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Although shape correspondence is a central problem in geometry pro-

cessing, most methods for this task apply only to two-dimensional sur-

faces. The neglected task of volumetric correspondence—a natural exten-

sion relevant to shapes extracted from simulation, medical imaging, and

volume rendering—presents unique challenges that do not appear in the

two-dimensional case. In this work, we propose a method for mapping be-

tween volumes represented as tetrahedral meshes. Our formulation min-

imizes a distortion energy designed to extract maps symmetrically, i.e.,

without dependence on the ordering of the source and target domains. We

accompany our method with theoretical discussion describing the conse-

quences of this symmetry assumption, leading us to select a symmetrized

ARAP energy that favors isometric correspondences. Our final formula-

tion optimizes for near-isometry while matching the boundary. We demon-

strate our method on a diverse geometric dataset, producing low-distortion

matchings that align closely to the boundary.
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Fig. 1. Our method produces low-distortion correspondences between vol-

umes, visualized as checkerboard textures through the sliced volumes.

1 INTRODUCTION

Shape correspondences are at the core of many applications in

graphics and geometry processing, including texture and seg-

mentation transfer, animation, and statistical shape analysis. The

central objective of these applications is to compute a dense map

between two input shapes, facilitating semantically meaningful

information transfer with minimal distortion.

The vast majority of shape correspondence algorithms focus

on mapping two-dimensional surfaces. These approaches leverage

geometric properties that are unique to surfaces. For example, key

shape properties like curvature are defined over the entire surface

domain, rather than only on the boundary as in the volumetric

case. As a result, one can even find reasonable correspondences by

matching geometric features directly, without incorporating any

notion of distortion [Ovsjanikov et al. 2010]. Other methods use

Tutte’s embedding or notions of discrete conformality specific to

surfaces to achieve key properties like invertibility [Lipman and

Funkhouser 2009; Schmidt et al. 2019].

In contrast, here, we consider the problem of mapping volumes

to volumes rather than surfaces to surfaces. Volumetric correspon-

dence is beneficial for several tasks. In graphics and CAD, bound-

ary representations of shapes are used to represent objects, so even

the input geometry used to evaluate surface-to-surface mapping

techniques typically expresses a volumetric domain. Hence, find-

ing volumetric correspondences may improve correspondences

of these boundary representations, since volumetric reasoning

is needed to preserve thin features and prevent volumetric col-

lapse; for example, to prevent the candy-wrapper artifact, where

regions twist about a point and change orientation. In these cases,

surface area is roughly maintained while volume degenerates.

See Figure 2 (top) for an illustration using the surface mapping
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Fig. 2. Illustration of possible map degeneration when using a surface-

mapping approach. Top row: Mapping using the surface-based approach

of Ezuz et al. [2019] initialized with four landmark points (yellow spheres)

leads to the candy-wrapper artifact, where regions of the mapped shape

twist 180◦, causing a change in orientation accompanied by a collapse in

volume (red circles). The dark gray regions of the surface map show the

backs of the triangles. Bottom row: mapping with two landmarks at the

ends of the rods corrects the issue. In both cases, our volumetric approach

maintains volumetric integrity and preserves orientation.

approach of Ezuz et al. [2019]. From a surface isometry perspec-

tive, the candy-wrapper artifact has little distortion, as only few

edges have deformed. However, from a volumetric perspective, the

shape’s volume has completely degenerated. In other applications,

such as medical imaging, data is acquired in a regular 3D grid and

shape correspondence is used for volumetric texture transfer or

alignment. Consequently, extending surface correspondences to

the interior of volumetric shapes is nontrivial, so volumetric map-

ping approaches are needed.

Volumes do not share many of the geometric properties that

have enabled mapping techniques for surfaces, so new approaches

are needed. The closest existing methods to volumetric mapping

tackle volumetric deformation and parameterization. In these ap-

plications, one starts with a volume in its rest pose and deforms the

volume to a target domain or to conform to a set of target handle

positions in a fashion that minimizes distortion. These approaches

differ from volumetric mapping in several ways. First, volumetric

deformation and parameterization methods typically assume a rea-

sonable initial guess (e.g., the source shape) and flexibility in the

target domain (e.g., unconstrained geometry away from the han-

dles) or specialize to a single target (e.g., a ball). In contrast, in

mapping, the source and target domains are geometrically distinct

shapes, so a reasonable initialization is not given. One may need

to start with a coarse map to a known set of landmarks [Aigerman

et al. 2014; Ezuz et al. 2019]. Furthermore, mapping problems are

typically symmetric, in the sense that the computed map should be

invariant to the ordering of the source and target domains; there

is no notion of a “rest pose” typical in deformation. Consequently,

we seek a distortion energy that is symmetric with respect to the

source and target.

We propose an algorithm for mapping between volumes rep-

resented as tetrahedral meshes. Our method draws insight from

2D surface mapping and 3D deformation. It builds on the dis-

cretization of maps used in a state-of-the-art surface mapping algo-

rithm [Ezuz et al. 2019] but requires new objective functions and

optimization methods to be effective. In particular, we propose a

set of symmetrized distortion energies that are invariant to the do-

main over which the map is applied and aim to produce inversion-

free, low-distortion matchings that conform closely to the bound-

ary (Figure 1).

Contributions. This article contributes the following:

• We present a method for computing volumetric correspon-

dences between far-from-isometric shapes by minimizing a

symmetric distortion energy.

• We analyze the concept of a symmetric distortion energy,

which is agnostic to the ordering of source and target domains,

and provide a recipe for symmetrizing a distortion energy. We

propose a set of desirable properties for a symmetric distor-

tion energy and analyze well-known measures of distortion

within our framework.

• We demonstrate our method on a diverse dataset of examples,

showing that our method reliably extracts correspondences

with low distortion.

1.1 Approach

We find a dense correspondence between two volumetric shapes

M1 and M2 represented as tetrahedral meshes. Our algorithm si-

multaneously optimizes for a map ϕ : M1 → M2 and its (approx-

imate) inverse ψ ≈ ϕ−1 : M2 → M1, which both take vertices of

one mesh to (interiors or boundaries of) tetrahedra in the other.

Our approach handles meshes of differing connectivity and facili-

tates finding maps between far-from-isometric shapes.

Existing volumetric mapping methods use deformation tech-

niques to place or repair interior tetrahedra, given a fixed map be-

tween the boundaries ∂M1 and ∂M2. In contrast, we include the

boundary map as a variable. Our method can repair poorly initial-

ized surface maps and compute maps using only landmark corre-

spondences as initialization.

Our formulation is symmetric in that the computed map is in-

variant to the labeling of the “source” and the “target” among M1

and M2. The motivation for symmetry comes from several appli-

cations where the selection of a source or target shape is unneces-

sary. For example, in medical imaging, one is interested in finding

correspondences between brain shapes extracted from magnetic

resonance images (MRI) to perform comparisons of local cortical

(brain tissue) thickness [Aganj et al. 2015]. Similar symmetry arises

when seeking a correspondence between two humans standing in

the same pose, and in general for applications seeking to align two

shapes. The arbitrary choice of the source shape is a consequence

of algorithm design rather than application need. Consequently,

this choice can influence the correspondence result, introducing

bias. As shown in Figure 3, an asymmetric method like Kovalsky

et al. [2015] may result in unequal performance dictated by the

choice of map direction. Further, the asymmetry of previous ap-

proaches in medical imaging have introduced bias in estimating

the effects of Alzheimer’s disease [Fox et al. 2011; Hua et al. 2011;

Yushkevich et al. 2010].

A reasonable expectation is to produce the same map—up to

inversion—regardless of the choice of the source and target shape,

i.e., the ordering of M1 and M2. One way to achieve this is to

use a symmetric energy. An energy E is symmetric if E (ϕ) =
E (ϕ−1) [Cachier and Rey 2000; Schmidt et al. 2019]. Since ϕ−1 is
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Fig. 3. Comparison between our symmetric approach and an asymmetric

baseline. A symmetric approach is necessary when there is no clear source

or target shape to produce high-quality bidirectional maps.

challenging to compute in practice and does not exist for maps

initialized with flipped tetrahedra, we introduceψ ≈ ϕ−1 and pro-

pose a symmetric approach by optimizing E (ϕ)+E (ψ ). Optimizing

with this pair of maps is a common way of guaranteeing symme-

try [Cachier and Rey 2000; Christensen and Johnson 2001; Ezuz

et al. 2019; Schmidt et al. 2019; Schreiner et al. 2004], and we show

via change-of-variables that optimizing this sum is equivalent to

optimizing a different distortion energy ESym (ϕ) on just the for-

ward map ϕ.
Key to computing a high-quality map is the proper choice of dis-

tortion energy E or its symmetrized counterpart ESym. We analyze

the effect of symmetrizing several widely used distortion energies,

showing that several symmetrized energies violate typical desider-

ata used to design mapping algorithms. For example, several sym-

metrized energies no longer favor local isometry. Following this

analysis, we select the symmetrized ARAP energy as our distor-

tion measure, eliminating solutions that locally favor collapsing

or shrinking maps.

2 RELATED WORK

Volumetric correspondence poses a new set of challenges that has

not been addressed in surface-based methods. Although relatively

few works consider precisely the problem tackled in this article,

we draw insights from volumetric parameterization, volumetric de-

formation, and surface mapping and focus our review on relevant

work on these topics.

Volumetric parameterization and deformation. Parameterization

and deformation algorithms provide means of deforming tetra-

hedral meshes into prescribed poses or domains with minimal

distortion.

A parameterization is a deformation of a volume to a simpler

domain, such as a topological ball [Abulnaga et al. 2022; Garanzha

et al. 2021; Paillé and Poulin 2012; Wang et al. 2003; Yueh et al.

2019] or a polycube [Aigerman and Lipman 2013; Fu and Liu 2016;

Li et al. 2021; Paillé and Poulin 2012; Wang et al. 2008b; Xia et al.

2010]. The better-studied instance of parameterization in graphics

maps, possibly with cuts, two-dimensional surfaces (rather than

volumes) into the plane; see Floater and Hormann [2005], Fu et al.

[2021], and Sheffer et al. [2007] for discussion of this broad area of

research.

In deformation, the task is to deform a volume bymoving a set of

handles to a set of target positions. These methods are often based

on physical models of strain [Irving et al. 2004] and aim to produce

elastic deformations minimizing a prescribed energy choice [Chao

et al. 2010; Fu et al. 2015; Irving et al. 2004; Kovalsky et al. 2014;

Müller et al. 2002; Sahillioğlu and Kavan 2015; Smith et al. 2018,

2019]. In the 2D case, both skeleton-based [Lewis et al. 2000] and

physical models [Nealen et al. 2006] can be used. See Gain and

Bechmann [2008], Selim and Koomullil [2016], and Sieger et al.

[2015] for general discussion.

In both problems above, one computes a deformation from the

rest pose to the target. Optimization methods are used to match

the target whileminimizing distortion, where the distortion ismea-

sured using an energy that quantifies the deformation of the Jaco-

bian matrix of each tetrahedron. Since these models start with a

good initialization, namely, the rest pose, one can optimize using

a combination of energies with flip-free barriers and a constrained

line search, arriving at solutions that are both flip-free and have

low distortion; see, e.g., Smith and Schaefer [2015] for a represen-

tative example. In contrast to these past works, we produce maps

between far-from-isometric domains without an obvious effective

initialization. Consequently, our choice of energies is designed to

be resilient to poor initial maps that are not foldover-free.

Volumetric mappings. Some methods consider the task of com-

puting correspondences between volumetric shapes. To our knowl-

edge, all past methods can be understood as special cases of the

deformation methods where the task is to extend a fixed boundary

map to the interior of a volume.

Kovalsky et al. [2015] present a local-global alternating algo-

rithm targeting maps with bounded distortion. Their method takes

an initial surface map and computes a similar map with bounded

condition number. They demonstrate their algorithm on two vol-

umetric correspondence examples and show one example (their

Figure 11) where relaxing prescribed boundary constraints at the

end of the optimization procedure can help recover from minor ar-

tifacts. Su et al. [2019] also target computation of foldover-free vol-

umetric maps with prescribed boundary; they extend the method

of Kovalsky et al. [2015] by automatically finding a suitable bound

on the condition number. Their method has impressive levels of ef-

ficiency but targets a specific notion of conformal distortion. Stein

et al. [2021] propose an operator splitting technique to optimize

nonconvex distortion energies to yield a flip-free parameterization;

they demonstrate a few examples of volumetric correspondence.

The approaches above require a prescribed boundary map and

minimize distortion of the interior. In contrast, our method opti-

mizes the boundary map to minimize global distortion and does

not need a bijective, orientation-preserving boundary map as an

initializer. Indeed, it is not always obvious how to design a bound-

arymap so the induced volumetric correspondence has low isomet-

ric disortion. We also optimize an alternative objective function

that targets symmetry and isometry rather than bounded distor-

tion or conformal structure preservation.

A few mapping methods reduce a mapping problem between

volumetric domains to a sequence of surface-mapping problems

between leaves of foliations of the two domains. Campen et al.

[2016] propose a volumetric parameterization approach relying on

a foliation. Their algorithm requires the domain to be a topolog-

ical ball whose tetrahedral mesh is bishellable. Cohen and Ben-

Chen [2019] describe an alternative method to compute folia-

tions of more-general volumetric domains using a Hele-Shaw flow

along a potential function from a Möbius inversion of the domain
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boundary to a sphere. Unlike these methods that decompose the

domain into surfaces, our method does end-to-end optimization of

a mapping over an entire volume at once.

Symmetric maps. Symmetric mapping methods are invariant to

the ordering of the source and target shapes. Several works in 2D

surfacemapping do so by optimizing for the average of the forward

and reverse map distortion [Ezuz et al. 2019; Hass and Koehl 2017;

Schmidt et al. 2019; Schreiner et al. 2004]. In medical imaging, map-

ping is referred to as registration, where the problem is to learn a

displacement field defined on a 3D grid. Symmetry, or “inverse-

consistency” [Christensen and Johnson 2001] is achieved using a

similar approach of averaging the map distortions [Aganj et al.

2015; Cachier and Rey 2000; Leow et al. 2005; Sabuncu et al. 2009]

or by optimizing in a mid-space between the two images [Avants

et al. 2008; Joshi et al. 2004]. Many of these works demonstrate

that symmetry improves consistency of mapping, improves accu-

racy, and eliminates bias.

We use a similar formulation to achieve symmetry. We analyze

several common distortion energies symmetrized in this way

and show that—surprisingly—the choice of energy can have

counterintuitive consequences. In particular, distortion energies

that favor isometry in one direction may not do so when opti-

mizing their symmetrized counterparts. To prevent this undesired

behavior, Hass and Koehl [2017] developed a symmetric distortion

energy that measures the distance of a conformal map from an

isometry. Their distortion energy is restricted to conformal maps

between genus-0 surfaces. Extending it to the volumetric case is

nontrivial due to the lack of conformal maps in 3D.

We develop the concept of a symmetric energy that is invariant

to the choice of optimization domain over which it is taken, in the

sense that the energy of the inverse map matches that of the for-

ward map. Although it is a sensible choice in our setting, we note

the term “symmetric” is somewhat overloaded in the parameter-

ization and mapping literature. Several distortion measures have

been deemed symmetric, because they equally penalize scaling

and shrinking, such as the symmetric Dirichlet energy [Schreiner

et al. 2004; Smith and Schaefer 2015] and the symmetric ARAP en-

ergy [Shtengel et al. 2017]. Our analysis shows that in fact these

energies do not necessarily satisfy our notion of symmetry.

Surface maps. Two-dimensional surface mapping can generally

be divided into (at least) three sets of approaches: methods that

use an intermediate domain, methods that rely on descriptors,

and methods that directly extract a map from one mesh into an-

other. We refer the reader to one of several surveys for a broad

overview [Li and Iyengar 2014; Sahillioğlu 2020; Van Kaick et al.

2011].

The first two groups of approaches cannot be directly extended

to the volumetric case. In particular, while Tutte’s parameteriza-

tion provides a natural means of mapping surfaces bijectively to an

intermediate domain and thus provides a natural means of initializ-

ing maps in the first category, no such canonical parameterization

exists for volumes. Moreover, volumetric geometry descriptors do

not appear to be sufficiently reliable for correspondence tasks.

Methods that find correspondences through an intermediate do-

main employ a bijective parameterization of each input to a sim-

ple domain such as the plane [Kraevoy and Sheffer 2004], the

sphere [Gotsman et al. 2003; Haker et al. 2000; Lee and Kazhdan

2019], or a quotient manifold [Aigerman and Lipman 2015, 2016;

Aigerman et al. 2014, 2015; Bright et al. 2017; Schmidt et al. 2019].

We also note methods such as Kim et al. [2011] and Lipman and

Funkhouser [2009], which average multiple maps computed in a

similar fashion. These approaches admit no obvious extension to

volumes. First, the existence of a bijection to a simpler intermedi-

ate domain does not always exist. Second, many of these methods

require introducing cutting seams [Aigerman et al. 2015], which

becomes substantially more difficult in three dimensions. Further-

more, these may not result in low-distortion maps, as minimizing

the composition of the maps in the intermediate domain may re-

sult in high distortion in the final surface-to-surface map.

The second set of methods computes maps that match descrip-

tors, possibly with added regularization. Descriptors are often

distance-based [Bronstein et al. 2008b; Huang et al. 2008], spec-

tral [Jain et al. 2007; Mateus et al. 2008; Ovsjanikov et al. 2010; Vest-

ner et al. 2017], extrinsic [Ankerst et al. 1999; Salti et al. 2014], or a

combination [Dubrovina and Kimmel 2011; Kim et al. 2011; Litman

and Bronstein 2013]. Many correspondence methods in this cate-

gory are built on the functional maps framework [Ovsjanikov et al.

2012, 2016], which finds correspondences by matching functions

defined on the shapes. Relatively few descriptors are available for

volumetric geometry, whose structure is still inherited from the

boundary surface.

The third class of approaches directly optimize for inter-surface

maps. These methods compute a map between surfaces by match-

ing features or landmarks while minimizing distortion [Ezuz et al.

2019; Mandad et al. 2017; Schreiner et al. 2004; Solomon et al. 2012,

2016].

Ezuz et al. [2019] produce a map between surfaces by minimiz-

ing the geodesic Dirichlet energy of the forward and reverse map

and encouraging bijectivity through a reversibility energy. Our al-

gorithm extends many of their ideas to the volumetric case. In our

case, however, a new algorithm is required.

Medical image registration. Medical image registration is a form

of volumetric shape correspondence in Euclidean space. Here, the

task is to find correspondences between two volumes defined on a

dense 3D grid. The correspondence is driven bymatching voxel sig-

nal intensities, for example, using mutual information [Klein et al.

2007] or cross-correlation [Avants et al. 2008]. The optimization

seeks to find a displacement field defined at the grid coordinates.

Similar to our formulation, the transformation is governed by any

of several regularization terms, for example, to compute a diffeo-

morphic transformation [Beg et al. 2005]. We refer readers to the

surveys by Oliveira and Tavares [2014], Sotiras et al. [2013], and

Viergever et al. [2016]. While both our approach and registration

methods aim to find volumetric correspondences, the techniques

used in medical image registration are not applicable, as they op-

erate on a dense Euclidean grid and are driven by intensity rather

than geometry.

3 MAPPING PROBLEM

We develop a volumetric mapping method that is symmetric,

in that the resulting maps are invariant to the ordering of the

source and target shapes. We compute the map by minimizing an
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objective function that measures distortion symmetrically while

satisfying a set of constraints. In this section, we investigate the

consequences of the symmetry assumption on our algorithmic

design.

3.1 Preliminaries

Given two bounded volumes M1,M2 ⊂ R3 with smooth bound-

aries ∂M1, ∂M2, we seek a map ϕ : M1 → M2. Several considera-

tions inform our choice ofϕ, detailed below. Note that this problem
is not the same as deformation (sometimes referred to as “mapping”

in past literature), which aims to find a low-distortion deformation

of M1 ⊂ R3 given prescribed target positions for a few handles

rather than the geometry ofM2.

Many algorithms for mapping and deformation can be viewed

as optimizing a distortion energy of the form

Ef [ϕ] :=

∫
M1

f (Jϕ (x)) dV (x), (1)

where Jϕ ∈ R3×3 is the map Jacobian anddV (x) is the volume form

onM1.

The distortion function f : R3×3 → R≥0 usually measures local

deviation of the map from isometry. Typical choices favor rigid-

ity [Rabinovich et al. 2017]. For example, the as-rigid-as-possible

distortion function (ARAP) [Liu et al. 2008] measures the deviation

of the Jacobian from the set of rotation matrices SO(3):

fARAP (J ) = min
R∈SO(3)

‖ J − R‖2F .

In contrast, the Dirichlet energy functional

fD (J ) = ‖ J ‖2F
favors the as-constant-as-possible map [Schreiner et al. 2004]. Se-

lection of the distortion function is application-dependent. For ex-

ample, one might choose f to model physical strain for deforma-

tion. Alternatively, one might select f to encourage injectivity.

In almost all applications, f is chosen to be rotation invariant, re-
flecting the fact that rigid motions ofM1 andM2 should not affect

the computed map. In this case, f (J ) is a function of the singular

values σ (J ), the elements of the diagonal matrix Σ in the singular

value decomposition (SVD) J = U ΣV	. In a slight abuse of nota-

tion, in our subsequent discussion, we will use f to denote both a

function on matrices in R3×3 and vectors of singular values in R3,

with f (J ) := f (σ (J )).
In addition to finding a map with low distortion, we are con-

cerned with finding one that satisfies a desired set of constraints.

For example, we can constrain the boundary of the source volume

to be mapped to the boundary of the target, i.e., ϕ (∂M1) = ∂M2.

We useP to denote the constrained feasible set. Onemight imagine

other constraints, for example, ensuring a set of landmark points

are mapped to the pre-specified locations, further restricting P.
Moreover, regularizing objective terms, Reg[ϕ] could be added. So,
our optimization problem becomes

argmin
ϕ

∫
M1

f (Jϕ (x)) dV (x) + Reg[ϕ]

subject to ϕ ∈ P .
(2)

3.2 Symmetrized Energy Functions

For correspondence problems where there is no clear distinction

between the rest pose and the target pose, it is desirable for a vol-

umetric correspondence method to be symmetric, meaning that it

is invariant to the ordering of the “source” domainM1 and “target”

domain M2. Symmetry requires Ef [ϕ] = Ef [ϕ
−1]. In this section,

we arrive at a set of conditions on f to check if an energy is sym-

metric and propose a symmetrization procedure to obtain the sym-

metrized form of a distortion function f . We later investigate the

effects on computing a map using the symmetrized form of f .
Following Cachier and Rey [2000], Christensen and Johnson

[2001], Ezuz et al. [2019], Schmidt et al. [2019], and Schreiner et al.

[2004], one simple way to achieve symmetry is to optimize the av-

erage of the distortion energy of a map with the distortion energy

of its inverse. Ezuz et al. [2019] and Schreiner et al. [2004] use the

simplest choice of energies to symmetrize—the Dirichlet energy—

while Schmidt et al. [2019] use the symmetric Dirichlet energy to

prevent foldovers. Below, we analyze the consequences of using

these energies and other possible choices of f not considered in

prior work. Surprisingly, our analysis will show that the Dirichlet

energy and several other seemingly reasonable choices do not yield

an effective notion of distortion after symmetrization, leading us

to employ an alternative in our technique.

We start by deriving conditions on f that ensure the distortion

energy Ef is invariant to the ordering of the source and target. Let

M1 and M2 be open subsets of Rn and ϕ : M1 → M2 a diffeo-

morphism between them. For simplicity, assume M1 and M2 are

normalized to have volume 1. We can compute the distortion of

the map ϕ by applying Equation (1) in both directions:

Ef [ϕ] =

∫
M1

f
(
Jϕ (x)

)
dV1 (x) (3)

Ef [ϕ
−1] =

∫
M2

f
(
Jϕ−1 (y)

)
dV2 (y). (4)

Pulling back the integral in Equation (4) toM1, we use a change

of variables to y = ϕ (u) to show

Ef [ϕ
−1] =

∫
M1

f
(
Jϕ−1 (ϕ (u))

) ���det Jϕ (u)��� dV1 (u). (5)

By the inverse function theorem,

Ef [ϕ
−1] =

∫
M1

f
((
Jϕ (u)

)−1) ���det Jϕ (u)��� dV1 (u). (6)

For invariance with respect to the integration domain, Equa-

tion (3) must agree with Equation (6). Matching the integrands,

f (J ) = |det J | f
(
J−1
)
, (7)

is sufficient for this equivalence. In terms of the singular values,

we obtain

f (σ ) =
������
n∏
i=1

σi

������ f
(
1

σ1
, . . . ,

1

σn

)
. (8)

Here and in our subsequent discussion, we will use n to refer to

the dimensionality of the domains M1,M2 when the result under

discussion applies to maps in any dimension; n = 3 in our applica-

tion. This condition was first proposed by Cachier and Rey [2000]
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Fig. 4. Level sets of distortion functions f (top) and their symmetrized counterparts f Sym (bottom) evaluated at (σ1, σ2, 1) for (σ1, σ2) ∈ [0, 2]2 . We mark

(1, 1) as a white dot and the location of the minimum as a circle. In the parlance of Section 3.3, all energies except the Dirichlet energy preserve structure

(f minimized at (1, 1, 1)), while only the Hencky strain and ARAP energies favor isometry (f Sym minimized at (1, 1, 1)). Only Dirichlet and ARAP are

nonsingular, since the level sets do not diverge as singular values approach 0.

to propose symmetrization by averaging the distortion function in

both mapping directions. This motivates the following definition:

Definition 3.1 (Symmetric Energy). A distortion energy Ef
whose distortion function f satisfies Equation (7)—or Equation (8)

in terms of singular values—is a symmetric energy.

Our symmetric energy condition is both necessary and sufficient

for symmetric distortion measures, in the following sense:

Proposition 3.2. Ef [ϕ] = Ef [ϕ
−1] for all M1, M2, and ϕ as de-

fined above if and only if f is a symmetric energy.

Proof. Substituting Equation (7) into Equation (6) shows that

any f satisfying Equation (7) automatically satisfies Ef [ϕ] =

Ef [ϕ
−1]. We now show the converse. Since Ef [ϕ] = Ef [ϕ

−1] ∀
M1, M2, ϕ as defined above, we can choose M1 = B1 (0) ⊂ Rn , the
open ball of radius 1. Consider any invertible J ∈ Rn×n , and de-

fine a map ϕ (x) := Jx, whose Jacobian is given by Jϕ (x) = J . Take
M2 := ϕ (M1). Applying Equation (3),

Ef [ϕ] = f (J ) · vol (B1 (0)). (9)

Similarly, applying Equation (6) yields

Ef [ϕ
−1] = f (J−1) |det J | · vol (B1 (0)). (10)

Equating Equations (9) and (10) and dividing by vol (B1 (0)) com-

pletes the proof. �

Not all distortion energies are symmetric, but there is a simple

procedure to construct a symmetric distortion function f Sym from

any distortion function f . For any distortion function f , we can

obtain a corresponding f Sym fulfilling Equation (7) by—in effect—

computing 1
2Ef [ϕ]+

1
2Ef [ϕ

−1] via our symmetrization procedure:

f Sym (J ) =
1

2
f (J ) +

1

2
|det J | f (J−1), (11)

or in terms of singular values,

f Sym (σ ) =
1

2
f (σ ) +

1

2

������
n∏
i=1

σi

������ f
(
1

σ1
, . . . ,

1

σn

)
. (12)

For example, suppose fD (J ) = ‖ J ‖2F is the distortion function

of the Dirichlet energy. Then, the average of the Dirichlet energy

of the forward map and of the inverse map yields the distortion

function:

f
Sym
D

(J ) =
1

2
‖ J ‖2F +

1

2
| det J | ‖ J−1‖2F , (13)

or for n = 3,

f
Sym
D

(σ1,σ2,σ3) =
1

2

3∑
i=1

σ 2
i +

1

2
(σ1σ2σ3)

���
3∑
j=1

σ−2j
��� . (14)

This is not the “symmetric” Dirichlet energy from past work on pa-

rameterization [Rabinovich et al. 2017; Smith and Schaefer 2015],

which has the form 1
2 ‖ J ‖

2
F
+ 1

2 ‖ J
−1‖2

F
. Incidentally, in 2D, the sec-

ond term in Equation (13) is the objective function of the inverse

harmonic mapping problem used to obtain foldover-free mappings

by Garanzha et al. [2021]. This term is also known as the inverse

Dirichlet energy [Knupp 1995].

Equation (13) is a model for the objective function for map-

ping surfaces in Schreiner et al. [2004] and Ezuz et al. [2019], and

one could reasonably attempt to reuse the same formulation for

volumes. More careful examination of this function, however, in-

dicates some undesirable properties. In particular, as illustrated

in Figure 4, the distortion function f
Sym
D

(σ ) is not minimized at

(1, 1, 1), the singular values of a rigid map. That is, the distortion

function of the symmetrized Dirichlet energy f
Sym

D
favors non-

isometric maps, even though it is symmetric.

The counterintuitive behavior of energies like in Equation (13)

suggests that algorithms optimizing the sum of the distortion of a

map and the distortion of its inverse can have unpredictable behav-

ior, even for standard choices of distortion functions. We examine

this effect empirically in Section 6.6.

3.3 Designing Symmetric Distortion Energies

In this section, we extend the previous analysis to compute the

symmetrized form of several commonly used distortion functions
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and examine their behavior in computing a volumetric map. We

propose a list of desiderata to guide the selection of a desirable

distortion function f .
Several properties are desirable when selecting f :

• Favors isometry: f Sym is minimized at (1, 1, 1).
• Preserves structure: f is minimized at (1, 1, 1).
• Nonsingular: f is defined for all matrices.

Favoring isometry and preserving structure are similar but not

identical conditions, and they are desirable for different reasons.

Distortion energy functions that favor isometry are the typical

choice for geometry processing applications, and this condition

simply expresses a preference for maps ϕ that are rigid. However,

structure-preserving choices of f facilitate optimization routines

like ours that alternate between estimating ϕ andψ , ensuring that
both alternating steps work toward a common goal. Similarly, non-

singular functions f avoid the need for barrier optimization tech-

niques and feasible initialization.

The following proposition provides a necessary condition that

can be used to rule out many standard choices of f when consid-

ering the properties above:

Proposition 3.3. Suppose a differentiable function f : R3 →
R≥0 favors isometry and preserves structure, i.e., f (σ ) and f Sym are

minimized at (1, 1, 1). Then, f (1, 1, 1) = 0 and∇f (1, 1, 1) = (0, 0, 0).

Proof. Structure preservation immediately implies ∇f (1,
1, 1) = (0, 0, 0), since (1, 1, 1) is a local minimum. Similarly, to fa-

vor isometry, we must have that ∇f Sym (1, 1, 1) = (0, 0, 0). Taking
the derivative of Equation (12) in one singular value σi , we find

∂f Sym

∂σi
=

1

2

∂f

∂σi
+
1

2

�������
∏
j�i

σj

�������
[
f

(
1

σ1
, . . . ,

1

σn

)
− 1

|σi |
∂f

∂σi

(
1

σ1
, . . . ,

1

σn

)]
.

Substituting σ1 = · · · = σn = 1,

0 =
∂ f Sym

∂σi
(1, . . . , 1) =

1

2
f (1, . . . , 1) .

This expression yields our first condition. �

The result above may feel somewhat counterintuitive, since con-

stant shifts in f affect whether f favors isometry. But, adding a

constant to f changes the effect of the volume form on the distor-

tion energy, explaining the result above.

In Table 1, we list several distortion functions f (J ), their equiv-
alent forms in terms of the Jacobian J ’s singular values f (σ ), and
their symmetrized forms f Sym (J ), f Sym (σ ). We check if the sym-

metrized distortion functions satisfy the isometry favoring prop-

erty above by examining the behavior of σmin, the singular values

that minimize f Sym (σ ). We verify the other properties in a similar

way by studying f (σ ). Table 2 summarizes the result. Figure 4 vi-

sualizes these properties by showing level sets of f and f Sym for

examples drawn from Table 1.

Tables 1 and 2 reveal several valuable properties that can inform

our choice of f . None of the distortion energies in Table 1 is sym-

metric in its standard form. A surprising result is that, after sym-

metrization, no distortion energy except for ARAP and Hencky

strain favors isometry. Despite the fact that minimizing these ener-

gies in the forward or reverse direction independently would lead

to an isometry, minimizing for the average of the two does not

Fig. 5. Mathematical boundary case: Comparison of symmetrized ARAP

energy
∑
i (σi−1)2 to symmetrized fourth-power ARAP energy

∑
i (σi−1)4,

using level sets similar to Figure 4 (left) and by plotting the diagonal where

σ = σ1 = σ2 = σ3 (right). As discussed in Section 3.3 (Remark), the

fourth-power alternative blows up when approaching (0, 0, 0) from any

direction, while conventional ARAP admits a path to (0, 0, 0) where the

energy density remains finite.

(see Figure 4). For example, the symmetric Dirichlet energy and

the AMIPS energy after symmetrization prefer maps that tend to

shrink (σmin < 1). We also observe that the symmetrized Dirichlet,

the symmetrized 3rd-order Dirichlet, and the symmetrized MIPS

energies favor maps that collapse, that is, they are minimized close

to σmin ≈ (0, 0, 0). While the (asymmetric) Dirichlet energy favors

maps with σ = 0, the MIPS energy does not. The 3rd-order Dirich-

let energy is used in 3D for C1 continuity [Iwaniec and Onninen

2010].

From Table 2, only the symmetrized ARAP energy, which we

will refer to as sARAP, satisfies all the desired properties. To imple-

ment the sARAP energy, we optimize the average of the ARAP en-

ergy of the forward and reverse maps. This objective function has

the added benefit of removing the requirement of a flip-free initial-

ization, which is often not available for correspondence tasks.

IfM1 andM2 have different volumes, then the forward and back-

ward terms in Equations (3) and (4) might prefer distortion of one

direction over another. In practice, we normalize our models to

have volume 1, so the integrals in Equations (3) and (4) measure

average local distortion of the two maps; Schreiner et al. [2004]

equivalently rescales the forward and backward terms.

Remark (Avoiding Zero Singular Values). The symmetric Dirich-

let energy [Smith and Schaefer 2015], symmetric gradient en-

ergy [Stein et al. 2021], and others used for bijective parameter-

ization blow up as singular values approach zero; this property

provides a barrier ensuring existence of a locally optimal param-

eterization without collapsed or inverted elements. Our nonsingu-

lar property actually prefers the opposite of this scenario, allow-

ing inverted Jacobians so we can recover from poor initialization,

but this is a property of f —employed during optimization—rather

than f Sym, the actual distortion energy being optimized in the sym-

metrized formulation.
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A nonsingular f can actually admit a function f Sym that blows

up as singular values approach 0, as is the case for the ARAP and

Dirichlet energies. This property suggests that even a nonsingular

choice of f can favor orientation-preserving symmetric maps.

For completeness, we note that f
Sym
ARAP

is not a perfect barrier,

in the following sense (also illustrated in Figure 5): For σ1 = 1

and σ2,σ3 → 0, we have f
Sym
ARAP

(σ ) → 1. This technicality can

be addressed using an f that grows faster than cubically in the

singular values, e.g., f (σ ) =
∑
i (σi − 1)4, but in practice such an

adjustment did not yield better maps.

Remark (Role of Boundary Conditions). Several prior works op-

timize symmetric energies without the desired properties at the

beginning of this section [Ezuz et al. 2019; Schmidt et al. 2019;

Schreiner et al. 2004]. Although their distortion energies do not

promote isometry directly, these methods are still able to find low-

distortion and even bijective correspondences. Indeed, the sym-

metrized energy analysis above does not tell the whole story. In

particular, these methods include energy terms, boundary condi-

tions, and other constraints that favor bijectivity and semantic

correspondences. These constraints counteract the energy’s unex-

pected local properties and can affect the resulting map quality.

For example, optimizing the symmetrized Dirichlet energy in the

space of surjective or bijective maps will prevent the map from col-

lapsing, but the map quality is essentially upheld by the boundary

condition rather than the constitutive model used in the objective

function. We hypothesize that the success of these methods lies

in balancing competing terms and constraints. We leave detailed

theoretical analysis of these intriguing global questions to future

work.

3.4 Symmetric Optimization Problem

Following the previous section’s analysis, we revise the the generic

formulation of our optimization problem in Equation (2) to be sym-

metric. We optimize an energy of the form 1
2Ef [ϕ] +

1
2Ef [ψ ],

where we maintain separate estimates of the map ϕ : M1 → M2

and its inverseψ ≈ ϕ−1 : M2 → M1. This is done for practical rea-

sons: The existence of a flip-free initial map is not guaranteed, so

ϕ−1 may not exist to start. Additionally, this form is advantageous,

as f is necessarily nonsingular for initializations with flipped ele-

ments, while f Sym can be orientation-preserving as is the case for

sARAP. Finally, even if f is not symmetric, the resulting energy

is roughly of the form in Equation (11) and hence our analysis in

Section 3.2 applies. This leads to the modified problem:

argmin
ϕ,ψ

1

2

∫
M1

fARAP (Jϕ (x)) dV (x)

+
1

2

∫
M2

fARAP (Jψ (y)) dV (y) + Reg[ϕ,ψ ]

subject to ϕ ∈ P ,ψ ∈ Q,

(15)

where Q denotes the constraint ψ (∂M2) ⊂ ∂M1. In practice, the

constraints that define P and Q can be made soft and modeled

in Reg[ϕ,ψ ]. The estimate ψ ≈ ϕ−1 can be enforced as a soft or

hard constraint. In practice, we use a soft constraint modeled in

Reg[ϕ,ψ ], as described in Section 4.3.

4 DISCRETIZATION AND MODEL

We build on our analysis in Section 3.2 and Section 3.3 to discretize

the optimization problem in Equation (15) and develop an algo-

rithm to compute a volumetric map that is invariant to the order-

ing of the source and target shapes. In this section, we define our

map discretization and map constraints and develop the objective

function used in the optimization.

4.1 Notation

We represent volumetric shapes as tetrahedral meshes. We letVi ,
Ei , Fi , Ti denote the sets of vertices, edges, faces, and tetrahedra

of mesh Mi , for i ∈ {1, 2}. We represent the coordinates of Vi
as a matrix Vi ∈ Rni×3, where ni denotes the number of vertices

in mesh Mi . We represent tetrahedron k in mesh i as the matrix

V
Tk
i ∈ R4×3 whose rows are the coordinates of the vertices of

tetrahedron k . We use ∂ to denote the boundary of a mesh, and

∂Vi , ∂Ei , ∂Fi , ∂Ti denote sets of boundary vertices, edges, faces,

and tetrahedra, respectively. Boundary tetrahedra are those that

contain one or more boundary faces.

We use a piecewise linear discretization to model the maps ϕ
andψ , with each tetrahedron being mapped affinely. The map on

each tetrahedron is determined by its transformed vertex coordi-

nates. We use matrix Xi ∈ Rn1×3 to denote the coordinates of the

transformed vertices of mesh Mi , and X
Tk
i ∈ R4×3 to denote the

transformed tetrahedron k of meshMi . The Jacobian matrix

J
(
X
Tk
i

)
=
(
BX

Tk
i

) (
BV

Tk
i

)−1
(16)

defines the map differential of tetrahedron k based on the trans-

formed coordinates X
Tk
i . The constant matrix B ∈ R3×4 extracts

vectors parallel to the edges of the tetrahedron.

4.2 Map Representation

We wish to constrain each map to lie within the target shape, i.e.,

ϕ (M1) ⊂ M2 and ψ (M2) ⊂ M1. We extend the strategy of Ezuz

et al. [2019] to tetrahedral meshes to enforce these constraints.

We represent the map ϕ as a matrix P12 ∈ [0, 1]n1×n2 and the

map ψ as P21 ∈ [0, 1]n2×n1 . Matrices P12 and P21 use barycentric

coordinates to encode the vertex-to-tetrahedron map and ensure

the mapped vertices lie in the target mesh. This representation

is also beneficial to map between meshes with differing connec-

tivity. Suppose P12 maps vertex i of mesh M1 into tetrahedron

Tk = (a,b, c,d ) ∈ T2 in mesh M2, where (a,b, c,d ) ∈ {1, . . . ,n2}
are the indices of the vertices of Tk . Then, row i of P12 contains

the barycentric coordinates of the image of vertex i in columns

a,b, c,d , and zeros elsewhere. Map P21 is constructed analogously.

We can enforce the constraint that boundary vertices are mapped

to boundary faces by constraining the sparsity patterns of P12 and
P21. A limitation in the discretization is that we are unable to en-

force that the interior of boundary faces and edges are mapped in-

side the target shape, since our map representation is vertex-based.

In practice, this effect is minimized using high-resolution meshes.

We denote the set of all feasible maps satisfying the boundary

constraints as P�
i j ; we use Pi j to denote the set of feasible maps

that may map the boundary ∂Mi to the interior ofMj .

We use half-quadratic splitting [Geman and Yang 1995] to

express our problem in a form that is amenable to efficient
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Table 1. Several Distortion Measures and Their Symmetrized Forms

Name f (J ) f (σ ) f Sym (J ) f Sym (σ ) σmin

Dirichlet ‖ J ‖2
F

∑n
i=1 σ

2
i

1
2 ‖ J ‖

2
F
+ 1

2 (det J )
(
‖ J−1 ‖2

F

) 1
2
∑n
i=1 σ

2
i

+ 1
2

(∏n
j=1 σj

) (∑n
k=1

σ−2
k

) ≈ (0, 0, 0)

Dirichlet (3rd order) ‖ J ‖3
F

∑3
i=1 σ

3
i

1
2 ‖ J ‖

3
F
+ 1

2 (det J )
(
‖ J−1 ‖3

F

) 1
2
∑3
i=1 σ

3
i

+ 1
2

(∏3
j=1 σj

) (∑3
k=1

σ−3
k

) ≈ (0, 0, 0)

Symmetric Dirichlet ‖ J ‖2
F
+ ‖ J−1 ‖2

F

∑n
i=1

(
σ 2
i + σ

−2
i

)
1
2 (det J + 1)

(
‖ J ‖2

F
+ ‖ J−1 ‖2

F

)
1
2

(∏n
i=1 σi + 1

) (∑n
j=1

(
σ 2
j + σ

−2
j

))
≈ (0.77, 0.77, 0.77)

MIPS (3D) 1
8

(
‖ J ‖2

F
· ‖ J−1 ‖2

F
− 1
)

1
8
∏3
i=1

(
σi
σi+1

+
σi+1
σi

)
1
16 (det J + 1)

(
‖ J ‖2

F
· ‖ J−1 ‖2

F
− 1
)

1
16

(
1 +
∏3
i=1 σi

) (∏3
j=1

(
σj+1
σj
+

σj
σj+1

))
≈ (0, 0, 0)

AMIPS (3D)
1
16

(
‖ J ‖2

F
· ‖ J−1 ‖2

F
− 1
)

+ 1
2

(
det J + (det J )−1

) 1
16
∏3
i=1

(
σi
σi+1

+
σi+1
σi

)

+ 1
2

(∏3
j=1 σj +

∏n
k=1

σ−1
k

)
det J +1

32

(
‖ J ‖2

F
· ‖ J−1 ‖2

F
− 1
)

+ 1
4

(
det J + (det J )−1

)
+ 1
4

(
(det J )2 + 1

)
1
32

(
1 +
∏3
i=1 σi

) (∏n
j=1

(
σj
σj+1

+
σj+1
σj

))
+ 1
4

(∏3
k=1

σk +
∏n
l=1

σ−1
l

)
+ 1
4

(∏3
m=1 σ

2
m

) ≈ (0.8, 0.8, 0.8)

Conformal AMIPS
tr
(
JT J

)

(det J )
2
3

(∏3
j=1 σ

− 23
j

) (∑3
i=1 σ

2
i

) 1
2 (det J )−

2
3 tr
(
JT J
)

+ 1
2 (det J )

1
3 tr
(
J−T J−1

)
1
2

(∏3
i=1 σ

− 23
i

) (∑3
j=1 σ

2
j

)

+ 1
2

(∏3
k=1

σ
− 12
k

) (∑3
l=1

σ−2
l

) ≈ (0.032, 0.032, 0.032)

Symmetric gradient 1
2 ‖ J ‖

2
F
− log (det J ) 1

2
∑n
j=1 σ

2
j − log

(∏n
i=1 σi

) 1
4 ‖ J ‖

2
F
− 1

2 log (det J )

+ 1
4 det J · ‖ J−1 ‖2

F
+ 1
8 det J · log (det J )

1
4
∑n
i=1 σ

2
i −

1
2 log

(∏n
j=1 σj

)

+ 1
4

(∏n
k=1

σk

) [∑n
l=1

σ−2
l

+ 1
2 log

(∏n
m=1 σm

) ] ≈ (0.61, 0.61, 0.61)

Hencky strain ‖ log JT J ‖2
F

∑n
i=1 log

2 (σi )
1
2 ‖ log J

T J ‖2
F

+ 1
2 det J · ‖ log J−T J−1 ‖2

F

1
2
∑n
i=1 log

2 (σi )

+ 1
2

(∏n
j=1 σj

) (∑n
k=1

log2 (σk )
) (1, 1, 1)

ARAP ‖ J − R ‖2
F

∑n
i=1 (σi − 1)

2
1
2 ‖ J − R ‖

2
F

+ 1
2 det J · ‖ J−1 − R ‖2

F

1
2
∑n
i=1 (σi − 1)

2+

1
2

(∏n
j=1 σj

) (∑n
k=1

(σ−1
k
− 1)2

) (1, 1, 1)

In this table, we consider orientation-preserving maps, so | det J | = det J . We use an interior-point method constrained to search over non-negative σ to compute the set of

singular values σmin that minimize the symmetrized energy f Sym (σ ).

Table 2. Summary of Distortion Energy Function Properties

Name
Favors

isometry

Preserves

structure

Nonsingular

Dirichlet ✗ ✗ ✓

Dirichlet (3rd order) ✗ ✗ ✓

Symm. Dirichlet ✗ ✓ ✗

MIPS (3D) ✗ ✓ ✗

AMIPS (3D) ✗ ✓ ✗

Conformal AMIPS ✗ ✓ ✗

Symm. Gradient ✗ ✓ ✗

Hencky strain ✓ ✓ ✗

ARAP ✓ ✓ ✓

optimization [Ezuz et al. 2019; Wang et al. 2008a; Zoran and Weiss

2011]. In particular, we introduce the auxiliary variable Xi j to

model the image of verticesVi under the map to meshMj , where

Xi j ≈ Pi jVj .

4.3 Objective Terms

We define several objective terms used to find the correspondence

and model the soft constraints on the map.

4.3.1 Auxiliary and Reversibility Energy Functions. Our first

two terms are adapted from Ezuz et al. [2019] and extended for

volumetric meshes. The first term is the auxiliary energy that en-

courages Xi j ≈ Pi jVj :

EQ [P12, P21,X12,X21] =
∑

i, j ∈{1,2}
i�j

1

cic j




Xi j − Pi jVj


2Mi
, (17)

where ci , c j are the total volumes of meshesMi andMj , and ‖ · ‖2Mi

denotes the Frobenius norm with respect to Mi . For a matrix G ,

Fig. 6. Parameter sweep over γ and α , comparing the tradeoff between

d̂avд and 1−det Ĵ , where det Ĵ is the normalized determinant of the Jaco-

bian. We select α = 0.5, γ = 25, as they achieve a reasonable tradeoff be-

tween conforming to the target boundary while maintaining map quality.

‖G‖2
Mi
= tr(GTCiG ), whereCi is the lumped diagonal vertex mass

matrix ofMi .

The second term is the reversibility energy that encourages

bijectivity:

ER [P12, P21,X12,X21] =
∑

i, j ∈{1,2}
i�j

1

c2i
‖Pi jX ji −Vi ‖2Mi

.
(18)

This energy measures the distance between the original vertex po-

sitionsVi and the back projection of their image under the map Pi j ,
Xi j .

4.3.2 ARAP Energy. Central to the computation of a volumet-

ric map is the proper selection of a distortion energy. From our

analysis in Section 3.3, we select the sARAP energy, as it is both

symmetric and promotes rigidity.

We use 1
2EARAP [ϕ] +

1
2EARAP [ψ ] to approximate EsARAP [ϕ].

We approximate the integral over the volumetric domain by mea-

suring the distortion energy per tetrahedron. For tetrahedron k of
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mesh i , the ARAP distortion function is given by

fARAP
(
J
(
X
Tk
i j

))
=

3∑
j=1

(σk, j − 1)2, (19)

where σk, j is the jth signed singular value of J (X
Tk
i j ). We use the

convention laid out by Irving et al. [2004] to define the signed sin-

gular value decomposition unambiguously. For J = U ΣVT , this

convention allows the sign of the smallest singular value σmin to

be negative, sign(σmin ) = sign(det J ), andU ,V ∈ SO(3).
The total ARAP energy is then

EARAP [X12,X21] =
∑

i, j ∈{1,2}
i�j

1

2ci

∑
Tk ∈Ti

v (Tk ) fARAP

(
J
(
Xi j
)Tk )

,

(20)

where v (Tk ) denotes the volume of tetrahedron k .

4.3.3 Projection Energy. We encourage preserving the bound-
ary of the source and target meshes by using forward and back-
ward projection energies. We compute the forward projection en-
ergy EP,f as

EP, f [X12, X21] =
∑

i, j∈{1,2}
i�j

1

si





(Xi j )∂Mi
− proj

(
(Xi j )∂Mi

, ∂Mj

)



2∂Mi

,

(21)

where proj((Xi j )∂Mi
, ∂Mj ) denotes the Euclidean projection of

the boundary vertices of ∂Mi with coordinatesXi j onto the bound-

arymesh ∂Mj , si denotes the total surface area of ∂M1, and ‖ ·‖2∂Mi

denotes the Frobenius norm with respect to boundary triangle

mesh ∂Mi .

The backward projection energy EP,b is given by

EP,b [X12,X21] =
∑

i, j ∈{1,2}
i�j

1

si




Vi − proj (Vi , ∂Fj (X ji

))


2∂Mi
,

(22)

where ∂Fj (X ji ) denotes the boundary of mesh Mj with vertices

given by X ji .

The full projection energy is then

EP [X12,X21] = EP,f [X12,X21] + EP,b [X12,X21]. (23)

4.4 Optimization Problem

Combining the distortion and regularization energies, our opti-

mization problem becomes

argmin
P12,P21,X12,X21

E[P12, P21,X12,X21]

subject to P12 ∈ P12 , P21 ∈ P21,
(24)

where

E[P12, P21,X12,X21]

=
∑

i, j ∈{1,2}
i�j

αEARAP [Xi j ] + (1 − α )ER [Pi j ,X ji ]

+ γEP [Xi j ] + βEQ [Xi j , Pi j ].

(25)

Several parameters govern the strength of the distortion ener-

gies and soft constraints. The parameter α ∈ [0, 1] models the

tradeoff between a reversiblemap (smallα → 0) and one thatmain-

tains the rest shape ( α → 1). The parameter γ ∈ R≥0 weighs the

projection term that models the soft constraint for matching to the

target boundary. The parameter β controls the soft constraint on

the auxiliary variables. As recommended by Ezuz et al. [2019] and

Wang et al. [2008a], β should use an update schedule tailored per

application. In our experiments, since we start with a coarse initial-

ization of the interior, we initialize β = 0.25 and increase β linearly

to 5 over 20 iterations. We found our approach to be insensitive to

the update schedule.

In this formulation, we use a soft constraint measured by EP to

map to the target boundary. While we could use a hard constraint

by setting γ = 0 and requiring P12 ∈ P�
12, P21 ∈ P

�
21, we did not

find that this hard constraint had a substantial effect on our final

output.

5 OPTIMIZATION

In this section, we outline our optimization procedure. We discuss

strategies for initializing the map and propose an approach to un-

invert tetrahedra. We conclude by presenting our algorithm for

minimizing Equation (24) using block coordinate descent.

5.1 Initialization

Objective function (24) includes four variables: P12, P21, X12, and

X21. In this section, we provide strategies for initializing the vari-

ables Pi j before running our optimization procedure. We initialize

the Xi j variables via Xi j ← Pi jVj .

Landmark-based initialization. If we are given landmark pairs

(pi , qi ), where pi ∈ M1, qi ∈ M2, then we can initialize each land-

mark’s target by copying the target of its closest landmark.

2D surface map initialization. A second approach is to initial-

ize the boundaries of M1,M2 using an existing surface-to-surface

mapping approach. We initialize the interior vertices identically to

landmark-based initialization, where we consider every boundary

vertex to be a landmark.

We do not hold the landmark or surface map vertices fixed dur-

ing the optimization.

5.2 Alternating Minimization

We use coordinate descent, alternating between optimizing over

Xi j and Pi j . Our multi-step optimization procedure ensures strong

conformation to the boundary while avoiding inverted tetrahedra.

Optimizing for Xi j . Optimizing for Xi j while holding the Pi j
variables fixed is a smooth optimization problem, for which we

use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-

BFGS) algorithm [Zhu et al. 1997].

We compute the gradient of each energy term in Equation (25).

The gradients for EP ,EQ are straightforward, as they are matrix

norms. We compute the gradient of EARAP using the chain rule.

First, we compute the gradient of fARAP (J ) with respect to a Jaco-

bian J , ∇J fARAP [J ] = U diag (∇σ fARAP (σ ))VT . Using the chain

rule, we then compute the gradient with respect to the elements of

tetrahedron Tk ∈ Ti , with coordinates X
Tk
i j ,

∂ fARAP (X
Tk
i j )

∂(X
Tk
i j )

=

((
BV

Tk
i

)−T
B
) (

U diag (∇σ fARAP (σ ))VT
)T
.

(26)
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Fig. 7. Flowchart depicting each step of our method: (a) initial source and target shapes, with landmarks shown as yellow spheres; mapped shape; (b) at

initialization; (c) after optimization converges while keeping the boundary fixed; (d) after tetrahedron inversion repair; (e) at convergence; and (f) after

post-convergence tetrahedron repair. Top row shows the boundary of the mapped shape at every step, and the bottom row shows a cut through the interior,

revealing interior tetrahedra. Inverted and collapsed tetrahedra are red. The number of inverted tetrahedra is listed under each cut-through mesh. Our

initial map (b) has all interior tetrahedra collapsed to the boundary, resulting in 17,277 (46%) degenerate or flipped tetrahedra. Steps (c) and (d) optimize

and repair the interior, resulting in eight flipped tetrahedra. The tetrahedron repair step restores elements of the map to match the source, as the hands and

feet rotate. The final optimization followed by the post-convergence repair produces a map that closely matches the boundary with negligible inversions

(one flipped tetrahedron).

Fig. 8. Optimization of Equation (24) using a landmark initialization. De-

spite a coarse initialization, our algorithm approximates the target shape

after one iteration. Further optimization decreases surface distortion and

improves interior regularity, as visualized by the checkerboard patterns. At

iteration 41, the inverted tetrahedron repair is performed, causing a jump

in the projection energy EP , from which our algorithm quickly recovers.

The gradient with respect to each vertex is found by gathering

the gradients of each tetrahedron adjacent to that vertex.

Optimizing for Pi j . Fixing X12,X21, the remaining energy terms

with respect to Pi j are of the form ‖Pi jA − B‖2
Mi

with A ∈
R
nj×6,B ∈ Rni×6. Following Ezuz et al. [2019], this minimization

can be understood as a projection problem solved independently

for each row of Pi j .
In our case, we need to project the points in A to the 6-

dimensional tetrahedral mesh with vertices B, whose connectiv-

ity is the same as Mj . The presence of several additional energy

terms in our formulation also leads to a unique projection prob-

lem. Since the problem can be solved independently, we imple-

ment an efficient solution using CUDA programming. To enforce

a hard boundary-to-boundary constraint, we map rows of A cor-

responding to the boundary of Mi to the boundary of the target

embedding.

5.3 Inverted Tetrahedron Repair

The initial maps suggested in Section 5.1 are straightforward to

compute, but they are quite distant from our desired output; in-

deed, the majority of tetrahedra in our initial maps have zero vol-

ume. Although alternating between the two steps above is guaran-

teed to decrease the objective function in each step, empirically, we

find in the initial stages our algorithm can get stuck in local optima

due to inverted elements. Here, we describe a heuristic strategy

that empirically can improve the quality of our output.

In this tetrahedron repair step, we find all inverted tetrahedra.

We then take the 1-ring neighborhood of the vertices in the in-

verted tetrahedra and use L-BFGS to minimize fARAP with the re-

maining vertices fixed.

5.4 Full Algorithm and Stopping Criteria

Overall, our optimization procedure follows four broad steps:

(1) map initialization (Section 5.1);

(2) optimization while keeping the boundary fixed (Section 5.2);

(3) inverted tetrahedron repair (Section 5.3);

(4) optimization of all vertices (Section 5.2); and

(5) post-convergence inverted tetrahedron repair (Section 5.3).

For stages 2 and 4, we set as our convergence criteria one of

(i) the norm of the gradient <10−6, (ii) the objective function
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ALGORITHM1:Coordinate descent with tetrahedra uninversion

Input: initial maps P12, P21
Output: optimized maps X12, X21, P12, P21

1: ∂P
(0)
12 ← P12 (∂V1, :) // initial boundary map

2: ∂P
(0)
21 ← P21 (∂V2, :)

3: X12 ← P12V2 // initial vertex map

4: X21 ← P21V1
5:

6: while !converged do // optimize boundary map

7: for (i, j ) ∈ {(1, 2), (2, 1) } do
8: Pi j ← argminP∈Pi j ER [P, X ji ] + EQ [P, Xi j ]

9: Xi j ← argminX ∈Rni ×6 EARAP [Xi j ]
+ ER [Xi j , Pji ] + EP [Xi j ] + EQ [Xi j , Pi j ]

10: ∂Pi j ← ∂P
(0)
i j // restore boundary

11:

12: // inverted tetrahedron repair

13: idx← det J (X
Tk
i ) ≤ 0, ∀Tk ∈ Ti // find inverted tetrahedra

14: Xi j (idx ) ← argminX ∈Rni ×6 EARAP [Xi j (idx )] // 1-ring nbhd.
15:

16: while !converged do // optimize full map

17: for (i, j ) ∈ {(1, 2), (2, 1) } do
18: Pi j ← argminP∈Pi j ER [P, X ji ] + EQ [P, Xi j ]

19: Xi j ← argminX ∈Rni ×6 EARAP [Xi j ]
+ER [Xi j , Pji ] + EP [Xi j ] + EQ [Xi j, Pi j ]

decreases by less than 10−7 between successive iterations, or

(iii) run for 50 iterations; the third criterion is a fallback that rarely

occurs in practice. For stage 5, we limit vertex displacement to pre-

serve map quality by limiting to 100 steps of L-BFGS and we re-

strict optimization to only vertices in inverted tetrahedra.

Algorithm 1 summarizes our full procedure.

5.5 Implementation Details

Unless otherwise noted, all figures are generated using identical

parameters. We use grid search to identify reasonable parameters;

the results of our analysis are provided in Figure 6.We set the rigid-

ity parameter α = 0.5 and the boundary conformation parameter

γ = 25, achieving a reasonable tradeoff between average distance

to the target and maintaining per-tetrahedron map quality as mea-

sured using det Ĵ , the normalized Jacobian determinant. To find

these values, we initialize β = 0.25 and increase linearly to β = 5

over 20 iterations. In practice, we found our method was insensi-

tive to the choice of β .
We generate tetrahedral meshes using fTetWild [Hu et al. 2020].

Prior to mapping, we normalize each mesh to have volume 1. We

perform one tetrahedron repair step, as we found negligible im-

provement after performing more.

We implement our method in MATLAB, using CUDA to opti-

mize the projection step by extending the projection code in Li

et al. [2021] to R6. Our code is available at https://github.com/

mabulnaga/symmetric-volume-maps.

6 EXPERIMENTS

We measure map quality by assessing distortion and closeness to

matching the target shapes (Section 6.1). We validate our method

by mapping pairs of shapes from four datasets (Section 6.2) and

report visualizations and numerical scores evaluating the result

Fig. 9. Forward and reverse maps on related pairs of shapes. We observe

smooth patterns of distortion on the boundarywhile capturing distinguish-

ing geometric features, such as the transformation of the tail of the cat and

movement of the bear’s ears. Distortion is uniform throughout the interior.

(Section 6.3). We also compare our method to several variants of a

baseline mapping approach (Section 6.4). We test the robustness of

our method in Section 6.5 and evaluate the choice of symmetrized

energy on computing a map in Section 6.6.

6.1 Quality Metrics

We validate our method using the metrics outlined below.

Boundary matching. We measure fit to the target boundary us-

ing the Hausdorff distance dmax and the chamfer distance davg de-
fined as follows:

dmax (M1,M2) = max
⎧⎪⎨⎪⎩ sup
x∈M1

inf
y∈M2

d (x, y), sup
y∈M2

inf
x∈M1

d (x, y)
⎫⎪⎬⎪⎭

(27)

davg (M1,M2) =
1

|V1 | + |V2 |

⎡⎢⎢⎢⎢⎢⎣
∑

vi ∈V1

d (vi ,M2) +
∑

vj ∈V2

d (vj ,M1)

⎤⎥⎥⎥⎥⎥⎦ .
(28)

Here,V1 andV2 denote the sets of vertices ofM1 andM2, respec-

tively. To make the measures above scale-independent, we normal-

ize both quantities by the length of the diagonal of the bounding

Table 3. MapQuality Evaluation

Map
(Initialization)

Time
(min.)

ER
(×10−3 )

EARAP
(×10−3 ) ninv

d̂max

(×10−2)
d̂avд
(×10−2) det Ĵ

Xi j
(Surface)

31
±21

1.47
±1.9

81.7
±78.5

7.7
±9.1

2.5
±1.2

0.10
±0.046

0.98
±0.02

Pi j
(Surface)

31
±21

1.29
±1.65

134.5
±115.4

649
±549

1.9
±0.78

0.072
±0.028

0.96
±0.04

Xi j
(Landmark)

107
±53

7.45
±10.7

93.6
±73.3

15.8
±10.9

2.7
±1.0

0.12
±0.046

0.97
±0.02

Pi j
(Landmark)

107
±53

6.67
±9.7

176.6
±145.4

723
±515

2.6
±1.0

0.11
±0.038

0.94
±0.04
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Fig. 10. Forward and reverse maps on far-from-isometric shapes. Our

maps capture the extreme deformations, for example, by growing and col-

lapsing the airplane rudder and deforming the ears of the horse and cow

pair. Matching boundary features expectedly leads to high local distortion,

as a large volume change is required to model these transformations. The

checkerboard pattern reveals that regions with high boundary distortions

also cause interior distortion (see airplane), but the computed maps are

uniform and smooth elsewhere.

box enclosing the target mesh. We use hats to denote normalized

quantities: d̂max and d̂avg.
To visualize the distortion in the interiors of tetrahedral meshes,

we use a mapped checkerboard pattern. In each map visualization,

using Houdini, we slice the source shape with a plane and place an

extrinsic checkerboard pattern on the intersection, using rounding

and modulo operations on coordinates. We push forward the pla-

nar intersection surface through our map and render the result

using a custom shader that looks back to the corresponding coor-

dinate in the source and evaluates the checkerboard function. In-

terpolation happens by finding the closest element (xyzdist) and
then transferring coordinates (primuv).

Distortion and inversion. We measure the quality of the trans-

formation by computing the number of inverted tetrahedra (ninv )

and the mean normalized Jacobian determinant det Ĵ (weighted by
tetrahedron volume), where the columns of J are normalized as

in Li et al. [2021]. Figures containing qualitative results depict dis-

tortion per tetrahedron using the ARAP energy
∑3
i=1 ( |σi | − 1)

2.

6.2 Datasets

We evaluate our method on 24 mesh pairs from four datasets.

For datasets where only triangle meshes are available, we tessel-

late the interiors. We randomly select pairs of shapes distorted

non-isometrically from the SHREC19 dataset [Dyke et al. 2019].

We also randomly select matching and non-matching pairs of hu-

mans and animals for nonrigid correspondence from the TOSCA

dataset [Bronstein et al. 2008a]. Finally, we obtain tetrahedral

meshes of models of natural objects and CAD models from Li et al.

[2021] and Fu et al. [2016], from Thingi10k [Zhou and Jacobson

Fig. 11. Resulting map when initialized using only a sparse set of land-

mark points. Despite an initialization that collapses the mesh to a set of

landmarks, we produce a map that captures sharp geometric features of

the target including the hands and bends of the legs. The distortion is

smooth and uniform throughout the boundary and interior.

2016], and from Thingiverse [Japan 2022]. The resulting meshes

had (mean ± standard deviation) 50,010 ± 34,663 tetrahedra. We

manually choose landmarks on the boundary surfaces for every

mapping example (marked on most figures); Table 5 provides the

number of landmarks and number of tetrahedra for each pair.

6.3 Validation

In this section, we demonstrate our maps on several pairs.

Quantitative evaluation and map selection. Table 3 measures per-

formance of both sets of maps, Xi j and Pi j , using surface map ini-

tialization and landmark initialization. Using the image of the map

Xi j , we achieve close matchings to the target boundary with neg-

ligible tetrahedron inversions and while effectively maintaining

tetrahedron quality. The landmark-based initialization achieves

comparable performance, with slightly higher d̂max . These results

indicate our method is robust to the choice of initialization. The

constrained maps Pi j have significantly higher tetrahedron inver-

sion due to the constraint Pi j ∈ Pi j , which results in boundary

tetrahedron foldovers. Since the boundary matching metrics are

comparable for both maps, we use Xi j as the final map. The low

number of tetrahedron inversions (ninv ) and small ER indicate the

resultant maps are nearly inverses of one another. Table 5 presents

results for all pairs in our dataset.

Algorithm flowchart. We demonstrate each step of our algo-

rithm in Figure 7. First, we compute an initial boundary map us-

ing the method of Ezuz et al. [2019]. This initial map is interpo-

lated from the boundary to the interior by mapping each interior

vertex to the target of its closest boundary vertex, as described in

Section 5.1. This procedure results in a significant number of in-

verted or collapsed tetrahedra (Figure 7(b)). The interior is then

improved by minimizing the map energy over the interior vertices

(Figure 7(c)). Then, we repair inverted tetrahedra, dramatically re-

ducing the number of flipped tetrahedra, as described in Section 5.3.

The mapped mesh starts to restore its source pose; the hands and

feet rotate (Figure 7(d)). We compute the final map by optimizing

over all vertices (Figure 7(e)) and then perform post-convergence

tetrahedron repair, arriving at a solution that closely conforms to

the target boundary while minimizing distortion (Figure 7(f)).

Figure 8 visualizes our optimization routine initialized with

landmarks. A few intermediate shapes are demonstrated. Our al-

gorithm quickly recovers the target shape, and the optimization

improves surface matching and reduces boundary and interior

distortion.
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Fig. 12. Comparison of our map with the baseline approach using K = 25

with landmark equality constraints. Red ovals indicate distorted regions

in the baseline where our method succeeds. Our approach effectively pre-

serves geometric features and produces high-quality maps.

Map results. We demonstrate our method on several pairs.

Figure 9 shows the forward and reverse maps between pairs of

deformations from the same domain. In both examples, distortion

is smooth throughout the boundary, and our map successfully

matches geometric features, for example, the curved tail and the

ears in the cat pairs. The checkerboard patterns demonstrate that

our maps are smooth in the interior.

Figure 10 shows results for the more challenging problem of

mapping between pairs of shapes from different domains. Distor-

tions are mainly smooth on the boundary but are expectedly high

in regions with large displacements, e.g., in the nose and rudder

of the airplane in the forward direction. Here, the volume of the

nose has to shrink substantially, while the rudder has to expand

in height. Similarly, we see large distortion in the cow-horse pair,

particularly in the ears in the reverse map and in the knees and feet

in the forward map. Our boundary term yields maps that closely

conform to the target at the cost of greater tetrahedral distortion.

Figure 11 demonstrates our resultant map when initialized us-

ing a sparse set of landmark points (Section 5.1, landmark-based

initialization). While the initial map is unintelligible, our output

matches the target shape closely. The final map has low distortion

throughout the boundary and captures the narrow features of the

target, including the fingers and bends in the legs. Furthermore, the

checkerboard pattern reveals uniform distortion in the interior.

6.4 Baseline Comparison

We compare to the volumetric mapping approach of Kovalsky et al.

[2015]. Their method inputs a surface map with optimized interior

and computes a similar map that is orientation-preserving with

bounded condition number K . Linear equality constraints on the

vertices are used to fix parts of the map.

We compute the initial volumetric map by first computing a sur-

facemap as in Section 5.1 and then repairing degenerate tetrahedra

by minimizing the Dirichlet energy while keeping the boundary

fixed, as was done by Kovalsky et al. [2015]. We test four differ-

ent sets of equality constraints for extracting the final volumet-

ric maps: (1) fixing the boundary map; (2) fixing the boundary

Table 4. MapQuality Comparison to the Baseline for K = 25.

Constraint ninv
d̂max

(×10−2)
d̂avд
(×10−2) det Ĵ

Ours 8 ± 13.8 2.35 ± 1.45 0.097 ± 0.05 0.98 ± 0.02

B
as
el
in
e Boundary 2,740 ± 2,210 2.84 ± 1.06 0.085 ± 0.049 0.82 ± 0.17

Boundary (no flip) 11.1 ± 31.8 7.9 ± 8.5 0.33 ± 0.38 0.89 ± 0.1
Landmark 1.8 ± 3.2 5.2 ± 3.1 0.7 ± 0.26 0.89 ± 0.11
Center of mass 1.7 ± 2.6 7.2 ± 0.58 0.8 ± 1.2 0.89 ± 0.11

map for vertices not in inverted tetrahedra; (3) fixing landmarks;

and (4) preserving center of mass. We use conformality bound

K ∈ {5, 25, 50, 100}.
Table 4 compares map quality across the dataset for each equal-

ity constraint usingK = 25. Similar behavior arose for other values

of K , so they are not shown. We compare with the matching for-

ward maps from our method. The fixed boundary map results in

comparably low d̂max, d̂avg to our method, but with a significantly

greater number of flipped tetrahedra and poormap quality (det Ĵ =

0.82) compared to our approach (det Ĵ = 0.98). The strongest base-

line uses the landmark equality constraints, resulting in improved

ninv , at the cost of map quality and boundary matching.

Figure 12 compares our map with the baseline using the fixed

landmark constraint. Our method correctly maps features that are

distorted by the baseline, such as the arm and leg of the human

and hooves of the horse. The baseline approach performs well

on the armadillo, a map between shapes of the same domain, but

produces higher distortion. These visual and quantitative results

demonstrate the strength in our free-boundary formulation, which

effectively matches geometric features.

Surface map repair. Figure 13 shows how our algorithm recov-

ers artifacts in the 2D surface map initialization procedure (Sec-

tion 5.1) and compares with the baseline using the fixed landmark

constraint. Starting from our landmarks, the surface map method

of Ezuz et al. [2019] results in parts of the surface that are folded

inside out (the backs of triangles are shown in black), as seen on

the arms and legs of the human and the paws of the dog; the ini-

tial maps also have collapsed boundary features (hand of the hu-

man, tail of the dog). Both our method and the baseline target

orientation-preserving maps and correct these inverted areas. Un-

like the baseline, our method recovers from the inverted regions

to match the target shape. Furthermore, we fill small regions such

as the tail of the dog and the hands and feet of the human.

6.5 Map Robustness

We test the robustness of our method on challenging mapping

cases. We first assess the ability to map from smooth, high-

resolution shapes to coarse meshes with sharp features. Figure 14

demonstrates mapping to polycube shapes from Fu et al. [2016], us-

ing the Pi j maps. We successfully map bidirectionally between the

smooth and coarse shapes, although expectedly higher distortion

arises in the corner regions.

Figure 15 tests matching between nonisometric pairings. We

stretch one arm and leg of the humanmesh and obtain closematch-

ings in both directions, although higher distortion arises at the

ends of the stretched regions due to large changes in volume re-

quired to match to the target.

Figure 16 tests the robustness of our method to mesh quality.

Figure 16 (top) maps a high-resolution horse to progressively
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Fig. 13. Refinement of the initial boundary map using [Ezuz et al. 2019]

and comparison to the baseline with landmark equality constraints. The

backs of boundary triangles are shown in black. The initial map produces

areas of the surface turned inside out and collapses regions such as the

hands of the human and tail of the dog. Both our method and the base-

line can produce orientation-preserving correspondences. Compared to

the baseline, our approach restores collapsed and distorted regions and

effectively matches the target shape (red ovals). This experiment also re-

veals that our method can recover from poor initialization.

Fig. 14. Map between smooth and polycube shapes. Our method produces

close matchings in both directions, though higher distortion arises in the

corner regions of the polycube.

downsampled versions. Despite differences in mesh resolution, we

successfully map to the target shapes with minimal inversions, al-

though small features like the ears of the horse are distorted. This

artifact is due to few tetrahedra representing these regions in the

downsampled mesh. Figure 16 (bottom) assesses the sensitivity of

ourmethod tomesh quality bymapping a bird with thin, elongated

tetrahedra faces to one with regular tetrahedra. We achieve a close

matching, suggesting our method is robust to mesh quality.

6.6 Symmetrized Energy Choice

We experiment with the choice of symmetrized energy and its

effect on producing a map. As described in Section 3.3, several

Fig. 15. Nonisometric mapping of a stretched human. Closematchings are

obtained, though higher distortion arises in the stretched regions.

symmetrized energies do not favor isometry, while our choice, the

sARAP energy, does. Figure 17 compares the output when optimiz-

ing using the sARAP, the symmetrized Dirichlet (sDir), and the

3rd-order symmetrized Dirichlet (sDir3) energies. The 3rd-order

Dirichlet is used, since tri-harmonic functions are used to achieve

C1 continuity in 3D [Iwaniec and Onninen 2010]. In these exper-

iments, we remove the tetrahedron repair step, which made the

artifacts worse. We compare two choices of γ and visualize the re-

sultant maps.

Both the sDir and sDir3 energy completely collapse the map for

γ = 0.1, since the projection term has little effect at keeping the

map intact. Similarly, parts of the mapped mesh degenerate with

γ = 25. In both cases, the sDir3 energy, however, maintains conti-

nuity. In contrast, the sARAP energy does not produce a collapsed

map, although it starts to restore the source when γ = 0.1.

This experiment verifies our analysis in Section 3.2 and addition-

ally shows that methods using energies that do not favor isometry

can be sensitive to parameter choice.

7 EXAMPLES

Volumetric maps are useful for transporting data between domains.

Below, we depict some use cases that would benefit from our low-

distortion, near-diffeomorphic maps.

7.1 Internal Geometry Transfer

In contrast to pulling back functions onM2 toM1, we can also push

forward maps intoM1 toM2. This category of data includes point

clouds, collections of curves, and arbitrary subdomainsU ⊂ M1.

As an example of how data can be easily transported us-

ing our maps, in Figure 18, we push forward integral curves

of a frame field on domain M1 through ϕ : M1 → M2. The

Fig. 16. Map sensitivity to mesh quality. Top: mapping a high-resolution

horse mesh to progressively downsampled versions (boundary triangle

faces indicated). Bottom: mapping a bird with thin, elongated tetrahedra

faces to one with regular tetrahedra. In all cases, the targets are matched

closely with few inversions (maximum of ninv = 2), though in the horse

examples, small geometric features, such as the ears, are lost due to limited

representation.
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Fig. 17. Comparison of maps when optimizing with the symmetrized

Dirichlet (sDir), the 3rd-order sDir3, and the sARAP energies. sDir and

sDir3 produce collapsed maps for both values of γ , although γ = 25 keeps

parts of the map intact, as it pushes vertices to the boundary. The sARAP

energy does not collapse, but starts to show the source shape for γ = 0.1,

as expected.

Fig. 18. When the integral curves of an octahedral frame field are pushed

forward from a source domain (left) to a target domain (right), the result

looks similar to the integral curves of a field computed directly on the

target (center). The mapped curves remain nearly orthogonal, illustrating

the low metric distortion of our map.

frame fields and their integral curves were generated using

ARFF [Palmer et al. 2020]. Integral curves were pushed for-

ward by mapping the curve vertices individually using piece-

wise linearity. The integral curves remain nearly orthogo-

nal under the map, showing that it is close to isometric.

Fig. 19. Internal curve-

skeleton transfer.

The pushed-forward integral curves

closely match the integral curves com-

puted directly onM2, also reflecting the

map’s degree of metric preservation.

In another example, we simulate an

internal geometry transfer task. As

shown in Figure 20, we place several

objects representing anatomy inside of

our source mesh and push these for-

ward to our target. Despite rotation of

the head and movement of the arm,

structure is largely maintained. For

the meshes used in this example, we

credit Averin [2017], Leemhuis [2018],

Medical [2013], Reininger [2015], and YEG 3D Printing [2015].

In a final example, we transfer a curve-skeleton of a horse mesh

to our target (Figure 19). The source skeleton is generated using

the approach of Cao et al. [2015]. The transferred skeleton cap-

tures the deformation of the horse, as evidenced by the curva-

ture of the spine. Previous work has proposed skeleton transfer

by finding a rigid transformation between skeletons of two sur-

face meshes [Seylan and Sahillioğlu 2019]. In contrast, our volu-

metric approach facilitates internal geometry transfer and does not

require computing matchings of internal shapes.

Fig. 20. Internal geometry transfer. We place several objects representing

human anatomy in the interior of our source mesh and push these forward

to the target using our volumetric map.

7.2 Hex Mesh Transfer

Our maps can transport other volumetric structures. Hexahedral

meshing remains difficult and often requires extensive human

intervention; our maps can transport expensive-to-compute hex

meshes between domains. Figure 21 transports a hexahedral mesh

designed using the method of Li et al. [2021] on one domain to a

deformed domain. Similar to howwe push forward integral curves,

we transport a hexmesh bymapping its vertices individually, main-

taining the combinatorial structure of the mesh. Due to the low

metric distortion of the map, the distortion of most of the hexa-

hedra remains low, as measured by the scaled Jacobian. However,

the right foot of the mapped hexmesh has two toes joined together.

This artifact is caused by projection to the wrong boundary target,

an artifact also encountered by Li et al. [2021]; as their approach

has user interaction, they suggest adding landmarks during the op-

timization to clarify difficult targets.

7.3 Volumetric Data Transfer

We demonstrate one example of volumetric data transfer using a

dataset of placentas extracted from fetalMRI [Abulnaga et al. 2022].

The mapping is done on data from two patients. The first mapped

pair contains two scans acquired where the mother is lying in two

positions: supine and left lateral. The second contains two scans

acquired ∼10 minutes apart. Figure 22 presents the results. The fig-

ure marks one important anatomical landmark, a cotyledon, which

is responsible for the exchange of blood from the maternal side to

the fetal side [Benirschke and Driscoll 1967]. Cotyledons appear as

hyperintense circular regions in MRI. We observe close correspon-

dence in the placental geometry. Similar patterns are seen in the

mapped texture and the target. In this application, neither example

has a clearly defined source or target shape. The symmetry in our

method is advantageous for downstream tasks, such as statistical

shape analysis or label propagation, as it prevents bias caused by

arbitrarily selecting a source and a target. We leave to future work

a detailed study of our method’s relevance to MRI data.

8 DISCUSSION

We successfully map a collection of shapes of diverse geometry

and demonstrate that our maps closely match the target boundary

with low distortion throughout the volume and a negligible

amount of flipped tetrahedra. Our method is robust to the choice

of initialization (Figures 8, 11, and 13) and can produce a dense
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Fig. 21. Hex mesh pushed forward from one volume to another using our

map. We observe low distortion, as measured by the scaled Jacobian over-

all, but there is some distortion in the mapped right foot. Hex meshes are

visualized with HexaLab [Bracci et al. 2019], which clamps negative scaled

Jacobian values to 0.

correspondence even when starting with a low-quality, many-to-

one map (Figures 8 and 11). Compared to the baseline, our free

boundary-based approach can recover from poor initialization

(Figure 13) and produce higher-quality maps, as shown in Table 4

and Figure 12. Our examples illustrate scenarios that require a

volumetric correspondence, namely, internal geometry transfer,

hex mesh transfer, and volumetric data transfer.

Key to the development of our algorithm was the analysis

of symmetric distortion energies in Sections 3.2–3.3. We sym-

metrized several common distortion energies and found that only

the sARAP energy had the desirable properties of favoring isom-

etry, preserving structure, and being nonsingular. We provide a

simple way to symmetrize a distortion energy and check if it sat-

isfies these properties. Figure 17 also shows that some choices of

energy can lead to degenerate maps that are sensitive to the param-

eters used. The nonsingularity of the sARAP energy is favorable

for computing a map given a degenerate initialization. Since vol-

umetric correspondence has no obvious initializer, this property

is key in our target applications, as we can recover from poor ini-

tialization. Future work remains in designing symmetric distortion

energies that satisfy more desirable properties.

The connection between the theoretical analysis in Sections 3.2–

3.3 to our algorithm design relies on ψ = ϕ−1. We use soft con-

straints to encourage a bijection and produce maps with low re-

versibility energy (ER = (1.47 ± 1.9) × 10−3) and few flipped tetra-

hedra (7.7± 9.9). In practice, we cannot guaranteeψ = ϕ−1, as our

Fig. 22. Volumetric data transfer of two fetal MRI volumes visualized as

cross-sections of 3D MRI. The figure shows texture transfer between two

volumes in a scenario where the mother is lying in the supine and left

lateral position (left) and in a scenario where the two volumes are approx-

imately 10 minutes apart (right). The circle marks the location of a cotyle-

don in the target texture.

Fig. 23. Limitations.Wewere unable tomap between the screw threads, as

the map required removing or adding a large amount of material, leading

to significant distortion. In our second example, the target shape, a shark,

had a large cavity in its interior, while the source, a dolphin, did not.

initialization is non-invertible, and the existence of an invertible

map is not guaranteed. However, our experimental results demon-

strate the theoretical analysis is relevant, as our computed maps fa-

vor isometries (det Ĵ = 0.98± 0.02) and do not collapse (Figure 17).
It remains an open problem to guaranteeψ = ϕ−1.

8.1 Limitations

We observed a few failure cases, as can be seen in Figure 23. First,

we encountered shapes where finding a volumetric map was sim-

ply infeasible. In the screw threads example, the required map

would have to add or remove a large amount of volume, which

would lead to substantial distortion. Furthermore, the threads on

the boundary differ in number, making it impossible to match

sharp features. In the second case, we were unable to map a

shark with a cavity in its interior to a dolphin with a solid inte-

rior. The cavity is a large hollow area to which a volumetric ap-

proach is highly sensitive. Furthermore, our method is unable to

change topologywhenmapping between shapes of different genus

(Figure 24), and we are unable to prescribe topological constraints.

Another limitation is that our method may not be suitable for par-

tial volume matching, since we normalize input meshes to have

volume 1. Last, as demonstrated in Figure 21, our method can join

together small features in the boundary (e.g., armadillo toes). This

artifact is caused by an incorrect boundary projection. A potential

fix would be to have soft landmark constraints in the optimization.

Fig. 24. Highly distorted re-

gion (red circle) when map-

ping from a genus-1 to a

genus-0 shape.

Finally, our method takes between

minutes and hours to compute the cor-

respondences. The computational cost

is problematic if desiring mapping a

collection of shapes, despite our al-

gorithm being advantageous in that

we can map between shapes that are

far-from-isometries, and we do not re-

quire the same connectivity between

shapes. The computational bottleneck

is computing the SVD for each tetra-

hedron many times on the CPU to ap-

proximate the gradient of the objective

function. A future direction is to im-

prove the convergence time by using

a second-order method and to use the

GPU for parallelization.
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Table 5. Quantitative Results on All Mesh Pairs in Our Dataset

Names � Time |Ti | ER (×10−3 ) EARAP (×10−3 ) ninv d̂max (×10−2 ) d̂avg (×10−2 ) | det Ĵ |
scan_011 scan_019 23 29.23 36,420 43,527 2.23 1.52 55.89 64.91 3 11 1.47 7.82 0.12 0.24 0.98±0.05 0.974±0.0545
scan_011 scan_030 19 11.39 36,420 37,588 0.12 0.11 43.18 43.22 2 0 1.83 2.52 0.10 0.12 0.981±0.0372 0.984±0.0275
scan_019 scan_039 16 17.57 43,527 50,713 0.30 0.32 55.87 58.49 0 2 1.57 2 0.12 0.14 0.976±0.0503 0.979±0.0456
airplane1 airplane2 7 28 24,894 30,700 1.29 3.02 257.28 174.17 8 12 2.33 2.34 0.10 0.12 0.968±0.0773 0.954±0.0979
armadillo deformed armadillo 21 75.89 81,114 113,794 0.11 0.11 25.40 28.22 2 3 1.15 1.39 0.05 0.06 0.99±0.0244 0.988±0.0259
bird_1 bird_2 12 19.55 30,361 90,810 0.17 0.18 45.16 44.36 0 7 1.23 1.15 0.06 0.08 0.987±0.0278 0.984±0.0318
cat0 cat1 17 9.86 17,867 22,988 0.51 0.45 40.33 51.52 0 1 1.98 1.73 0.08 0.08 0.984±0.0479 0.981±0.0467
cat4 cat5 18 14.05 25,985 22,710 0.92 1.02 52.71 56.03 5 5 3.92 2.89 0.13 0.11 0.98±0.0498 0.98±0.0496
centaur0 centaur1 37 13.70 30,357 26,954 0.42 0.38 26.06 29.56 1 3 1.04 1.42 0.05 0.07 0.993±0.0212 0.988±0.0299
dancer dancer2 13 43.11 58,535 36,902 7.32 4.06 268.53 287.04 41 17 1.32 2.18 0.12 0.11 0.934±0.131 0.951±0.0909
dog4 dog5 27 17.04 31,469 30,160 1.58 2 61.45 53.25 7 3 2.29 2.27 0.09 0.10 0.979±0.0527 0.98±0.0538
dog6 dog7 24 33.92 26,739 43,771 3.87 4.34 137.22 121.09 3 14 7.01 2.38 0.20 0.17 0.961±0.0754 0.958±0.0863
dog7 dog8 25 71.15 81,145 85,128 0.34 0.35 22.03 22.51 4 9 2.86 4.78 0.08 0.12 0.992±0.031 0.992±0.0286
Dolphin Shark 9 39.75 129,443 55,440 2.51 2.90 123.05 80.68 11 13 3.96 5.32 0.14 0.16 0.981±0.0576 0.981±0.0592
dragon_stand dragonstand2 28 70.37 109,823 194,651 0.01 0.01 0.60 0.32 0 0 0.75 0.95 0.02 0.02 1±0.002 1±0.003
fish1 fish2 8 73.57 64,410 58,215 3.07 2.07 149.62 179.76 55 16 2.10 2.09 0.16 0.12 0.969±0.0872 0.969±0.0763
glass1 glass2 13 12.83 30,921 13,439 7.28 7.81 273.30 283.75 24 0 1.85 1.33 0.22 0.10 0.918±0.122 0.89±0.107
gorilla1 gorilla5 26 30.52 37,417 59,375 1.26 1.24 33.04 58.37 1 4 4.05 2.76 0.09 0.10 0.988±0.0326 0.978±0.0448
horse0 horse5 16 20.55 31,507 34,978 0.23 0.21 31.10 35.11 0 1 2.16 2.37 0.05 0.06 0.989±0.0414 0.99±0.027
Cow_t Horse_t 21 20.09 31,694 32,515 0.58 1.16 117.74 129.02 17 18 2.25 3.43 0.13 0.23 0.978±0.0515 0.969±0.0641
human1 human2 21 42.27 56,550 82,581 0.57 0.87 58.34 60.89 0 33 1.67 2.09 0.06 0.10 0.988±0.0267 0.985±0.0428
michael0 michael7 20 19.53 19,445 30,014 0.40 0.35 21.62 27.28 1 4 1.75 1.46 0.06 0.07 0.992±0.0221 0.991±0.0269
seahorse2 seahorse4 22 8.24 13,720 15,667 0.09 0.11 16.89 17.14 1 1 1.10 1.91 0.04 0.04 0.993±0.0227 0.993±0.0213
toy1 toy2 12 31.54 75,236 62,880 0.43 0.47 47.36 53.13 5 3 4.74 3.66 0.08 0.07 0.987±0.0345 0.979±0.05

Our maps closely match the target boundaries while producing low distortion and few tetrahedron inversions. Here, � denotes the number of landmarks. Time is measured in
minutes.

8.2 Future Work

An exciting future direction is to develop application-specific vol-

umetric correspondences. We provided a few examples of tasks

where volumetric correspondence is useful. Our example of map-

ping MRI signals demonstrated that while matching geometries

can improve correspondence, a method that incorporates both the

geometry and signal intensities is needed. One framework could

be to combine our vertex-based approach with functional maps.

We envision this work to be a starting point for dense volu-

metric correspondence applicable to a broad set of shapes. The

nascent area of volumetric correspondence is largely unexplored,

and our theoretical discussion suggests many intriguing mathe-

matical questions and algorithmic design challenges.
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