract more driver and the area would be overcrowded. Fur-

thermore, the area has a high electricity demand and thus implementing DWC 

would only put more stress on the already constrained electric distribution system 

in that area.

In addition to the location and length of DWC for the entire network as shown 

in Fig.  6, it may be also beneficial for the city council to know the DWC Plan’s 

impact on a level of community area (districts). TABLE 1 shows the detail informa-

tion for the top 25 community areas ranked by the amount of investment. For each 

community area, the table shows the amount of money invested in, the number of 

failed trips avoided as a percentage of the original failed trips before DWC Imple-

mentation, the total energy provided to BEV by DWC (system energy recharged), 

and average speed. The number of failed trips of a community area is calculated 

based on the trips originated within that community area and regardless of their 

destinations. BEV drivers may not necessarily benefit from the DWC implemented 

within their community area, but they may benefit from DWC in other areas. This 

can partially explain for the low correlation between the amount of investment made 

and the avoided fail trips. The system energy recharged is calculated by taking the 

aggregate sum of energy recharged by all BEVs traveling within the area and this 

parameter has a positive relationship with the amount of investment made.

In addition, we compute the differences in travel time and total vehicle energy 

recharged by each road segment between the TSTT and TSEC models as shown in 
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(a) Difference in Travel Time between TSTT and TSEC models 

 

(b) Difference in Energy Recharged between TSTT and TSEC models 

Fig. 7  Comparison between TSTT and TSEC model outputs
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Fig. 7a, b below. The difference is plotted by a diverging color scale where the color 

blue indicates a net negative (TSTT’s value is less than that of TSEC), white rep-

resents equal, and red represents the net positive. In Fig. 7a, we notice the differ-

ence in travel time occur mainly on the minor arterial and TSTT model has 948 min 

less in total network travel time compared to TSEC. This can be attributed to the 

reasoning behind TSTT model where it locates DWC facilities in a disperse man-

ner. Therefore, in the lower-level user equilibrium, there’s no particular path or road 

segment that has inherently high DWC so that high volume of vehicle would not be 

drawn into any particular road. This results in a more stable travel time across the 

network and results in a net lower travel time. In contrast, as shown in Fig. 7b, we 

see that the difference in energy consumption occurs mainly on highways and arteri-

als. TSEC records a net 4.25 million Vehicle Wh of energy recharged. TSEC tends 

to greedily implement more DWC on highly occupied links as to maximize the total 

energy recharged.

6  Conclusion

In this research, we develop a modeling framework for optimally locating DWC 

facilities in a road network under energy availability and budget constraint that 

endeavors to avoid failed trips of BEVs. The proposed modeling framework can 

benefit city officials in developing a DWC implementation plan for their jurisdiction. 

A bi-level approach is proposed which encapsulates both the objectives of the plan-

ner and users. In the Upper Level, two objectives namely Total System Travel Time 

and Total System Energy Consumption of the planner are achieved. In the Lower-

Level, the network flows are computed using user equilibrium principle where all 

BEV drivers are on the path yielding the minimum value of the normalized cost. 

Normalized cost is a combination of travel time and energy recharged by traveling 

through DWC facilities. The bi-level framework prompts the problem of a black 

box and computational heavy objective function. The research modifies and extends 

upon the algorithm ConstrLMSRS developed by Regis (Regis 2011).

First, the modeling framework is tested on a small network as a validation of 

the concept. Then, the modeling framework is applied as a case study using a real-

world Chicago City network from Illinois, USA. For applicability to real-size net-

works, selected constraints from the original model were modified to better reflect 

the practical circumstances related to the availability of budget and electricity. The 

results suggest that major highways and arterials should be implemented with DWC 

because those links contribute to the majority of the trips. In addition, local roads 

located in outer borough also receive DWC treatment in sparse manner to adequately 

recharge the vehicle. However, numerical results suggest that roads located in dense 

areas should not be implemented with DWC. This is intuitive as otherwise it would 

attract more traffic to already congested area and lead to surge in electricity demand 

due to DWC that is already experiencing high non-transportation (domestic, com-

mercial, industrial) electricity demand. Although this research can benefit planers in 

present form, it can be improved in several ways. The current model considers only 

one level of recharging method which is DWC and the inclusion of other methods 



711

1 3

Dynamic Wireless Charging Facility Location Problem for Battery…

such as static charging, battery swapping can improve the flexibility and the diver-

sity of the model. In the Lower Level, the traffic assignment task can incorporate 

other types of vehicles in addition to BEVs. Incorporation of these aspects can form 

interesting future extensions of this study.

We have assumed single user class with separable cost function, which implies that 

the cost of a link depends on the flow of that link only. Although, in this paper, the 

cost has two components, which includes travel time as the positive cost and the BEV 

charging as the negative cost, both of these components will depend on the conges-

tion level and properties of that link only. Hence in our formulation, we do not have 

the asymmetric cost function and mathematical programing formulation can be used. 

However, incorporation of nonlinear complementarity formulation can be explored in 

the future as a potential candidate for representing the lower-level problem.

Data Availability The data for the Sioux Fall and Chicago network in Sects. 4.1 and 5.1 are made avail-

able via the following repository:https:// github. com/ hhngo 96/ bev. The repository contains the network 

configuration, origin–destination demand, and the DWC implementation plan for the TSTT model. The 

exact algorithm for both the upper and lower level can be provided upon request at hhngo@memphis.edu 

and amit.kumar@utsa.edu.
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