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Although shape correspondence is a central problem in geometry pro-
cessing, most methods for this task apply only to two-dimensional sur-
faces. The neglected task of volumetric correspondence—a natural exten-
sion relevant to shapes extracted from simulation, medical imaging, and
volume rendering—presents unique challenges that do not appear in the
two-dimensional case. In this work, we propose a method for mapping be-
tween volumes represented as tetrahedral meshes. Our formulation min-
imizes a distortion energy designed to extract maps symmetrically, i..,
without dependence on the ordering of the source and target domains. We
accompany our method with theoretical discussion describing the conse-
quences of this symmetry assumption, leading us to select a symmetrized
ARAP energy that favors isometric correspondences. Our final formula-
tion optimizes for near-isometry while matching the boundary. We demon-
strate our method on a diverse geometric dataset, producing low-distortion
matchings that align closely to the boundary.
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Mapping Between Two Volumes With Our Method
(Visualized at Different Depths)

Fig. 1. Our method produces low-distortion correspondences between vol-
umes, visualized as checkerboard textures through the sliced volumes.

1 INTRODUCTION

Shape correspondences are at the core of many applications in
graphics and geometry processing, including texture and seg-
mentation transfer, animation, and statistical shape analysis. The
central objective of these applications is to compute a dense map
between two input shapes, facilitating semantically meaningful
information transfer with minimal distortion.

The vast majority of shape correspondence algorithms focus
on mapping two-dimensional surfaces. These approaches leverage
geometric properties that are unique to surfaces. For example, key
shape properties like curvature are defined over the entire surface
domain, rather than only on the boundary as in the volumetric
case. As a result, one can even find reasonable correspondences by
matching geometric features directly, without incorporating any
notion of distortion [Ovsjanikov et al. 2010]. Other methods use
Tutte’s embedding or notions of discrete conformality specific to
surfaces to achieve key properties like invertibility [Lipman and
Funkhouser 2009; Schmidt et al. 2019].

In contrast, here, we consider the problem of mapping volumes
to volumes rather than surfaces to surfaces. Volumetric correspon-
dence is beneficial for several tasks. In graphics and CAD, bound-
ary representations of shapes are used to represent objects, so even
the input geometry used to evaluate surface-to-surface mapping
techniques typically expresses a volumetric domain. Hence, find-
ing volumetric correspondences may improve correspondences
of these boundary representations, since volumetric reasoning
is needed to preserve thin features and prevent volumetric col-
lapse; for example, to prevent the candy-wrapper artifact, where
regions twist about a point and change orientation. In these cases,
surface area is roughly maintained while volume degenerates.
See Figure 2 (top) for an illustration using the surface mapping
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Fig. 2. lllustration of possible map degeneration when using a surface-
mapping approach. Top row: Mapping using the surface-based approach
of Ezuz et al. [2019] initialized with four landmark points (yellow spheres)
leads to the candy-wrapper artifact, where regions of the mapped shape
twist 180°, causing a change in orientation accompanied by a collapse in
volume (red circles). The dark gray regions of the surface map show the
backs of the triangles. Bottom row: mapping with two landmarks at the
ends of the rods corrects the issue. In both cases, our volumetric approach
maintains volumetric integrity and preserves orientation.

approach of Ezuz et al. [2019]. From a surface isometry perspec-
tive, the candy-wrapper artifact has little distortion, as only few
edges have deformed. However, from a volumetric perspective, the
shape’s volume has completely degenerated. In other applications,
such as medical imaging, data is acquired in a regular 3D grid and
shape correspondence is used for volumetric texture transfer or
alignment. Consequently, extending surface correspondences to
the interior of volumetric shapes is nontrivial, so volumetric map-
ping approaches are needed.

Volumes do not share many of the geometric properties that
have enabled mapping techniques for surfaces, so new approaches
are needed. The closest existing methods to volumetric mapping
tackle volumetric deformation and parameterization. In these ap-
plications, one starts with a volume in its rest pose and deforms the
volume to a target domain or to conform to a set of target handle
positions in a fashion that minimizes distortion. These approaches
differ from volumetric mapping in several ways. First, volumetric
deformation and parameterization methods typically assume a rea-
sonable initial guess (e.g., the source shape) and flexibility in the
target domain (e.g., unconstrained geometry away from the han-
dles) or specialize to a single target (e.g., a ball). In contrast, in
mapping, the source and target domains are geometrically distinct
shapes, so a reasonable initialization is not given. One may need
to start with a coarse map to a known set of landmarks [Aigerman
et al. 2014; Ezuz et al. 2019]. Furthermore, mapping problems are
typically symmetric, in the sense that the computed map should be
invariant to the ordering of the source and target domains; there
is no notion of a “rest pose” typical in deformation. Consequently,
we seek a distortion energy that is symmetric with respect to the
source and target.

We propose an algorithm for mapping between volumes rep-
resented as tetrahedral meshes. Our method draws insight from
2D surface mapping and 3D deformation. It builds on the dis-
cretization of maps used in a state-of-the-art surface mapping algo-
rithm [Ezuz et al. 2019] but requires new objective functions and
optimization methods to be effective. In particular, we propose a
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set of symmetrized distortion energies that are invariant to the do-
main over which the map is applied and aim to produce inversion-
free, low-distortion matchings that conform closely to the bound-
ary (Figure 1).

Contributions. This article contributes the following:

e We present a method for computing volumetric correspon-
dences between far-from-isometric shapes by minimizing a
symmetric distortion energy.
We analyze the concept of a symmetric distortion energy,
which is agnostic to the ordering of source and target domains,
and provide a recipe for symmetrizing a distortion energy. We
propose a set of desirable properties for a symmetric distor-
tion energy and analyze well-known measures of distortion
within our framework.
e We demonstrate our method on a diverse dataset of examples,
showing that our method reliably extracts correspondences
with low distortion.

1.1 Approach

We find a dense correspondence between two volumetric shapes
Mj and M, represented as tetrahedral meshes. Our algorithm si-
multaneously optimizes for a map ¢ : M; — My and its (approx-
imate) inverse § ~ ¢_1 : My — My, which both take vertices of
one mesh to (interiors or boundaries of) tetrahedra in the other.
Our approach handles meshes of differing connectivity and facili-
tates finding maps between far-from-isometric shapes.

Existing volumetric mapping methods use deformation tech-
niques to place or repair interior tetrahedra, given a fixed map be-
tween the boundaries dM; and dMs. In contrast, we include the
boundary map as a variable. Our method can repair poorly initial-
ized surface maps and compute maps using only landmark corre-
spondences as initialization.

Our formulation is symmetric in that the computed map is in-
variant to the labeling of the “source” and the “target” among M;
and My. The motivation for symmetry comes from several appli-
cations where the selection of a source or target shape is unneces-
sary. For example, in medical imaging, one is interested in finding
correspondences between brain shapes extracted from magnetic
resonance images (MRI) to perform comparisons of local cortical
(brain tissue) thickness [Aganj et al. 2015]. Similar symmetry arises
when seeking a correspondence between two humans standing in
the same pose, and in general for applications seeking to align two
shapes. The arbitrary choice of the source shape is a consequence
of algorithm design rather than application need. Consequently,
this choice can influence the correspondence result, introducing
bias. As shown in Figure 3, an asymmetric method like Kovalsky
et al. [2015] may result in unequal performance dictated by the
choice of map direction. Further, the asymmetry of previous ap-
proaches in medical imaging have introduced bias in estimating
the effects of Alzheimer’s disease [Fox et al. 2011; Hua et al. 2011;
Yushkevich et al. 2010].

A reasonable expectation is to produce the same map—up to
inversion—regardless of the choice of the source and target shape,
i.e., the ordering of M; and M,. One way to achieve this is to
use a symmetric energy. An energy E is symmetric if E(p) =
E(¢~1) [Cachier and Rey 2000; Schmidt et al. 2019]. Since ¢! is
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Fig. 3. Comparison between our symmetric approach and an asymmetric
baseline. A symmetric approach is necessary when there is no clear source
or target shape to produce high-quality bidirectional maps.

challenging to compute in practice and does not exist for maps
initialized with flipped tetrahedra, we introduce ¢ ~ ¢~! and pro-
pose a symmetric approach by optimizing E(¢) + E(i/). Optimizing
with this pair of maps is a common way of guaranteeing symme-
try [Cachier and Rey 2000; Christensen and Johnson 2001; Ezuz
et al. 2019; Schmidt et al. 2019; Schreiner et al. 2004], and we show
via change-of-variables that optimizing this sum is equivalent to
optimizing a different distortion energy ESY™(¢) on just the for-
ward map ¢.

Key to computing a high-quality map is the proper choice of dis-
tortion energy E or its symmetrized counterpart ESY™, We analyze
the effect of symmetrizing several widely used distortion energies,
showing that several symmetrized energies violate typical desider-
ata used to design mapping algorithms. For example, several sym-
metrized energies no longer favor local isometry. Following this
analysis, we select the symmetrized ARAP energy as our distor-
tion measure, eliminating solutions that locally favor collapsing
or shrinking maps.

2 RELATED WORK

Volumetric correspondence poses a new set of challenges that has
not been addressed in surface-based methods. Although relatively
few works consider precisely the problem tackled in this article,
we draw insights from volumetric parameterization, volumetric de-
formation, and surface mapping and focus our review on relevant
work on these topics.

Volumetric parameterization and deformation. Parameterization
and deformation algorithms provide means of deforming tetra-
hedral meshes into prescribed poses or domains with minimal
distortion.

A parameterization is a deformation of a volume to a simpler
domain, such as a topological ball [Abulnaga et al. 2022; Garanzha
et al. 2021; Paillé and Poulin 2012; Wang et al. 2003; Yueh et al.
2019] or a polycube [Aigerman and Lipman 2013; Fu and Liu 2016;
Li et al. 2021; Paillé and Poulin 2012; Wang et al. 2008b; Xia et al.
2010]. The better-studied instance of parameterization in graphics
maps, possibly with cuts, two-dimensional surfaces (rather than
volumes) into the plane; see Floater and Hormann [2005], Fu et al.
[2021], and Sheftfer et al. [2007] for discussion of this broad area of
research.

In deformation, the task is to deform a volume by moving a set of
handles to a set of target positions. These methods are often based
on physical models of strain [Irving et al. 2004] and aim to produce
elastic deformations minimizing a prescribed energy choice [Chao
et al. 2010; Fu et al. 2015; Irving et al. 2004; Kovalsky et al. 2014;
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Miller et al. 2002; Sahillioglu and Kavan 2015; Smith et al. 2018,
2019]. In the 2D case, both skeleton-based [Lewis et al. 2000] and
physical models [Nealen et al. 2006] can be used. See Gain and
Bechmann [2008], Selim and Koomullil [2016], and Sieger et al.
[2015] for general discussion.

In both problems above, one computes a deformation from the
rest pose to the target. Optimization methods are used to match
the target while minimizing distortion, where the distortion is mea-
sured using an energy that quantifies the deformation of the Jaco-
bian matrix of each tetrahedron. Since these models start with a
good initialization, namely, the rest pose, one can optimize using
a combination of energies with flip-free barriers and a constrained
line search, arriving at solutions that are both flip-free and have
low distortion; see, e.g., Smith and Schaefer [2015] for a represen-
tative example. In contrast to these past works, we produce maps
between far-from-isometric domains without an obvious effective
initialization. Consequently, our choice of energies is designed to
be resilient to poor initial maps that are not foldover-free.

Volumetric mappings. Some methods consider the task of com-
puting correspondences between volumetric shapes. To our knowl-
edge, all past methods can be understood as special cases of the
deformation methods where the task is to extend a fixed boundary
map to the interior of a volume.

Kovalsky et al. [2015] present a local-global alternating algo-
rithm targeting maps with bounded distortion. Their method takes
an initial surface map and computes a similar map with bounded
condition number. They demonstrate their algorithm on two vol-
umetric correspondence examples and show one example (their
Figure 11) where relaxing prescribed boundary constraints at the
end of the optimization procedure can help recover from minor ar-
tifacts. Su et al. [2019] also target computation of foldover-free vol-
umetric maps with prescribed boundary; they extend the method
of Kovalsky et al. [2015] by automatically finding a suitable bound
on the condition number. Their method has impressive levels of ef-
ficiency but targets a specific notion of conformal distortion. Stein
et al. [2021] propose an operator splitting technique to optimize
nonconvex distortion energies to yield a flip-free parameterization;
they demonstrate a few examples of volumetric correspondence.

The approaches above require a prescribed boundary map and
minimize distortion of the interior. In contrast, our method opti-
mizes the boundary map to minimize global distortion and does
not need a bijective, orientation-preserving boundary map as an
initializer. Indeed, it is not always obvious how to design a bound-
ary map so the induced volumetric correspondence has low isomet-
ric disortion. We also optimize an alternative objective function
that targets symmetry and isometry rather than bounded distor-
tion or conformal structure preservation.

A few mapping methods reduce a mapping problem between
volumetric domains to a sequence of surface-mapping problems
between leaves of foliations of the two domains. Campen et al.
[2016] propose a volumetric parameterization approach relying on
a foliation. Their algorithm requires the domain to be a topolog-
ical ball whose tetrahedral mesh is bishellable. Cohen and Ben-
Chen [2019] describe an alternative method to compute folia-
tions of more-general volumetric domains using a Hele-Shaw flow
along a potential function from a M6bius inversion of the domain
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boundary to a sphere. Unlike these methods that decompose the
domain into surfaces, our method does end-to-end optimization of
a mapping over an entire volume at once.

Symmetric maps. Symmetric mapping methods are invariant to
the ordering of the source and target shapes. Several works in 2D
surface mapping do so by optimizing for the average of the forward
and reverse map distortion [Ezuz et al. 2019; Hass and Koehl 2017;
Schmidt et al. 2019; Schreiner et al. 2004]. In medical imaging, map-
ping is referred to as registration, where the problem is to learn a
displacement field defined on a 3D grid. Symmetry, or “inverse-
consistency” [Christensen and Johnson 2001] is achieved using a
similar approach of averaging the map distortions [Aganj et al.
2015; Cachier and Rey 2000; Leow et al. 2005; Sabuncu et al. 2009]
or by optimizing in a mid-space between the two images [Avants
et al. 2008; Joshi et al. 2004]. Many of these works demonstrate
that symmetry improves consistency of mapping, improves accu-
racy, and eliminates bias.

We use a similar formulation to achieve symmetry. We analyze
several common distortion energies symmetrized in this way
and show that—surprisingly—the choice of energy can have
counterintuitive consequences. In particular, distortion energies
that favor isometry in one direction may not do so when opti-
mizing their symmetrized counterparts. To prevent this undesired
behavior, Hass and Koehl [2017] developed a symmetric distortion
energy that measures the distance of a conformal map from an
isometry. Their distortion energy is restricted to conformal maps
between genus-0 surfaces. Extending it to the volumetric case is
nontrivial due to the lack of conformal maps in 3D.

We develop the concept of a symmetric energy that is invariant
to the choice of optimization domain over which it is taken, in the
sense that the energy of the inverse map matches that of the for-
ward map. Although it is a sensible choice in our setting, we note
the term “symmetric” is somewhat overloaded in the parameter-
ization and mapping literature. Several distortion measures have
been deemed symmetric, because they equally penalize scaling
and shrinking, such as the symmetric Dirichlet energy [Schreiner
et al. 2004; Smith and Schaefer 2015] and the symmetric ARAP en-
ergy [Shtengel et al. 2017]. Our analysis shows that in fact these
energies do not necessarily satisfy our notion of symmetry.

Surface maps. Two-dimensional surface mapping can generally
be divided into (at least) three sets of approaches: methods that
use an intermediate domain, methods that rely on descriptors,
and methods that directly extract a map from one mesh into an-
other. We refer the reader to one of several surveys for a broad
overview [Li and Iyengar 2014; Sahillioglu 2020; Van Kaick et al.
2011].

The first two groups of approaches cannot be directly extended
to the volumetric case. In particular, while Tutte’s parameteriza-
tion provides a natural means of mapping surfaces bijectively to an
intermediate domain and thus provides a natural means of initializ-
ing maps in the first category, no such canonical parameterization
exists for volumes. Moreover, volumetric geometry descriptors do
not appear to be sufficiently reliable for correspondence tasks.

Methods that find correspondences through an intermediate do-
main employ a bijective parameterization of each input to a sim-
ple domain such as the plane [Kraevoy and Sheffer 2004], the
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sphere [Gotsman et al. 2003; Haker et al. 2000; Lee and Kazhdan
2019], or a quotient manifold [Aigerman and Lipman 2015, 2016;
Aigerman et al. 2014, 2015; Bright et al. 2017; Schmidt et al. 2019].
We also note methods such as Kim et al. [2011] and Lipman and
Funkhouser [2009], which average multiple maps computed in a
similar fashion. These approaches admit no obvious extension to
volumes. First, the existence of a bijection to a simpler intermedi-
ate domain does not always exist. Second, many of these methods
require introducing cutting seams [Aigerman et al. 2015], which
becomes substantially more difficult in three dimensions. Further-
more, these may not result in low-distortion maps, as minimizing
the composition of the maps in the intermediate domain may re-
sult in high distortion in the final surface-to-surface map.

The second set of methods computes maps that match descrip-
tors, possibly with added regularization. Descriptors are often
distance-based [Bronstein et al. 2008b; Huang et al. 2008], spec-
tral [Jain et al. 2007; Mateus et al. 2008; Ovsjanikov et al. 2010; Vest-
ner et al. 2017], extrinsic [Ankerst et al. 1999; Salti et al. 2014], or a
combination [Dubrovina and Kimmel 2011; Kim et al. 2011; Litman
and Bronstein 2013]. Many correspondence methods in this cate-
gory are built on the functional maps framework [Ovsjanikov et al.
2012, 2016], which finds correspondences by matching functions
defined on the shapes. Relatively few descriptors are available for
volumetric geometry, whose structure is still inherited from the
boundary surface.

The third class of approaches directly optimize for inter-surface
maps. These methods compute a map between surfaces by match-
ing features or landmarks while minimizing distortion [Ezuz et al.
2019; Mandad et al. 2017; Schreiner et al. 2004; Solomon et al. 2012,
2016].

Ezuz et al. [2019] produce a map between surfaces by minimiz-
ing the geodesic Dirichlet energy of the forward and reverse map
and encouraging bijectivity through a reversibility energy. Our al-
gorithm extends many of their ideas to the volumetric case. In our
case, however, a new algorithm is required.

Medical image registration. Medical image registration is a form
of volumetric shape correspondence in Euclidean space. Here, the
task is to find correspondences between two volumes defined on a
dense 3D grid. The correspondence is driven by matching voxel sig-
nal intensities, for example, using mutual information [Klein et al.
2007] or cross-correlation [Avants et al. 2008]. The optimization
seeks to find a displacement field defined at the grid coordinates.
Similar to our formulation, the transformation is governed by any
of several regularization terms, for example, to compute a diffeo-
morphic transformation [Beg et al. 2005]. We refer readers to the
surveys by Oliveira and Tavares [2014], Sotiras et al. [2013], and
Viergever et al. [2016]. While both our approach and registration
methods aim to find volumetric correspondences, the techniques
used in medical image registration are not applicable, as they op-
erate on a dense Euclidean grid and are driven by intensity rather
than geometry.

3 MAPPING PROBLEM

We develop a volumetric mapping method that is symmetric,
in that the resulting maps are invariant to the ordering of the
source and target shapes. We compute the map by minimizing an



objective function that measures distortion symmetrically while
satisfying a set of constraints. In this section, we investigate the
consequences of the symmetry assumption on our algorithmic
design.

3.1 Preliminaries

Given two bounded volumes M, My, ¢ R3 with smooth bound-
aries OM1, OMy, we seek a map ¢ : M; — Mj. Several considera-
tions inform our choice of ¢, detailed below. Note that this problem
is not the same as deformation (sometimes referred to as “mapping”
in past literature), which aims to find a low-distortion deformation
of M; c R3 given prescribed target positions for a few handles
rather than the geometry of M.

Many algorithms for mapping and deformation can be viewed
as optimizing a distortion energy of the form

Er[g] := L{ FUg()) dV (%), 1

where J; € R3*3 is the map Jacobian and dV (x) is the volume form
on M.

The distortion function f : — R0 usually measures local
deviation of the map from isometry. Typical choices favor rigid-
ity [Rabinovich et al. 2017]. For example, the as-rigid-as-possible
distortion function (ARAP) [Liu et al. 2008] measures the deviation
of the Jacobian from the set of rotation matrices SO(3):

- P2
fARAP(])—R?Slg}S)H] Rll%.

R3X3

In contrast, the Dirichlet energy functional

o) = IJIE

favors the as-constant-as-possible map [Schreiner et al. 2004]. Se-
lection of the distortion function is application-dependent. For ex-
ample, one might choose f to model physical strain for deforma-
tion. Alternatively, one might select f to encourage injectivity.

In almost all applications, f is chosen to be rotation invariant, re-
flecting the fact that rigid motions of M; and M3 should not affect
the computed map. In this case, f(J) is a function of the singular
values o(J), the elements of the diagonal matrix ¥ in the singular
value decomposition (SVD) J = USVT. In a slight abuse of nota-
tion, in our subsequent discussion, we will use f to denote both a
function on matrices in R¥3 and vectors of singular values in R,
with f(J) = f(a(J)).

In addition to finding a map with low distortion, we are con-
cerned with finding one that satisfies a desired set of constraints.
For example, we can constrain the boundary of the source volume
to be mapped to the boundary of the target, i.e., p(OM1) = dM.
We use P to denote the constrained feasible set. One might imagine
other constraints, for example, ensuring a set of landmark points
are mapped to the pre-specified locations, further restricting #.
Moreover, regularizing objective terms, Reg[¢] could be added. So,
our optimization problem becomes

o min fA | SU () V() + Reglg]

subjectto ¢ € P.

@
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3.2 Symmetrized Energy Functions

For correspondence problems where there is no clear distinction
between the rest pose and the target pose, it is desirable for a vol-
umetric correspondence method to be symmetric, meaning that it
is invariant to the ordering of the “source” domain M; and “target”
domain Mz. Symmetry requires Ef[¢] = Ef[gzﬁ_l]. In this section,
we arrive at a set of conditions on f to check if an energy is sym-
metric and propose a symmetrization procedure to obtain the sym-
metrized form of a distortion function f. We later investigate the
effects on computing a map using the symmetrized form of f.

Following Cachier and Rey [2000], Christensen and Johnson
[2001], Ezuz et al. [2019], Schmidt et al. [2019], and Schreiner et al.
[2004], one simple way to achieve symmetry is to optimize the av-
erage of the distortion energy of a map with the distortion energy
of its inverse. Ezuz et al. [2019] and Schreiner et al. [2004] use the
simplest choice of energies to symmetrize—the Dirichlet energy—
while Schmidt et al. [2019] use the symmetric Dirichlet energy to
prevent foldovers. Below, we analyze the consequences of using
these energies and other possible choices of f not considered in
prior work. Surprisingly, our analysis will show that the Dirichlet
energy and several other seemingly reasonable choices do not yield
an effective notion of distortion after symmetrization, leading us
to employ an alternative in our technique.

We start by deriving conditions on f that ensure the distortion
energy Ey is invariant to the ordering of the source and target. Let
M;j and M; be open subsets of R” and ¢ : M; — M; a diffeo-
morphism between them. For simplicity, assume M; and M, are
normalized to have volume 1. We can compute the distortion of
the map ¢ by applying Equation (1) in both directions:

B0 = [ f (1 ) Vit )

Bl = [ f (g @) ). @

Pulling back the integral in Equation (4) to M;, we use a change
of variables to y = ¢(u) to show

B = [ f (g ) ety aviw. )
By the inverse function theorem,
561 = [ 1 (0 @) ety @] v @)

For invariance with respect to the integration domain, Equa-
tion (3) must agree with Equation (6). Matching the integrands,

FO) =1detJ1 £ (77 | @)
is sufficient for this equivalence. In terms of the singular values,
we obtain

? 1 1
f(a):[—[oif(—,‘..,—). (8)
i=1 o1 In

Here and in our subsequent discussion, we will use n to refer to
the dimensionality of the domains M, M, when the result under
discussion applies to maps in any dimension; n = 3 in our applica-
tion. This condition was first proposed by Cachier and Rey [2000]
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Symmetric Dirichlet MIPS

Y

Fig. 4. Level sets of distortion functions f (top) and their symmetrized counterparts fSY™ (bottom) evaluated at (o1, a3, 1) for (o1, a2) € [0, 2]*. We mark
(1, 1) as a white dot and the location of the minimum as a circle. In the parlance of Section 3.3, all energies except the Dirichlet energy preserve structure
(f minimized at (1, 1, 1)), while only the Hencky strain and ARAP energies favor isometry (Y™ minimized at (1, 1, 1)). Only Dirichlet and ARAP are

nonsingular, since the level sets do not diverge as singular values approach 0.

to propose symmetrization by averaging the distortion function in
both mapping directions. This motivates the following definition:

Definition 3.1 (Symmetric Energy). A distortion energy Ef
whose distortion function f satisfies Equation (7)—or Equation (8)
in terms of singular values—is a symmetric energy.

Our symmetric energy condition is both necessary and sufficient
for symmetric distortion measures, in the following sense:

PROPOSITION 3.2. Ef[¢] = Ef[¢™"] for all My, My, and ¢ as de-
fined above if and only if f is a symmetric energy.

ProoF. Substituting Equation (7) into Equation (6) shows that
any f satisfying Equation (7) automatically satisfies Ef[¢] =
Ef [¢~1]. We now show the converse. Since Ef[¢] = Ef [p~1 Vv
Mji, My, ¢ as defined above, we can choose M; = B;(0) c R", the
open ball of radius 1. Consider any invertible ] € R™", and de-
fine a map ¢(x) := Jx, whose Jacobian is given by ], (x) = J. Take
My = $(M;). Applying Equation (3),

Ef[¢] = f() - vol (B1(0)). )

Similarly, applying Equation (6) yields
Ef[¢p™"] = f(J7") Idet ]| - vol (B1(0)). (10)
Equating Equations (9) and (10) and dividing by vol (B1(0)) com-
pletes the proof. O

Not all distortion energies are symmetric, but there is a simple
procedure to construct a symmetric distortion function £SY™ from
any distortion function f. For any distortion function f, we can
obtain a corresponding fSY™ fulfilling Equation (7) by—in effect—
computing %E rlol+ %E ' [¢~!] via our symmetrization procedure:

IO = 2 FU)+ 5 et FU7), (11)

or in terms of singular values,

n

(1o

i=1

™) = 2 f(0) +

f(i,...,i). (12)

o1 On
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For example, suppose fp(J) = IIJ ||12; is the distortion function
of the Dirichlet energy. Then, the average of the Dirichlet energy
of the forward map and of the inverse map yields the distortion
function:

S 1 1 _
)= SIIIE + 51 det JIIT g, (13)
or forn =3,
S 13 1 >
m —
02 03) = 2 3 of + 2 (oro00n) | Do (19)
i=1 j=1

This is not the “symmetric” Dirichlet energy from past work on pa-
rameterization [Rabinovich et al. 2017; Smith and Schaefer 2015],
which has the form %”]”}2: + %ll]_1 ||12:. Incidentally, in 2D, the sec-
ond term in Equation (13) is the objective function of the inverse
harmonic mapping problem used to obtain foldover-free mappings
by Garanzha et al. [2021]. This term is also known as the inverse
Dirichlet energy [Knupp 1995].

Equation (13) is a model for the objective function for map-
ping surfaces in Schreiner et al. [2004] and Ezuz et al. [2019], and
one could reasonably attempt to reuse the same formulation for
volumes. More careful examination of this function, however, in-
dicates some undesirable properties. In particular, as illustrated
in Figure 4, the distortion function f;ym(d) is not minimized at
(1,1, 1), the singular values of a rigid map. That is, the distortion
function of the symmetrized Dirichlet energy fg Y™ fayors non-
isometric maps, even though it is symmetric.

The counterintuitive behavior of energies like in Equation (13)
suggests that algorithms optimizing the sum of the distortion of a
map and the distortion of its inverse can have unpredictable behav-
ior, even for standard choices of distortion functions. We examine
this effect empirically in Section 6.6.

3.3 Designing Symmetric Distortion Energies

In this section, we extend the previous analysis to compute the
symmetrized form of several commonly used distortion functions



and examine their behavior in computing a volumetric map. We
propose a list of desiderata to guide the selection of a desirable
distortion function f.

Several properties are desirable when selecting f:

e Favors isometry: Y™ is minimized at (1,1, 1).
e Preserves structure: f is minimized at (1, 1, 1).
e Nonsingular: f is defined for all matrices.

Favoring isometry and preserving structure are similar but not
identical conditions, and they are desirable for different reasons.
Distortion energy functions that favor isometry are the typical
choice for geometry processing applications, and this condition
simply expresses a preference for maps ¢ that are rigid. However,
structure-preserving choices of f facilitate optimization routines
like ours that alternate between estimating ¢ and i, ensuring that
both alternating steps work toward a common goal. Similarly, non-
singular functions f avoid the need for barrier optimization tech-
niques and feasible initialization.

The following proposition provides a necessary condition that
can be used to rule out many standard choices of f when consid-
ering the properties above:

PROPOSITION 3.3. Suppose a differentiable function f : R3 —
R favors isometry and preserves structure, i.e., f (o) and Y™ are
minimized at (1,1,1). Then, f(1,1,1) = 0and Vf(1,1,1) = (0,0,0).

PRroOF. Structure preservation immediately implies Vf(1,
1,1) = (0,0,0), since (1,1, 1) is a local minimum. Similarly, to fa-
vor isometry, we must have that stym(l, 1,1) = (0,0,0). Taking
the derivative of Equation (12) in one singular value o;, we find

afy™ 19f 1 1 1 1 df (1 1
do; _260i+2 l:l[% f o1 on loi| Oci \oy” " on ]|
Substituting o1 = -+ =0, = 1,
afSym 1
= 1,...,1) ==/ (1, .1
G (L) = 5 ()
This expression yields our first condition. O

The result above may feel somewhat counterintuitive, since con-
stant shifts in f affect whether f favors isometry. But, adding a
constant to f changes the effect of the volume form on the distor-
tion energy, explaining the result above.

In Table 1, we list several distortion functions f(J), their equiv-
alent forms in terms of the Jacobian J’s singular values f (o), and
their symmetrized forms fS™(J), fSY™ (o). We check if the sym-
metrized distortion functions satisfy the isometry favoring prop-
erty above by examining the behavior of oy, the singular values
that minimize f5Y™ (o). We verify the other properties in a similar
way by studying f (o). Table 2 summarizes the result. Figure 4 vi-
sualizes these properties by showing level sets of f and fSY™ for
examples drawn from Table 1.

Tables 1 and 2 reveal several valuable properties that can inform
our choice of f. None of the distortion energies in Table 1 is sym-
metric in its standard form. A surprising result is that, after sym-
metrization, no distortion energy except for ARAP and Hencky
strain favors isometry. Despite the fact that minimizing these ener-
gies in the forward or reverse direction independently would lead
to an isometry, minimizing for the average of the two does not
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L)
-

AN
f(o,0,0) and (0,0, 0)

|

fsym(0'1,02,1)

Fig. 5. Mathematical boundary case: Comparison of symmetrized ARAP
energy Y ;(0;—1)? to symmetrized fourth-power ARAP energy 3; (o;—1)%,
using level sets similar to Figure 4 (left) and by plotting the diagonal where
o = o1 = oy = o3 (right). As discussed in Section 3.3 (Remark), the
fourth-power alternative blows up when approaching (0, 0, 0) from any
direction, while conventional ARAP admits a path to (0, 0, 0) where the
energy density remains finite.

(see Figure 4). For example, the symmetric Dirichlet energy and
the AMIPS energy after symmetrization prefer maps that tend to
shrink (opin < 1). We also observe that the symmetrized Dirichlet,
the symmetrized 3rd-order Dirichlet, and the symmetrized MIPS
energies favor maps that collapse, that is, they are minimized close
to omin ~ (0,0, 0). While the (asymmetric) Dirichlet energy favors
maps with o = 0, the MIPS energy does not. The 3rd-order Dirich-
let energy is used in 3D for C! continuity [Iwaniec and Onninen
2010].

From Table 2, only the symmetrized ARAP energy, which we
will refer to as SARAP, satisfies all the desired properties. To imple-
ment the SARAP energy, we optimize the average of the ARAP en-
ergy of the forward and reverse maps. This objective function has
the added benefit of removing the requirement of a flip-free initial-
ization, which is often not available for correspondence tasks.

If M1 and M, have different volumes, then the forward and back-
ward terms in Equations (3) and (4) might prefer distortion of one
direction over another. In practice, we normalize our models to
have volume 1, so the integrals in Equations (3) and (4) measure
average local distortion of the two maps; Schreiner et al. [2004]
equivalently rescales the forward and backward terms.

Remark (Avoiding Zero Singular Values). The symmetric Dirich-
let energy [Smith and Schaefer 2015], symmetric gradient en-
ergy [Stein et al. 2021], and others used for bijective parameter-
ization blow up as singular values approach zero; this property
provides a barrier ensuring existence of a locally optimal param-
eterization without collapsed or inverted elements. Our nonsingu-
lar property actually prefers the opposite of this scenario, allow-
ing inverted Jacobians so we can recover from poor initialization,
but this is a property of f—employed during optimization—rather
than f5Y™, the actual distortion energy being optimized in the sym-
metrized formulation.
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A nonsingular f can actually admit a function f5Y™ that blows
up as singular values approach 0, as is the case for the ARAP and
Dirichlet energies. This property suggests that even a nonsingular
choice of f can favor orientation-preserving symmetric maps.

For completeness, we note that f:}}g:lp is not a perfect barrier,
in the following sense (also illustrated in Figure 5): For o1 = 1
and 02,03 — 0, we have f:I{IXP(U) — 1. This technicality can
be addressed using an f that grows faster than cubically in the
singular values, e.g., f(o) = Y;(0; — 1)%, but in practice such an
adjustment did not yield better maps.

Remark (Role of Boundary Conditions). Several prior works op-
timize symmetric energies without the desired properties at the
beginning of this section [Ezuz et al. 2019; Schmidt et al. 2019;
Schreiner et al. 2004]. Although their distortion energies do not
promote isometry directly, these methods are still able to find low-
distortion and even bijective correspondences. Indeed, the sym-
metrized energy analysis above does not tell the whole story. In
particular, these methods include energy terms, boundary condi-
tions, and other constraints that favor bijectivity and semantic
correspondences. These constraints counteract the energy’s unex-
pected local properties and can affect the resulting map quality.
For example, optimizing the symmetrized Dirichlet energy in the
space of surjective or bijective maps will prevent the map from col-
lapsing, but the map quality is essentially upheld by the boundary
condition rather than the constitutive model used in the objective
function. We hypothesize that the success of these methods lies
in balancing competing terms and constraints. We leave detailed
theoretical analysis of these intriguing global questions to future
work.

3.4 Symmetric Optimization Problem

Following the previous section’s analysis, we revise the the generic
formulation of our optimization problem in Equation (2) to be sym-
metric. We optimize an energy of the form %Ef [¢] + %Ef v],
where we maintain separate estimates of the map ¢ : M; — My
and its inverse / ~ ¢! : My — M. This is done for practical rea-
sons: The existence of a flip-free initial map is not guaranteed, so
$~! may not exist to start. Additionally, this form is advantageous,
as f is necessarily nonsingular for initializations with flipped ele-
ments, while fSY™ can be orientation-preserving as is the case for
sARAP. Finally, even if f is not symmetric, the resulting energy
is roughly of the form in Equation (11) and hence our analysis in
Section 3.2 applies. This leads to the modified problem:

argmi : fA | TarapUp() dv ()

o3 [, Py o0 ave) +regspy 0

subjectto ¢ € P,y € Q,

where Q denotes the constraint /(dMz) C dMj. In practice, the
constraints that define # and Q can be made soft and modeled
in Reg[¢, /]. The estimate ¥ ~ ¢! can be enforced as a soft or
hard constraint. In practice, we use a soft constraint modeled in
Reg[¢, ¢/], as described in Section 4.3.
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4 DISCRETIZATION AND MODEL

We build on our analysis in Section 3.2 and Section 3.3 to discretize
the optimization problem in Equation (15) and develop an algo-
rithm to compute a volumetric map that is invariant to the order-
ing of the source and target shapes. In this section, we define our
map discretization and map constraints and develop the objective
function used in the optimization.

4.1 Notation

We represent volumetric shapes as tetrahedral meshes. We let V;,
&i, Fi, Ti denote the sets of vertices, edges, faces, and tetrahedra
of mesh M;, for i € {1,2}. We represent the coordinates of V;
as a matrix V; € R™>3_ where n; denotes the number of vertices
in mesh M;. We represent tetrahedron k in mesh i as the matrix
ViTk € R*3 whose rows are the coordinates of the vertices of
tetrahedron k. We use 0 to denote the boundary of a mesh, and
0V, 061,07, dT; denote sets of boundary vertices, edges, faces,
and tetrahedra, respectively. Boundary tetrahedra are those that
contain one or more boundary faces.

We use a piecewise linear discretization to model the maps ¢
and ¢, with each tetrahedron being mapped affinely. The map on
each tetrahedron is determined by its transformed vertex coordi-
nates. We use matrix X; € R™*3 to denote the coordinates of the
transformed vertices of mesh M;, and X iT" € R*3 to denote the
transformed tetrahedron k of mesh M;. The Jacobian matrix

T, T, Tre\ 71
) = (33) (77) 00
defines the map differential of tetrahedron k based on the trans-

formed coordinates Xl.Tk . The constant matrix B € R3** extracts
vectors parallel to the edges of the tetrahedron.

4.2  Map Representation

We wish to constrain each map to lie within the target shape, i.e.,
¢(M1) € My and y(Mz) € M;. We extend the strategy of Ezuz
et al. [2019] to tetrahedral meshes to enforce these constraints.

We represent the map ¢ as a matrix Py2 € [0,1]™*" and the
map 1 as Pp; € [0,1]™*™, Matrices P12 and Py; use barycentric
coordinates to encode the vertex-to-tetrahedron map and ensure
the mapped vertices lie in the target mesh. This representation
is also beneficial to map between meshes with differing connec-
tivity. Suppose P12 maps vertex i of mesh M; into tetrahedron
Ty = (a,b,c,d) € 77 in mesh My, where (a,b,c,d) € {1,...,n2}
are the indices of the vertices of Tj. Then, row i of P1y contains
the barycentric coordinates of the image of vertex i in columns
a, b, c,d, and zeros elsewhere. Map Po; is constructed analogously.
We can enforce the constraint that boundary vertices are mapped
to boundary faces by constraining the sparsity patterns of Pi3 and
Psy1. A limitation in the discretization is that we are unable to en-
force that the interior of boundary faces and edges are mapped in-
side the target shape, since our map representation is vertex-based.
In practice, this effect is minimized using high-resolution meshes.

We denote the set of all feasible maps satisfying the boundary
constraints as Pi’j‘.; we use P;; to denote the set of feasible maps
that may map the boundary dM; to the interior of M;.

We use half-quadratic splitting [Geman and Yang 1995] to
express our problem in a form that is amenable to efficient
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Table 1. Several Distortion Measures and Their Symmetrized Forms
Name Q) f(o) TR o) Fmin
Zl 1
Dirichlet IT11% n, ot SITIZ + & (det ) (I1T71012) +%(H ’ )l(zk or?) ~ (0,0, 0)
= 1
Zl
Dirichlet (3rd order) (7% e FITI+ 3 (et ) ("1 3, : )I(Z‘H o) ~(0.0,0)
Symmetric Dirichlet 112 + 110 (o2 +072) Tdets +1) (12 + 17112) L, o + 1)( n o (oF+ o'j_z)) ~ (077, 0.77, 0.77)
MIPS (3D) PO E-1) B (2 + %)k @es 0 (- E-1) & (T o) (s (2 + o) ~(0,0,0)
o det J +1 2712 - L °j gj+1
(=) T (5 2 7 it W™ =1) 3 (HH' 1) I 1("f+1_+ 7)) N
AMIPS (3D) 23 (det/ + (et ) 1) (H3 - +1 ( et J + (det J)~1) +1 (Hk ("k ST, o7t ~(0.8,0.8,0.8)
2 +3 [y o5 + T, o +1 ((det)? +1) 2
3 M, om
2 1 -3 2
o7 . L n-tu(T ( ) o
Conformal AMIPS it ]z) (n} 19 *)(zl . L) 2 (det])lg w(J ]) : i J) ~ (0.032, 0.032, 0.032)
(det])3 +3 (et )3 e (J77)7) ( Ty, 1:2) 208

e

Shiet-3 log(H" Gj)

HIJ11Z - L log (det ) =
Symmetric gradient | 3 [|JI|% - log (det])  } zj Lo 2 ~log (1T, 0%) +4det ] - 77t i( L Ok [21:1 o ~ (0.61, 0.61, 0.61)
1 .
+5 det J - log (det J) log (l_[ Um)
L T2 3 2 log?(;)
; T2 n 20 s lllog JE T 3 -1
Hencky strain || log J J”F 1 log®(o;) +% det] - logJ™ ]_1 ”12;* +% (H7:1 Gj) (22:1 logz(ak)) (1,1, 1)
LI - RIP? 130 (o - 1%+
IIJ=RIl 2 2i=1\9i
ARAP —RJ|? n (i —1)% 2 F _ 1,11
V- Rl Zinet 7Y +ydet 17 - RI H (17 0) (S, o - 1) ey

In this table, we consider orientation-preserving maps, so | det J |
singular values & i, that minimize the symmetrized energy 5™ (o).

Table 2. Summary of Distortion Energy Function Properties

Favors Preserves

isometry

Nonsingular
Name &
structure

Dirichlet

Dirichlet (3rd order)
Symm. Dirichlet
MIPS (3D)

AMIPS (3D)
Conformal AMIPS
Symm. Gradient
Hencky strain
ARAP

NN X X %X X X X X
SSNSNSSS N X X%
AR R NN

optimization [Ezuz et al. 2019; Wang et al. 2008a; Zoran and Weiss
2011]. In particular, we introduce the auxiliary variable X;; to
model the image of vertices V; under the map to mesh M;, where
Xij ~ PijVj.

4.3 Objective Terms

We define several objective terms used to find the correspondence
and model the soft constraints on the map.

4.3.1 Auxiliary and Reversibility Energy Functions. Our first
two terms are adapted from Ezuz et al. [2019] and extended for
volumetric meshes. The first term is the auxiliary energy that en-
courages Xjj ~ P;;Vj:

1 2
Eq[Pra, P21, X12. X1 ] = Z e [ —PijVJ'HMi, 17)
i,je{l,2}
i#j
where c;, c; are the total volumes of meshes M; and M;, and || - ”12»1»

denotes the Frobenius norm with respect to M;. For a matrix G,

= det J. We use an interior-point method constrained to search over non-negative o to compute the set of

a=0.5 =25
N =
0.08 4 X210 " 02
0.008 006 ™ 3 0.15 >
£0 0,006 g &0 k]
z 004 < <
5 0.004 ToE oL
0.002 002 ~ 1 0.05 —~
=0 0 0
10" 10 10" 10?2 107 1072 107! 10°
v @

search over y search over «

Fig. 6. Parameter sweep over y and «, comparing the tradeoff between
cfavg and 1—det f, where det J is the normalized determinant of the Jaco-
bian. We select & = 0.5, y = 25, as they achieve a reasonable tradeoff be-
tween conforming to the target boundary while maintaining map quality.

2 = tr(GT C;G), where C; is the lumped diagonal vertex mass
matrix of M;.
The second term is the reversibility energy that encourages

bijectivity:

Ljel1,2)
i#]

1
ER[P12, P21, X12, X01] = = IPijXji = Vi .

(18)

This energy measures the distance between the original vertex po-
sitions V; and the back projection of their image under the map P;;,
X j-

4.3.2 ARAP Energy. Central to the computation of a volumet-
ric map is the proper selection of a distortion energy. From our
analysis in Section 3.3, we select the SARAP energy, as it is both
symmetric and promotes rigidity.

We use 3Earap[¢] + 3Earap[¥] to approximate Exarap[4].
We approximate the integral over the volumetric domain by mea-
suring the distortion energy per tetrahedron. For tetrahedron k of
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mesh i, the ARAP distortion function is given by

3
farap (J (X£k)) = Z(Uk,j -1 (19)
j=1

J

where oy j is the jth signed singular value of | (XiTjk ). We use the
convention laid out by Irving et al. [2004] to define the signed sin-
gular value decomposition unambiguously. For J = UXVT, this
convention allows the sign of the smallest singular value o;,ip to
be negative, sign(omin) = sign(det J), and U, V € SO(3).

The total ARAP energy is then

1 T,
Earap [X12, X21] = . Z % Z o(T) faraP (J (x3) )
i,je{1,2} TreTi
i#j
(20)
where v(Tj) denotes the volume of tetrahedron k.

4.3.3  Projection Energy. We encourage preserving the bound-
ary of the source and target meshes by using forward and back-
ward projection energies. We compute the forward projection en-
ergy Ep y as

1
E Xi2, X21] = —
P, [ X2, Xa1] Z o

i.jef,2) >t
i#j

(Xij)azu,- = proj ((Xij)@f‘fi’ an)H;M- ’

(21
where proj((X;j)aar,» 9M;) denotes the Euclidean projection of
the boundary vertices of dM; with coordinates X;; onto the bound-
ary mesh M}, s; denotes the total surface area of dMy, and ||- ”E?Ml-
denotes the Frobenius norm with respect to boundary triangle
mesh dM;.
The backward projection energy Ep j is given by

Ep,p[X12. Xa1] = Z i”V’ ~ proj (V"’aFJ (Xfi))“fwi’

i,je{1,2}
i#j
(22)
where 0F;(Xj;) denotes the boundary of mesh M; with vertices

given by X ji-
The full projection energy is then

Ep[Xi2,X21] = Ep r[X12,X21] + Ep p[X12, X21]. (23)

4.4 Optimization Problem

Combining the distortion and regularization energies, our opti-
mization problem becomes
arg min E[P12, P21, X12, X21]
P12, Py1, X12, Xo1 (24)
subject to P12 € P12, Pa1 € Pau,

where
E[P12, P21, X12, X21]

= Z aEarap[Xij] + (1 — @)ER[Pij, Xji]
i,je{1,2)
ij
+yEp[Xij] + PEg[Xij, Pij]-

Several parameters govern the strength of the distortion ener-
gies and soft constraints. The parameter @ € [0, 1] models the
tradeoff between a reversible map (small « — 0) and one that main-
tains the rest shape (@ — 1). The parameter y € Ry( weighs the

(25)
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projection term that models the soft constraint for matching to the
target boundary. The parameter f controls the soft constraint on
the auxiliary variables. As recommended by Ezuz et al. [2019] and
Wang et al. [2008a],  should use an update schedule tailored per
application. In our experiments, since we start with a coarse initial-
ization of the interior, we initialize f = 0.25 and increase f linearly
to 5 over 20 iterations. We found our approach to be insensitive to
the update schedule.

In this formulation, we use a soft constraint measured by Ep to
map to the target boundary. While we could use a hard constraint
by setting y = 0 and requiring P1p € P}, Pa1 € P, we did not
find that this hard constraint had a substantial effect on our final
output.

5 OPTIMIZATION

In this section, we outline our optimization procedure. We discuss
strategies for initializing the map and propose an approach to un-
invert tetrahedra. We conclude by presenting our algorithm for
minimizing Equation (24) using block coordinate descent.

5.1 Initialization

Objective function (24) includes four variables: P13, P21, Xi2, and
X>1. In this section, we provide strategies for initializing the vari-
ables P;; before running our optimization procedure. We initialize
the X;; variables via Xj; « P;;Vj.

Landmark-based initialization. If we are given landmark pairs
(pi»qi), where p; € My, q; € Ma, then we can initialize each land-
mark’s target by copying the target of its closest landmark.

2D surface map initialization. A second approach is to initial-
ize the boundaries of Mj, My using an existing surface-to-surface
mapping approach. We initialize the interior vertices identically to
landmark-based initialization, where we consider every boundary
vertex to be a landmark.

We do not hold the landmark or surface map vertices fixed dur-
ing the optimization.

5.2 Alternating Minimization

We use coordinate descent, alternating between optimizing over
X;j and P;;. Our multi-step optimization procedure ensures strong
conformation to the boundary while avoiding inverted tetrahedra.

Optimizing for X;jj. Optimizing for X;; while holding the P;;
variables fixed is a smooth optimization problem, for which we
use the Limited-memory Broyden-Fletcher-Goldfarb—Shanno (L-
BFGS) algorithm [Zhu et al. 1997].

We compute the gradient of each energy term in Equation (25).
The gradients for Ep, Eg are straightforward, as they are matrix
norms. We compute the gradient of Eqgrap using the chain rule.
First, we compute the gradient of f4agrap(J) with respect to a Jaco-
bian J, V; faraplJ] = Udiag (Vo farap (0)) V. Using the chain
rule, we then compute the gradient with respect to the elements of
tetrahedron Ty € 7;, with coordinates X;",

5 7, )
% - ((BviTk) TB) (Udiag (Vo farap (o))VT)T,
ij

(26)
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Fig. 7. Flowchart depicting each step of our method: (a) initial source and target shapes, with landmarks shown as yellow spheres; mapped shape; (b) at
initialization; (c) after optimization converges while keeping the boundary fixed; (d) after tetrahedron inversion repair; (e) at convergence; and (f) after
post-convergence tetrahedron repair. Top row shows the boundary of the mapped shape at every step, and the bottom row shows a cut through the interior,
revealing interior tetrahedra. Inverted and collapsed tetrahedra are red. The number of inverted tetrahedra is listed under each cut-through mesh. Our
initial map (b) has all interior tetrahedra collapsed to the boundary, resulting in 17,277 (46%) degenerate or flipped tetrahedra. Steps (c) and (d) optimize
and repair the interior, resulting in eight flipped tetrahedra. The tetrahedron repair step restores elements of the map to match the source, as the hands and
feet rotate. The final optimization followed by the post-convergence repair produces a map that closely matches the boundary with negligible inversions

(one flipped tetrahedron).
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Fig. 8. Optimization of Equation (24) using a landmark initialization. De-
spite a coarse initialization, our algorithm approximates the target shape
after one iteration. Further optimization decreases surface distortion and
improves interior regularity, as visualized by the checkerboard patterns. At
iteration 41, the inverted tetrahedron repair is performed, causing a jump
in the projection energy Ep, from which our algorithm quickly recovers.

The gradient with respect to each vertex is found by gathering
the gradients of each tetrahedron adjacent to that vertex.

Optimizing for P;;. Fixing X12, X21, the remaining energy terms
with respect to P;; are of the form [|P;;A — Blljz\{i with A €
R™*% B € R™*° Following Ezuz et al. [2019], this minimization
can be understood as a projection problem solved independently
for each row of P;;.

In our case, we need to project the points in A to the 6-
dimensional tetrahedral mesh with vertices B, whose connectiv-
ity is the same as M;. The presence of several additional energy
terms in our formulation also leads to a unique projection prob-
lem. Since the problem can be solved independently, we imple-
ment an efficient solution using CUDA programming. To enforce

a hard boundary-to-boundary constraint, we map rows of A cor-
responding to the boundary of M; to the boundary of the target
embedding.

5.3 Inverted Tetrahedron Repair

The initial maps suggested in Section 5.1 are straightforward to
compute, but they are quite distant from our desired output; in-
deed, the majority of tetrahedra in our initial maps have zero vol-
ume. Although alternating between the two steps above is guaran-
teed to decrease the objective function in each step, empirically, we
find in the initial stages our algorithm can get stuck in local optima
due to inverted elements. Here, we describe a heuristic strategy
that empirically can improve the quality of our output.

In this tetrahedron repair step, we find all inverted tetrahedra.
We then take the 1-ring neighborhood of the vertices in the in-
verted tetrahedra and use L-BFGS to minimize fagrap with the re-
maining vertices fixed.

5.4  Full Algorithm and Stopping Criteria

Overall, our optimization procedure follows four broad steps:
(1) map initialization (Section 5.1);
(2) optimization while keeping the boundary fixed (Section 5.2);
(3) inverted tetrahedron repair (Section 5.3);

(4) optimization of all vertices (Section 5.2); and
(5) post-convergence inverted tetrahedron repair (Section 5.3).

For stages 2 and 4, we set as our convergence criteria one of
(i) the norm of the gradient <107, (ii) the objective function
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ALGORITHM 1: Coordinate descent with tetrahedra uninversion

Input: initial maps Pi3, P2y
Output: optimized maps X2, X21, P12, P21

—_

: ang) « P12(0V4, :) // initial boundary map
: 6P2<(1J) — P31 (0Va, )

: X1z « P12V, // initial vertex map

¢ Xo1 < PuVy

: while !converged do // optimize boundary map
for (i, j) € {(1,2), (2, 1)} do
Pij «— argminPEPU ER[P, in] + EQ[P, Xij]

RTINS R B S

Xij — argminXERnix(, EARAP[Xij]
+ ER[Xij, Pji] + Ep[Xij] + Eo[Xij, Pij]
10: OP;j « GPIF?) // restore boundary

12: // inverted tetrahedron repair
13: idx « det](XiTk) <0, YTy € 7; // find inverted tetrahedra
14: X;j(idx) < argminy pn;xe EARAP[Xij(idx)] // 1-ring nbhd.

16: while !converged do // optimize full map
17: for (i, j) € {(1, 2), (2, 1)} do
18: Pij Hargminpepij ER[P, in]+EQ[P, Xij]
19: Xij « argminy pn;x6 Earap[Xij]
+ER[Xij, Pji] + Ep[Xij] + EQ[Xij, Pij]

decreases by less than 1077 between successive iterations, or

(iii) run for 50 iterations; the third criterion is a fallback that rarely

occurs in practice. For stage 5, we limit vertex displacement to pre-

serve map quality by limiting to 100 steps of L-BFGS and we re-

strict optimization to only vertices in inverted tetrahedra.
Algorithm 1 summarizes our full procedure.

5.5 Implementation Details

Unless otherwise noted, all figures are generated using identical
parameters. We use grid search to identify reasonable parameters;
the results of our analysis are provided in Figure 6. We set the rigid-
ity parameter o = 0.5 and the boundary conformation parameter
y = 25, achieving a reasonable tradeoff between average distance
to the target and maintaining per-tetrahedron map quality as mea-
sured using det J, the normalized Jacobian determinant. To find
these values, we initialize f = 0.25 and increase linearly to f = 5
over 20 iterations. In practice, we found our method was insensi-
tive to the choice of .

We generate tetrahedral meshes using fTetWild [Hu et al. 2020].
Prior to mapping, we normalize each mesh to have volume 1. We
perform one tetrahedron repair step, as we found negligible im-
provement after performing more.

We implement our method in MATLAB, using CUDA to opti-
mize the projection step by extending the projection code in Li
et al. [2021] to R®. Our code is available at https://github.com/
mabulnaga/symmetric-volume-maps.

6 EXPERIMENTS

We measure map quality by assessing distortion and closeness to
matching the target shapes (Section 6.1). We validate our method
by mapping pairs of shapes from four datasets (Section 6.2) and
report visualizations and numerical scores evaluating the result
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Fig. 9. Forward and reverse maps on related pairs of shapes. We observe
smooth patterns of distortion on the boundary while capturing distinguish-
ing geometric features, such as the transformation of the tail of the cat and
movement of the bear’s ears. Distortion is uniform throughout the interior.

(Section 6.3). We also compare our method to several variants of a
baseline mapping approach (Section 6.4). We test the robustness of
our method in Section 6.5 and evaluate the choice of symmetrized
energy on computing a map in Section 6.6.

6.1 Quality Metrics

We validate our method using the metrics outlined below.

Boundary matching. We measure fit to the target boundary us-
ing the Hausdorff distance dmax and the chamfer distance dyyg de-
fined as follows:

dmax (M1, M2) = max 4 sup inf d(x,y), sup inf d(x,y)
xeM,; YEMz yeM, XM

(27)

1

davg (M1, Mz) = AR

D dvi, Mo+ Y d(vy, M)

Vi E(Vl v E(VZ
(28)

Here, V; and V, denote the sets of vertices of M; and My, respec-
tively. To make the measures above scale-independent, we normal-
ize both quantities by the length of the diagonal of the bounding

Table 3. Map Quality Evaluation

Map Time Er EARAP s dmax  davg det
(Initialization)  (min.) (><1073) (><1073) MY (x1072) (><10_2)

Xij 31 1.47 81.7 7.7 2.5 0.10 0.98
(Surface) +21 +1.9 +78.5 +9.1 +1.2 +0.046  +0.02
Pij 31 1.29 134.5 649 1.9 0.072 0.96
(Surface) +21 +1.65 +115.4 +549 +0.78 +0.028  +0.04
Xij 107 7.45 93.6 15.8 2.7 0.12 0.97
(Landmark) +53 +10.7 +73.3 +10.9 +1.0 +0.046  +0.02
Pij 107 6.67 176.6 723 2.6 0.11 0.94
(Landmark) +53 +9.7 +145.4 +515 +1.0 +0.038  +0.04
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Fig. 10. Forward and reverse maps on far-from-isometric shapes. Our
maps capture the extreme deformations, for example, by growing and col-
lapsing the airplane rudder and deforming the ears of the horse and cow
pair. Matching boundary features expectedly leads to high local distortion,
as a large volume change is required to model these transformations. The
checkerboard pattern reveals that regions with high boundary distortions
also cause interior distortion (see airplane), but the computed maps are
uniform and smooth elsewhere.

box enclosing the target mesh. We use hats to denote normalized
quantities: dAmax and ciavg.

To visualize the distortion in the interiors of tetrahedral meshes,
we use a mapped checkerboard pattern. In each map visualization,
using Houdini, we slice the source shape with a plane and place an
extrinsic checkerboard pattern on the intersection, using rounding
and modulo operations on coordinates. We push forward the pla-
nar intersection surface through our map and render the result
using a custom shader that looks back to the corresponding coor-
dinate in the source and evaluates the checkerboard function. In-
terpolation happens by finding the closest element (xyzdist) and
then transferring coordinates (primuv).

Distortion and inversion. We measure the quality of the trans-
formation by computing the number of inverted tetrahedra (n;p)
and the mean normalized Jacobian determinant det J (weighted by
tetrahedron volume), where the columns of J are normalized as
in Li et al. [2021]. Figures containing qualitative results depict dis-
tortion per tetrahedron using the ARAP energy Z?:l (loi] = 1)2.

6.2 Datasets

We evaluate our method on 24 mesh pairs from four datasets.
For datasets where only triangle meshes are available, we tessel-
late the interiors. We randomly select pairs of shapes distorted
non-isometrically from the SHREC19 dataset [Dyke et al. 2019].
We also randomly select matching and non-matching pairs of hu-
mans and animals for nonrigid correspondence from the TOSCA
dataset [Bronstein et al. 2008a]. Finally, we obtain tetrahedral
meshes of models of natural objects and CAD models from Li et al.
[2021] and Fu et al. [2016], from Thingil0k [Zhou and Jacobson
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Source  Target Initial " Result Source

Fig. 11. Resulting map when initialized using only a sparse set of land-
mark points. Despite an initialization that collapses the mesh to a set of
landmarks, we produce a map that captures sharp geometric features of
the target including the hands and bends of the legs. The distortion is
smooth and uniform throughout the boundary and interior.

2016], and from Thingiverse [Japan 2022]. The resulting meshes
had (mean + standard deviation) 50,010 + 34,663 tetrahedra. We
manually choose landmarks on the boundary surfaces for every
mapping example (marked on most figures); Table 5 provides the
number of landmarks and number of tetrahedra for each pair.

6.3 Validation

In this section, we demonstrate our maps on several pairs.

Quantitative evaluation and map selection. Table 3 measures per-
formance of both sets of maps, X;; and P;;, using surface map ini-
tialization and landmark initialization. Using the image of the map
Xij, we achieve close matchings to the target boundary with neg-
ligible tetrahedron inversions and while effectively maintaining
tetrahedron quality. The landmark-based initialization achieves
comparable performance, with slightly higher dmax. These results
indicate our method is robust to the choice of initialization. The
constrained maps P;; have significantly higher tetrahedron inver-
sion due to the constraint P;; € #;j, which results in boundary
tetrahedron foldovers. Since the boundary matching metrics are
comparable for both maps, we use Xj; as the final map. The low
number of tetrahedron inversions (n;,,) and small Eg indicate the
resultant maps are nearly inverses of one another. Table 5 presents
results for all pairs in our dataset.

Algorithm flowchart. We demonstrate each step of our algo-
rithm in Figure 7. First, we compute an initial boundary map us-
ing the method of Ezuz et al. [2019]. This initial map is interpo-
lated from the boundary to the interior by mapping each interior
vertex to the target of its closest boundary vertex, as described in
Section 5.1. This procedure results in a significant number of in-
verted or collapsed tetrahedra (Figure 7(b)). The interior is then
improved by minimizing the map energy over the interior vertices
(Figure 7(c)). Then, we repair inverted tetrahedra, dramatically re-
ducing the number of flipped tetrahedra, as described in Section 5.3.
The mapped mesh starts to restore its source pose; the hands and
feet rotate (Figure 7(d)). We compute the final map by optimizing
over all vertices (Figure 7(e)) and then perform post-convergence
tetrahedron repair, arriving at a solution that closely conforms to
the target boundary while minimizing distortion (Figure 7(f)).

Figure 8 visualizes our optimization routine initialized with
landmarks. A few intermediate shapes are demonstrated. Our al-
gorithm quickly recovers the target shape, and the optimization
improves surface matching and reduces boundary and interior
distortion.
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Fig. 12. Comparison of our map with the baseline approach using K = 25
with landmark equality constraints. Red ovals indicate distorted regions
in the baseline where our method succeeds. Our approach effectively pre-
serves geometric features and produces high-quality maps.

Map results. We demonstrate our method on several pairs.
Figure 9 shows the forward and reverse maps between pairs of
deformations from the same domain. In both examples, distortion
is smooth throughout the boundary, and our map successfully
matches geometric features, for example, the curved tail and the
ears in the cat pairs. The checkerboard patterns demonstrate that
our maps are smooth in the interior.

Figure 10 shows results for the more challenging problem of
mapping between pairs of shapes from different domains. Distor-
tions are mainly smooth on the boundary but are expectedly high
in regions with large displacements, e.g., in the nose and rudder
of the airplane in the forward direction. Here, the volume of the
nose has to shrink substantially, while the rudder has to expand
in height. Similarly, we see large distortion in the cow-horse pair,
particularly in the ears in the reverse map and in the knees and feet
in the forward map. Our boundary term yields maps that closely
conform to the target at the cost of greater tetrahedral distortion.

Figure 11 demonstrates our resultant map when initialized us-
ing a sparse set of landmark points (Section 5.1, landmark-based
initialization). While the initial map is unintelligible, our output
matches the target shape closely. The final map has low distortion
throughout the boundary and captures the narrow features of the
target, including the fingers and bends in the legs. Furthermore, the
checkerboard pattern reveals uniform distortion in the interior.

6.4 Baseline Comparison

We compare to the volumetric mapping approach of Kovalsky et al.
[2015]. Their method inputs a surface map with optimized interior
and computes a similar map that is orientation-preserving with
bounded condition number K. Linear equality constraints on the
vertices are used to fix parts of the map.

We compute the initial volumetric map by first computing a sur-
face map as in Section 5.1 and then repairing degenerate tetrahedra
by minimizing the Dirichlet energy while keeping the boundary
fixed, as was done by Kovalsky et al. [2015]. We test four differ-
ent sets of equality constraints for extracting the final volumet-
ric maps: (1) fixing the boundary map; (2) fixing the boundary
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Table 4. Map Quality Comparison to the Baseline for K = 25.

. . dmax duvy T

Constraint Nino (x10-2) (><10_2) detJ
Ours 8+13.8 2.35+1.45 0.097 £0.05 0.98 +0.02
» Boundary 2,740 + 2,210 2.84 +1.06 0.085 +£0.049 0.82+0.17
% Boundary (no flip) 11.1£31.8 7.9+8.5 0.33+0.38 0.89+0.1
%2 Landmark 1.8+£3.2 5.2+3.1 0.7+0.26 0.89+0.11
A Center of mass 1.7+2.6 7.2+0.58 0.8+1.2 0.89+0.11

map for vertices not in inverted tetrahedra; (3) fixing landmarks;
and (4) preserving center of mass. We use conformality bound
K € {5,25,50,100}.

Table 4 compares map quality across the dataset for each equal-
ity constraint using K = 25. Similar behavior arose for other values
of K, so they are not shown. We compare with the matching for-
ward maps from our method. The fixed boundary map results in
comparably low cfmax, (favg to our method, but with a significantly
greater number of flipped tetrahedra and poor map quality (det | =
0.82) compared to our approach (det J = 0.98). The strongest base-
line uses the landmark equality constraints, resulting in improved
Nino, at the cost of map quality and boundary matching.

Figure 12 compares our map with the baseline using the fixed
landmark constraint. Our method correctly maps features that are
distorted by the baseline, such as the arm and leg of the human
and hooves of the horse. The baseline approach performs well
on the armadillo, a map between shapes of the same domain, but
produces higher distortion. These visual and quantitative results
demonstrate the strength in our free-boundary formulation, which
effectively matches geometric features.

Surface map repair. Figure 13 shows how our algorithm recov-
ers artifacts in the 2D surface map initialization procedure (Sec-
tion 5.1) and compares with the baseline using the fixed landmark
constraint. Starting from our landmarks, the surface map method
of Ezuz et al. [2019] results in parts of the surface that are folded
inside out (the backs of triangles are shown in black), as seen on
the arms and legs of the human and the paws of the dog; the ini-
tial maps also have collapsed boundary features (hand of the hu-
man, tail of the dog). Both our method and the baseline target
orientation-preserving maps and correct these inverted areas. Un-
like the baseline, our method recovers from the inverted regions
to match the target shape. Furthermore, we fill small regions such
as the tail of the dog and the hands and feet of the human.

6.5 Map Robustness

We test the robustness of our method on challenging mapping
cases. We first assess the ability to map from smooth, high-
resolution shapes to coarse meshes with sharp features. Figure 14
demonstrates mapping to polycube shapes from Fu et al. [2016], us-
ing the P;; maps. We successfully map bidirectionally between the
smooth and coarse shapes, although expectedly higher distortion
arises in the corner regions.

Figure 15 tests matching between nonisometric pairings. We
stretch one arm and leg of the human mesh and obtain close match-
ings in both directions, although higher distortion arises at the
ends of the stretched regions due to large changes in volume re-
quired to match to the target.

Figure 16 tests the robustness of our method to mesh quality.
Figure 16 (top) maps a high-resolution horse to progressively
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Fig. 13. Refinement of the initial boundary map using [Ezuz et al. 2019]
and comparison to the baseline with landmark equality constraints. The
backs of boundary triangles are shown in black. The initial map produces
areas of the surface turned inside out and collapses regions such as the
hands of the human and tail of the dog. Both our method and the base-
line can produce orientation-preserving correspondences. Compared to
the baseline, our approach restores collapsed and distorted regions and
effectively matches the target shape (red ovals). This experiment also re-
veals that our method can recover from poor initialization.
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Fig. 14. Map between smooth and polycube shapes. Our method produces
close matchings in both directions, though higher distortion arises in the
corner regions of the polycube.

downsampled versions. Despite differences in mesh resolution, we
successfully map to the target shapes with minimal inversions, al-
though small features like the ears of the horse are distorted. This
artifact is due to few tetrahedra representing these regions in the
downsampled mesh. Figure 16 (bottom) assesses the sensitivity of
our method to mesh quality by mapping a bird with thin, elongated
tetrahedra faces to one with regular tetrahedra. We achieve a close
matching, suggesting our method is robust to mesh quality.

6.6 Symmetrized Energy Choice

We experiment with the choice of symmetrized energy and its
effect on producing a map. As described in Section 3.3, several
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Fig. 15. Nonisometric mapping of a stretched human. Close matchings are
obtained, though higher distortion arises in the stretched regions.

symmetrized energies do not favor isometry, while our choice, the
SARAP energy, does. Figure 17 compares the output when optimiz-
ing using the sARAP, the symmetrized Dirichlet (sDir), and the
3rd-order symmetrized Dirichlet (sDir?) energies. The 3rd-order
Dirichlet is used, since tri-harmonic functions are used to achieve
C! continuity in 3D [Iwaniec and Onninen 2010]. In these exper-
iments, we remove the tetrahedron repair step, which made the
artifacts worse. We compare two choices of y and visualize the re-
sultant maps.

Both the sDir and sDir® energy completely collapse the map for
y = 0.1, since the projection term has little effect at keeping the
map intact. Similarly, parts of the mapped mesh degenerate with
y = 25. In both cases, the sDir’ energy, however, maintains conti-
nuity. In contrast, the sSARAP energy does not produce a collapsed
map, although it starts to restore the source when y = 0.1.

This experiment verifies our analysis in Section 3.2 and addition-
ally shows that methods using energies that do not favor isometry
can be sensitive to parameter choice.

7 EXAMPLES

Volumetric maps are useful for transporting data between domains.
Below, we depict some use cases that would benefit from our low-
distortion, near-diffeomorphic maps.

7.1 Internal Geometry Transfer

In contrast to pulling back functions on My to M1, we can also push
forward maps into M; to My. This category of data includes point
clouds, collections of curves, and arbitrary subdomains U C Mj.
As an example of how data can be easily transported us-
ing our maps, in Figure 18, we push forward integral curves
of a frame field on domain M; through ¢ : M; — My. The
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Fig. 16. Map sensitivity to mesh quality. Top: mapping a high-resolution
horse mesh to progressively downsampled versions (boundary triangle
faces indicated). Bottom: mapping a bird with thin, elongated tetrahedra
faces to one with regular tetrahedra. In all cases, the targets are matched
closely with few inversions (maximum of n;,, = 2), though in the horse
examples, small geometric features, such as the ears, are lost due to limited
representation.
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Fig. 17. Comparison of maps when optimizing with the symmetrized
Dirichlet (sDir), the 3rd-order sDir?, and the sARAP energies. sDir and
sDir® produce collapsed maps for both values of y, although y = 25 keeps
parts of the map intact, as it pushes vertices to the boundary. The SARAP
energy does not collapse, but starts to show the source shape for y = 0.1,
as expected.

Our Map

Source  Target Source Target Our Map

Fig. 18. When the integral curves of an octahedral frame field are pushed
forward from a source domain (left) to a target domain (right), the result
looks similar to the integral curves of a field computed directly on the
target (center). The mapped curves remain nearly orthogonal, illustrating
the low metric distortion of our map.

frame fields and their integral curves were generated using
ARFF [Palmer et al. 2020]. Integral curves were pushed for-
ward by mapping the curve vertices individually using piece-
wise linearity. The integral curves remain nearly orthogo-
nal under the map, showing that it is close to isometric.
The pushed-forward integral curves
closely match the integral curves com-
puted directly on My, also reflecting the
map’s degree of metric preservation.

In another example, we simulate an
internal geometry transfer task. As
shown in Figure 20, we place several
objects representing anatomy inside of
our source mesh and push these for-
ward to our target. Despite rotation of
the head and movement of the arm,
structure is largely maintained. For
the meshes used in this example, we Fig. 19. Internal  curve-
credit Averin [2017], Leemhuis [2018], Skeleton transfer.

Medical [2013], Reininger [2015], and YEG 3D Printing [2015].

In a final example, we transfer a curve-skeleton of a horse mesh
to our target (Figure 19). The source skeleton is generated using
the approach of Cao et al. [2015]. The transferred skeleton cap-
tures the deformation of the horse, as evidenced by the curva-
ture of the spine. Previous work has proposed skeleton transfer
by finding a rigid transformation between skeletons of two sur-
face meshes [Seylan and Sahillioglu 2019]. In contrast, our volu-
metric approach facilitates internal geometry transfer and does not
require computing matchings of internal shapes.
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Fig. 20. Internal geometry transfer. We place several objects representing
human anatomy in the interior of our source mesh and push these forward
to the target using our volumetric map.

7.2  Hex Mesh Transfer

Our maps can transport other volumetric structures. Hexahedral
meshing remains difficult and often requires extensive human
intervention; our maps can transport expensive-to-compute hex
meshes between domains. Figure 21 transports a hexahedral mesh
designed using the method of Li et al. [2021] on one domain to a
deformed domain. Similar to how we push forward integral curves,
we transport a hex mesh by mapping its vertices individually, main-
taining the combinatorial structure of the mesh. Due to the low
metric distortion of the map, the distortion of most of the hexa-
hedra remains low, as measured by the scaled Jacobian. However,
the right foot of the mapped hex mesh has two toes joined together.
This artifact is caused by projection to the wrong boundary target,
an artifact also encountered by Li et al. [2021]; as their approach
has user interaction, they suggest adding landmarks during the op-
timization to clarify difficult targets.

7.3 Volumetric Data Transfer

We demonstrate one example of volumetric data transfer using a
dataset of placentas extracted from fetal MRI [Abulnaga et al. 2022].
The mapping is done on data from two patients. The first mapped
pair contains two scans acquired where the mother is lying in two
positions: supine and left lateral. The second contains two scans
acquired ~ 10 minutes apart. Figure 22 presents the results. The fig-
ure marks one important anatomical landmark, a cotyledon, which
is responsible for the exchange of blood from the maternal side to
the fetal side [Benirschke and Driscoll 1967]. Cotyledons appear as
hyperintense circular regions in MRI. We observe close correspon-
dence in the placental geometry. Similar patterns are seen in the
mapped texture and the target. In this application, neither example
has a clearly defined source or target shape. The symmetry in our
method is advantageous for downstream tasks, such as statistical
shape analysis or label propagation, as it prevents bias caused by
arbitrarily selecting a source and a target. We leave to future work
a detailed study of our method’s relevance to MRI data.

8 DISCUSSION

We successfully map a collection of shapes of diverse geometry
and demonstrate that our maps closely match the target boundary
with low distortion throughout the volume and a negligible
amount of flipped tetrahedra. Our method is robust to the choice
of initialization (Figures 8, 11, and 13) and can produce a dense
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Fig. 21. Hex mesh pushed forward from one volume to another using our
map. We observe low distortion, as measured by the scaled Jacobian over-
all, but there is some distortion in the mapped right foot. Hex meshes are
visualized with HexalLab [Bracci et al. 2019], which clamps negative scaled
Jacobian values to 0.

correspondence even when starting with a low-quality, many-to-
one map (Figures 8 and 11). Compared to the baseline, our free
boundary-based approach can recover from poor initialization
(Figure 13) and produce higher-quality maps, as shown in Table 4
and Figure 12. Our examples illustrate scenarios that require a
volumetric correspondence, namely, internal geometry transfer,
hex mesh transfer, and volumetric data transfer.

Key to the development of our algorithm was the analysis
of symmetric distortion energies in Sections 3.2-3.3. We sym-
metrized several common distortion energies and found that only
the SARAP energy had the desirable properties of favoring isom-
etry, preserving structure, and being nonsingular. We provide a
simple way to symmetrize a distortion energy and check if it sat-
isfies these properties. Figure 17 also shows that some choices of
energy can lead to degenerate maps that are sensitive to the param-
eters used. The nonsingularity of the SARAP energy is favorable
for computing a map given a degenerate initialization. Since vol-
umetric correspondence has no obvious initializer, this property
is key in our target applications, as we can recover from poor ini-
tialization. Future work remains in designing symmetric distortion
energies that satisfy more desirable properties.

The connection between the theoretical analysis in Sections 3.2—
3.3 to our algorithm design relies on / = ¢~!. We use soft con-
straints to encourage a bijection and produce maps with low re-
versibility energy (Eg = (1.47 + 1.9) X 1073) and few flipped tetra-
hedra (7.7 +9.9). In practice, we cannot guarantee i/ = ¢!, as our
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Fig. 22. Volumetric data transfer of two fetal MRI volumes visualized as
cross-sections of 3D MRI. The figure shows texture transfer between two
volumes in a scenario where the mother is lying in the supine and left
lateral position (left) and in a scenario where the two volumes are approx-
imately 10 minutes apart (right). The circle marks the location of a cotyle-
don in the target texture.
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Fig.23. Limitations. We were unable to map between the screw threads, as
the map required removing or adding a large amount of material, leading
to significant distortion. In our second example, the target shape, a shark,
had a large cavity in its interior, while the source, a dolphin, did not.

initialization is non-invertible, and the existence of an invertible
map is not guaranteed. However, our experimental results demon-
strate the theoretical analysis is relevant, as our computed maps fa-
vor isometries (det J = 0.98 +0.02) and do not collapse (Figure 17).
It remains an open problem to guarantee 1 = ¢~ L.

8.1 Limitations

We observed a few failure cases, as can be seen in Figure 23. First,
we encountered shapes where finding a volumetric map was sim-
ply infeasible. In the screw threads example, the required map
would have to add or remove a large amount of volume, which
would lead to substantial distortion. Furthermore, the threads on
the boundary differ in number, making it impossible to match
sharp features. In the second case, we were unable to map a
shark with a cavity in its interior to a dolphin with a solid inte-
rior. The cavity is a large hollow area to which a volumetric ap-
proach is highly sensitive. Furthermore, our method is unable to
change topology when mapping between shapes of different genus
(Figure 24), and we are unable to prescribe topological constraints.
Another limitation is that our method may not be suitable for par-
tial volume matching, since we normalize input meshes to have
volume 1. Last, as demonstrated in Figure 21, our method can join
together small features in the boundary (e.g., armadillo toes). This
artifact is caused by an incorrect boundary projection. A potential
fix would be to have soft landmark constraints in the optimization.

Finally, our method takes between
minutes and hours to compute the cor-
respondences. The computational cost
is problematic if desiring mapping a
collection of shapes, despite our al-
gorithm being advantageous in that
we can map between shapes that are
far-from-isometries, and we do not re- (!
quire the same connectivity between
shapes. The computational bottleneck
is computing the SVD for each tetra-
hedron many times on the CPU to ap-
proximate the gradient of the objective  Fig. 24. Highly distorted re-
function. A future direction is to im- gion (red circle) when map-
prove the convergence time by using Ping from a genus-1 to a
a second-order method and to use the ~8€ns™0 shape.

GPU for parallelization.
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Table 5. Quantitative Results on All Mesh Pairs in Our Dataset

Names ¢ | Time |77 | ER(x1073) | Eapap(x1073) Nino dinax (X107%) | dave(x1072) | det f|

scan_011 scan_019 23 | 2923 | 36420 | 43527 | 2.23 | 152 | 5589 6491 | 3 | 11 | 147 782 | 012 | 024 0.98+0.05 | 0.974+0.0545
scan_011 scan_030 19 | 1139 | 36420 | 37,588 | 012 | 011 | 43.18 4322 | 2| 0| 183 252 | 010 | 012 | 0.98120.0372 | 0.984+0.0275
scan_019 scan_039 16 | 1757 | 43527 | 50713 | 030 | 032 | 5587 5849 | 0 | 2 | 157 2 | 012 0.14 | 0.97620.0503 | 0.979+0.0456
airplanel airplane2 7 26 | 24894 | 30700 | 129 | 302 | 25728 | 17417 | 8 | 12 | 2.33 234 | 010 | 012 | 0.968£00773 | 0.954+0.0979
armadillo deformed armadillo | 21 | 7589 | 81114 | 113,794 | 011 | 011 | 2540 2822 | 2| 3| 115 139 | 005 006 | 099400244 | 0.988+0.0259
bird_1 bird_2 12 | 1955 | 30361 | 90810 | 017 | 018 | 4516 4436 | 0| 7 | 123 115 | 006 | 008 | 0.987£0.0278 | 0.984+0.0318
cat0 catl 17 | 986 | 17,867 | 22988 | 051 | 045 | 4033 5152 | 0] 1| 198 173 | 008 | 0.08 | 0.984%0.0479 | 0.981%+0.0467
catd cats 18 | 1405 | 25985 | 22710 | 092 | 1.02 | 5271 5603 | 5 | 5 | 392 289 | 013 | 011 | 09800498 | 0.98+0.049%
centaur0 centaurl 37 | 1370 | 30357 | 26,954 | 042 | 038 | 26.06 2056 | 1| 3 | 104 142 | 005 0.07 | 0.99320.0212 | 0.988+0.0299
dancer dancer? 13 | 4311 | 58535 | 36902 | 732 | 406 | 26853 | 287.04 | 41 | 17 | 1.32 218 | 0.12 011 | 0.934%0.131 | 0.951£0.0909
doga dog5 27 | 1704 | 31469 | 30160 | 1.58 2 | 6145 5325 | 7 | 3 | 229 227 | 009 | 010 | 0979£00527 | 0.98+00538
dogb dog7 24 | 3392 | 26730 | 43771 | 387 | 434 | 137.22 | 121.09 | 3 | 14 | 7.01 238 | 020 | 017 | 0961200754 | 0.958£0.0863
dog7 dog8 25 | 7115 | 81,145 | 85128 | 034 | 035 | 22.03 2251 | 4 | 9 | 286 478 | 008 | 012 | 0.992£0.031 | 0.992£0.0286
Dolphin Shark 9 | 3975 | 129,443 | 55440 | 251 | 2.90 | 123.05 80.68 | 11 | 13 | 3.96 532 | 014 | 016 | 0.98120.0576 | 0.981+0.0592
dragon_stand | dragonstand2 28 | 7037 | 109823 | 194,651 | 0.01 | 0.01 0.60 032 | 0] 0] 075 095 | 002 | 002 120.002 120.003
fish1 fish2 8 | 7357 | 64410 | 58215 | 3.07 | 207 | 14962 | 17976 | 55 | 16 | 2.10 209 | 016 | 012 | 0.969+0.0872 | 0.969+0.0763
glass1 glass2 13 | 12.83 | 300921 | 13439 | 7.28 | 7.81 | 27330 | 28375 | 24 | 0 | 1.85 133 | 022 | 010 | 0918+0.122 0.89%0.107
gorillal gorilla 26 | 3052 | 37417 | 59375 | 1.26 | 124 | 3304 5837 | 1| 4 | 405 276 | 009 | 010 | 0.988+00326 | 0978+00443
horse0 horses 16 | 2055 | 31,507 | 34978 | 023 | 021 | 3110 3511 | 0] 1| 216 237 | 0.05 0.06 | 0.989+0.0414 0.990.027
Cow_t Horse_t 21 | 2009 | 31694 | 32515 | 058 | 116 | 117.74 | 12002 | 17 | 18 | 225 343 | 013 | 023 | 0978%00515 | 0.969+0.0641
human1 human2 21 | 4227 | 56550 | 82581 | 057 | 087 | 5834 6089 | 0 | 33 | 167 209 | 0.06 | 0.0 | 0.988+0.0267 | 0.985+0.0428
michael0 ‘michael7 20 | 1953 | 19445 | 30014 | 040 | 035 | 21.62 2728 | 1| 4 | 175 146 | 006 | 007 | 0992400221 | 0.9910.0269
seahorse2 seahorsed 22 | 824 | 13720 | 15667 | 0.09 | 011 | 1689 714 | 1] 1] 110 191 | 004 | 004 | 0.993£0.0227 | 0.993+0.0213
toyl toy2 12 | 3154 | 75236 | 62880 | 043 | 047 | 47.36 5313 | 5 | 3 | 474 366 | 0.08 | 007 | 0.987%00345 0.979%0.05

Our maps closely match the target boundaries while producing low distortion and few tetrahedron inversions. Here, € denotes the number of landmarks. Time is measured in

minutes.

8.2 Future Work

An exciting future direction is to develop application-specific vol-
umetric correspondences. We provided a few examples of tasks
where volumetric correspondence is useful. Our example of map-
ping MRI signals demonstrated that while matching geometries
can improve correspondence, a method that incorporates both the
geometry and signal intensities is needed. One framework could
be to combine our vertex-based approach with functional maps.

We envision this work to be a starting point for dense volu-
metric correspondence applicable to a broad set of shapes. The
nascent area of volumetric correspondence is largely unexplored,
and our theoretical discussion suggests many intriguing mathe-
matical questions and algorithmic design challenges.
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