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Abstract

Despite the recent development in technology, Battery Electric Vehicle (BEV) pose
several drawbacks including recharging time, limited range, and inadequate num-
ber of charging facilities. In an effort to address these drawbacks, Dynamic Wire-
less Charging (DWC) technology is gaining attention. DWC can be implemented
by embedding the induction coil under a roadway pavement to dynamically charge
the BEV in motion without a need to stop. This prompts an important question for
infrastructure planning of BEVs: how to optimally locate DWC infrastructure in a
road network. Planning for optimal DWC facility location needs to consider how
BEV drivers will react to the newly implemented DWC in terms of route choice to
reflect their unilateral utility minimization objective. Further complexities of DWC
implementation include availability of zonal surplus electricity. In this paper, we
propose a bi-level planning approach considering both the objectives of the planners
and the drivers. The approach explicitly incorporates five elements: system-level
social costs, travel patterns of individuals, trip completion assurance, zonal DWC
implementation constraint due to energy availability from grid, and total budget
availability from the public agency. The proposed framework is first demonstrated
in a numerical experiment setting using Sioux Falls network. Then the framework is
also implemented using city of Chicago sketch network to demonstrate its applica-
bility to real-size networks. The numerical results using these two networks provide
valuable insights for planners for developing an optimal DWC implementation plan.

Keywords Surplus electricity - Regional energy availability, Transportation
electrification - Range constraint - Inductance-based charging

1 Introduction

In the United States, greenhouse gas emission has been one of the major issues in

recent years and the transportation sector is responsible for 29% of the total emis-
sion since it uses approximately 29% of the total energy and operates based mainly
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on fossil fuel, which has a 92% share among other alternatives (USDOE 2018).
These emissions are generated from the process of burning fossil fuel from Internal
Combustion Engine Vehicles (ICEV). In contrast to ICEV, Battery Electric Vehi-
cles (BEV) present a solution for alleviating the current state of emission since BEV
uses electric motor for which electricity can be produced by greener sources like
solar, hydro and nuclear in contrast to ICEVs that burns fuel to generate propulsion
force. Moreover, the combination of superior fuel economy efficiency over ICEV,
relatively low maintenance cost, and tax incentives at Federal and State levels makes
BEV more appealing to consumers. However, the adoption of BEV has two main
disadvantages compared to ICEV that deters its market penetration: (i) range con-
straint leading to range anxiety and (ii) long recharging time leading to extended
charging downtime.

The BEV driving range is defined as the furthest distance a BEV can travel
using the full state of charge (SOC) of its battery-pack without the need of refu-
eling. Despite recent developments in battery technology the average driving range
of BEV have been able to reach 190 miles. In addition, assuming fuel capacity of 20
gallons and fuel economy of 23 miles per gallon, an ICEV has driving range of 460
miles which is more than twice as compared to BEV. In addition, like ICEV fuel
tank is typically not always full, BEV’s SOC is not 100%. While the gas stations
are abundant the charging stations are scarcely located. This results in range anxiety
which limits the adoption of BEV because travelers are afraid that the vehicle’s SOC
would not provide enough range to reach destination (Agrawal et al. 2016).

BEV’s motors are powered by high-capacity batteries which are typically charged
by plugging it into an electric charging point. This conventional plug-in recharg-
ing method suffers from two disadvantages: the BEV is nonoperational during the
recharging time, which is referred to as charging downtime (Hwang et al. 2018),
and extended recharging time. An ICEV with 20 gallons gas tank capacity can be
refueled within 2-3 min at a gas dispense rate of 5—10 gallons per minute. In addi-
tion, BEV requires at least 25 min to be fully recharged even at the highest level of
charging (Liu and Wang 2017). The super charging stations with 960 kW or above
in power can bring the charging time to 5 min recharging time for a 200-mile range
BEV however, they are impractical given the current charging technology (Fuller
2016). This leads to an extended charging downtime for BEVs.

To address these two issues related to BEV, researchers have proposed induction
based dynamic wireless charging (DWC). DWC facility works like electric trans-
former where the primary induction coil is embedded under a roadway pavement
that can inductively charge the BEV’s battery through the secondary coil sitting in
vehicles lower part of body while in motion. DWC can potentially reduce or may
even eliminate the BEV’s charging downtime. Moreover, a proper DWC imple-
mentation in a road-network can satisfy the range requirement of BEVs operating
in the network and help to relieve range anxiety. However, existing infrastructure
and electricity availability must also be addressed when integrating DWC since it
is still a new concept. DWC facility demands a certain amount of available electric-
ity in order to be practically beneficial to the public such as reducing range anxiety
and addressing charging downtime drawback. It prompts the question on whether
or not the existing electricity system can support such demand on top of the current
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industrial and commercial electricity consumption. Therefore, the location and
length of DWC Facility within a network, referred as the DWC Facility Location
Problem (DWC-FLP), needs to be planned optimally under multiple constraints
to derive its maximum benefit and ultimately promote the cleaner transportation
through adoption of BEV.

There has been a growing interest in DWC in recent past as evident from perti-
nent literature addressing the DWC-FLP (Dong et al. 2014; Garcia-Vazquez et al.
2017; He et al. 2018; Jang 2018; Panchal et al. 2018). However, previous studies in
DWOC related literature generally consider only the transportation planners’ objec-
tives, ignore the regional surplus electricity available for DWC and apply the frame-
work to small-scale network. However, there are other analogous research in the
domain of FLP although not focusing on DWC, such as on refueling station location
in networks (Kuby and Lim 2005), and FLP for surveillance of network for planning
purposes (Matisziw 2019) that consider both planer’s and network users objectives
and consider real-scale network. Therefore, the objective of this paper is to develop
an enhanced planning framework, which is capable of solving large scale real-world
network, to optimally determine the location and length of DWC facility in a road
network for BEV while simultaneously considering the following elements: govern-
ment planning objective, driver’s behavior, reduce range anxiety, the availability of
electricity and planning agency’s budget constraint.

The rest of the paper is organized as follows. The Section 2 discusses literature on
the optimal deployment of DWC facility and BEV users driving behavior. The Section 3
presents modeling approach and numerical experiments using a small-scale network.
The Section 4 presents case study and solves the DWC-FLP for the travel demand and
network data for City of Chicago, Illinois, USA to test the model applicability for prac-
tice and draw inferences from the model’s results. The final section discusses the overall
performance of the model, its limitations, and avenues for future research.

2 Literature Review

This section summarizes pertinent literature of facility location problems in the con-
text of BEV. The past literature falls into two categories which are optimal loca-
tion of DWC facilities and network flow estimation considering driver behavior. We
review the literature in these two categories, identify the research gap, and provide
the corresponding contribution of this research.

2.1 Optimal Location of Charging Facility

Past literature is extensive especially on the topic of charging/refueling location
problem for BEVs (or alternate fuel vehicles (AFV)). Huang et al. (2015) proposes
a refueling location model by considering the behaviors of AFV users who are will-
ing to deviate slightly from their most preferred routes to ensure that their AFVs
with limited travel ranges can be refueled en-route to their destinations. Zheng et al.
(2017) investigated the BEV traffic equilibrium and optimal deployment of charging
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locations subject to range limitation. Jang (2018) conducted a survey on the opera-
tion and system issues aspect of wireless charging namely dynamic and quasi-
dynamic and suggested that the wireless charging systems prompt new questions
with regards to allocation of charging facilities, cost and benefit analysis, and billing
and pricing. Panchal et al. (2018) reviewed multiple aspects of the wireless electric
vehicle charging system such as method of charging, wireless transformer topolo-
gies, health and safety standards. Dong et al. (2014) examined the infrastructure cost
for implementing DWC which takes into account the vehicle and charging system,
specification and cost of integration into existing roadway. In addition, BEVs also
differ to ICEVs in fuel efficiency. Garcia-Vazquez et al. (2017) developed a model
to compare the electricity consumption on three different stretches which are motor-
way, highway and urban. The model considers the area of Cadiz, Spain and their
results suggest that BEV energy consumption may fluctuate greatly in urban areas
whereas on highways it may be more stable. He et al. (2018) created a modified
electricity consumption model to assess the effect of DWC on link travel time and
they applied it on a two-lane DWC system.

Later studies cover commercial use of recharging facility for private automo-
biles. Zhang et al. (2017) considered a capacitated flow and multi-period approach
for locating static supercharging for BEVs while including user demand dynamics
resulting from charging opportunities prompting from newly implemented facili-
ties. Chen et al. (2016) provided a problem for the optimal deployment of DWC in
a road network with user equilibrium under trip completion assurance for BEVs.
Dong et al. (2014) created a multi-level static charging plan for BEV using an activ-
ity based approach. Their approach simulates the driver travel and recharging pat-
tern based on the GPS travel survey in the greater Seattle area and create charging
plan by minimizing BEV driver range anxiety measured as number of interrupted
trips and uncompleted vehicle miles. Sathaye and Kelley (2013) created a plan for
charging infrastructure for plug-in electric vehicles with an objective of minimizing
budget in terms of public fund while accounting for existing private entity charging
infrastructure and fluctuation of user demand within the Texas Triangle megaregion.
Liu and Wang (2017) formulated a Tri-Level model which considers simultaneously
the following tasks: planning agency’s decision for DWC facility location, users
vehicle type choice which can be either a plug-in electric vehicle or a full battery
electric vehicle, and users route choice for their specific trips. For the upper-level
optimization problem, they adopt a weighted minimization objective function of
total system travel time and normalized penalty because of failed trips. The decision
about whether or not to implement DWC for a specific road is reflected by model
output in the form of binary decision variable. The study demonstrates the model
application using Nguyen-Dupuis and Sioux Falls test networks. Riemann et al.
(2015) proposed a bi-level approach for DWC location problem in which the upper
level maximizes the amount of traffic flow served by the DWC facilities and the
lower-level determines network flow using Multinomial Logit based Stochastic User
Equilibrium principle.

Liu et al. (2017) and Liu and Song (2017) proposed a framework for deciding
the optimal location of the DWC facilities and designing the optimal battery sizes
of electric buses for an electric bus system. However, there are four fundamental
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differences between this study and that proposed by Liu and Song (2017). First, we
propose a framework for deciding the optimal location of DWC facility in a trans-
portation network for private vehicles while that by Liu and Song (2017) proposed
it for electric bus network. The buses operate on fixed route while private vehicles’
(cars’) drivers are free to decide their route and select their route based on travel cost
minimization. Hence, decision of DWC location impacts path choice of BEV driv-
ers but it’s not true for bus network. Second, we proposed a bi-level optimization
to incorporate BEV driver’s path choice at lower level while Liu and Song (2017)
used a single level optimization that minimizes total system cost. Third, we consider
zonal power availability constraint in deciding the DWC location that is not consid-
ered in Liu and Song (2017). Fourth, we adopt a continuous decision variable that
can take any value between 0 and 1 in contrast to binary decision variable adopted in
Liu and Song (2017).

2.2 Estimation of Network Flows and Route Decision by BEV Drivers

The planning agency makes the decision about the location of facilities (for exam-
ple charging facility) along the various routes in a transportation network. The BEV
drivers typically consider the charging locations in addition to travel cost in route
choice process choose the route that maximizes their utility. These decisions by net-
work users (drivers) collectively affect travel times in a network and determines the
traffic flow as well. In literature, the aggregate route choice decisions resulting in
network level flows are often incorporated at the lower-level problem representing
network user perspective. The literature in this domain indicates that majority of
studies focuses on the problem of estimating network flows under charging facility
and range constraint. Xie et al. (2017) proposed a path-constrained traffic assign-
ment problem for BEV considering stochastic driving ranges. Their research con-
centrated on the tour or trip chaining where customer range anxiety is more likely
to occur. The BEV’s SOC may be a non-linear function of recharging time in com-
parison to ICEV refueling which is a linear function of fueling time. To address
this issue, Montoya et al. (2017) suggested a hybrid metaheuristic for BEV routing
problem that takes into account components developed in earlier studies and specifi-
cally designed components using the non-linear behavior of BEV recharging. Zhang
et al. (2019) proposed to model the traffic assignment of mixed-vehicular traffic of
PEVs with two different charging capabilities accounting for PEV range constraints.
Liu et al. (2016) proposed a model for better fuel efficiency for BEVs by utilizing
a realistic drive cycle based on the GPS logs of paths travelled by electric vehicles
in California. Strehler et al. (2017) determined the shortest path for battery elec-
tric and hybrid vehicle by considering several factors that are not typically consid-
ered in the shortest path problem of ICEVs including extended recharging time, the
tradeoff between range and speed, and regenerative braking. There has been also
effort to develop combined mode choice and route choice models. For example,
Kitthamkesorn and Chen (2017) analyzed the coupled model that includes mode
choice and traffic assignment by utilizing a nested Weibit model for mode choice
path-size Weibit model for route choice and demonstrated its superior performance
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compared to logit models. A BEV driver’s utility (and hence route choice) may
also be impacted by level of improvement of state of charge (amount of electricity
recharged) along the route with links enabled with DWC. However, this factor has
not been considered in majority of past studies related to route choice of BEV driv-
ers and estimation network flows.

2.3 Contribution and Significance of This Study

In the literature, the majority of the studies focus on lower level of the bi-level prob-
lem which is BEV traffic assignment. There are few studies focused on optimal
DWC facility plan. However, typically these studies have not considered amount of
electricity recharged by DWC facility and are restricted to small size networks owing
to expense of computational complexity. In addition, majority of studies focusing
on optimal DWC facility location problem using bi-level approach generally con-
sider binary decision variable representing whether or not to implement DWC on the
entire length of a link under consideration. An important limitation of using binary
decision variable is that it provides less flexibility and does not allow to implement
DWC on a part of a link and leading to a sub-optimal solution in particular for a
network containing long links e.g., access-controlled facilities (interstate highways
and long arterials). Specifically, implementing DWC on an entire length of a high-
way would be an inefficient use of resources. A counter intuitive argument here can
be that this issue can be addressed by considering the highway as a collection of
multiple smaller links. However, this argument leads to another issue on how to get
the optimal lengths of segments for the original links. Recognizing these gaps in lit-
erature Ngo et al. (2020) proposed a model for DWC location problem considering
electricity recharged by DWC facility and a continuous decision variable represent-
ing a portion of the link in the bi-level optimization model. However, in their study
similar to past studies, network is treated as a whole which restricts the model’s abil-
ity to account for zonal availability of electricity supply. Further Ngo et al. (2020) in
their study assumed that there is always sufficient power to meet the energy demand
by DWC so that all failed paths can be avoided. However, for real-size (large) city
networks, there might not be surplus power to meet the electricity demand for DWC
to avoid all failed trips. Hence there is need to relax the failed path constraint and
account for zonal electricity availability constraint.

This study endeavors to bridge these gaps identified in the literature. There are
two important theoretical contributions of this study. First, we incorporate zonal
power availability constraint for DWC planning after meeting domestic, commer-
cial, and industrial electricity demand. Second, our formulation tends to minimize
the number of failed trips due to insufficient charge of BEV’s battery by range aug-
mentation through DWC. We further relax these two constraints for applicability of
the model to real-size networks. We explicitly incorporate five important elements
into our approach which are: system-level network social costs, travel patterns of
individuals, an effort to limit the number of failed path (trip completion assurance),
zonal DWC implementation constraint either due to energy availability from grid
in an electrical district, and total agency budget. And to the best of our knowledge,
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all of these five elements have not yet been considered in the literature simultane-
ously. Akin to past studies, we develop a sequential bi-level optimization approach
considering the objectives of the government agency and BEV drivers at upper and
lower levels respectively. The numerical experiments are conducted using data for
two real-size networks to gain insights for practical applications. Proposed frame-
work is first demonstrated on a small Sioux Falls network then real-world applica-
tion are conducted using the City of Chicago network developed by the Chicago
Area Transportation Study (Boyce et al. 1985). The inferences from these numerical
experiments can benefit the practitioners and planners greatly in developing a DWC
infrastructure investment plan, within a given budget while minimizing the social
cost and energy consumption.

3 Methodology
3.1 Modeling Approach

In this study the DWC facility location problem is modeled as bi-level optimiza-
tion problem. In the Upper-Level (UL) we incorporate the planning agency and
government perspectives. A government/ planning agency has objectives of maxi-
mizing the social benefits resulting from infrastructure investments. In this case we
assume that objective of planning agency for the implementation of DWC facilities
is to minimize the network-level total social cost while ensuring that the required
resources for the implementation does not exceed the agency budget. However, such
a viewpoint cannot encapsulate different microscopic interpretation of the network
users benefiting from DWC facility. The government agency can get information
on traffic flow and travel time, by methods such as travel surveys, passive data, or
a four-step transportation planning process. Based on the existing data of traffic
flow and travel time, a typical approach for implementing DWC facility would be
to locate it on links that carry maximum traffic flows so that more BEVs can be
recharged. However, drivers react in accordance with the newly implemented DWC,
and in this case, drivers will prefer the DWC implemented roads. Thus, the road may
get congested resulting in travel delay, which is not ideal. The approach of using the
existing network flow data, which does not account for the variation in the network
flows due to proposed facility location, would not yield the optimal result intended
for planning. This necessitates feedback to UL problem about impact on network
condition due to aggregate network user response to DWC-FLP plan.

In the Lower-Level (LL) we consider the variation in network flow resulting from
the government’s DWC Location Plan that reflects network users’ collective route
choice behavior assuming network consists of only BEV drivers. Assuming rational
driver behavior users chose their path by maximizing their utility (or a minimum
disutility). The users’ disutility is incorporated in the form of normalized travel
time. The normalized travel time represents the aggregate of the following elements:
(1) summation of travel time of the links included in the chosen path (disutility),
and (2) the aggregate benefit to BEV in the form of improvement of their battery’s
SOC as it receives charge by DWC facilities while they are driven along chosen path
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in the DWC implemented network. The improvement in SOC may be considered
as positive utility (or negative disutility) for a path. However, the link travel times
and hence energy recharged received through DWC are also the functions of link
flows. This is due the fact that energy transferred to BEV through DWC will depend
on aggregate time a BEV stays over the primary coil embedded on the links of net-
work. In this study, we assume that link times (travel costs) are separable and link
travel time depends on the flow of that link only. A higher flow on a link will result
in higher travel time but also higher energy transferred to BEV through DWC and
hence higher SOC benefit on that link leading to higher range augmentation of BEV.
Therefore, BEV drivers are likely to have a trade-off between travel time (a disutil-
ity) and SOC improvement or range augmentation through DWC (a negative disutil-
ity). We formulate DWC-FLP as bi-level optimization problem, and Fig. 1 depicts
the relationship between the UL and LL problems and their dependencies while
showing the information exchange between two levels.

Notations

To schematically describe the UL and L. MP formulations, we introduce the fol-
lowing notations and parameters used in the model:
Sets

A Set of links

W Set of Origin—Destination pairs

P, Set of paths for O-D pair w
Upper Level
Budget constraint, Regional

Task: Planner decision about energy constraint, Per unit length

DWC implementation cost of DWC implementation ...
Objective: minimize system
level cost/energy consumed

DWC facility locations in the
Link flows and link travel times network (set of links and fraction
length covered with DWC)

Lower Level

Task: Estimation of network
flows resulting from BEV
drivers’ path choices Network topology, Parameters of
link performance function, Power
transfer rate, Cost per unit of
electricity, Value of time

Objective: User Equilibrium

Fig. 1 Upper and Lower-Level Relationship
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QO Setof regions

Parameters

b Cost of implementing dynamic wireless charging facilities (in Million $/
mile)#Agency budget

r Rate of range augmentation per unit time spent on DWC facility by BEV
(in miles/minute)

v Power transfer rate by DWC facility (in kW)

n Cost of one unit of electricity (in $/kWh)

T Value of time (in $/h)

E Constant for electricity constraint

K Constant for failed paths constraint

l, Length of link a

H, Negative cost experienced by the driver due to DWC recharging along link
a (in travel time units, i.e., minutes)

g Length of link a having DWC charging facility (in mile)

cap, Capacity of link a

7 Free flow travel time on link a

t, Travel time on link a

&a Generalized cost for traveling on link a

a, Coefficient a specifically for link a in the link cost (BPR) function

b, Coefficient f specifically for link a in the BPR function

s, Average speed on link a (in miles per hour)

w, Average fuel efficiency on link a (in miles per kWh)

Ya Energy consumption rate for traversing link a (in kWh)
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£, Vehicle start range using path p

rem, Remaining range of vehicle on path p

q. Total travel demand of O-D pair w

oY Link-path incident parameter, which takes the value 1 if link a belongs to

ap
path p of O-D pair w and 0 for otherwise

fpw Flow on path p of the O-D pair w

C, Predefined constant for maximum DWC facilities (as total length) in an
area Q,,

S Fraction reflects zonal surplus electricity

T Parameter of sigmoid function (positive real number)

%elec,, Total non-transportation electricity consumption of area m as a percentage
of total electricity consumption

Decision Variables

v, Length of DWC facility on link a as a percentage of the length of link a

v Flow on link a

a

Kk, Variable representing whether a path p fails or not

3.2 Upper-Level of Government Decision Making

At the upper level of the bi-level problem, we consider two different performance
measurement objectives from planners’ perspective, first to quantify the network
level social cost in the form of Total System Travel Time (TSTT) and second to
quantify the network level energy efficiency in the form of Total System Energy
Consumption (TSEC). The first objective, TSTT can be calculated by taking the
aggregate sum of (all links within the network) link flows multiplied by travel time.
TSTT is a frequently used metric in network infrastructure investment studies. The
second objective, TSEC is determined by taking the aggregate sum of (all links in
the network) link flows multiplied by average energy consumption for BEVs while
traversing that link.
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Model 1: Minimizing total system travel time (TSTT)
Objective Function:

minzy = 2, Vil (1)
aeA
Subject to:
b Z yala S 0 (2)
aeA
€, + Z(ryata -l)>0vpepP, ,weW 3)
aep
OSyaSWaeA 4)
NN
t,=1° 1+au< J ) Va € A )
cap,
Ve =) (6)
8a=1la+ Havy 20 (7

The objective function of Model-1 is represented by Eq. (1) that minimizes the
total system travel time. The traffic flow (v,) in objective function depends on the
UL decision variable, the DWC plan represented by vector [y,]. The travel time (z,)
in objective function depends on the traffic flow (v,). Even though the UL decision
variable [y,], is not explicitly present in the objective function, it necessarily affects
the objective function value through network users’ response. Equation (2) states
that the total cost of implementing DWC within the network must not exceed the
agency budget. We further make a simplifying assumption that all vehicles selecting
a path p between an O-D pair has a same starting range ¢,,. Equation (3) ensures that
BEVs’ battery gets sufficient charge through DWC to complete their trips. In other
words, Eq. (3) ensures that there are no failed trips in the network due to BEV run-
ning out of charge. The second term in Eq. (3) represents the range augmented from
recharging through DWC facility. In power industry power transfer is measured in
kW. Multiplying power transfer rate through DWC with the time spent by a BEV
over the DWC facility, we get the amount of energy in terms of electricity trans-
ferred to the BEV. However, as the second term in Eq. (3) is in distance unit, we uti-
lize the average BEV electricity consumption rate measured in Wh/mile to convert
it to the equivalent range. For simplification, we introduce a coefficient r that repre-
sents the additional range gained by BEV per minutes of travel over DWC facility.
With a 120 kW DWC power transfer rate and a 400 Wh/Mile average fuel economy
of BEV, the value of r is 5 miles/min travel. Equation (4) defines the range of deci-
sion variable y,. In this study we assume that it is a continuous variable representing
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the length of the DWC facility in a link expressed as the percentage link length and
represented as a fraction (hence it lies in closed interval between O and 1). Equa-
tion (5) represents the link performance function (this study uses the BPR function)
that establishes the relation between link travel time (z,) and link flow (v,). Where,
tg is the free flow travel time and «a,, §,, cap, are the parameters of link cost function
specific to link a. Equation (6) implies traffic flow (v,) is a function of DWC plan
[v,]. Taking the output of UL [y,] as the input the LL determines link flows satisfy-
ing User Equilibrium. However, there is no mathematical function relating these two
variables. Equation (7) avoids circular paths by ensuring that no link has negative
generalized cost.

We add a local electricity constraint which is meant to avoid overloading the local
electrical network due to excessive power demand by DWC facilities within a dis-
trict. The installation of DWC facilities on the links in a district is restrained by a
predefined constant. To illustrate this constraint, let Q,,, represents a district in a
study area Q having g mutually exclusive districts, then,

0vQ,u0;5--vQ, U0, =0, and 0,N0,=0V0,.0,

Let the set of links that fall in the district Q,, is represented as A,, and for each Q,,
there is a predefined constant C,, representing surplus electric power from grid after
meeting the domestic, commercial and industrial demands. Then the Zonal DWC
implementation constraint can be defined as follows:

Y Y, £C,¥0,, €0 ®

a€A,,

Equation (8) states that the total DWC implemented in an electrical district must
be less than a predefined constant C,, for that district. Equation (8) assumes that a
link is part of only one district Q,, and hence A,, N A, = @. However, this assump-
tion is not restrictive, and in cases of long links extending to multiple districts, we
can split the link into multiple links each spanning in one district only. This will be
typically the case for long arterials and interstate highways. Later we relax failed
path constraint and zonal DWC constraint represented by Egs. (3) and (8) for appli-
cability of the model to real-size networks.

Model 2: Minimizing total system energy consumption (TSEC)

Objective Function:

minz, = ZA Vo¥a )
Subject to:

s,=1,/tNaeA (10)

f.=h(s,)VNaeA (11)

Vo= l/w,Na € A (12)
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and constraint represented by Egs. (2)—(8)

Equation (9) represents the objective function of the second scenario which is to
minimize the total system energy consumption. The Model 2 is also subjected to the
constraints listed in Model 1. Equation (10) gives the average speed of vehicles travers-
ing on link a of length [/, and travel time #,. Equation (11) describes the relationship
between fuel economy of a link and the average speed. We suggest this relationship to
be in a form of a quadratic function defined as h(s,) = & + a;5, + a,s2. Equation (12)
calculates the energy consumption for a BEV traveling on link a.

3.3 Lower-level Network User Equilibrium

The task of determination of network flows (paths/links flows) resulting due the net-
work users’ path choice decisions as the aggregate response to DWC implementation
plan of planners are often referred to as a traffic assignment problem. Traffic assign-
ment can be categorized as either static or dynamic traffic assignment. Static assign-
ment assumes that traffic is in a steady-state and hence flows and travel times of links
can be represented using average conditions. Because of its simple mathematical
formulation and solution procedure, the static assignment is widely applied for plan-
ning applications. Wardrop’s User equilibrium (UE) principle, which assumes that
users reach equilibrium when they cannot improve their travel time (cost) unilaterally
by switching routes, is mostly used for finding the network flows in a transportation
network. According to Sheffi (Sheffi 1985), the deterministic user equilibrium traffic
assignment problem can be formulated as a convex optimization problem. In the con-
text of this study, we use the following MP formulation for single class BEV static
deterministic user equilibrium (BEV-UE) problem by customizing the BEV-UE formu-
lation proposed by Ngo et al. (2020) for a DWC implemented network.

BEV-UE:
Objective Function:

minz; = z </ ata(xa)dx+yava> (13)

Subject to:

va=2 Zéypfpw, Vae A (15)

weW peP,,

f;"ZO,VpEP weWw (16)

wo
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e

a 60
=—— — |,VaeA
Ha Sav/n( T) a (17)
lg =y,l,, VaeA (18)

Equations (13)—(18) represents the BEV-UE formulation under the DWC facility.
Equation (13) is a minimization of the objective function. Equation (14) defines flow
conservation. Equation (15) defines the relationship between link and path flow. Equa-
tion (16) ensures path flows are non-negative. Equation (17) characterizes the negative
cost of BEV drivers because of DWC. Equation (18) determines the DWC length on a
link and relates UL decision variables to LL problem. Here, it is imperative to mention
the difference between MP formulation proposed by Ngo et al. (2020) and that used
here. The difference lies in fact that while in BEV-UE proposed by Ngo et al. (2020)
the power transfer to BEV through DWC on a link is assumed to be proportional to
length of a link implemented with DWC, in this study we assume that power transfer
to BEV through DWC on a link is proportional to time traveled on DWC implemented
portion of link. Hence, owing to congestion effect, higher the link volume, slower is
the average speed, higher is the power transfer. In BEV-UE formulation of Ngo et al.
(2020) the effect of congestion on power transfer to BEVs through DWC is ignored.

Next, we show that MP formulation represented by Eqs. (13)—(18) represents BEV-UE.
For this purpose, we construct the Lagrangian of the minimization problem as follows:

Lf.o) =20+ ), o, lqw - prW] (19)

weWw peEP,,

where, o, is the Lagrange multiplier for equality constraint in Eq. (14). Note that
definitional constraints (Eqs. (13)—(18)) do not enter in the Lagrange function £(.).
At the stationary point of Lagrangian, the following three conditions need to be sat-
isfied in addition to non-negativity constraints:

w 0L w
fpaf_w=o,vpep,wew (20)
p
oL
af_wZO’VPEPW’WEW 2D
p
oL
K:O,VWEW (22)

Noting the fact that partial derivate of x, with respect to j;) " is 5:;7, and using diagonal
rule, the partial derivatives of z; with respect to fp " is given as:
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013 _ 6Z3 ()Xa
ofy ~ ax,ofy

= Z:: (1 + 1,)82) 23)
ae.

=2 (%.,)8;, =Gy
a€eA

where, g, and G;V are the generalized cost of traveling on link a and path p respec-
tively. Using above information the partial derivatives of £(.) with respect to fpw is
given as:

oL d
— =—25f)—-0,=G"-o0,
afpw ()J;w 3 P (24)

Using the stationarity conditions (20-22) we obtain:

(G —0,)=0,YpeP' weW (25)

G;V—GWZO,VPEPW,WEW (26)

Considering o,, as the minimum generalized path cost for the O-D pair w above
two Eqgs. (24) and (25) together imply Wardopian User Equilibrium of BEVs.

3.4 Upper-Level Model Modification for Real-World Application

There are major differences in network characteristic between a small test network
(like Sioux Falls network used in the numerical experiment section) and the real-
size networks (for example Chicago network in the real-world application section).
In small network, there is an assumption that there is enough budget to implement
DWC so that all failed trips are avoided. However, it is not the case of large and
complex networks where the budget needed to cover all trips would be enormous.
Besides the budget assumption, small networks can strictly restrain the DWC facility
due to local energy availability. In contrast, in large networks, it may be acceptable
to relax the energy availability constraint to achieve overall benefit of the network
users. In particular, some constraints if applied simultaneously can reduce the fea-
sible solution space drastically thereby making the search of optimal solution diffi-
cult, the numerical experiment under such condition is neither feasible nor practical
when applied to the real-world networks. There are two specific constraints that fall
into this particular criterion. The first constraint is the trip completion assurance (no
failed paths) constraint represented by Eq. (3) and the second is the Zonal DWC
implementation constraint represented by Eq. (8).

First, we relax the no failed paths constraint in Eq. (3) for the two reasons: (1)
given the limited budget, it is not plausible to guarantee that all paths can be cov-
ered with DWC ensuring no failed path, (2) some of the paths are utilized by a few
drivers or even not utilized at all, thus it may be a waste of budget to invest on those
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paths especially under low agency budget. To address this, we modify the failed
paths constraint so that the total number of failed paths must not exceed an upper
limit. Each path is attributed with a binary variable x, stating if it fails or not:

_ 1 lf 'Ep + Zaep(ryata - la) <0

K,=4 " VpeP,,weW
v {Olfep+zaep(ryata—la)20 PEw

However, the use of binary variable is computationally difficult for larger net-
works and therefore we linearize the variable with a set of equations as follows:

rem,, =gp+2(ryata—la) VpEPW,WE w (27)

aep

1
KP—WVPEPW,WEW (28)

2 2 <K (29)

weW pa€P,,

Equation (19) gives the remaining range rem,, of the vehicle traveling along path
p- A positive rem,, value indicates that the path is covered by any BEV using it and
negative otherwise. Equation (20) represents the sigmoid function where if rem,, is
negative, k, would take the value approximately to 1 and O otherwise. The parameter
x is a positive (real number) constant for sigmoid function. Equation (21) states that
the sum of failed paths must be less than a pre-defined constant K. For applicabil-
ity to large networks, the electricity constraint in Eq. (8) is relaxed to reflect the
situation where a DWC plan in an electrical district can deviate from its pre-defined
constant. In particular, for large network, we relax the constraint (8) by so that BEV
charging through DWC do not over-utilize the electric system in an electrical district
which already experiences high commercial/industrial consumption, and relaxed
constraint is represented using Egs. (22)—(23) as follows:

2
L, Vala
(2= g, ) <E (30)
0,,€0 ZaeA yula
B (1 = %elec,,)
B 2o, o (1 — %elec,,)

Cn Vo, €0 (31)

Constraint in Eq. (22) is based on the sum of the squares of differences between
two terms. The first term is the total DWC implemented in an electrical district O,
expressed as a percentage of total DWC implemented in the entire network (entire
area Q), and the second term ¢, reflects zonal surplus electricity. This sum of square
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must be less than a pre-defined constant E. Equation (23) states that {,, changes in
opposite direction to the total domestic, industrial, and commercial electricity con-
sumption in a community denoted by %elec,, in an area Q,,. ¢,, is measured in per-
centage of available energy in an area so that {,, sum up to “one” over the entire area
Q. Although from power grid planning perspective total energy requirement can be
computed from vehicle miles traveled by BEV and its energy efficiency, they cannot
provide power demand surge due to DWC at the district level. Zonal grid constraint
represented by Egs. (22) and (23) tend to minimize the zonal imbalance of power
demand surge due to DWC while ensuring that total power demand from DWC does
not exceed the available power at the network level.

3.5 Solution Algorithms

The Bi-Level program considered in this study presents a problem of an expensive
black-box objective function optimization. The term expensive black-box objective
function refers to the circumstances when the following two criteria appear con-
currently: (1) the decision variable is not present in the objective function regard-
less of its strong impact on the value of the objective function; and (2) the objec-
tive function value can only be calculated via a different optimization process. In
our upper-level problem, the decision variable, which is the length and location of
DWC facilities, and the value of the objective function (TSTT or TSEC) are not
related to each other in an explicit mathematical manner. The value of the objec-
tive function can only be obtained after executing the traffic assignment problem
to obtain the travel time and flow of each link in the LL problem. The bi-level
programming is known to be NP-hard (Ben-Ayed and Blair 1990; Deng 1998). In
order to solve this black-box objective function optimization, we utilize and extend
the Constrained Local Metric Stochastic Response Surface (ConstrLMSRS) algo-
rithm proposed by Regis (2011). The algorithm works as a feedback loop until
convergence. It consists of three steps: initialization, exploration, and conclusion.
The main advantages of this algorithm are two-fold: (1) despite solving the traffic
assignment problem (LL problem) for each candidate point within an iteration, it
is computed for only the best candidate point per iteration resulting in a significant
reduction in computational cost, and (2) it allows decision variables to be con-
tinuous to better represent the flexibility of implementing DWC facilities. The step
size used in the modified ConstrLMSRS is also continuous to sufficiently cover
all the possible solutions. We use ConstrLMSRS algorithm to analyse real-world
networks with reasonable computational cost, however, other algorithms such as
Memetic Algorithm (Pishvaee et al. 2010), Differential Evolution (Koh 2007),
Evolutionary Algorithms (Lau et al. 2009) and Hill climbing (Los and Lardinois
1982) can also be explored. The psuedo code is provided below:
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Solution Algorithm for Upper-Level Problem
Stage 1. Initialization
Step 1.1. Create a set of initial N training points which satisfies all constraints of the optimization
problem X, = {x1,x; ...x,} . These points do not need to yield the optimal results. Each training
points x,, has a dimension of A which represents cardinality of A since in our formulation, the
upper-level decision variable is the percentage of DWC on various links and its dimension should
be same as A.

Step 1.2. Calculate the objective function of each training points using the expensive objective
function Z = {f(x,), f(x3) ... f(x,)}. Sort for the minimum value of the: Z .5y = min(Z) at xppg¢-
Set 1.3. Set the initial step size 8; = Oin;riqr; Consecutive Success and Failure: Cgyec = 0; Craiy = 0;
and global successive failure Cgor = 0
Stage 2. Exploration. Let g be the index for each global episode (or iteration).
While the termination condition (g > Gmayx 07 Cgsr > Cgspmasx) is not satisfied do the following:
Step 2.1. Using the training points N = {(x; f(x1)), (x2,f(x2)) ... (x; f(x;))} create or update the
response surface Sy (x). The response surface is used to interpolate the objective function value.
Step 2.2. Generate p candidates points for each iteration g: Cg = {xg1, ... x4 p} as follow: Forj =/...p:
Generate A uniform random number wy, W, ... w,, in the range [0,1]. Let Ipert = {i:w; < probg;c}. If
Lyere = O, then select j from the set [1, ... , A] and set Lyere = {}
Generate j-th candidate solution by: xg ;1 = Xpess + Ag j Where A;’]:O for all i & Iyere and A;J- isa
normal random variable with mean 0 and standard deviation 6, for all i € ler¢
Step 2.3. For each candidate point x,, ; € C,
If the candidate point x, ; satisfy all constraints within the optimization,
Determine the objective function Sg(x,, ;) by using the response surface model.
Let S™" = min{S, (xg ;), Xg ; € Cy} and S™ = max{S,(x, ;), %4 € Cy}. Calculate the score for
each xg; € C, for the response surface: if S™ % S™M then V5 = (S,(x,,;) — S™M)/(S™ —
sminy else VG =1

Determine the minimum distance from the candidate xg ; to training points by

Dg(xgvj) = Minygicy |xg,j - xi|| ,X; € Z.The symbol || || describes the Euclidean norm. Let
D™ = min{Dy(xy ), %g,; € Cg} and D™ = max{D, (x4 ;), xg j € Cy4}. Calculate the score for
distance criterion score for each candidate: if D™ % D™ then V;P = (D, (xg} j) -
D™im)/(D™x — pminy else DS = 1.

Step 2.4. Calculate the weighted score for each candidate points: V; = w3V + wPV,” . The

v - if mod(g — go, k) #0
coefficient WgS, WHD can be determined as follow: WgS = { mod(g=gok) f (g 9ork)
v, otherwise

and W; =1- wj where k is an integer and V, is a series of weights in ascending order within the
range of [0,1]. Select x* within the set of candidates points C; that yields the highest weighted
score V.

Step 2.5. Compute the expensive objective function for the solution x* to get the value Z; = f(x*) and
add the point {x*, f(x*)} to the training points poll N. Calculate the accuracy of the response
surface model by: accs, = |Sg(x“) — f(x*) |

Step 2.6. If Z; < Zjeq update the current best solution Zy,eq:= Zy, update the consecutive success and
failures: Cyee = Csuce + 15 Crau = 0; Cysp = 0 otherwise Craip = Crait + 15 Coyee = 0.

Step 2.7. Adjusting the step size and counters:

If Cgyce exceeds the maximum number of successes Copen, set 0,41 = 0,/2 and reset Cgyee = 0

If Crqyi exceeds the maximum number of successes C}:’l‘i]{‘, set Opy1 = 20y, reset Crqyy = 0, and set
Cosp=Cosr +1

Setn =n+1

End of while loop.

Step 3. Termination

Return the optimal objective function value Zj,; and the vector of decision variable {y,.s;} when stopping
criterion is met. The stopping criterion adopted is either the iteration reaches 150 iterations or global
successive failure reaches 10.
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The LL problem (BEV-UE) is solved by customizing the SPSA algorithm proposed by
Kumar and Peeta (2014a). The customization aims to incorporate generalized cost includ-
ing negative cost owing to DWC charging. The customized algorithm is a path-based
algorithm, and it decomposes the solution process into two steps: construct a restricted
master problem (RMP) and find an equilibrium solution for the RMP. The construc-
tion of RMP in the present context involves identification of the set of UE paths which
is not known a priori and is constructed assuming free flow conditions in network and
updated iteratively. In addition, based on insights from Kumar et al. (2012) it updates the
RMP using simultaneous strategy (simultaneously updates the path sets for all O-D pairs)
and solves the RMP using origin based strategy. The customized algorithm is labeled
as Simultaneous RMP update Origin-Based flow update Algorithm (S-RMP-OBA).

Sioux Falls Network

Zone 1
Zone 2
Zone 3

6

Zone 4

-

I

4

17

Fig.2 Sioux Falls Network
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S-RMP-OBA has been implemented using C++ code. This implementation also takes
insights from Kumar and Peeta (2014b) to improve the link flow and link cost update pro-
cesses in the iterative solution process. The S-RMP-OBA provides link flows and travel
times at user equilibrium which acts as input to the UL problem. The implementation
steps of S-RMP-OBA are presented here.

Solution Algorithm for Lower-Level (S-RMP OBA) BEV-UE Model
The steps of solution procedure for solving the BEV-UE Model are as follows:
Step 0: Initialization: Initialize the network by assigning OD demand to shortest paths of network. Set
iter=1.
Step 1: Update link parameters, link travel time and generalized link costs for each link (using parallel
processing).
Step 2: Update path sets P,, for all OD pairs (Simultaneous Approach) for the network using following
steps (parallel processing applicable as various OD based trees are independent of each other):
Step 2.1: Go to first origin.
Step 2.2: Update path sets for all OD pairs rooted at this origin as follows:
(a) Generate shortest paths for all OD pairs rooted at this origin and update generalized
path costs Gy’ for all paths in the existing path sets of these OD pairs.
(b) If a generated path is not present in the path set assign zero flows to that path and add
the generated path to respective path set (for the given OD pair of the network).
Step 2.3: If this is last origin then go to step 3, otherwise, go to next origin and Step 2.2.
Step 3: Find the move direction for path flow updates and update paths flows, followed by link flows and
link costs using origin-based approach.
Step 3.1: Go to first origin.
Step 3.2: Go to first destination from this origin. Initialize path flow f,%;4 = f;* Vp € P,,
Step 3.2.1: Find the move directions for this OD pair:
(a) Compute shift factor for each path p € B, with respect to all other paths [ € P,
for this OD pair as follows:
w _{ (Gl = GY) = fi,if G > Gy
LT\ (GY -G * £, if GY > GY
(b) The path move factor for path p is given as: dyf = Yep, 0p1

Vp € P,

(c) The move direction is given as d¥ = [d}']
Step 3.2.2: Compute step size A;ze, using line search.
Step 3.2.3: Update flows of paths as: [£’] < [f¥%a] + Aicerd”
Step 3.2.4: Check for violation of feasible region and project path flows to feasible region
if violated using following steps:
(a) if path flow f,” <0, then set Ay, = Ajrer and compute new candidate step size as
follows:
—_ f,W
Anew :d—v_fv+/1‘:ld V)i (j € PY & £ < 0)
(b) Compute maximuin step size as: Amaxy,, = min(A}pe.,)
(c) Update flows of paths as: [£] « [fi¥a] + Amax;ee, d”.
Step 3.2.5: Update link flows and link costs similar to step 1.
Step 3.2.6: If this is last destination then go to step 4 else go to next destination from this
origin, update path costs for this OD pair and then, go to Step 3.2.1.
Step 4: If this is last origin then go to Step 5 otherwise, go to next origin and then go to Step 3.2.

Step 5: Check termination criteria. If satisfied, then stop else update iter « iter + 1 and go to Step 2.
The termination criteria used in this study is (i) Relative gap (Rgap) with termination threshold 1.0E-08
computed as:

Raap = 2w 2k G S’ = T Rie et fi”
9 STkl f
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4 Numerical Study Using a Small Network
4.1 Sioux Falls Network

The proposed framework is first applied to Sioux Falls network, a small-scale net-
work. This helps to demonstrate the numerical analysis on DWC implementation
plan. The network consists of 24 nodes, all of which are origin and destination
nodes, 76 links, and 360,900 trips (in Vehicles/Day). Sioux Falls has frequently been
used in numerous studies (Leblanc 1975; Lee et al. 2014; He et al. 2015; Huang and
Li (n.d.); Kumar and Mishra 2018; Kumar et al. 2019; Haque et al. 2021). In addi-
tion to the original data, we assign network links to 4 different electrical districts
based on their location. This assignment is meant to address the local DWC imple-
mentation constraint due to electricity availability. Figure 2 shows the topography of
the network. The links are color-coded to represent their designated electrical zone
(district). This zonal distribution is not same as traffic analysis zone (TAZ).

The study makes following simplifying assumptions: (1) the cost of implement-
ing DWC is $4 million per lane per mile and the agency budget is $65 million, (2)
all vehicle have a starting range of 10 miles, (3) the problem is considered as an un-
capacitated refueling model which states that there is no limitation on the number
of vehicles being charged at a time, (4) all vehicles are BEV capable of recharging
through a DWC facility thereby able to increase its range by traveling over links
installed with DWC, and (5) the pre-defined constants C,, for each zone are equal to
4.07 miles.

4.2 Model Training

The Sioux Falls Case Study is executed in a Dell Precision Tower which has an Intel
Core i7-6700 CPU at 3.40 GHz with 8§ CPUs and 16 GB of RAM. The upper-level is
scripted in MATLAB version R2019a and the lower-level is modeled and optimized
in C++. We run both model TSTT and TSEC for 100 iterations and store the real
value of the objective function. With these settings, the model completed training in
218.4 and 207.5 min for the TSTT and TSEC respectively. In the solving algorithm,
the model is utilizing the Radial Basis Function to estimate the black-box objective
function value instead of solving for the complicated User Equilibrium. This process
is applied to every candidate solution points and thus it effectively reduces the train-
ing time by a significant margin.

Figure 3a, b show the real objective function value of TSTT and TSEC respec-
tively. In the beginning, both models have only small improvement in the objec-
tive function. This can be attributed to two reasons. First, the initial training
points have already covered a wide range of solutions and the first best value is
reasonably low that it is hard for the algorithm to improve upon. Second, given
the assumption of range and budget, the feasibility region of the model is very
small that there is little difference between the set of candidate feasible solu-
tions. However, both TSTT and TSEC see an improvement in the middle of the
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Fig. 3 Objective function by iteration

training period which indicates the algorithm explores new area of the feasibil-
ity region. This happened at iteration 46th and 50th respectively. The same phe-
nomenon is repeated near the end of the training at the 84th and 96th iteration.
The training reaches non-improving objective function or convergence at itera-
tion 108th and 112th for TSTT and TSEC and the algorithm is stopped by the
termination criteria. On average, the running time of the lower level is 87.3 s.

4.3 Model Output and Insights
The results of numerical experiment of DWC implementation plan for the Sioux

Falls Network are presented in Fig. 4 depicting the spatial location and extent of
DWC facility. Figure 4a, b show the results for the TSTT and TSEC model scenarios
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Fig.4 DWC Implementation
Plan for Sioux Falls Network

Percentage of
DWC Impleme:

(b) DWC plan for TSEC model

respectively. The line thickness in these figures represent the extent (fraction of link
length) of DWC implementation suggested by proposed framework. The results for
TSTT scenario indicate that DWCs are implemented more heavily in selected links
which results in several links not receiving any DWC treatment. In contrast, in TSEC
model resulted in DWC allocation in a well distributed manner covering most of
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Fig.5 Chicago Network Characteristic

the links excluding one. The differences between two scenarios are attributed to the
nature of objective function considered by the planning agency. The common DWC
allocated links between two models are the critical links serving majority of traffic
in the network and these links provide the recharging facility for multiple paths and
ultimately multiple trips. The numerical results show that the proposed model can
be applied for DWC facility allocation with decision makers’ objective as TSTT or
TSEC subjected to various infrastructure and electricity availability constraints.

5 Real World Application
5.1 City of Chicago Network

The methodology proposed in this study has also been applied to the City of Chi-
cago network located in Illinois, USA, as the case study to obtain further insights
on strengths and limitations of the proposed model for a large network. The City
of Chicago network is based on the Chicago Regional network developed by the
Chicago Area Transportation Study (Boyce et al. 1985). The Chicago Regional
network, which consists of 12,982 nodes, 39,018 links, actually extends beyond
Chicago city onto other rural areas. For computational flexibility and anticipat-
ing low population density, rural areas are excluded from the original Chicago
network. The City of Chicago network used in this case study application, only
considers the nodes, links, and trips within the political region of Chicago city
with the anticipation that DWC can provide services to more users.

Chicago is the third-largest city in the United States which is home to approxi-
mately 2.7 million residents. The network has 3 main highways running across
the city which are Interstate 90, 55, and 290. Among these 3 highways, Inter-
state 90 is more important for two reasons: first, it provides access to the Central
Business District (CBD) for residents located in both the Southern and North-
ern part of Chicago and second it connects the CBD to the O’Hare International
Airport. Besides these highways, travelers also utilize major arterials such as the
South Lake Shore Drive which runs North—South of the city and along the Michi-
gan Lake, and North Milwaukee Avenue which runs East—West. In addition, the
majority of the local road aligns in either the North—South or East—West direc-
tion which provides easy navigation for drivers who do not have access to GPS
assistance. The City of Chicago is divided into 77 community areas and this divi-
sion was first introduced by the Social Science Research Committee at the Uni-
versity of Chicago in 1920 (Burgess and Newcomb 1920). In addition to Census
tract, these community areas are introduced for statistical and planning purposes
because it is a better representation of native neighborhoods in Chicago. These
community areas are separated by physical barrier (e.g., river, railroad, etc.)
which then necessarily forms a distinct identity. In relation to our model, these
community areas are the small district Q,, and facilitate the zonal DWC electricity
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constraint in Eq. (8). The basic premise is each community area has limited elec-
tric power supply C,, and the model’s decision on the amount of DWC shall not
exceed this value. However, the investment capital applies to the entire city of
Chicago as a whole and there is no regional community budget constraint.

The revised City of Chicago network used in this study consists of 2,514
nodes, of which 304 are Origin—Destination nodes, 7,393 links, and 86,661 Ori-
gin—Destination pairs with non-zero demand, and a demand of 240,340 trips. It is
important to first consider the current traffic flow and the electricity consumption
of the network. Figure 5a shows the base network flows, and the line color and
thickness represent the amount of traffic flow on a link under no DWC scenario.
Figure 5b shows the sum of domestic, industrial, and commercial electricity con-
sumption by community area before DWC implementation.

We first apply user equilibrium traffic assignment to compute base traffic flow
prior to DWC implementation. The base flow helps us identify which links are
highly utilized. As expected, all three highways 190, 155, and 1295 experience a
higher flow due to its higher capacity than major and minor roads. In addition, the
South Lake Shore Drive which runs North—South of city also has high flow.

With a population of nearly three million, the electricity demand of Chicago must
also be considered when implementing DWC charging. The areas at which the total
energy consumption for non-transportation (domestic, commercial and industrial)
purposes is high should not be overloaded with more electricity demand from DWC
implementation because it could result in a costly power outage. We gather the electric-
ity consumption of the city as publicized in the year of 2010 (City of Chicago Energy
Usage 2010) and calculate the aggregate sum of total electricity consumption meas-
ured in Millions kWh within each community area. As shown in Fig. 5b, electricity
consumption is highest in the CBD area which consists of the following community
areas: the Loop, Near West Side, Near North Side, and Near South Side. These areas
have a high population density, multiple offices and commercial retail spaces and thus
results in a high demand for electricity. However, Woodlawn, which locates in the
outer borough, also experiences high electricity consumption. The area is adjacent
to the University of Chicago which accounts for this high demand.

5.2 Model Output and Insights

The results of TSTT and TSEC model implementation for the Chicago city network
for DWC facility location are shown in Fig. 6a, b respectively. In the lower-level
solution at convergence of bi-level problem of the Chicago network case study,
there was 1,779,116 paths generated for 86,950 OD pairs which results on average
20.5 paths generated per OD pair at convergence for the TSTT model. The TSEC’s
model are 1,833,449 paths and on average 21.1 paths per OD pair. The location and
length of DWC in Fig. 6 are represented by the link color and thickness. In the TSTT
model, DWC facilities are well distributed throughout the network with a focus on
primary functional roadway classes such as interstates and arterials, but the local
roads also receive some DWC. For major arterials, DWC facilities are implemented
in a continuous manner whereas in local roads, a scattered approach is suggested.
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The TSEC model follows a similar, but a distinctly different DWC implementation
pattern as compared to the TSTT model. This is due to the predominant effect of two
important constraints namely, limited failed paths and electricity distribution con-
straints. These two constraints narrow down the feasible region of the solution to the
extent that similar solution [y’] are optimal under both TSTT and TSEC scenarios.
As these two constraints are relaxed, we will get significantly different solution set
[y:] under TSTT and TSEC scenarios. The majority of the DWC facilities are imple-
mented on the following interstate highways and arterials: Interstate 90, 94, 290, 55,
The S. Lake Shore Drive, and North Milwaukee Avenue. These roads share three
common characteristic which are (1) higher capacity, (2) providing access from
outer boroughs to the CBD area, (3) and experiencing a higher traffic flow than other
roads. In addition, the majority of the available path go through these roads which is
preferable for the model since these are considered more cost-effective in satisfying
the limited failed path constraint. Along these for major arterials and the local roads
suggested DWC implementation are sparse and well-distributed among electrical
districts because of two main reasons: providing additional local DWC charging for
each region and not overloading any area with DWC facility which would raise an
excessive electricity demand and ultimate power shortage.

An interesting observation is that both North Milwaukee Avenue and Interstate
90 receives significant DWC treatment although North Milwaukee Avenue receives
slightly more DWC than Interstate 90. This model outcome can be attributed to two
main reasons: first, N. Milwaukee can be easily accessed compared to its counter-
part and second, Interstate 90 already receives DWC treatment in the southern part
and the loop area. Another observation is that the CBD district area receives little
to none DWC treatment. It may be due the fact that if DWC facility is implemented
in this area, it would attract more driver and the area would be overcrowded. Fur-
thermore, the area has a high electricity demand and thus implementing DWC
would only put more stress on the already constrained electric distribution system
in that area.

In addition to the location and length of DWC for the entire network as shown
in Fig. 6, it may be also beneficial for the city council to know the DWC Plan’s
impact on a level of community area (districts). TABLE 1 shows the detail informa-
tion for the top 25 community areas ranked by the amount of investment. For each
community area, the table shows the amount of money invested in, the number of
failed trips avoided as a percentage of the original failed trips before DWC Imple-
mentation, the total energy provided to BEV by DWC (system energy recharged),
and average speed. The number of failed trips of a community area is calculated
based on the trips originated within that community area and regardless of their
destinations. BEV drivers may not necessarily benefit from the DWC implemented
within their community area, but they may benefit from DWC in other areas. This
can partially explain for the low correlation between the amount of investment made
and the avoided fail trips. The system energy recharged is calculated by taking the
aggregate sum of energy recharged by all BEVs traveling within the area and this
parameter has a positive relationship with the amount of investment made.

In addition, we compute the differences in travel time and total vehicle energy
recharged by each road segment between the TSTT and TSEC models as shown in
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Difference in Travel Time (minutes)

(a) Difference in Travel Time between TSTT and TSEC models
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S
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(b) Difference in Energy Recharged between TSTT and TSEC models

Fig.7 Comparison between TSTT and TSEC model outputs

@ Springer



710 A. Kumar et al.

Fig. 7a, b below. The difference is plotted by a diverging color scale where the color
blue indicates a net negative (TSTT’s value is less than that of TSEC), white rep-
resents equal, and red represents the net positive. In Fig. 7a, we notice the differ-
ence in travel time occur mainly on the minor arterial and TSTT model has 948 min
less in total network travel time compared to TSEC. This can be attributed to the
reasoning behind TSTT model where it locates DWC facilities in a disperse man-
ner. Therefore, in the lower-level user equilibrium, there’s no particular path or road
segment that has inherently high DWC so that high volume of vehicle would not be
drawn into any particular road. This results in a more stable travel time across the
network and results in a net lower travel time. In contrast, as shown in Fig. 7b, we
see that the difference in energy consumption occurs mainly on highways and arteri-
als. TSEC records a net 4.25 million Vehicle Wh of energy recharged. TSEC tends
to greedily implement more DWC on highly occupied links as to maximize the total
energy recharged.

6 Conclusion

In this research, we develop a modeling framework for optimally locating DWC
facilities in a road network under energy availability and budget constraint that
endeavors to avoid failed trips of BEVs. The proposed modeling framework can
benefit city officials in developing a DWC implementation plan for their jurisdiction.
A bi-level approach is proposed which encapsulates both the objectives of the plan-
ner and users. In the Upper Level, two objectives namely Total System Travel Time
and Total System Energy Consumption of the planner are achieved. In the Lower-
Level, the network flows are computed using user equilibrium principle where all
BEV drivers are on the path yielding the minimum value of the normalized cost.
Normalized cost is a combination of travel time and energy recharged by traveling
through DWC facilities. The bi-level framework prompts the problem of a black
box and computational heavy objective function. The research modifies and extends
upon the algorithm ConstrLMSRS developed by Regis (Regis 2011).

First, the modeling framework is tested on a small network as a validation of
the concept. Then, the modeling framework is applied as a case study using a real-
world Chicago City network from Illinois, USA. For applicability to real-size net-
works, selected constraints from the original model were modified to better reflect
the practical circumstances related to the availability of budget and electricity. The
results suggest that major highways and arterials should be implemented with DWC
because those links contribute to the majority of the trips. In addition, local roads
located in outer borough also receive DWC treatment in sparse manner to adequately
recharge the vehicle. However, numerical results suggest that roads located in dense
areas should not be implemented with DWC. This is intuitive as otherwise it would
attract more traffic to already congested area and lead to surge in electricity demand
due to DWC that is already experiencing high non-transportation (domestic, com-
mercial, industrial) electricity demand. Although this research can benefit planers in
present form, it can be improved in several ways. The current model considers only
one level of recharging method which is DWC and the inclusion of other methods
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such as static charging, battery swapping can improve the flexibility and the diver-
sity of the model. In the Lower Level, the traffic assignment task can incorporate
other types of vehicles in addition to BEVs. Incorporation of these aspects can form
interesting future extensions of this study.

We have assumed single user class with separable cost function, which implies that
the cost of a link depends on the flow of that link only. Although, in this paper, the
cost has two components, which includes travel time as the positive cost and the BEV
charging as the negative cost, both of these components will depend on the conges-
tion level and properties of that link only. Hence in our formulation, we do not have
the asymmetric cost function and mathematical programing formulation can be used.
However, incorporation of nonlinear complementarity formulation can be explored in
the future as a potential candidate for representing the lower-level problem.

Data Availability The data for the Sioux Fall and Chicago network in Sects. 4.1 and 5.1 are made avail-
able via the following repository:https://github.com/hhngo96/bev. The repository contains the network
configuration, origin—destination demand, and the DWC implementation plan for the TSTT model. The
exact algorithm for both the upper and lower level can be provided upon request at hhngo@memphis.edu
and amit.kumar @utsa.edu.
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