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Abstract

This paper presents the developments of flight hardware and software for a mul-
tirotor unmanned aerial vehicle, performing autonomous take-off and landing
on a moving vessel in ocean environments. The proposed flight hardware is
composed of a general-purpose computing module connected to a low-cost in-
ertial measurement, an real-time kinematics GPS, motor speed controller, and
a camera, through a custom-made printed circuit board. The flight software
is developed in C++ with multi-threading such that the multiple tasks of con-
trol, estimation, and communication are executed simultaneously. The proposed
flight system is verified with autonomous flight experiments on a United States
Naval Academy research vessel operating in Chesapeake Bay. Two types of
flight experiments are performed: autonomous flight utilizing real-time kine-
matics GPS for relative positioning, and vision-based autonomous flight, both
for shipboard launch and landing.

Keywords: Multirotor unmanned aerial vehicle, Kalman filter, geometric
control, ocean environment, autonomous flight

1. Introduction

The miniaturization of cost-effective and high-performing sensors and com-
puting modules in recent years has widened the applications of unmanned aerial
vehicle (UAV) systems. For example, various research groups have studied the
UAV applications in agriculture [1, 2|, aerial mapping and localization [3, 4],
cooperative aerial transportation [5, 6, 7], gas leak identification [8], bridge in-
spection [9] and computer-vision based navigation [10, 11]. Although the most
of such applications are focused on the above-land operations, deploying UAVs
in ocean environments has numerous benefits.

Given the smaller size, maneuverability, lower cost, and longer range of
UAVs, they can be extremely useful in scenarios such as search and rescue
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missions, or reconnaissance operations in ocean. For example, a UAV system
composed of multiple airborne and surface vessels to efficiently perform search
and rescue operations is proposed in [12]. In [13], a UAV system attached to a
ship is developed for automating search and rescue missions initiated by a de-
tection of person overboard. Also, UAV systems have been used in harsh coastal
areas for environment protection and surveillance operations, such as detecting
sewage discharge and tracking trash [14, 15, 16]. Further, there has been a re-
cent interest in measuring the ship air wake with anemometers mounted on a
UAV [17, 18, 19] with applications mainly in the field of naval aviation. In ad-
dition, the benefits of using UAVs in various military and security applications
in ocean environments such as aerial warfare, ordinance delivery, and patrolling
have been studied in [20]

As illustrated by these applications, there are numerous application in oper-
ating a UAV in ocean environments with a ship as the base point. However, the
UAYV operation in ocean environment is challenging due to several reasons. First,
the base point of the ship is moving along the water surface, while continuously
rolling and pitching on the sea waves. This requires a more precise position
control of the UAV when compared with above-ground operations. This is es-
pecially critical for the landing phase where the UAV is required to land on this
rocking landing pad. Further, there can be unfavorable, strong wind and turbu-
lences, specially in the air wake just behind a ship caused by the superstructure
of the ship [21]. Also, vision-based sensors suffer from the high-dynamic range,
caused by the fact that the ambient lighting varies significantly depending on
the direction of the camera relative to the sun or the weather.

The main objective of this paper is to develop both software and hardware
for an autonomous UAV platform that is capable of handling the harsh ocean
environments, for safe landing on a desired target of a moving ship. The empha-
sis is on utilizing low-cost sensors with flight hardware and software platform
that are designed and developed in house. As discussed above, an autonomous
UAV landing on a moving ship requires an accurate estimation of the relative
position of the UAV with respect to the ship. In the proposed UAV platform,
two methods are utilized for relative positioning: an real-time kinematics (RTK)
GPS-based solution and a vision-based solution. They have distinct character-
istics in the accuracy and functionality. The RTK GPS achieves an centimeter-
level accuracy, by compensating GPS signals from another receiver. But, this
requires two GPS receivers, each mounted on the UAV and on the ship. In ad-
dition, a dedicated radio-based or network-based communication link between
the two units should be established so that the ship-mounted unit can transmit
its observations to the UAV-mounted unit. This separate communication link
requires the UAV to carry additional power-consuming hardware, which in re-
turn reduces its payload. Further, the wireless communication between the ship
and the UAV might cause security concern in the relevant mission scenarios as
the radio signal may be corrupted by or expose its location to an adversary. The
overall performance is significantly affected by the number and the configuration
of GPS satellites that are available to provide reliable data.

To address these shortcomings and difficulties, the proposed UAV system was



extended to operate in a GPS-denied environment by a visual-inertial navigation
technique. All image processing is performed in real-time, utilizing the onboard
computer while running the estimation and control software in parallel. Since
this does not require any communications from the ship, it does not suffer
from the aforementioned drawbacks of using the RTK GPS-based positioning
solution.

1.1. Prior Works

Here we summarizes the prior work related to autonomous UAV landing
on a moving platform based on vision-based localization. Given that the GPS
measurements typically have an error greater than one meter, the most of the
prior works utilize vision-based approaches. One of vision based methods is vi-
sual servoing, where the distance from a known target is used to determine the
position of the UAV. Visually guided landing has been studied in [22], where an
image based solution has been used for horizontal positioning while using GPS
altitude for vertical positioning. A UAV controller for autonomous landing on
a moving platform using a monocular camera has been developed and tested
with numerical simulations in [23]. Autonomous landing on a moving platform
using image-based visual servoing has been studied in [24], which performs the
most of the calculation on the 2D image space without the need for 3D posi-
tion reconstruction. A similar method has been implemented in [25] to achieve
quasi-stationary UAV position control. The authors of [26] performed a vision
based landing on a moving truck in outdoor conditions, and the landing loca-
tions was denoted by a known marker with contrasting colors on the truck bed.
Autonomous landing of a moving vehicle is studied in [27] using fiducial markers
to identify the landing platform. Vision based landing on a moving platform has
been tested in [28] using a single downward facing camera, where the landing
pad emulates ship like motion which pitches and rolls with translations. This
work assumes that the landing target is known, and the 3D positioning of the
UAV with respect to the marker is determined. In [29], authors presented a
vision-based landing method that would extend the range of the landing pad
detection using cascaded fiducial markers. Autonomous takeoff and landing of
UAV, both from a moving platform has been studied in [30]. The landing pad
here is denoted by infra-red (IR) beacons, and the localization was performed
with the onboard IR camera. Vision based landing pad detection with an in-
door moving landing platform has been studied in [11] utilizing two cameras.
Image-based visual servoing with a feed-forward approach has been used in [31]
for vision based autonomous on landing platform attached to a truck. The land-
ing platform is operated manually to simulate roll, pitch, and heave motion of
a ship, and a fiducial marker has been used to identify the landing position.
Similar visual servoing technique has been utilized in [32], where a UAV au-
tonomous landing was tested on a landing deck mounted on a truck bed that
can autonomously simulate ocean wave oscillations.

Another vision based method used for UAV localization is visual odometry.
In previously discussed visual servoing methods, the UAV is required to have
prior knowledge of the target to determine its positioning. In contrast, visual



odometry methods use features in the environments to determine the egomo-
tion of the camera. However, these methods are computationally more expensive
than visual servoing methods. An optical flow based visual odometry approach
has been developed and used for autonomous UAV flight in [33]. Authors in [34]
has proposed a method to combine both stereo-vision and optical flow to deter-
mine the visual odometry of a UAV. Given visual odometry techniques require
sufficient illumination to work, a thermal camera based visual odometry ap-
proach has been used for a UAV flight in low visibility environments in [35].
Extended details of related vision-based methods for UAV navigation can be
found in [36, 37].

Egomotion estimation may not be accurate if the motion is fast, and tricky
lighting conditions such as low light or higher dynamic range may adversely af-
fect the image-related measurements. In contrast, IMUs provide high frequency
measurements that are more accurate in accelerations and angular velocities
with higher magnitudes. Visual-inertial odometry (VIO) techniques leverage
this complementary nature of the camera images and Inertial Measurement
Unit (IMU) measurements to provide an improved positioning solution. VIO
approaches can be divided into two main categories [38]: loosely-coupled ap-
proaches and tightly-coupled approaches.

In loosely-coupled approaches, a module processes image data to determine
visual odometry, while a separate modules processes IMU measurements. Here,
the image processing module determines position and the orientations, and the
IMU module determines the position, velocity and the orientation. Each of
those states are estimated in an independent manner, and fused together later
to provide a more robust positioning solution. Since the each module is separate
from each other, lightly-coupled techniques are easier to implement and less
complicated. However, the accuracy of such methods are lower than the tightly-
coupled approaches. Different loosely-coupled approaches have been proposed
and implemented by various researchers [39, 40, 41].

In contrast, tightly-coupled approaches integrate IMU measurements di-
rectly with 2D image features. Such approaches are complex and difficult to
implement, but provide high accurate positioning estimates. Tightly-coupled
approaches may utilize either estimation methods or optimization methods to
determine the solution. Estimations techniques such as [42, 43| use prediction
and correction steps similar to an extended Kalman filter to provide a faster
solution. Optimization based tightly-coupled VIO techniques [44, 38] estimate
the position by minimizing the residual error of some objective function. Typi-
cal choice for this objective function would be the residual error of the equations
of motion and the reprojection error. A model predictive control approach has
been utilized in [45] to land a UAV on an unmanned surface vessel. The estima-
tion structure includes a landing target predictor and a wave predictor to aid
the UAV position during the landing phase.

As an alternative to strictly vision-based solutions, various researchers have
experimented with ultra-wide band (UWB) based approaches for landing on
moving platforms. Work presented in [46] uses vision-solution to detect the
landing target, and an added UWB solution to improve it’s accuracy. The



presented solution has been tested in software simulations. The authors in [47]
use UWB positioning solution to land a UAV on a moving truck attached with
a platform that can simulate sea conditions. Four UWB sensors were attached
on the landing target, and a UWB sensor mounted on the UAV use them to
localize itself.

1.2. Contributions

However, all of above discussed prior works in autonomous landing deal with
above-ground scenarios or simulated ocean environments. There are limited
results reporting autonomous flight in the actual ocean [48, 49]. The researchers
in [48] has landed a hybrid vertical take-off and landing UAV autonomously on
a moving ship. This work uses a combination of GPS and UWB to determine
the position of the UAV relative to the ship, and the landing position error
is in the range of 1 —3m. Similarly, a tilt-rotor UAV has been been utilized
in an autonomous shipboard landing on a moving ship [49]. This work uses
an RTK GPS solution for more accurate positioning and has around 1m mean
landing position error. However, vision-based autonomous flight of a compact,
multi-rotor UAV in the ocean environment has not been reported yet.

The main contribution of this paper is the developments of both low-cost
hardware and software structure for a UAV system that can operate in an ac-
tual ocean environment, including autonomous landing on a ship. The proposed
low-cost UAV platform is specifically designed to successfully operate with two
relative localization schemes, namely RTK GPS and VIO, while compensat-
ing sensor delays and explicitly considering wind disturbances. We integrate
a geometric adaptive controller for multi-rotor UAV that is robust against un-
known disturbances with an extended Kalman filter that can handle time-delay
in measurements, which is critical for RTK GPS relying on a communication
link between two modules, and vision-based localization requiring non-trivial
image processing.

Further, the proposed UAV system has been tested in autonomous flight
experiments for launch and recovery in a United States Naval Academy research
vessel. It should be emphasized that there is a great deal of unique challenges
in performing autonomous flight experiments in ocean environments, such as
strong air wakes and turbulence caused by the ship superstructures and adverse
ambient lighting with high dynamic range, which cannot be accounted properly
in simulated ocean environments. We completed successful flight experiments,
where the mean position error is less than 15 cm during the entire landing phase,
and the final horizontal landing accuracy is less than 12 cm. In short, this paper
reports the first vision-based autonomous shipboard launch and recovery for a
multirotor UAV in ocean, thereby addressing the various issues of RTK GPS-
based solutions.

2. Control and Estimation Schemes

To achieve safe autonomous flights in ocean environments, it is critical to
utilize robust and reliable methods for control and estimation. For control, we
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Figure 1: UAV model

implement a geometric adaptive controller with decoupled-yaw dynamics pro-
posed in a prior work [50], which exhibits excellent performances under turbulent
wind conditions by separating the roll/pitch dynamics critical for safety from
the yaw dynamics.

In the proposed UAV system, all of the computation required for control
and estimation is executed within the on-board computing module. Due to the
limited computing power, there is non-negligible time delay in communicating
with the base module in RTK GPS, or in processing the video images in vision-
based localization. To compensate for this latency, the delayed Kalman filer
developed for RTK GPS measurement [51] is adopted for sensor fusion, and it
is further revised for vision-based localization.

2.1. Multirotor Dynamics

Consider the UAV shown in Figure 1. Let the mass of the UAV be m € R,
and its moment of inertia with respect to the body frame be J € R3*3. The
body-fixed frame B = {b1, by, b3} is defined such that its origin corresponds to
the mass center of the UAV, and b3 is pointing downward when hovering. The
ship-fixed frame Z = {41,1i2,i3} is located at the center of the flight deck, and
its first axis points toward the stern, and the third axis points downward the
direction of gravity. Thus, the second axis is toward the port as illustrated in
Figure 2. Note that the ship-fixed frame translates as the ship moves, but it does
not roll or pitch: the first two axes are horizontal and the third axis is vertical
always. Assuming that the ship does not accelerate or decelerate severely during
the landing phase, it is assumed that the ship-fixed frame is inertial.

The position of the UAV is denoted by = € R?, which is the vector from the
origin of Z to the origin of B resolved with respect to Z. Next, let R € SO(3) be
the attitude of the UAV. More precisely, R corresponds to the transformation
of a representation of a vector from B to Z. The angular velocity of the UAV is
defined as € R3, and it is resolved with respect to B.

The total thrust generated by all the rotors is denoted by f € R, and the
resultant moment generated by the rotors, resolved in B is denoted by M € R3.



Given the physical structure of a rotor-wing UAV, the total thrust f can only
be generated along the direction of motor rotation axis of the UAV, namely —b3
direction. This corresponds to —Res in Z, where the i-th standard basis of R3
is denoted by e; € R3. Further, the gravity g € R always acts on the UAV along
the i3 direction.

In practice, there are unmodeled dynamics or parametric errors, such as the
error in the estimate of the mass (m) or inertia matrix (J). Further, there
can be external disturbances such as wind acting upon the UAV. To account
these, let W, (z,v, R,Q)0, € R3 be the modeling error and uncertainties in
the translational dynamics, and let Z?zl Wg, (z,v, R,Q)0g,e; € R be those of
the rotational dynamics. Here, W, (z,v, R, Q) € R**F Wg. (z,v, R, Q) € R*F
are any arbitrary function of the state that are assumed to be known, and
0:,0r, € RP are fixed unknown parameters, where P denotes the number of
unknown parameters in 6, and fgr,. The equations of motions can be written
as

T =, (1)
mo = mges — fRes + Wm(xa v, R, Q)Hmy (2)
R = RQ, (3)
) 3
JU+QxJQ=M+> W, (z,v, R, Q)0r,e;, (4)
i=1
where the hat map, A : R? — s0(3) is defined such that 2y = 2 xy and 27 = —#

for any x,y € R3. This is represented throughout the paper either with “ or (-)".

In the above equations, (1)-(2) correspond to the translational dynamics of the
UAV, while (3)-(4) correspond to the rotational dynamics. It should be noted
that above equations of motion hold for any conventional multi-rotor UAV such
as a quadrotor, a hexrotor or an octocopter, as long as the thrust of each rotor
can be converted into the total thrust f and the moment M in the body-fixed
frame.

2.2. Geometric Adaptive Control

Suppose that the desired position trajectory is given by x4(t) € R?, and
also the desired direction of the first body fixed axis is prescribed as by, (t) €
S?2 = {r € R¥||r|| = 1}. Then, the control objective is to determine the
thrust of each rotor such that the actual trajectory x(¢) follows its desired value
x4(t) asymptotically. To achieve this control objective, an adaptive geometric
controller with decoupled-yaw dynamics is utilized [50].

In the multirotor dynamics summarized by (1)—(4), the translational dynam-
ics (1) and (2) are coupled with the attitude dynamics (3) and (4) only through
the single term, namely —Res in (2), which corresponds to the direction of the
total thrust determined by the third body-fixed axis b3. As such, the rota-
tion about b3, referred to as the yaw dynamics does not affect the translational
dynamics directly.
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Figure 2: Frame definitions

The potential issue of the yaw dynamics is that it is actuated by the weak
reactive torque from each rotor. More specifically, to generate the reactive
torque about b3 for the yaw motion, two motors rotating in the same direction
as the required yaw rotation need to be decelerated rapidly, while other two
motors need to be accelerated. As the mass inertia of the propeller is small, it is
often required to rotate them excessively even for a moderate yaw moment. This
may amplify the undesirable effects caused by input saturation, motor/propeller
imbalances, or errors in motor calibrations. More importantly, such issues may
deteriorate the roll/pitch dynamics that are critical for the stability of position
dynamics of the UAV.

To avoid these problems, a position control system for a UAV that decouples
the yaw control from the roll/pitch control for position tracking is utilized. A
roll/pitch controller is designed such that the direction of the thrust follows
its desired value. Then, an yaw controller is constructed separately to control
the rotation about the thrust direction. These are globally formulated on the
two-dimensional unit sphere and on the one-dimensional circle, respectively,
to avoid singularities and complexities inherent to local coordinates. Further,
both position and attitude controllers include adaptive terms to compensate for
unmodeled dynamics and external disturbances.

To achieve these, it is assumed that the mass distribution of the UAV is
symmetric about bs such that the inertia matrix is given by J = diag[Jy, Ji, J3]
for Jy, Js > 0. This is required to separate the yaw dynamics, and it is satisfied
in general as the UAVs such as quadrotors and octocopters are rotationally
symmetric. Under this assumption, the roll/pitch dynamics and be decoupled
from the yaw dynamics. Specifically, let Q = (21,Q2,Q3) € R3 and M =
(My, Ma, M3) € R3. Then, it can be shown that (4) can be re-written into a set



of three scalar equations:

JlQl = —(Jg — Jl)QQQg, + My +WR19R17 (5)
T = (J3 — J1)QY + My + Wg,0g,, (6)
J3Qs = My + Wg,0r,. (7)

Here (5)-(6) correspond to the roll/pitch dynamics, and (7) corresponds to the
yaw dynamics decoupled from the other parts.

Let the direction of the resultant thrust along the negative third body-fixed
axis b3 = Rez € S?, and the desired direction of thrust bs,(t) € S?, The
roll/pitch error variables can be defined as e, = bs, % bs and e,, = wy2 + B§W12d,
with wia = Qb1 + Qsby € R3. Then, a fictitious control 7 € R3 can be defined
as

T = (—J3QQQg + Ml)bl + (JgQng + Mg)bg. (8)

Further, let 0, € RF for i € {1,2} be the estimated parameter, which is
updated according to

Ori = W’RWE (€w + c2ep) - by, 9)

for co,vg € R > 0.

Let the position error be e, =  — 24 € R? and let the velocity error e, =
v—dq € R3. Also, let 6, € RY be an estimate to the unknown parameter 6,,
which is updated according to the following adaptive law for the translational
dynamics:

'YrWI(BD + cres) if (”gr” < By,), or
0, = (02| = Bs, and 0TWT (e, + cre,) < 0), (10)
n aoT
V(I — %)Wg(ev + c1e;) otherwise,
for ¢1,7: € R > 0. Further, the corresponding estimation error 0, € RY is
defined as 6, = (6, — 0,.).
Then, define following control laws:

f = - (_kmex - kvev - er_m — mges + mxd) ° b37 (11)
T = — kyep — ke, — Ji1(bs 'w12d)b3 - Jli?%ffdud
— Wg,0r, b1 — Wg,0r, b, (12)

for controller gains k., k., ky, k, > 0. Considering the UAV dynamics given by
(2) and (4), choosing the total thrust f to be (11), and the moments (M7, M>)
to be defined by (8) and (12), it can be shown that the equilibrium of the
tracking errors for the roll/pitch dynamics, namely (e, e,, éx, €p, Cw, 531 , éRQ) =
(0,0,0,0,0,0,0) is stable in the sense of Lyapunov, and the tracking errors
€z, €,y €h, € asymptotically converge to zero [50].



For the yaw dynamics, the error terms are defined as ey, = —by, - b2, and
€w, = 23 —w,,. Here, by, € S? is the projection of the desired direction of b,
by, € R3, to the plane normal to b3, and is defined as by, = (I3x3 — b3b)by,,
and w,, = b3 - (b1, x by.) € R. Considering positive controller gains k,, kw,, the
control moment is chosen as

Mz = —kyey — ko, €w, + J3tc, — Wr,Og,, (13)
where O, € R” is an estimate to fg, and it is updated according to

Or, = VRWRST(ewy + c3ey), (14)

for cg € R > 0. Then, for positive controller gains k,, kzwy, it can be shown that
the equilibrium (e,, ewy,égg) = (0,0,0) is stable in the sense of Lyapunov, and
ey, €w, — 0 as t — 0. Again, the proofs are relegated to [50] for brevity.

The roll/pitch controller defined in (11)-(12) and the yaw controller defined
in (13) were implemented and utilized for the trajectory control of the UAV
during the autonomous operations in ocean environments.

2.3. Delayed Kalman Filter

For the vision-based autonomous UAV landing, it is required to estimate
the UAV position with respect to the ship with a monocular camera. The
objective is to adopt a method that is robust and computationally-efficient for
real-time localization with the onboard computing. As such, an optimization-
based tightly-coupled visual-inertial odometry method was utilized for vision
processing [38] to integrate inertial measurements and image data, while using
semi-direct visual odometry (SVO) proposed in [52] as the image processing
front end.

Specifically, the RPG-SVO open-source library [53] has been adopted. The
approach here combines both feature-based indirect methods and sparse direct
methods, and then utilizes the IMU measurements to estimate the visual odom-
etry. This enables vision-based pose estimation without any specific predefined
fiducial markers. This library was modified to be compiled and run optimally
at 5 Hz in the Jetson TX2, which is based on the ARM architecture. While the
localization in the RPG-SVO library was fast compared to other existing visual-
inertial odometry methods, there exists a non-trivial delay (about 500 ms) as it
is executed on the low powered Jetson TX2 running multiple parallel threads.

In contrast, the measurements from the IMU are not delayed significantly
and they are available at a higher rate of 200 Hz. Directly fusing the delayed
vision measurements with non-delayed IMU measurements is non-optimal, and
can cause the estimation to diverge over time. As such, the delayed Kalman
filter developed in [51] for fusing delayed RTK GPS measurements was adopted
for processing vision measurements in this work.

Consider the UAV dynamics derived in Section 2.1. Assume that the IMU
is mounted at the center of gravity of the UAV, and the rotation matrix from
the IMU frame to the B-frame is denoted by Rp; € SO(3). Let the acceleration
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measurement from the IMU be aryuy, which is corrupted by an additive noise
we € R3, and a bias b, € R along the direction of gravity. Further, let the
angular velocity measurements from the IMU be Qpyu € R3, with an additive
noise wqo € R3. Both of these measurements are treated as an exogenous time-
varying signals resolved in the B-frame. Then, the equations of motion for
(z,v, R) are given by

T =, (15)
V= RRbi(aIMU + wa) + esb, + ges, (16)
R= R(Rbi(QIMU +'LUQ))/\. (17)

2.3.1. Prediction

Suppose the distribution at t = t,, given by (T, Uk, Rk, ba, ) and their co-
variance matrix, Py. The mean values (7,9, R) are propagated by discretizing
(15)—(17) in the absence of the process noise via the following second order
explicit method:

h2
Try1 = T + hpp + éf@k, (18)
_ _ he
Vg1 = Vg + 7(% + Apt1), (19)
o hie ~
Ry4+1 = Riexp ?(Qk + Qeq1)” ¢ (20)
Eak+1 = E(Lka (21)

where hy = ty4+1 — tx is the discrete time step, and

Qi = Ry, (22)
ar = Ry Ry;amvu, + esba, + ges. (23)

Consider small perturbations to (Z,7,b,) € R¥™3+! which are denoted by
(0x,0v, 6b, ) € R3+3FL respectively. For the attitude, R = Rexp(7), for n € R3,

which is uniquely determined when the angle between R and R is less than «
radians. This yields the following perturbation of the attitude

SR = Ri). (24)
Let x € R be defined as
x = (dx,6v,1m, 6b,). (25)
Further, the covariance of x, P € R!9X10 is given by

P = E[xxT].

In short, the uncertainty distribution of the state is defined by the mean (z, v, R, b, ),

and the covariance P.

11



Considering above discretized equations of motion in (15)—(17), it can be
shown that the perturbed system can be rearranged into a matrix form as

dx = (A(t)x + Fi(t)wq)dt + FodW,,, (26)

where w1 = [wa;wg] € R®, and the matrices A(t) € RI9%10 Fy(t) € R10x6,
Fy € R19%! are given by

[03x3  Isxs 03x3 03x1

A(t) = O3x3 0Osx3 —R(Rpiamvu)”  e3
03x3 0Osx3 —(RpiQmvu)”  O3x1
[01x3  O1x3 O1x3 0
[03x3  Osx3

| RRp; 0O3x3

() = O3x3 Ry |’
| 0ixs  Oixs
[0

F2: %Xl

In (26), wp, € R follows the distribution defined by wy, ~ N(0, k). Defining
Wi = [Wa,;wa,;wp,] € RY, it can be shown that wi ~ N(0,Q%), and its
covariance Q € R™*7 is

Qr = diag[Qq, Qo hx). (27)
Following [54, p 330], the discrete-time linearized equation can be written as
X1 = Apx + Fpwy, (28)

where A;, € R19%10 and F}, € R19%7 are

A = Ioxi0 + hi A(ty) ¥, (29)
Fi, = h V[Fy(ty), ), (30)

with a matrix ¥ € R10x10

h
¥ = Tiox10 + ?kA(tk)X

<1 + %A(tk) <1 T <I + }]L\];A(tk))>) ,

for an integer N > 1. Finally, from (28), the covariance is propagated as
Pryq = AkPkAg + FkaFE (31)

When the prediction is executed, the mean values of the states are propa-
gated with (18)—(21), and the covariance matrix is propagated with (31). Note
that the prediction step requires the IMU measurements (Qvu, amvu) at (22)
and (23).
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2.8.2. Non-Delayed IMU Correction
Next, the state correction is performed using IMU attitude measurements
that has no delay. The expected attitude measurement is given by

Riviu = RRy;. (32)

The residual error, or the discrepancy between (322, includes two error sources:
the attitude estimation error represented as R = Rexp(#) for n € R?, and the
sensor measurement error, (g € R®. This can be mathematically represented as

Ry = RexpiiRy; exp C. (33)

Given that the attitude evolves on SO(3), the residual error, dz € R3, is repre-
sented at the tangent space of SO(3) at R as

RIMU = Rexp(&é’)Rbi, (34)

Equation (34) can be re-arranged to show that
1, - _
0z = 5 (R" Rovuu Ry, — R Ry R)” (35)

Using exp(]/:{\C) = Rexp CRT for any R € SO(3) and ¢ € R3, (33) is rewritten
as

Riuu = Rexp i exp(RuiCr)Rui, (36)

which is compared with (34) to obtain

o —

exp(02) = exp 1) exp(RyiCr). (37)

According to the BCH formula [55], and after ignoring higher-order terms, it
can be shown that

0z =1+ RyiCr.
This can be re-arranged to
0z =Hx+ Gv, (38)
where v = (g € R®*3, and H € R**10 and G € R®*? are defined as
H = [03x3, 03x3, I3x3, O3x1], G = Ry;. (39)
Now, the posterior mean and the posterior covariance are given by

xt = K¢z, (40)
Pt = (Iiox10 — KH)P. (41)
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where K € R19%3 and S € R3*3 are
K =PHTS™', S§=HPH? + GVRGT.
Then, the posterior mean of each state is updated as

T =z+0z", T =0v+607, (42)
R* = Rexp(n™), bl = b, + b/ . (43)

In summary, when a new IMU measurement is available, the residual dz is
computed by (35), and the mean and the covariance are updated following
(40)—(43).

2.8.8. Delayed Vision Position Correction

Given the processing latency of the onboard computing module, the vision-
based localization measurements are considered to have a known time delay
tp. Let the delay time period be tp_p = tx — tp, for D € Z*, and position
and velocity measurement error covariance values be V,V, € R3*3. Then, the
vision measurement equations can be written as

zk—p = Hxg—p + ¢, (44)

where z = [z;v]T € RS, and € = [(4; ()T € R® with £ ~ N(0gx1,V) for
V = diag(Vy, V,,) € R6*¢. The matrix H € R*10 is

I3x3 03x3 0O3x4
H = . 45
03x3  I3x3 Ozxs (45)

The objective of the vision correction step is to determine the current state,
(zk, vk, Rk, ba, ), conditioned by the vision measurement in the past, zp_p.
This can be optimally calculated by correcting the prior state at tx_p us-
ing the new vision measurement z;_p, and propagating it to t; by repeat-
ing the IMU attitude correction step and the prediction step. Let the prior
distribution given all the measurements up to t;_p be defined by the mean
(Zt—D,Uk—D, Rk—D,ba,_,,) and the covariance Py_p. Let the posterior distri-
bution conditioned by zx_p denoted by the superscript +. From (44),

X,_p = K(2k—p — [Tk—D; Uk—D]), (46)
Plj—D = (J1ox10 — KH)P;_p. (47)

where K € R'9%6 is given by
K=P,_pH"S™, S=HP,_pH" +V.

When a new vision measurement arrives, the saved prior state at t;_p is
corrected with (46)—(47), and the posterior state is propagated up to the current
time step, tx, by repeating the prediction and the IMU correction using the saved
IMU measurements during the delay period, ¢p.
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(a) Hexrotor (b) Octocopter

Figure 3: UAVs designed and developed for the hardware flight tests

The above approach preserves the optimality in the estimation. However,
given the requirements for saving prior states and the non-delayed measure-
ments during the delay period, there is an increased memory requirement. This
can grow large as the delay amount is increased relative to the non-delayed
measurement frequency. For example, in the developed UAV system, the IMU
measurements were processed at 200 Hz, while vision measurements were ac-
quired at 5Hz with a delay of 500 ms. This requires saving and processing 100
measurements for the delayed vision correction. This burden can be minimized
by sub-sampling IMU measurements over the prediction. The effects of the
sub-sampling on the trade-off between the computational load and the accuracy
for delayed GPS measurements were discussed and in [51]. In that work, sub-
sampling reduced the delayed GPS correction (5Hz measurements with 400 ms
latency) time to around 70% of non-sub-sampled case, while only increasing the
average position error by around 1%. Similar computational gains were noticed
with 5 Hz vision measurements with 500 ms latency.

3. Flight Hardware Developments

This section details the development of a UAV hardware platform that is
capable of flying in ocean environments. The proposed platform was designed
such that it could be easily transformed into different configurations such as
quadrotors or hexrotors with minimal changes, and it is composed of both off-
the-shelf and custom designed components. A hexrotor and an octocopter used
for the results included in the paper are shown in Figure 3. Unless noted other-
wise, the details in this section are valid for any UAV platform used, regardless
of the motor/frame configuration.

3.1. Sensors and Actuators

A 9-axis VectorNav VN100 [56] sensor was used as the onboard inertial
measurement unit (IMU), which provides the UAV acceleration, the angular
velocity, and the attitude. The sensor communication was achieved through a
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3.3V serial communication line (UART port), and it was able to provide all
required measurements at 200 Hz without any noticeable latency.

A relatively low-cost SwiftNav Piksi Multi RTK GPS receiver [57] was used
to determine the position and the velocity of the UAV. In contrast to the con-
ventional single point precision GPS receivers, RTK GPS provides centimeter-
level accuracy. This higher accuracy is achieved by using another RTK GPS
unit, namely the base receiver, sending corrections to the UAV RTK GPS re-
ceiver, namely the rover receiver. Further, given that the onboard GPS receiver
receives the base GPS position, they can provide accurate relative position mea-
surements. This is particularly useful when the base is moving and the relative
position of the UAV is more important rather than the absolute position, such
as operating the UAV off of a moving ship. Similar to the IMU, the GPS re-
ceiver communicates over a 3.3V serial communication (UART port) line, and
provides measurements at 5 Hz. However, the correction calculation required
to achieve the centimeter-level accuracy is computationally expensive and the
processing time causes about a delay of 0.4s to the GPS measurements.

As the base receiver should send corrections to the rover receiver, it is re-
quired to have a dedicated communication link between them. A set of 915 MHz
FreeWave telemetry [58] units were paired with each of the RTK GPS receivers
to establish this radio communication. Each GPS receiver has a separate serial
port to communicate with their respective telemetry unit. The base receiver
sends its observations to the base telemetry, which transmits the observations
to the rover telemetry as a radio signal. Upon receiving the transmitted mes-
sage, the rover telemetry communicates the observations to the rover receiver
through its serial port.

For the vision-based localization of the UAV, a Point Grey Chameleon [59]
camera was mounted on the UAV. This is a monocular grayscale camera with a
global shutter. Although the camera was capable of handling a USB 3.0 connec-
tion, a USB 2.0 cable was used between the camera and the computing module
to avoid interference with the GPS signals. Further, the camera frame rate was
reduced to 15 Hz given the limited bandwidth of the USB 2.0 connection.

The only actuators onboard the UAV are the motors. For the developed
UAV systems, 700 KV T-Motor [60] DC brush-less electrical motors were used.
They were combined with 10 x 4.7 APC propellers. Each brush-less DC motor is
connected to an electronic speed controller (ESC), which modulates the motor
power to realize the commands sent from the computing module. In the hexro-
tor platform, MikroKopter BL-Ctrl [61] v2 modules were used as ESCs, while
MikroKopter BL-Ctrl v3 modules were used on the octocopter. Both ESCs sup-
port I12C communication, though which the throttle commands are sent from
the computing module to the ESCs. The main difference between the two ESC
types is that the v3 modules are capable of motor braking as opposed to the v2
module.

8.2. Computing Module and the PCB

The UAV platform was developed with two main components: rover and
base. The term rover is used to denote all components onboard the UAV in-

16



(a) Main system components (b) Heat dissipation system

Figure 4: Internal components of the system, mounted on a hexrotor

cluding the sensors, actuators, and the onboard computer, whereas the term
base refers to the components on the base point of operations, including the
base computer, base GPS receiver and base IMU on the ship.

An NVIDIA Jetson TX2 module running Ubuntu 18.04 with JetPack 4.4
was used as the onboard computer. The multiple tasks of reading from sensors,
computing all the calculations required for the UAV estimation and control,
and controlling the actuators were performed on this computing module. The
onboard computer was fitted to a ConnectTech Orbitty carrier board and all
peripherals were connected with the TX2 through it. This board was selected
based on the smaller footprint and the input/output port availability. The TX2
with a green-colored heat sink attached can be observed in Figure 4, and the
carrier board can be seen right below the TX2. To connect the computing
module to the sensors and actuators described in Section 3.1, a custom printed
circuit board (PCB) was developed. This PCB provided mounting points for
all the sensors, and voltage regulation required for electronic components.

3.3. Other Hardware Components

A communication link between the UAV and the base computer is required in
order to send commands and monitor flight data in real-time. This is achieved
through a Wi-Fi connection, where the UAV is configured to act as a Wi-Fi
hotspot to which the base computer is connected. However, if the UAV is too
far from the base, this connection may become unreliable. This can cause the
connection to be dropped, which is not desirable for the robust operation of
the UAV. In order to address this, a Redport Halo Wi-Fi extender was uti-
lized. The extender is configured to connect to the UAV hotspot, and the base
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computer is connected to the extender through an ethernet cable. This signif-
icantly improved the signal strength and the reliability of the UAV-base Wi-Fi
connection.

The above-mentioned communication link is used to send critical commands
such as motor on/off signals or commanded flight mode of takeoff or hover. As
such, if the Wi-Fi connection is lost in any reason, there is no way to control
the UAV. For an additional safety measure, a radio controlled relay switch is
installed at the I2C connection from the carrier board to the ESCs, which is
activated by a conventional UAV remote control (RC) radio to turn off the
motors independently from other parts of the system. Further, the relay is
configured such that the motors are turned off automatically if the power is lost
or the UAV flies beyond the range of the RC.

The UAV platform was designed with the goal of the operating it in ocean
environments. As such, it was expected that there is a risk of unexpected UAV
water landings. To recover the UAV in such cases, the landing legs of the UAV
were extended and the pool noodles were wrapped around the extension, as
shown in blue color of Figure 3a. This modification results in the 2.5-to-1 ratio
between the buoyancy and the weight so that the UAV can float. Further, the
critical components of the rover are enclosed in a water tight enclosure (see
the silver-white box in Figure 3). However, this raised another issue that the
system overheats during flight operations, especially over the summer. All of
the RTK GPS, the computing module, and the power regulators generate heat
when they operate. Given that the enclosure is water-tight, the heat does not
dissipate effectively through the box in a passive manner. While an exhaust
fan would be helpful, it will destroy the desired impenetrability of water as
well. Nothing that the RTK GPS unit is the main source of heat, an active
heat rejection system was designed. A copper heat pipe was connected to the
heatsink on the GPS receiver, and it was routed to the outside of the box,
while keeping the box watertight with a thermal-resistant compound. A fan
was connected to the pipe through a copper plate to actively remove heat from
it. This heat dissipation system can be seen in Figure 4b. Further, the silver
colored reflective layer was added to the top of the enclosure to mitigate the
radiation from the sun.

3.4. Combined Hardware Platform

All the components discussed so far together constitute the proposed UAV
hardware platform. However, when the UAV is being operated on a ship, it is
also estimate its position and attitude relative to the ship. As such, a separate
UAV sensor platform with the same PCB was mounted on the ship and it is
connected to the base laptop computer. The base sensor data were saved directly
on the computer, together with the time-stamped data received from the UAV
through the Wi-Fi connection.

The overall system configuration is illustrated in Figure 5, which presents
the interconnection between components (solid:wired, dotted:wireless) and the
power (red). The components inside the light blue area are mounted on the
PCB, and for the UAV, all the components except the ESCs and the motors are
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placed inside the water-tight enclosure. The TCP/IP communication connection
between base computer and the rover is routed via the Wi-Fi extender as detailed
in the previous section. The data link between the base PCB and the base
computer were established through two FTDI cables: one for the base IMU and
another for the base RTK GPS receiver.

This combined hardware platform has been utilized in multiple UAVs with
varying motor configurations. The particular choice of the motor configuration
was determined based on the operating environment of the UAV and the pay-
load. A hexrotor frame was used for RTK GPS-based flight tests, where the
UAV was carrying the water-tight enclosure, the heat dissipation system, and
the pool noodles for flotation. During the vision-based flight tests, the added
weight of the camera made the hexrotor UAV to operate closer to the motor
saturation limits, especially inside the turbulent ship air wake. To overcome
this, the frame was upgraded to an octocopter setup with co-axial rotors. The
upgraded octocopter configuration provided a greater thrust-to-weight ratio for
safe and stable UAV flight experiments in ocean with the additional vision hard-
ware components.

4. Flight Software Structures

The hardware platform designed in Section 3 operates with a flight software
running in its computing module. It was developed with a C++ code utilizing
multi-threaded programming, which implements two main components: a geo-
metric adaptive controller described in Section 2.2 to control the motion of the
multirotor UAV, and the extended Kalman filter (EKF) detailed in Section 2.2
to estimate the state of the UAV, while compensating sensor delay.

As described in Section 3.4, the developed UAV platform can be divided
into two modules of the rover and the base. The code was split into two parts
as well where each module worked in tandem to achieve the control objective.
However, it should be emphasized that all UAV calculations were performed
inside the computer onboard the UAV, and the base computer only handled
sending commands (e.g.: motor on/off, trajectory mode changes) and receiving
data for real-time monitoring and logging. The function of each module is
detailed in the following sections.

4.1. Rover Code

The rover code utilized multiple threads using the C++ standard threading
library to execute various tasks simultaneously. Each onboard sensor is ded-
icated to a separate thread to communicate with the Jetson TX2 computing
module, namely IMU thread, GPS thread, and camera thread. All of the sen-
sor interfaces are asynchronous, meaning each sensor pushes the sensor message
whenever a new measurement is available, without need to constantly check the
time for synchronization. When a sensor thread receives a new asynchronous
measurement, it is saved into a first-in-first-out (FIFO) buffer with a time stamp,
which is referred to as sensor message buffer. This buffer is shared with all sensor
threads, and as such, its data structure was designed to ensure thread-safety.
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Figure 6: Integration of vision measurement into the delayed Kalman filter

One of the critical component of the rover code was the implementation of
the vision processing. The RPG-SVO library used for vision processing requires
image stream and the IMU measurements for its calculations. The IMU thread
reads and processes the measurements from the IMU, and the camera thread was
used to read image frames from the camera. The IMU thread was augmented
such that whenever IMU sends a new sensor message, it immediately publishes
the message in a format that is compatible with the RPG-SVO library. A similar
publisher was added to the camera thread where it publishes the images read
from the camera in a format understandable to the RPG-SVO library.

When the RPG-SVO library gets new sensor messages, it processes them to
determine the camera position with respect to the initial frame and publishes it.
On the onboard computer, this process takes around 500 ms when all the other
threads from the UAV code are being executed. A separate thread was created
to subscribe to this message, which treated it as a delayed measurement when
integrating it to the estimator, as described in Section 2.3. Specifically, sub-
sampled IMU measurements were saved during the delay period, and once the
processed VIO position message arrived, it was used to correct the saved prior
state. Then, the saved IMU measurements were used to forward propagate the
corrected state to the current time horizon, compensating for the VIO processing
delay. This process is illustrated in Figure 6.

The controller was executed in a separate thread, which takes the states
updated by the estimator and the desired commands defined by user inputs. The
controller generates the desired motor command values, and pushes them into
another thread-safe FIFO buffer, namely motor command buffer. The motor
control thread reads from the motor control buffer and executes necessary steps
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to rotate the motors at the required speed.

In addition to the above described threads, another thread, namely the Wi-
Fi thread runs on the rover. The purpose of this thread is to receive commands
such as motor on/off, trajectory mode changes (takeoff, land, etc.) from the base
computer through a Wi-Fi connection. In addition, the estimated UAV states
on the rover are sent to the base for real-time data monitoring and logging.

The FIFO buffer method described above minimizes the scope of the required
threadlocks, allowing multiple threads to access the shared data promptly and
safely. The corresponding average frequencies of the critical control thread and
the motor threads are around 400 Hz and 800 Hz, respectively.

4.2. Base Code

The base code is similar with the above rover code, except that it does not
utilize any thread for estimation, control, and motor. But, it still uses sensor
threads for data monitoring. Also, the base code runs its own Wi-Fi thread that
is responsible for sending commands to the rover, and receiving internal state
data from the rover for real-time visualizing and logging.

Further, the base code includes two other threads: the graphical user in-
terface (GUI) thread and the data logging thread. As the name suggests, the
GUI thread displays a graphical user interface that can be used to visualize the
UAV states such as position, attitude, and motor commands, and take com-
mands from the user, which is developed with the gtkmm library [62]. The data
logging thread logs data from both of the rover and the base for post flight
analysis.

5. Flight Experiments in Ocean Environments

With the UAV hardware platform described in Section 3 running the software
described in Section 4, we performed several autonomous flight experiments in
ocean environments. These are executed on research vessels of the United States
Naval Academy, specifically YP689 or YP700 depending on availability (see
Figure 7), over Chesapeake Bay, Maryland. These results are presented in two
sub-sections: autonomous UAV operation with RTK GPS-based positioning,
and with vision-based positioning, respectively.

5.1. Flight Experiments with RTK GPS-Based Positioning

During the underway flight tests, the base module was mounted on the ship
and its sensors were connected to the base computer through USB extension
cables to read and save the ship’s status. The UAV was configured to be a Wi-
Fi hotspot and the base computer was connected to it for sending commands
and for monitoring real-time UAV data. The RTK GPS sensor measurements
were configured such that the initial position of the UAV on the ship corresponds
to the origin of the ship-fixed frame for relative localization. The first axis of
the ship-fixed frame points toward the stern or the aft-most part of the ship,
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(a) YP689 (b) YP700

Figure 7: US Naval Academy research vessels used for underway flight tests

and the second axis points the port side. According to the right handed rule,
the third axis points downward.

The flight experiment was performed at the flight deck of the aft. During the
experiment, the ship was moving at around 5 knots, mostly along a straight line
such that the headwind makes a 0° angle with the ship’s direction of motion.

The motor arming and the UAV take-off was performed manually. After
the take-off, the desired position is specified by manual key strokes on the base
laptop. Six keys on the keyboard are assigned to the axes of the ship-fixed frame
and the opposite directions, and each stroke results in the command of shift
along the corresponding axis by 10cm. Using this, the UAV was commanded
to fly about 5m behind the stern. After maintaining the relative position for
4s, the command for landing was transmitted, after which the desired landing
trajectory was calculated and followed.

The autonomous landing mode generates the desired trajectory such that
the UAV moves toward the origin at a constant velocity, while keeping an offset
in the vertical direction. Once the UAV has reached this waypoint, it performs
a quick descent to reach the origin of the trajectory, thereby completing the
autonomous landing. More specifically, let z;, € R? be the UAV relative position
at t = 0 when the landing command was issued, and let x4,. € R? be the point
about the flight deck where the descending for landing starts. Both z;, and z4s.
are defined in the ship-fixed frame, Z, as detailed in Section 2.1. The desired
landing trajectory is selected to connect the three points of z;,, Z4sc, and x =0
with a fixed velocity. Specifically, the desired landing trajectory x;(t) is given
by

: l#ase =zl
Ty + Vpt ift < ;)_Ilva\l

1(t) = < Tyse else if ||xgse — || > € (48)
Tgse + Vgset  otherwise,

where vy, € R3 is defined such that it is parallel to z45. — x;, with the pre-
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Figure 8: Screenshots of the video during the autonomous shipboard landing

scribed magnitude of ||v,, | = 0.4ms™!. After the UAV arrives at 45, with the
tolerance of €, = 0.1m, it descends with the velocity of vgs. = [0,0,0.2]Tms=1.
The control parameters are chosen as

m = 2.95, J = diag(0.03,0.03,0.04),
ky = diag(10, 10, 15), k, = diag(12,12,12),
kp =3, ko =08, k, =08, k,, = 0.4

Further, both W, and Wz were set to identity.

Figure 8 presents a few screenshots from the video taken at an experiment,
and the full length video is available at [63]. During the experiment, there was
a cross-wind of approximately 6 knots, and consequently, the UAV tilts toward
the crosswind to follow the command while overcoming the effects of wind.

While the video shows that the UAV is connected to a tether, it should be
noted that this was not a tethered flight. The sole purpose of the tether was to
make the recovery of the UAV easier in case of a water landing.

The results for this flight test is presented in Figure 9, where the black
lines show the measurements, and the red lines show the estimated states. The
blue lines represent the desired value of the states, if applicable. The overall
3-dimensional trajectory is shown in Figure 9a, and the relative position is
presented in Figure 9c. As described above, the UAV was moved to the aft
of the ship manually, and then switched to the autonomous landing trajectory,
which is defined by (48), at around 65s. As a result, the desired position before
the switching is composed of a series of step functions. It can be seen that the
hexrotor UAV manages to successfully follow the desired trajectory and land at
the origin.
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(a) Octocopter on the ship deck (b) Wall of the back of the ship

Figure 10: Octocopter UAV onboard the ship

The measured velocity and the estimated one of the UAV are presented in
Figure 9d. The time shift between the measured position (black line) and the
estimated position (red line) is due to the delay correction in the estimator.
This time shift is also present in the position plot, but it is difficult to observe
given the scale of the axes.

The error between the actual position and the desired position, namely e, =
x — x4 is presented in Figure 9e. For the total duration of the flight, the mean
position error was E[||e;||] = 16 cm. During the autonomous landing phase after
65s where the trajectory was smooth, it was about 14 cm. The final horizontal
landing error, that is the magnitude of the difference between the landing target
and the actual landing point, is about 3 cm.

Next, the nine elements of the rotation matrix representing the attitude of
the UAV are presented in Figure 9f. The each subplot here represents the value
of each element of the 3 x 3 rotation matrix, as a function of time. It can
be observed that the UAV closely follows the desired attitude computed by the
controller to follow the desired position trajectory. During the flight test, the
mean attitude error was 3.72°. Here, the attitude error vector is defined by
er = 0.5(RYR — RTR;)V, and the desired attitude, Ry, was provided by the
position controller.

Further, the estimation of unknown parameter for both position (6,) and
attitude (Ar) are presented in Figure 9g and Figure 9h, respectively. 5

5.2. Flight Experiments with Vision-Based Positioning

Next, with the VIO solution of the RPG-SVO library integrated to the
UAV flight software as described in the Section 4.1, the UAV was tested in
real-time flight tests onboard a moving ship. The sensors and other hardware
configuration was identical to Section 5.1, except for the octocopter UAV frame
and the added camera. The camera was mounted under the frame such that
it was facing toward the ship during the flight. The UAV with the mounted
camera resting on the ship deck is shown in Figure 10a.
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For octocopter control parameters, following values were used:

m = 3.4, J = diag(0.036, 0.036, 0.039),
ke = diag(12,12,13), k, = diag(13,13,18),
ky = 2.5, ky = 0.8, k, = 0.8, k,, = 0.4

Further, both W, and Wx were set to identity.

During the takeoff and the landing phases of the flight, the UAV camera was
too close to the vertical wall of the ship’s superstructure that has almost no
texture. Consequently, when the camera is pointed to this feature-less wall for
a long time period, the VIO solution degrades and diverges. To avoid that, two
posters with random images and texts were attached to the walls as shown in
Figure 10b. This improved the VIO, particularly for take-off and landing, when
the UAV was close to this wall.

With the above setup, the octocopter UAV was tested in multiple flight
tests onboard the US Naval Academy research vessel YP700 at Chesapeake Bay.
Similar with the previous flight experiments, the UAV was moved to the aft of
the ship manually, until the flight mode is switched to landing. The processed
camera images, together with the pose estimated by the VIO, were sent to the
base computer and saved for visualization in the post processing. This saved
video and a separate video recorded from the ship were stitched together after
the flight tests, and it is shared at [64]. Two videos were synced with the fixed
frame rates, and the time sync may not be exact. A set of screenshots of the
same video is shown in Figure 11.

The states of the UAV during the flight tests are presented in Figure 12.
In these plots, black lines represent measurements, red lines represent the esti-
mated states and the blue lines represent the desired value of the states where
applicable.

Further, it should be emphasized that all the computations, including UAV
control and image processing with VIO, were performed on the onboard com-
puting module in real-time.

Figure 12c shows the desired trajectory with the position determined by the
VIO, and the position estimated by the delayed Kalman filter compensating the
time delay of the onboard VIO. Each axis of this plot represents the position of
the UAV in the local north-east-down frame, where the origin is located at the
center of the ship’s landing deck. The octocopter UAV was moved to the aft of
the ship by changing the position set points through operator commands until
114 s and the step-like increases in the desired commands in the plots represent
these manual command changes. Then, the trajectory mode was switched to the
autonomous land mode at around 115s, and the mode change can be noticed by
the smooth desired trajectory lines in this plot. This trajectory here is as same
as the trajectory described in (48), but with z4s. = [0,0,—0.7]"m. Further,
the shift in the estimated position and the VIO position along the time axis
is a result of the time delay present in the VIO measurements. As it can be
observed, despite the time delay, the delayed Kalman filter estimates the correct
position, and the UAV closely follows the desired trajectory.
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Figure 11: Screenshots from the flight test video - flow is left-to-right and top-to-bottom
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The position estimated by the VIO and the position measured by the RTK
GPS unit are presented in Figure 12d. It should be noted that due to the pro-
cessing delay, the RTK GPS measurements are delayed by 400 ms while the VIO
estimations are delayed by 500 ms. There is a minor offset along the time axis
between them due to that, but the estimated VIO position reasonably follows
the measured RTK position that is considered as a ground truth in accessing
the accuracy of the VIO. It should be noted that the RTK GPS measurements
were collected only for the comparison, and they were not used in the state
estimation.

The position error, e, = x—x4, is shown in Figure 12e. For the total duration
of the flight, the mean position error was about 15cm. During the autonomous
landing phase after 115s where the trajectory was smooth, the mean position
error was about 12cm. Both of these error magnitudes are at the same level
with the results presented in Section 5.1 based on the RTK GPS. Further, the
final horizontal landing error, that is the magnitude of the difference between
the landing target and the actual landing point, is about 17 cm.

The attitude plots are presented in Figure 12f, where each column in the
subplot represents the corresponding column in the rotation matrix. In this plot,
desired attitude shown as a blue line is determined by the position controller.
It can be observed that the actual attitude closely follows the desired attitude,
making the accurate position control viable. During the flight test, the mean
attitude error was 5.22°. Here, the attitude error vector is defined by ep =
0.5(R§R — RTR;)V, and the desired attitude, Ry, was provided by the position
controller.

Further, the estimation of the unmodeled dynamics of both position dynam-
ics and attitude dynamics are shown in Figure 12g and Figure 12h, respectively.

In short, these report the first vision-based autonomous launch and recovery
of a multirotor UAV in ocean environments.

5.8. Maritime Flight FExperiments

From the presented flight experiments, we observed several situations that
are unique to ocean environments, as listed below. These might be a consider-
ation for any future research in relevant topics.

e Occasionally, the yaw angle measured by the onboard IMU was noticeably
off, which caused the relative position estimate unreliable. This might have
been caused by the large steel structures or the communication equipment
of the vessel. To address this, we monitored the IMU measurement closely
before each flight experiment, and we re-calibrated the IMU as needed.

e In ocean environments, there are great variations in light levels, depending
on the orientation of the UAV relative to the Sun, the elevation angle of
the Sun, and the weather conditions. For example, when the camera is
pointed directly toward the Sun, the presented VIO fails. The robustness
of VIO against high dynamic range and weather is potentially improved
by adopting additional sensors, such as radar [65].
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e The ocean wakes and the cloud may generate spurious visual features that
may degrade the reliability of VIO. Further, the research vessel is mostly
featureless by design. As such, any VIO based on visual features may
be complemented by techniques based on the overall shape of the vessel,
which is the current research efforts of the authors.

6. Conclusions

This paper presents the development of a UAV platform that can be oper-
ated in ocean environments. Both of flight hardware and software are developed
in house with specific consideration to handle autonomous flight in ocean. The
flight hardware is based on a general-purpose computing module connected to
IMU, RTK GPS, camera, and motor speed controller over a custom designed
PCB. For flight in ocean environments, the enclosure is designed to be water-
tight, while actively dissipating heat. The flight software is developed by multi-
thread programming in C++, implementing an extended Kalman filter that
compensates measurement delays and a geometric adaptive control to handle
wind disturbances. The proposed UAV platform has been successfully tested in
above-sea flight experiments in mild winds and clear/overcast conditions on a
US Naval Academy research vessel, with two cases of RTK GPS positioning and
vision-based approach. Despite the myriad of prior work related to autonomous
landing of UAVs, there has not been any reported autonomous launch and re-
covery with vision-based approaches in over-ocean environments. The average
position accuracy during the vision-based landing was about 12cm, and the
final landing error was less than 10 cm Further, the final positioning accuracy
achieved by the proposed method during the RTK GPS-based landing is in sub
15 cm range, compared with higher than 1m positioning errors in other GPS-
based existing works on autonomous UAV shipboard landing in ocean environ-
ments. The future works include improving the robustness of the vision-based
localization in the ocean when the number of salient features is limited.
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