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ABSTRACT

Understanding the carbon-water coupling over permafrost regions is essential to projecting global ecosystem
carbon sequestration and water dynamics. Ecosystem water use efficiency (EWUE), defined as the ratio of gross
primary productivity (GPP) and evapotranspiration (ET), reflects plant acclimation strategies with varying
ecosystem functioning against environmental stress. Yet EWUE change and its potential drivers across the
northern permafrost regions remain poorly quantified, hampering our understanding of permafrost carbon-
—climate feedback. Here, we compared and analyzed the difference using satellite observations and process-
based models to estimate the spatio-temporal variations of EWUE in 1982-2018 over northern permafrost re-
gions. Using flux measurements as truth data, satellite-derived EWUE was more reliable than model-based
EWUE. Satellite-derived EWUE showed biome-dependent spatial patterns, with a steady temporal trend (0.01
g Cmm™! decade™!, P > 0.05) for spatially averaged EWUE over northern permafrost regions. Carbon dioxide
(CO3) concentration and nitrogen deposition positively affected interannual variations of EWUE, while vapor
pressure deficit and other climatic factors (i.e., temperature, precipitation, and radiation) negatively controlled
EWUE. Compared to satellite-derived EWUE, we found that EWUEs derived from an ensemble of process-based
carbon cycle models are overestimated in seven out of ten models, with an increasing trend of 0.11 g C mm ™!
decade™! (P < 0.001) for spatially averaged EWUE of the ensemble mean. The relationships between climatic
factors and EWUE are partially misinterpreted in model estimates, especially with overstated CO, sensitivity and
the opposite temperature effect. The fluctuating sensitivities to climate over time and the diminishing effect of
CO2 fertilization on gross primary productivity (GPP) may partially explain the discrepancy observed between
satellite-derived and model-based estimates of EWUE. Thus, this study calls for caution concerning model-based
EWUE and aids in understanding permafrost-climate feedbacks and projections of carbon and water cycles.

1. Introduction

feedbacks (Miner et al., 2021; Wu et al., 2021; Yuan et al., 2017).
Terrestrial carbon and water cycles are closely tied to gas exchange

Permafrost, covering almost 25% of the land in the Northern
Hemisphere, has been experiencing notable degradation under warm-
ing, leading to thawing permafrost, rising sea levels, accelerating soil
carbon decomposition, and destruction of the ecosystem (Chadburn
et al.,, 2017; Jorgenson et al., 2001; Miner et al., 2021; Plaza et al.,
2019). Elevated carbon dioxide (CO;) concentration, together with
climate change and permafrost degradation, substantially alter
ecosystem structure and functioning (e.g., shrub expansion across the
Arctic) and carbon and water cycles over permafrost regions (Tape et al.,
2012; Zhu et al.,, 2016). Understanding the changes in coupled
ecosystem carbon-water dynamics and the underlying mechanism is
crucial to projections of plant acclimation and permafrost-climate
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through plant stomata (Leuzinger and Korner, 2007; Schlesinger and
Jasechko, 2014). Plant water use efficiency (WUE) reflects the resilience
and acclimation strategies against environmental stress (e.g., drought,
extreme heat, and nutrient stress), linking plant carbon uptake with
water consumption from leaf to plant and ecosystem level (Keenan et al.,
2013; Yuan et al., 2019). Elevated air CO, has been widely reported to
enhance leaf ‘intrinsic’ WUE (iWUE, the instantaneous ratio between
carbon assimilation rate and stomatal conductance) across global forests
(Battipaglia et al., 2013; Frank et al., 2015; Soh et al., 2019). For
example, the iWUE increased by 22% and 14% for coniferous and
broadleaf forests during the twentieth century due to elevated CO,
(Frank et al., 2015). Local- and regional-scale studies, such as
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eddy-covariance flux measurements or Free-air CO5 enrichment (FACE)
experiments, confirmed the stimulating effect of CO5 on WUE for forests
(Keenan et al., 2013) and grasslands (Ainsworth and Rogers, 2007).
Satellite-based analyses also revealed the positive effects of COy on
ecosystem WUE (EWUE), which is defined as the ratio of gross primary
productivity (GPP) and evapotranspiration (ET) (Gang et al., 2019;
Huang et al., 2015; Zhou et al., 2014).

Apart from CO; effects, both leaf and ecosystem-level WUE are
controlled by other climatic factors, including nitrogen (N) deposition,
vapor pressure deficit (VPD), temperature, precipitation, and radiation
(Keenan et al., 2013; Huang et al., 2015; Rahman et al., 2019; Xu et al.,
2022). For example, drought stress and N deposition have been reported
to drive iWUE variations in global forests based on tree ring records,
highlighting the demarcation of water-limited from non-water-limited
action of leaf stomata (Adams et al., 2021). N deposition stimulates
plant growth and nutrient enhancement in plant tissue, enhancing
EWUE, especially in N-limited regions (Adams et al., 2021; Brueck,
2008). VPD controls the diurnal and seasonal variations of EWUE and
aids in explaining the relationship between GPP and ET across different
biomes (Zhou et al, 2014). Using satellite observations and
process-based carbon cycle models, Huang et al. (2015) found
latitude-dependent responses of climate factors (i.e., temperature, pre-
cipitation, and radiation) to EWUE. Temperature, precipitation, and
radiation changes may partially or even completely offset the positive
CO4, effects on EWUE (Huang et al., 2015). Specifically, warming and the
associated increase in VPD reduce EWUE through substantial increases
in ET, as confirmed by modeling and experimental studies (De Boeck
et al., 2006; Niu et al., 2011; Querejeta et al., 2021). Precipitation’s
impacts on EWUE depend upon drought conditions of the ecosystem and
soil water storage capacity, showing divergent patterns in arid and
humid regions (Tian et al., 2010).

The northern permafrost has been experiencing the release of
growing amounts of carbon as a result of degradation caused by
warming, which entails higher soil temperatures and an extended
duration of annual thawing (Schuur et al., 2015). The increase in carbon
release further amplifies climate warming, causing positive
permafrost-climate feedbacks, i.e., permafrost carbon feedback (PCF).
This positive feedback loop between permafrost thawing and green-
house gas emissions is a significant concern for climate change as it can
accelerate global warming beyond the currently projected levels. A
better knowledge of carbon-water coupling could help us understand the
mitigating role of vegetation photosynthesis and evapotranspiration
processes in PCF. Based on in situ records, flux measurements, and
satellite observations, there has been a non-uniform greening trend,
with increasing vegetation cover, greenness, and productivity, over
northern permafrost regions during the last three decades (Elmendorf
etal., 2012; Piao et al., 2020; Zhu et al., 2016). Permafrost greening aids
in fixing more carbon from the atmosphere into the ecosystem and
mitigates CO, elevation in the air. Apart from the impacts on carbon
uptake, greening over permafrost regions (e.g., Arctic tundra greening)
causes biophysical feedbacks to the surface temperature variations,
associated with albedo warming and evaporative cooling (Zeng et al.,
2017), and water cycles, including increases in ET and precipitation and
decreases in runoff and soil moisture (Berner et al., 2020; Piao et al.,
2020; Tape et al., 2012). Yet, vegetation impacts on permafrost carbon
and water cycles have large uncertainties. Better quantification of EWUE
under warming and greening is essential to improve the predictability of
future permafrost-climate feedbacks.

Satellite remote sensing has become one of the main approaches to
investigating long-term changes in EWUE during the last few decades
(Gang et al., 2019; Lu and Zhuang, 2010; Zheng et al., 2019; Zhou et al.,
2014). Unlike tree ring isotopes or eddy-covariance flux measurements
focusing on individual trees or sites, open-access satellite data can be
used to estimate large-scale vegetation dynamics, such as changes in
EWUE, with spatial and temporal continuity. Process-based models have
also been widely used to determine EWUE (Frank et al., 2015; Huang
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et al., 2015). However, their reliability and applicability remain elusive
with limited evaluations. Moreover, the climatic responses of
model-based EWUE could be biased due to misrepresentation of
ecosystem functioning and plant acclimation (Sun et al., 2016). The
between-model differences in EWUE can be attributed to different model
structures and parameters (Sulman et al., 2012). To this end, this study
has threefold goals: (1) to investigate and compare the spatio-temporal
patterns of EWUE using satellite observations and model estimations
over northern permafrost regions from 1982 to 2018; (2) to understand
the dynamic responses of EWUE to changes in climatic drivers; (3) to
explain the discrepancy between satellite-derived and model-based
EWUE and corresponding climatic sensitivities.

2. Material and methods
2.1. Study area

This study focused on permafrost regions in the Northern Hemi-
sphere, including high-latitude areas such as Siberia, Alaska, and the
Canadian Arctic, and high-altitude regions like the Tibetan Plateau. The
permafrost coverage was derived from Brown et al. (1997) (Fig. 1).
Based on land cover product in 2016 generated by Moderate Resolution
Imaging Spectroradiometer (MCD12C1 v006), the Northern permafrost
regions are mainly covered by evergreen needleleaf forests (ENF, 7.7%),
deciduous needleleaf forests (DNF, 6.1%), mixed forests (MF, 9.7%),
open shrublands (OSH, 42.1%), savannas (SAV, 10.9%), grasslands
(GRA, 21.2%), and permanent wetlands (WET, 2.3%).

2.2. Datasets

2.2.1. Eddy-covariance flux data

The flux data was collected from FLUXNET (https://fluxnet.org/)
over northern permafrost regions. We removed all cropland-site data
that was affected by human behaviors. The sites with less than 5-year
records were also excluded. Finally, we collected a total of 258 site-
year records at 43 sites (Fig. 1). Most of the sites are categorized into
ENF (19 sites), GRA (9 sites), and WET (9 sites). Detailed descriptions of
flux sites can be seen in Supplementary Table S1. Eddy-covariance-based
EWUE was used to evaluate satellite-derived and model-based coun-
terparts in this study.

2.2.2. Satellite-based GPP data

We obtained annual GPP data (1982-2018, 0.05° x 0.05°) from a
recent global GPP dataset (GPPyiry) driven by a satellite-based GPP
proxy (i.e., the near-infrared reflectance of vegetation, NIRy). The NIRy
is calculated as the product of total scene Near-infrared reflectance
(NIRT) and the normalized difference vegetation index (NDVI), which
are derived from the Advanced Very High Resolution Radiometer
(AVHRR). Badgley et al. (2019) illustrated the strong coupling of NIRy
and GPP using flux measurements, even during drought events. The
NIRy approach for estimating GPP achieves strong quantification of
uncertainties while maintaining parsimony. GPPypry was generated
based on calibrated and validated relationships between NIRy and GPP
for different vegetation types, avoiding the integration of climatic fac-
tors used as model inputs in other satellite GPP products (Wang et al.,
2021).

2.2.3. Determination of ET

By merging estimates from different sources to lower the uncer-
tainty, the triple collocation (TC) method has been widely used to
improve the estimates of water cycle components such as precipitation
(Li et al., 2018; Lyu et al., 2021), soil moisture (Gruber et al., 2016),
snow depth (Xiao and Che, 2018), and ET (Li et al., 2022). Given the
largely reported uncertainty of ET estimate (Kingston et al., 2009; Long
et al., 2014), we used three independent ET datasets (1982-2018) with
the TC method to determine the ET estimate for northern permafrost
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Fig. 1. Distribution of vegetation types and flux sites used in this study over northern permafrost regions.

regions. The first ET dataset is derived from the GLASS ET product
(Liang et al., 2020), which is based on a multi-model ensemble approach
that merges five process-based ET estimates, i.e., the MODIS ET product
algorithm (MOD16) (Mu et al. 2011), the revised remote sensing-based
Penman-Monteith ET algorithm (RRS-PM) (Yuan et al. 2010), the
Priestley-Taylor-based ET algorithm (PT-JPL) (Fisher et al. 2008),
modified satellite-based Priestley-Taylor ET algorithm (MS-PT) (Yao
et al. 2013), and the semiempirical Penman ET algorithm of the Uni-
versity of Maryland (UMD-SEMI) (Wang et al. 2010). The second ET
dataset is derived from the GLEAM ET product (Martens et al., 2017)
using a multiplicative evaporative stress factor and estimates of
root-zone soil moisture. The third ET dataset is determined as the re-
sidual of the water budget equation (Rodell et al., 2011):

dTWS

ET =P - R —
dt

(€8]

where P is the yearly total precipitation, R is the annual total runoff,
TWS is the total water storage, and de_[ws is the annual change in TWS. We
used precipitation and runoff data from the TerraClimate dataset
(Abatzoglou et al., 2018). Given that the TWS observation based on the
Gravity Recovery and Climate Experiment (GRACE) is not available
before 2002, we used a reconstructed TWS product for 1982-2018
(Humphrey and Gudmundsson, 2019). All three ET estimates were
resampled into 0.05° x 0.05° as the inputs of the TC method using the
bilinear interpolation method.

We conducted the TC method with three main steps (Lyu et al.,
2021): (1) determining the RMSEs of the three estimates using the TC
analysis; (2) estimating the weight corresponding to each input data; (3)
using the weight to calculate weight-averaged ET as the final merged ET.
A detailed description of the TC method can be seen in Supplementary
Text S1.

2.2.4. Climatic data

We considered six climatic variables, i.e., CO3 concentration
(henceforth, ‘CO5’), N deposition, VPD, temperature, precipitation, and
downward shortwave radiation (henceforth, ‘radiation’), as potential
drivers of EWUE variations. These six variables are the main factors to
impact EWUE variations (Huang et al., 2015). Yearly CO, data were
collected from a reconstructed monthly gridded atmospheric CO2 con-
centrations product under the historical and future scenarios, with a
spatial resolution of 1° x 1° (Cheng et al., 2022). Yearly N deposition
data (0.072727° x 0.072727°) were obtained from Chen et al. (2019),

estimated from tropospheric NO5 column density. Yearly VPD, temper-
ature, precipitation, and radiation (0.041667° x 0.041667°) were
derived from TerraClimate (Abatzoglou et al., 2018), which have been
widely validated with ground observations.

2.3. Process-based models and simulations

We used GPP and ET outputs from ten process-based carbon cycle
models based on Trends in the land carbon cycle (TRENDY-v8, released
in 2019) project, including CABLE-POP, CLM5.0, DLEM, ISAM, ISBA-
CTRIP, LPJ-GUESS, LPX-Bern, ORCHIDEE, SDGVM, and VISIT. The
detailed introduction of model information can be seen in Supplemen-
tary Table S2. Among multiple simulations of TRENDY-v8, we used
simulation S2, which sets up model inputs as varying CO, climate, and
N deposition with a time-invariant "pre-industrial" land use mask
(Huang et al., 2015). Given all process-based models used the same in-
puts in the TRENDY project, we derived model inputs including CO,, N
deposition, temperature, precipitation, and radiation as climatic drivers
of model-based EWUE. To determine VPD, we first derived monthly
actual vapor pressure (VAP) and temperature from Climatic Research
Unit (CRU TS4.06) dataset. Then we calculated monthly saturated vapor
pressure (SVP) as follows (Abbott and Tabony, 1985; Wang et al., 2020):

1738 x T

SVP = 0.6107 x emoit @

where T is the monthly mean temperature. We calculated monthly VPD
as the difference between SVP and VAP and then determined yearly
mean VPD.

2.4. Statistical analysis

Based on the definition of EWUE, it can be calculated as follows:

GPP
EWUE = T 3)
where EWUE is annual water use efficiency (g C mmfl), GPP is annual
total gross primary productivity (g C year '), and ET is annual total
evapotranspiration (mm year™ ).

In this study, we derived three groups of EWUE, i.e., eddy-covariance
based EWUE, satellite-derived EWUE, and model-based EWUE. To
evaluate satellite-derived and model-based EWUEs by eddy-covariance
flux measurements, we applied the bilinear interpolation method to
resample model-based EWUE from 0.5° x 0.5° into 0.05° x 0.05° to
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make it consistent with satellite-derived EWUE. We evaluated EWUEs in
terms of correlation coefficient and RMSE. The RMSE was also grouped
into different vegetation types. It should be noted that the original
coarse resolution of process-based models could partly account for its
poor performance of estimating EWUE with insufficient heterogeneity.
We performed analyses at two levels (pixel-to-pixel and pixel-
aggregated) in order to better interpret the diverse spatial patterns
and overall outcomes related to the temporal trends of EWUE and its
responses to climatic factors. To investigate climatic responses sepa-
rately, we resampled climatic drivers into 0.05° x 0.05° for satellite-
based analyses and 0.5° x 0.5° for model-based analyses. We used the
ensemble mean to represent model-based EWUE and conducted all
model-based analyses.

We applied the Theil-Sen slope estimator, a non-parametric and
median-based slope estimator, to analyze the temporal trend of satellite-
derived and model-based EWUEs. The trends were evaluated using the
Mann-Kendall trend test at a significance level of 0.05 (Hamed and Rao,
1998). Given multiple climatic factors jointly and interactively influence
EWUE, we used partial correlation analysis to investigate the impact of
each climatic driver on EWUE variations. To quantitatively describe
these impacts, we applied ridge regression to avoid potential multi-
collinearity among climatic drivers and determine the sensitivity of each
driver (i.e., CO,, N deposition, VPD, temperature, precipitation, and
radiation). In each grid cell, we determined the dominant factor gov-
erning the variations in EWUE as the factor exhibiting the highest ab-
solute sensitivity value (Wang et al., 2022). To investigate the temporal
variations of climatic responses, we used an 18-year moving window
(15-year and 12-year showed similar results in this study) to determine
the changes in sensitivities during the 1982-2018 period.

3. Results
3.1. Evaluations of satellite-derived and model-based EWUEs

Compared to model-based EWUE, satellite-derived EWUE was more
promising when evaluated by eddy-covariance flux measurements with
a total of 258 site-year EWUE records (Fig. 2). A strong correlation was
found between eddy covariance-based EWUE and satellite-derived
EWUE, with an R? of 0.62 (P < 0.001) and an RMSE of 0.74 g C
mm ! (Fig. 2a). In contrast, model-based EWUE was overall over-
estimated compared to eddy covariance-based EWUE, with an R? of 0.34
(P < 0.001) and an RMSE of 1.09 g C mm ! (Fig. 2b). Grouping RMSE
into vegetation types confirms a better estimation of EWUE using
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satellite data, with a lower RMSE than model-based evaluation for each
vegetation type.

3.2. Spatio-temporal changes in EWUE over northern permafrost regions

Based on satellite-derived EWUE, we observed relatively high EWUE
(>4gcC mm™ 1) in northwest Canada, Northern Europe, and east of the
Tibetan Plateau and low EWUE (< 1 g C mm™?) in the north of Canada
and west of the Tibetan Plateau (Fig. 3a). Grouping EWUE into vege-
tation types shows a biome-dependent distribution of EWUE, ranging
from 1.2 + 0.5 ¢ C mm ! for OSH to 3.3 + 0.9 g C mm ! for SAV
(Fig. 3c). We observed high spatial heterogeneity of EWUE trends from
1982 to 2018 over northern permafrost regions (Fig. 3d). Apart from
OSH and WET with more increasing trends, EWUEs of ENF, DNF, MF,
SAV, and GRA showed no distinct temporal patterns. Overall, 33.2% and
21.6% of the area showed significantly increasing and decreasing trends
of EWUE (P < 0.05) (Fig. 3f). Unlike satellite-derived EWUE, model-
based EWUE (i.e., the ensemble mean of all process-based models)
showed less spatial heterogeneity in terms of multi-year mean EWUE
and EWUE trend (Fig. 3b, d). While relatively high model-based EWUE
(>28gC mm ') was also found in northwest Canada and Northern
Europe, model-based EWUE was overall overestimated compared to
satellite-derived EWUE (2.11 vs. 1.68 g C mm~ ). Model-based EWUE
showed consistent increasing trends for different vegetation types, with
a mean value of 0.11 g C mm~ ! dec! (Fig. 3e, f).

Furthermore, we observed contrasting patterns between satellite-
derived estimates and model-based estimates of EWUE when exam-
ining spatially averaged values that encompassed all grid cells (Fig. 4).
Apart from three process-based models, i.e., DLEM, ISBA-CTRIP, and
ORCHIDEE, generating lower EWUE, the remaining seven ensemble
models showed higher EWUE compared to satellite-derived EWUE,
leading to an overall overestimated ensemble mean EWUE (1.69 vs.
2.05 g C mm™1). No distinctive trend of satellite-derived EWUE was
observed from 1982 to 2018, while all model-based EWUEs showed
increasing trends, with a slope of 0.11 g C mm ! dec™! (P < 0.001) for
the ensemble mean EWUE (Fig. 4).

3.3. Responses of EWUE to changes in climatic drivers

We found different partial correlation patterns between satellite-
derived EWUE and climatic drivers over northern permafrost regions,
covering 7.8% of the area for temperature but 25.8% of the area for CO,
(P < 0.05) (Fig. 5a). Overall, CO, and N deposition had positive-
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dominant effects on EWUE, while other drivers, i.e., VPD, temperature,
precipitation, and radiation, had negative-dominant impacts. However,
a large discrepancy in partial correlation patterns was found in model-
based analysis (Fig. 5b). CO, showed stronger positive impacts on
model-based EWUE, and temperature showed contrasting effects
compared to satellite-based analysis.

CO,, effects dominated nearly half the area for model-based analyses,
while this dominance decreased to 20% for satellite-based analyses

(Fig. 6). The negative effects of VPD and radiation on model-based
EWUE were underestimated, with the dominance over 9% vs. 16%
and 3% vs. 16% in the northern permafrost area, respectively. Process-
based models showed discrepant frequencies of dominant drivers, and
only one model (SDGVM) exhibited similar CO; dominance to satellite-
based analysis (Fig. 6). Biome-dependent dominance patterns were
found for satellite-based analysis (Supplementary Fig. S1). Apart from
ENF and WET with more negative dominances mainly from effects of



J. Wang and D. Liu

R Pys I PN EIN,s P :N
CO, 3.06

Ndep 2.05
VPD 0.08

TMP 0.31
PRE 0.05
RAD 0.06

0 20 40 60 80 100

Frequency (%)

Agricultural and Forest Meteorology 339 (2023) 109594

b -

CO;, 74411
Ndep 1.25
VPD 0.03
TMP 108.09
PRE 0.02
RAD 0.81

T T T 1
0 20 40 60 80 100
Frequency (%)

Fig. 5. Distribution of partial correlation coefficients between EWUE and climatic drivers for satellite- (a) and model-based analyses (b). The climatic drivers include
CO,, concentration (CO,), N deposition (Ndep), vapor pressure deficit (VPD), temperature (TMP), precipitation (PRE), and radiation (RAD). P and N indicate positive
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drivers’ positive (negative) responses to EWUE variations.

VPD and precipitation, DNF, MF, OSH, SAV, and GRA had more areas
with positive dominances from effects of CO,, N deposition, and
temperature.

3.4. Dynamics of EWUE sensitivities and CO;, fertilization effects

Sensitivity analyses supported the responses of EWUE to climatic
drivers, with positive-dominant sensitivities for CO, and N deposition
and negative-dominant sensitivities for VPD, temperature, precipitation,
and radiation (Fig. 7). Grouping sensitivities into vegetation types shows
the same sensitivities in sign but variant in magnitude for each climatic
driver. Apart from radiation with steady sensitivity (negative-dominant,

Fig. 7f), we found decreases in EWUE sensitivities to CO, and N depo-
sition (positive-dominant, Fig. 7a, b), decreases in EWUE sensitivities to
VPD and precipitation (negative-dominant, Fig. 7c, e), and increases in
EWUE sensitivity to temperature (negative-dominant, Fig. 7d). In com-
parison to climatic sensitivities of satellite-derived EWUE, we found that
model-based analyses showed considerably higher sensitivity to CO2
(0.08 vs. 0.36 + 0.07), divergent sensitivities to temperature (—0.06 vs.
0.13 £+ 0.07) and radiation (—0.15 vs. 0.01 £+ 0.05) (Supplementary
Fig. S2).

Sensitivities of GPP to CO; showed disparate patterns for satellite-
and model-based analyses, with a mean value of 0.14 and 0.28,
respectively (Fig. 8a, c). Nearly 98% of the area showed a positive effect
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Fig. 7. Sensitivities of satellite-based EWUE to climatic drivers over northern permafrost regions. The climatic drivers include CO, concentration (a), N deposition
(b), vapor pressure deficit (c), temperature (d), precipitation (e), and radiation (f). The upper right bar indicates the distribution of sensitivities based on vegetation
types. The line chart under the map shows the sensitivity variation for each climatic driver using an 18-year moving window. P, N, and NS indicate positive, negative,

and non-significant, respectively. The significance was set as P < 0.05.

of CO5 on the ensemble mean GPP, but it decreased to 69% for satellite-
based results. As for temporal trends of the CO, fertilization effect, we
found a significantly decreasing trend of CO effects for satellite obser-
vations (P < 0.001), while no such pattern was observed in model-based
analysis over northern permafrost regions (Fig. 8).

4. Discussion
4.1. Spatio-temporal patterns of EWUE over northern permafrost regions

Changes in EWUE reflect vegetation acclimation confronting varying
environmental and climatic conditions (Frank et al., 2015; Huang et al.,
2015). Using long-term (1982-2018) satellite-based GPP and improved
ET estimates, we found biome-dependent patterns of EWUE over
northern permafrost regions (Fig. 3). Herbaceous ecosystems (i.e., OSH
and GRA) had lower EWUE than woody ecosystems (i.e., ENF, DNF, and
MF) (Fig. 3c), indicating that the coupling of carbon and water is directly
controlled by plant root allocation and ecosystem structure (Cramer
et al., 2001). Among different vegetation types, the highest EWUE was
found in high-latitude SAV, possibly associated with local drought stress
and plant acclimation. A thick canopy characterized by a relatively high
LAI correlates with elevated GPP and ET. We found higher EWUE in
forests than in shrublands and grasslands (Fig. 3c), suggesting the
LAI-dependent patterns of carbon-water coupling. A possible physical
explanation is that an increase in LAI can significantly diminish soil
evaporation by reducing the amount of solar radiation received at the
soil surface (Hungate et al., 2002). This progress may offset the greater
ET resulting from higher LAI (Huang et al., 2015). High spatial hetero-
geneity was also observed in the temporal trends of EWUE, even within
the same vegetation type (Fig. 3d, f), suggesting the complex and
nonlinear responses of EWUE to climate change. Increasing-dominant

trends of EWUE in OSH may indicate a tendency for plants to save
more water for growth while confronting aggravated drought stress
caused by warming and permafrost degradation.

4.2. Responses of EWUE to changes in environment and climate

CO; effects on WUE have been widely reported in leaf-level and
ecosystem-level analyses. However, upscaling WUE from the leaf to the
ecosystem level is complex because of the impacts of the boundary layer
mixing, root allocation, and ecosystem structure (Gentine et al., 2019).
Unlike leaf WUE (i.e., iWUE) mainly driven by atmospheric CO3, EWUE
is substantially regulated by climatic conditions. By excluding the effects
of other drivers, partial correlation analyses indicate that CO, and N
deposition positively affect EWUE. In contrast, VPD and climatic factors
(i.e., temperature, precipitation, and radiation) showed negative im-
pacts on EWUE (Fig. 5a), which are consistent with previous studies
(Adams et al., 2021; Frank et al., 2015; Huang et al., 2015).

Sensitivity analyses confirmed the responses of EWUE to changes in
climatic drivers, with overall consistent sensitivity in signs among
different vegetation types (Fig. 7). Different patterns of N deposition
effects on EWUE were found among forest ecosystems, with strong and
slight positive effects for DNF and MF and neutral effects for ENF
(Fig. 7b). This divergence could be related to the degree of N limitation
to physiology and growth for different forest ecosystems (Adams et al.,
2021). Warming enhances vegetation productivity, to some degree,
offsetting CO; increases globally. However, increases in temperature
and associated VPD transfer more water from permafrost to the atmo-
sphere through hydraulic lift under the ground and transpiration by
plants (Vereecken et al., 2022), leading to asymmetrical increases in
GPP and ET (Supplementary Fig. S3) and lower EWUE (Fig. 7c, d). ET is
closely tied to precipitation. For example, ET, as the second largest flux
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of the terrestrial water cycle, returns almost 60% of total precipitation
into the atmosphere (Jung et al., 2010), exhibiting the strong precipi-
tation control of EWUE with negative sensitivities (Fig. 7e). The parti-
tioning of incident radiation controls latent heat flux (Vereecken et al.,
2022), showing strong negative-dominant impacts on EWUE (Fig. 7f).
Climatic drivers of EWUE have temporally dynamic effects, with a
stronger negative impact of temperature and weaker impacts of CO3, N
deposition, VPD, and precipitation on EWUE from 1982 to 2018. The
13¢/12C stable isotope ratio in atmospheric CO, could capture the
varying climatic signals to EWUE (Adams et al., 2021). Further inves-
tigation in the future is required to enhance our comprehension of the
interplay between carbon and water, which is crucial for advancing our
understanding in this area.

4.3. Comparisons between satellite-derived and model-based EWUE

Although the scale mismatch might hurt the evaluation of EWUE, we
found a better performance of satellite observations in estimating EWUE
compared to model estimates (Fig. 2). A large discrepancy between
satellite-derived and model-based EWUE estimates was observed over
northern permafrost regions, suggesting the limitation of model esti-
mates in coupling ecosystem carbon and water. We found seven out of
ten models showed overestimated EWUE, and the ensemble mean EWUE
was nearly 20% higher than satellite-derived EWUE (Fig. 4). Model es-
timates showed consistently increasing trends in EWUE that differ from
satellite observation with a stable trend, suggesting the limitation of
current process-based models in estimating EWUE variations under
varying climatic and environmental conditions.

In addition to the magnitude and trend of EWUE, a substantial dif-
ference in EWUE sensitivities was observed between satellite- and
model-based analyses, indicating the misrepresentation of climatic re-
sponses in model estimates. We found notably overestimated CO3 pos-
itive effects, contrasting temperature effect on EWUE for model
estimates (Fig. 5). Elevated CO; substantially stimulated plant growth
and productivity, further regulating the ecosystem coupling of carbon
and water globally (Ballantyne et al., 2012; Piao et al., 2020; Schimel
et al.,2015). However, changes in temperature and precipitation ac-
count for most of the increases in greenness over northern permafrost
regions (Zhu et al., 2016), indicating the limitation of COy fertilization
effects on GPP and EWUE. Satellite-based analyses in this study have
confirmed this limitation. For example, the signal (i.e., the absolute
value of EWUE sensitivity) of CO5 was lower than VPD, precipitation,
and radiation (Supplementary Figure S3). Unlike the dominance of CO4
(nearly 50%) in model estimates, satellite-based analyses showed
limited COy control of EWUE variations (less than 20%) (Fig. 6).
Meanwhile, satellite-based results showed a decreasing CO;, fertilization
effect on GPP over northern permafrost regions during the last few de-
cades, which has been neglected in model estimates (Fig. 8b, d). A recent
study using satellite observations also revealed the global decline of CO,
fertilization effects on plant photosynthesis, explained by the varying
nutrient concentrations and soil water availability (Wang et al., 2020).
Consistent with our results, model estimates showed a limited capability
to capture this decline (Wang et al., 2020). Previous studies illustrated
that increases in temperature and radiation regulate carbon uptake and
transpiration simultaneously, with a tendency to decrease EWUE due to
a stronger elevation of ET (Huang et al., 2015). Thus, the positive effects
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of temperature and radiation on EWUE (Figs. 5-7) in model estimates
reflect that process-oriented models underscore the forcing of temper-
ature and radiation on ET, leading to overestimated EWUE and unex-
pectedly increasing trends of EWUE across northern permafrost regions.
In order to enhance the accuracy of process-based models in estimating
EWUE, it is important to focus on integrating dynamic climatic re-
sponses, specifically the fluctuations in the CO2 fertilization effect, into
the models’ structures and parameters.

5. Conclusions

Permafrost is crucial in global carbon and water cycles, but local
ecosystem coupling of carbon and water, reflected by EWUE, and its
responses to climate change remain elusive. Using satellite-based GPP
and improved ET estimates, we quantitatively analyzed the spatio-
temporal patterns of EWUE and observed a biome-dependent distribu-
tion of EWUE with no distinctive trends from 1982 to 2018 over
northern permafrost regions. Both partial correlation and sensitivity
analyses showed the positive effects of CO5 and N deposition and the
negative effects of VPD, temperature, precipitation, and radiation on
EWUE. Moreover, we found an overestimated EWUE with an increasing
trend over northern permafrost regions using an ensemble of model
estimates, showing the limitation of process-based models in charac-
terizing the coupling of carbon and water. These discrepancies in EWUE
estimates may be attributed to the misinterpretation of climatic re-
sponses, especially regarding COx fertilization effects on GPP. This study
calls for caution concerning model-based EWUE, and future work is
needed to improve model processes for projections of vegetation accli-
mation and permafrost-climate feedbacks.

CRediT authorship contribution statement

Jian Wang: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Writing — original draft, Writing — review &
editing. Desheng Liu: Conceptualization, Funding acquisition, Super-
vision, Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.
Data availability

The data link can be seen in Supplementary Table S3. The satellite-

based EWUE that supports the findings of this study is available in
Zenodo at https://zenodo.org/record/7743136.

Acknowledgments

This study was funded by the National Science Foundation Award
(#2126798). We appreciate all public datasets PIs for providing their
valuable data for our analyses. The TRENDY-v8 data was requested from
Dr. S Sitch and Dr. P Friedlingstein.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.agrformet.2023.109594.

References

Abatzoglou, J.T., et al., 2018. TerraClimate, a high-resolution global dataset of monthly
climate and climatic water balance from 1958 to 2015. Sci. Data 5, 170191.

Agricultural and Forest Meteorology 339 (2023) 109594

Adams, M.A,, et al., 2021. COq, nitrogen deposition and a discontinuous climate response
drive water use efficiency in global forests. Nat. Commun. 12, 5194.

Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal
conductance to rising CO2: mechanisms and environmental interactions. Plant Cell
Environ. 30, 258-270.

Abbott, P.F., Tabony, R.C., 1985. The estimation of humidity parameters. Meteorol. Mag.
114, 49-56.

Badgley, G., et al., 2019. Terrestrial gross primary production: using NIRy to scale from
site to globe. Glob. Change Biol. 25, 3731-3740.

Ballantyne, A., et al., 2012. Increase in observed net carbon dioxide uptake by land and
oceans during the past 50 years. Nature 488, 70-72.

Battipaglia, G., et al., 2013. Elevated CO; increases tree-level intrinsic water use
efficiency: insights from carbon and oxygen isotope analyses in tree rings across
three forest FACE sites. New Phytologist 197, 544-554.

Berner, L.T., et al., 2020. Summer warming explains widespread but not uniform
greening in the Arctic tundra biome. Nat. Commun. 11, 4621.

Brown, J., et al., 1997. Circum- Arctic map of permafrost and ground- ice conditions.
Washington, DC: U.S. Geological Survey in Cooperation with the Circum- Pacific
Council for Energy and Mineral Resources. CircumPacific Map Series CP- 45, scale 1:
10,000,000, 1 sheet.

Brueck, H., 2008. Effects of nitrogen supply on water-use efficiency of higher plants.

J. Plant Nutr. Soil Sci. 171, 210-219.

Chadburn, S.E., et al., 2017. An observation-based constraint on permafrost loss as a
function of global warming. Nat. Clim. Change 7, 340-344.

Chen, J.M., et al., 2019. Vegetation structural change since 1981 significantly enhanced
the terrestrial carbon sink. Nat. Commun. 10, 4259.

Cheng, W., et al., 2022. Global monthly gridded atmospheric carbon dioxide
concentrations under the historical and future scenarios. Sci. Data 9, 83.

Cramer, W., et al., 2001. Global response of terrestrial ecosystem structure and function
to CO and climate change: results from six dynamic global vegetation models. Glob.
Change Biol. 7, 357-373.

De Boeck, G.J., et al., 2006. How do climate warming and plant species richness affect
water use in experimental grasslands. Plant Soil 288, 249-261.

Elmendorf, S.C., et al., 2012. Plot-scale evidence of tundra vegetation change and links to
recent summer warming. Nat. Clim. Change 2, 453-457.

Fisher, J.B., et al., 2008. Global estimates of the land-atmosphere water flux based on
monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens.
Environ. 112, 901-919.

Frank, D.C,, et al., 2015. Water-use efficiency and transpiration across European forests
during the Anthropocene. Nat. Clim. Change 5, 579-583.

Gang, C., et al., 2019. Satellite observations of the recovery of forests and grasslands in
Western China. JGR Biogeosci. 124, 1905-1922.

Gentine, P., et al., 2019. Coupling between the terrestrial carbon and water cycles—a
review. Environ. Res. Lett. 14, 083003.

Gruber, A., et al., 2016. Recent advances in (soil moisture) triple collocation analysis. Int.
J. Appl. Earth Observ. Geoinform. 45, 200-211.

Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated
data. J. Hydrol. 204, 182-196.

Huang, M., et al., 2015. Change in terrestrial ecosystem water-use efficiency over the last
three decades. Glob. Change Biol. 21, 2366-2378.

Humphrey, V., Gudmundsson, L., 2019. GRACE-REC: a reconstruction of climate-driven
water storage changes over the last century. Earth Syst. Sci. Data 11, 1153-1170.

Hungate, B.A., et al., 2002. Evapotranspiration and soil water content in a scrub-oak
woodland under carbon dioxide enrichment. Glob. Change Biol. 8, 289-298.

Jorgenson, M.T., et al., 2001. Permafrost degradation and ecological changes associated
with a warming climate in central Alaska. Clim. Change 48, 551-579.

Jung, M., et al., 2010. Recent decline in the global land evapotranspiration trend due to
limited moisture supply. Nature 467, 951-954.

Kingston, D.G., et al., 2009. Uncertainty in the estimation of potential evapotranspiration
under climate change. Geophys. Res. Lett. 36, L20403.

Leuzinger, S., Korner, C., 2007. Water savings in mature deciduous forest trees under
elevated CO,. Glob. Change Biol. 13, 2498-2508.

Li, C., et al., 2018. Cross-evaluation of ground-based, multi-satellite and reanalysis
precipitation products: applicability of the Triple Collocation method across
Mainland China. J. Hydrol. 562, 71-83.

Li, C., et al., 2022. Error characterization of global land evapotranspiration products:
collocation-based approach. J. Hydrol. 612, 128102.

Liang, S., et al., 2020. The Global LAnd Surface Satellite (GLASS) 1 product suite. Bull.
Amer. Meteorol. Soc. 1-37.

Long, D., et al., 2014. Uncertainty in evapotranspiration from land surface modeling,
remote sensing, and GRACE satellites. Water Resour. Res. 50, 1131-1151.

Lu, X., Zhuang, Q., 2010. Evaluating evapotranspiration and water-use efficiency of
terrestrial ecosystems in the conterminous United States using MODIS and
AmeriFlux data. Remote Sens. Environ. 114, 1924-1939.

Lyu, F., et al., 2021. Precipitation merging based on the triple collocation method across
mainland China. IEEE Trans. Geosci. Remote Sens. 59, 3161-3176.

Keenan, T.F., et al., 2013. Increase in forest water-use efficiency as atmospheric carbon
dioxide concentrations rise. Nature 499, 324-327.

Martens, B., et al., 2017. GLEAM v3: satellite-based land evaporation and root-zone soil
moisture. Geoscientific Model Devel. 10, 1903-1925.

Miner, K.R., et al., 2021. Emergent biogeochemical risks from Arctic permafrost
degradation. Nat. Clim. Change 11, 809-819.

Mu, Q., et al., 2011. Improvements to a MODIS global terrestrial evapotranspiration
algorithm. Remote Sens. Environ. 115, 1781-1800.

Niu, S., et al., 2011. Water-use efficiency in response to climate change: from leaf to
ecosystem in a temperate steppe. Glob. Change Biol. 17, 1073-1082.


https://zenodo.org/record/7743136
https://doi.org/10.1016/j.agrformet.2023.109594
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0001
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0001
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0002
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0002
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0003
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0003
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0003
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0004
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0004
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0005
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0005
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0006
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0006
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0007
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0007
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0007
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0008
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0008
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0009
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0009
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0010
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0010
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0011
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0011
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0012
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0012
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0013
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0013
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0013
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0014
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0014
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0015
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0015
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0017
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0017
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0018
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0018
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0019
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0019
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0020
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0020
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0022
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0022
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0025
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0025
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0026
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0026
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0032
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0032
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0039

J. Wang and D. Liu

Piao, S., et al., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev.
Earth Environ. 1, 14-27.

Plaza, C., et al., 2019. Direct observation of permafrost degradation and rapid soil carbon
loss in tundra. Nat. Geosci. 12, 627-631.

Querejeta, J.I., et al., 2021. Vertical decoupling of soil nutrients and water under climate
warming reduces plant cumulative nutrient uptake, water-use efficiency and
productivity. New Phytologist 230, 1378-1393.

Rahman, M., et al., 2019. Trends in tree growth and intrinsic water-use efficiency in the
tropics under elevated CO2 and climate change. Trees 33, 623-640.

Rodell, M., et al., 2011. Estimating evapotranspiration using an observation based
terrestrial water budget. Hydrol. Process 25, 4082-4092.

Schimel, D., et al., 2015. Effect of increasing CO5 on the terrestrial carbon cycle. Proc.
Natl. Acad. Sci. 112, 436-441.

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. Agric. For.
Meteorol. 189-190, 115-117.

Schuur, E.A.G., et al., 2015. Climate change and the permafrost carbon feedback. Nature
520, 171-179.

Soh, W.K., et al., 2019. Rising CO, drives divergence in water use efficiency of evergreen
and deciduous plants. Sci. Adv. 5, eaax7906.

Sulman, B.N., et al., 2012. Impact of hydrological variations on modeling of peatland
CO2 fluxes: results from the North American Carbon Program site synthesis.

J. Geophys. Res. Biogeosci. 117, G01031.

Sun, Y., et al., 2016. Global patterns and climate drivers of water-use efficiency in
terrestrial ecosystems deduced from satellite-based datasets and carbon cycle
models. Glob. Ecol. Biogeogr. 25, 311-323.

Tape, K.D., et al., 2012. Landscape heterogeneity of shrub expansion in Arctic Alaska.
Ecosystems 15, 711-724.

Tian, H., et al., 2010. Model estimates of net primary productivity, evapotranspiration,
and water use efficiency in the terrestrial ecosystems of the southern United States
during 1895-2007. For. Ecol. Manage. 259, 1311-1327.

Vereecken, H., et al., 2022. Soil hydrology in the Earth system. Nat. Rev. Earth Environ.
3, 573-587.

Wang, J., et al., 2022. Decreasing rainfall frequency contributes to earlier leaf onset in
northern ecosystems. Nat. Clim. Change 12, 386-392.

10

Agricultural and Forest Meteorology 339 (2023) 109594

Wang, K.C., et al., 2010. Evidence for decadal variation in global terrestrial
evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res.
115, D20112.

Wang, S., et al., 2020. Recent global decline of CO;, fertilization effects on vegetation
photosynthesis. Science 370, 1295-1300.

Wang, S., et al., 2021. Tracking the seasonal and inter-annual variations of global gross
primary production during last four decades using satellite near-infrared reflectance
data. Sci. Total Environ. 755, 142569.

Wu, C., et al., 2021. Widespread decline in winds delayed autumn foliar senescence over
high latitudes. Proc. Natl. Acad. Sci. U.S.A. 118 (16), e2015821118.

Xiao, L., Che, T., 2018. A new comprehensive daily snow depth dataset of the North
Hemisphere during 1980-2016 merged from remote sensing, reanalysis, and in situ
data based on ‘Multiple’ collocation. In: Proc. 20th EGU Gen. Assembly, p. 11295.

Xu, L., et al., 2022. Trends in tree growth and intrinsic water-use efficiency in the tropics
under elevated CO2 and climate change. Agric. For. Meteorol. 327, 109188.

Yao, Y., et al., 2013. MODIS-driven estimation of terrestrial latent heat flux in China
based on a modified Priestley-Taylor algorithm. Agric. For. Meteorol. 171, 187-202.

Yuan, W., et al., 2010. Global estimates of evapotranspiration and gross primary
production based on MODIS and global meteorology data. Remote Sens. Environ.
114, 1416-1431.

Yuan, W., et al., 2017. Influence of vegetation growth on the enhanced seasonality of
atmospheric CO,. Glob. Biogeochem. Cycles 32, 32-41.

Yuan, W., et al., 2019. Increased atmospheric vapor pressure deficit reduces global
vegetation growth. Sci. Adv. 5, eaax1396.

Zeng, Z., et al., 2017. Climate mitigation from vegetation biophysical feedbacks during
the past three decades. Nat. Clim. Change 7, 432-436.

Zheng, H., et al., 2019. Revegetation has increased ecosystem water-use efficiency during
2000-2014 in the Chinese Loess Plateau: evidence from satellite data. Ecol. Indic.
102, 507-518.

Zhou, S., et al., 2014. The effect of vapor pressure deficit on water use efficiency at the
subdaily time scale. Geophys. Res. Lett. 41, 5005-5013.

Zhu, Z., et al., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791-795.


http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00285-X/sbref0068

	Models overestimate ecosystem water use efficiency for northern permafrost regions
	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Datasets
	2.2.1 Eddy-covariance flux data
	2.2.2 Satellite-based GPP data
	2.2.3 Determination of ET
	2.2.4 Climatic data

	2.3 Process-based models and simulations
	2.4 Statistical analysis

	3 Results
	3.1 Evaluations of satellite-derived and model-based EWUEs
	3.2 Spatio-temporal changes in EWUE over northern permafrost regions
	3.3 Responses of EWUE to changes in climatic drivers
	3.4 Dynamics of EWUE sensitivities and CO2 fertilization effects

	4 Discussion
	4.1 Spatio-temporal patterns of EWUE over northern permafrost regions
	4.2 Responses of EWUE to changes in environment and climate
	4.3 Comparisons between satellite-derived and model-based EWUE

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


