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Models overestimate ecosystem water use efficiency for northern 
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A B S T R A C T   

Understanding the carbon-water coupling over permafrost regions is essential to projecting global ecosystem 
carbon sequestration and water dynamics. Ecosystem water use efficiency (EWUE), defined as the ratio of gross 
primary productivity (GPP) and evapotranspiration (ET), reflects plant acclimation strategies with varying 
ecosystem functioning against environmental stress. Yet EWUE change and its potential drivers across the 
northern permafrost regions remain poorly quantified, hampering our understanding of permafrost carbon
−climate feedback. Here, we compared and analyzed the difference using satellite observations and process- 
based models to estimate the spatio-temporal variations of EWUE in 1982–2018 over northern permafrost re
gions. Using flux measurements as truth data, satellite-derived EWUE was more reliable than model-based 
EWUE. Satellite-derived EWUE showed biome-dependent spatial patterns, with a steady temporal trend (0.01 
g C mm−1 decade−1, P > 0.05) for spatially averaged EWUE over northern permafrost regions. Carbon dioxide 
(CO2) concentration and nitrogen deposition positively affected interannual variations of EWUE, while vapor 
pressure deficit and other climatic factors (i.e., temperature, precipitation, and radiation) negatively controlled 
EWUE. Compared to satellite-derived EWUE, we found that EWUEs derived from an ensemble of process-based 
carbon cycle models are overestimated in seven out of ten models, with an increasing trend of 0.11 g C mm−1 

decade−1 (P < 0.001) for spatially averaged EWUE of the ensemble mean. The relationships between climatic 
factors and EWUE are partially misinterpreted in model estimates, especially with overstated CO2 sensitivity and 
the opposite temperature effect. The fluctuating sensitivities to climate over time and the diminishing effect of 
CO2 fertilization on gross primary productivity (GPP) may partially explain the discrepancy observed between 
satellite-derived and model-based estimates of EWUE. Thus, this study calls for caution concerning model-based 
EWUE and aids in understanding permafrost-climate feedbacks and projections of carbon and water cycles.   

1. Introduction 

Permafrost, covering almost 25% of the land in the Northern 
Hemisphere, has been experiencing notable degradation under warm
ing, leading to thawing permafrost, rising sea levels, accelerating soil 
carbon decomposition, and destruction of the ecosystem (Chadburn 
et al., 2017; Jorgenson et al., 2001; Miner et al., 2021; Plaza et al., 
2019). Elevated carbon dioxide (CO2) concentration, together with 
climate change and permafrost degradation, substantially alter 
ecosystem structure and functioning (e.g., shrub expansion across the 
Arctic) and carbon and water cycles over permafrost regions (Tape et al., 
2012; Zhu et al., 2016). Understanding the changes in coupled 
ecosystem carbon-water dynamics and the underlying mechanism is 
crucial to projections of plant acclimation and permafrost-climate 

feedbacks (Miner et al., 2021; Wu et al., 2021; Yuan et al., 2017). 
Terrestrial carbon and water cycles are closely tied to gas exchange 

through plant stomata (Leuzinger and Körner, 2007; Schlesinger and 
Jasechko, 2014). Plant water use efficiency (WUE) reflects the resilience 
and acclimation strategies against environmental stress (e.g., drought, 
extreme heat, and nutrient stress), linking plant carbon uptake with 
water consumption from leaf to plant and ecosystem level (Keenan et al., 
2013; Yuan et al., 2019). Elevated air CO2 has been widely reported to 
enhance leaf ‘intrinsic’ WUE (iWUE, the instantaneous ratio between 
carbon assimilation rate and stomatal conductance) across global forests 
(Battipaglia et al., 2013; Frank et al., 2015; Soh et al., 2019). For 
example, the iWUE increased by 22% and 14% for coniferous and 
broadleaf forests during the twentieth century due to elevated CO2 
(Frank et al., 2015). Local- and regional-scale studies, such as 

* Corresponding author. 
E-mail address: liu.738@osu.edu (D. Liu).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2023.109594 
Received 15 December 2022; Received in revised form 17 June 2023; Accepted 3 July 2023   

mailto:liu.738@osu.edu
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2023.109594
https://doi.org/10.1016/j.agrformet.2023.109594
https://doi.org/10.1016/j.agrformet.2023.109594
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2023.109594&domain=pdf


Agricultural and Forest Meteorology 339 (2023) 109594

2

eddy-covariance flux measurements or Free-air CO2 enrichment (FACE) 
experiments, confirmed the stimulating effect of CO2 on WUE for forests 
(Keenan et al., 2013) and grasslands (Ainsworth and Rogers, 2007). 
Satellite-based analyses also revealed the positive effects of CO2 on 
ecosystem WUE (EWUE), which is defined as the ratio of gross primary 
productivity (GPP) and evapotranspiration (ET) (Gang et al., 2019; 
Huang et al., 2015; Zhou et al., 2014). 

Apart from CO2 effects, both leaf and ecosystem-level WUE are 
controlled by other climatic factors, including nitrogen (N) deposition, 
vapor pressure deficit (VPD), temperature, precipitation, and radiation 
(Keenan et al., 2013; Huang et al., 2015; Rahman et al., 2019; Xu et al., 
2022). For example, drought stress and N deposition have been reported 
to drive iWUE variations in global forests based on tree ring records, 
highlighting the demarcation of water-limited from non-water-limited 
action of leaf stomata (Adams et al., 2021). N deposition stimulates 
plant growth and nutrient enhancement in plant tissue, enhancing 
EWUE, especially in N-limited regions (Adams et al., 2021; Brueck, 
2008). VPD controls the diurnal and seasonal variations of EWUE and 
aids in explaining the relationship between GPP and ET across different 
biomes (Zhou et al., 2014). Using satellite observations and 
process-based carbon cycle models, Huang et al. (2015) found 
latitude-dependent responses of climate factors (i.e., temperature, pre
cipitation, and radiation) to EWUE. Temperature, precipitation, and 
radiation changes may partially or even completely offset the positive 
CO2 effects on EWUE (Huang et al., 2015). Specifically, warming and the 
associated increase in VPD reduce EWUE through substantial increases 
in ET, as confirmed by modeling and experimental studies (De Boeck 
et al., 2006; Niu et al., 2011; Querejeta et al., 2021). Precipitation’s 
impacts on EWUE depend upon drought conditions of the ecosystem and 
soil water storage capacity, showing divergent patterns in arid and 
humid regions (Tian et al., 2010). 

The northern permafrost has been experiencing the release of 
growing amounts of carbon as a result of degradation caused by 
warming, which entails higher soil temperatures and an extended 
duration of annual thawing (Schuur et al., 2015). The increase in carbon 
release further amplifies climate warming, causing positive 
permafrost-climate feedbacks, i.e., permafrost carbon feedback (PCF). 
This positive feedback loop between permafrost thawing and green
house gas emissions is a significant concern for climate change as it can 
accelerate global warming beyond the currently projected levels. A 
better knowledge of carbon-water coupling could help us understand the 
mitigating role of vegetation photosynthesis and evapotranspiration 
processes in PCF. Based on in situ records, flux measurements, and 
satellite observations, there has been a non-uniform greening trend, 
with increasing vegetation cover, greenness, and productivity, over 
northern permafrost regions during the last three decades (Elmendorf 
et al., 2012; Piao et al., 2020; Zhu et al., 2016). Permafrost greening aids 
in fixing more carbon from the atmosphere into the ecosystem and 
mitigates CO2 elevation in the air. Apart from the impacts on carbon 
uptake, greening over permafrost regions (e.g., Arctic tundra greening) 
causes biophysical feedbacks to the surface temperature variations, 
associated with albedo warming and evaporative cooling (Zeng et al., 
2017), and water cycles, including increases in ET and precipitation and 
decreases in runoff and soil moisture (Berner et al., 2020; Piao et al., 
2020; Tape et al., 2012). Yet, vegetation impacts on permafrost carbon 
and water cycles have large uncertainties. Better quantification of EWUE 
under warming and greening is essential to improve the predictability of 
future permafrost-climate feedbacks. 

Satellite remote sensing has become one of the main approaches to 
investigating long-term changes in EWUE during the last few decades 
(Gang et al., 2019; Lu and Zhuang, 2010; Zheng et al., 2019; Zhou et al., 
2014). Unlike tree ring isotopes or eddy-covariance flux measurements 
focusing on individual trees or sites, open-access satellite data can be 
used to estimate large-scale vegetation dynamics, such as changes in 
EWUE, with spatial and temporal continuity. Process-based models have 
also been widely used to determine EWUE (Frank et al., 2015; Huang 

et al., 2015). However, their reliability and applicability remain elusive 
with limited evaluations. Moreover, the climatic responses of 
model-based EWUE could be biased due to misrepresentation of 
ecosystem functioning and plant acclimation (Sun et al., 2016). The 
between-model differences in EWUE can be attributed to different model 
structures and parameters (Sulman et al., 2012). To this end, this study 
has threefold goals: (1) to investigate and compare the spatio-temporal 
patterns of EWUE using satellite observations and model estimations 
over northern permafrost regions from 1982 to 2018; (2) to understand 
the dynamic responses of EWUE to changes in climatic drivers; (3) to 
explain the discrepancy between satellite-derived and model-based 
EWUE and corresponding climatic sensitivities. 

2. Material and methods 

2.1. Study area 

This study focused on permafrost regions in the Northern Hemi
sphere, including high-latitude areas such as Siberia, Alaska, and the 
Canadian Arctic, and high-altitude regions like the Tibetan Plateau. The 
permafrost coverage was derived from Brown et al. (1997) (Fig. 1). 
Based on land cover product in 2016 generated by Moderate Resolution 
Imaging Spectroradiometer (MCD12C1 v006), the Northern permafrost 
regions are mainly covered by evergreen needleleaf forests (ENF, 7.7%), 
deciduous needleleaf forests (DNF, 6.1%), mixed forests (MF, 9.7%), 
open shrublands (OSH, 42.1%), savannas (SAV, 10.9%), grasslands 
(GRA, 21.2%), and permanent wetlands (WET, 2.3%). 

2.2. Datasets 

2.2.1. Eddy-covariance flux data 
The flux data was collected from FLUXNET (https://fluxnet.org/) 

over northern permafrost regions. We removed all cropland-site data 
that was affected by human behaviors. The sites with less than 5-year 
records were also excluded. Finally, we collected a total of 258 site- 
year records at 43 sites (Fig. 1). Most of the sites are categorized into 
ENF (19 sites), GRA (9 sites), and WET (9 sites). Detailed descriptions of 
flux sites can be seen in Supplementary Table S1. Eddy-covariance-based 
EWUE was used to evaluate satellite-derived and model-based coun
terparts in this study. 

2.2.2. Satellite-based GPP data 
We obtained annual GPP data (1982–2018, 0.05◦ × 0.05◦) from a 

recent global GPP dataset (GPPNIRv) driven by a satellite-based GPP 
proxy (i.e., the near-infrared reflectance of vegetation, NIRV). The NIRV 
is calculated as the product of total scene Near-infrared reflectance 
(NIRT) and the normalized difference vegetation index (NDVI), which 
are derived from the Advanced Very High Resolution Radiometer 
(AVHRR). Badgley et al. (2019) illustrated the strong coupling of NIRV 
and GPP using flux measurements, even during drought events. The 
NIRV approach for estimating GPP achieves strong quantification of 
uncertainties while maintaining parsimony. GPPNIRv was generated 
based on calibrated and validated relationships between NIRV and GPP 
for different vegetation types, avoiding the integration of climatic fac
tors used as model inputs in other satellite GPP products (Wang et al., 
2021). 

2.2.3. Determination of ET 
By merging estimates from different sources to lower the uncer

tainty, the triple collocation (TC) method has been widely used to 
improve the estimates of water cycle components such as precipitation 
(Li et al., 2018; Lyu et al., 2021), soil moisture (Gruber et al., 2016), 
snow depth (Xiao and Che, 2018), and ET (Li et al., 2022). Given the 
largely reported uncertainty of ET estimate (Kingston et al., 2009; Long 
et al., 2014), we used three independent ET datasets (1982–2018) with 
the TC method to determine the ET estimate for northern permafrost 
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regions. The first ET dataset is derived from the GLASS ET product 
(Liang et al., 2020), which is based on a multi-model ensemble approach 
that merges five process-based ET estimates, i.e., the MODIS ET product 
algorithm (MOD16) (Mu et al. 2011), the revised remote sensing-based 
Penman-Monteith ET algorithm (RRS-PM) (Yuan et al. 2010), the 
Priestley-Taylor-based ET algorithm (PT-JPL) (Fisher et al. 2008), 
modified satellite-based Priestley-Taylor ET algorithm (MS-PT) (Yao 
et al. 2013), and the semiempirical Penman ET algorithm of the Uni
versity of Maryland (UMD-SEMI) (Wang et al. 2010). The second ET 
dataset is derived from the GLEAM ET product (Martens et al., 2017) 
using a multiplicative evaporative stress factor and estimates of 
root-zone soil moisture. The third ET dataset is determined as the re
sidual of the water budget equation (Rodell et al., 2011): 

ET = P − R −
dTWS

dt
(1)  

where P is the yearly total precipitation, R is the annual total runoff, 
TWS is the total water storage, and dTWS

dt is the annual change in TWS. We 
used precipitation and runoff data from the TerraClimate dataset 
(Abatzoglou et al., 2018). Given that the TWS observation based on the 
Gravity Recovery and Climate Experiment (GRACE) is not available 
before 2002, we used a reconstructed TWS product for 1982–2018 
(Humphrey and Gudmundsson, 2019). All three ET estimates were 
resampled into 0.05◦ × 0.05◦ as the inputs of the TC method using the 
bilinear interpolation method. 

We conducted the TC method with three main steps (Lyu et al., 
2021): (1) determining the RMSEs of the three estimates using the TC 
analysis; (2) estimating the weight corresponding to each input data; (3) 
using the weight to calculate weight-averaged ET as the final merged ET. 
A detailed description of the TC method can be seen in Supplementary 
Text S1. 

2.2.4. Climatic data 
We considered six climatic variables, i.e., CO2 concentration 

(henceforth, ‘CO2’), N deposition, VPD, temperature, precipitation, and 
downward shortwave radiation (henceforth, ‘radiation’), as potential 
drivers of EWUE variations. These six variables are the main factors to 
impact EWUE variations (Huang et al., 2015). Yearly CO2 data were 
collected from a reconstructed monthly gridded atmospheric CO2 con
centrations product under the historical and future scenarios, with a 
spatial resolution of 1◦ × 1◦ (Cheng et al., 2022). Yearly N deposition 
data (0.072727◦ × 0.072727◦) were obtained from Chen et al. (2019), 

estimated from tropospheric NO2 column density. Yearly VPD, temper
ature, precipitation, and radiation (0.041667◦ × 0.041667◦) were 
derived from TerraClimate (Abatzoglou et al., 2018), which have been 
widely validated with ground observations. 

2.3. Process-based models and simulations 

We used GPP and ET outputs from ten process-based carbon cycle 
models based on Trends in the land carbon cycle (TRENDY-v8, released 
in 2019) project, including CABLE-POP, CLM5.0, DLEM, ISAM, ISBA- 
CTRIP, LPJ-GUESS, LPX-Bern, ORCHIDEE, SDGVM, and VISIT. The 
detailed introduction of model information can be seen in Supplemen
tary Table S2. Among multiple simulations of TRENDY-v8, we used 
simulation S2, which sets up model inputs as varying CO2, climate, and 
N deposition with a time-invariant "pre-industrial" land use mask 
(Huang et al., 2015). Given all process-based models used the same in
puts in the TRENDY project, we derived model inputs including CO2, N 
deposition, temperature, precipitation, and radiation as climatic drivers 
of model-based EWUE. To determine VPD, we first derived monthly 
actual vapor pressure (VAP) and temperature from Climatic Research 
Unit (CRU TS4.06) dataset. Then we calculated monthly saturated vapor 
pressure (SVP) as follows (Abbott and Tabony, 1985; Wang et al., 2020): 

SVP = 0.6107 × e
17.38 × T
239.0 + T (2)  

where T is the monthly mean temperature. We calculated monthly VPD 
as the difference between SVP and VAP and then determined yearly 
mean VPD. 

2.4. Statistical analysis 

Based on the definition of EWUE, it can be calculated as follows: 

EWUE =
GPP
ET

(3)  

where EWUE is annual water use efficiency (g C mm−1), GPP is annual 
total gross primary productivity (g C year−1), and ET is annual total 
evapotranspiration (mm year−1). 

In this study, we derived three groups of EWUE, i.e., eddy-covariance 
based EWUE, satellite-derived EWUE, and model-based EWUE. To 
evaluate satellite-derived and model-based EWUEs by eddy-covariance 
flux measurements, we applied the bilinear interpolation method to 
resample model-based EWUE from 0.5◦ × 0.5◦ into 0.05◦ × 0.05◦ to 

Fig. 1. Distribution of vegetation types and flux sites used in this study over northern permafrost regions.  
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make it consistent with satellite-derived EWUE. We evaluated EWUEs in 
terms of correlation coefficient and RMSE. The RMSE was also grouped 
into different vegetation types. It should be noted that the original 
coarse resolution of process-based models could partly account for its 
poor performance of estimating EWUE with insufficient heterogeneity. 
We performed analyses at two levels (pixel-to-pixel and pixel- 
aggregated) in order to better interpret the diverse spatial patterns 
and overall outcomes related to the temporal trends of EWUE and its 
responses to climatic factors. To investigate climatic responses sepa
rately, we resampled climatic drivers into 0.05◦ × 0.05◦ for satellite- 
based analyses and 0.5◦ × 0.5◦ for model-based analyses. We used the 
ensemble mean to represent model-based EWUE and conducted all 
model-based analyses. 

We applied the Theil-Sen slope estimator, a non-parametric and 
median-based slope estimator, to analyze the temporal trend of satellite- 
derived and model-based EWUEs. The trends were evaluated using the 
Mann-Kendall trend test at a significance level of 0.05 (Hamed and Rao, 
1998). Given multiple climatic factors jointly and interactively influence 
EWUE, we used partial correlation analysis to investigate the impact of 
each climatic driver on EWUE variations. To quantitatively describe 
these impacts, we applied ridge regression to avoid potential multi
collinearity among climatic drivers and determine the sensitivity of each 
driver (i.e., CO2, N deposition, VPD, temperature, precipitation, and 
radiation). In each grid cell, we determined the dominant factor gov
erning the variations in EWUE as the factor exhibiting the highest ab
solute sensitivity value (Wang et al., 2022). To investigate the temporal 
variations of climatic responses, we used an 18-year moving window 
(15-year and 12-year showed similar results in this study) to determine 
the changes in sensitivities during the 1982–2018 period. 

3. Results 

3.1. Evaluations of satellite-derived and model-based EWUEs 

Compared to model-based EWUE, satellite-derived EWUE was more 
promising when evaluated by eddy-covariance flux measurements with 
a total of 258 site-year EWUE records (Fig. 2). A strong correlation was 
found between eddy covariance-based EWUE and satellite-derived 
EWUE, with an R2 of 0.62 (P < 0.001) and an RMSE of 0.74 g C 
mm−1 (Fig. 2a). In contrast, model-based EWUE was overall over
estimated compared to eddy covariance-based EWUE, with an R2 of 0.34 
(P < 0.001) and an RMSE of 1.09 g C mm−1 (Fig. 2b). Grouping RMSE 
into vegetation types confirms a better estimation of EWUE using 

satellite data, with a lower RMSE than model-based evaluation for each 
vegetation type. 

3.2. Spatio-temporal changes in EWUE over northern permafrost regions 

Based on satellite-derived EWUE, we observed relatively high EWUE 
(> 4 g C mm−1) in northwest Canada, Northern Europe, and east of the 
Tibetan Plateau and low EWUE (< 1 g C mm−1) in the north of Canada 
and west of the Tibetan Plateau (Fig. 3a). Grouping EWUE into vege
tation types shows a biome-dependent distribution of EWUE, ranging 
from 1.2 ± 0.5 g C mm−1 for OSH to 3.3 ± 0.9 g C mm−1 for SAV 
(Fig. 3c). We observed high spatial heterogeneity of EWUE trends from 
1982 to 2018 over northern permafrost regions (Fig. 3d). Apart from 
OSH and WET with more increasing trends, EWUEs of ENF, DNF, MF, 
SAV, and GRA showed no distinct temporal patterns. Overall, 33.2% and 
21.6% of the area showed significantly increasing and decreasing trends 
of EWUE (P < 0.05) (Fig. 3f). Unlike satellite-derived EWUE, model- 
based EWUE (i.e., the ensemble mean of all process-based models) 
showed less spatial heterogeneity in terms of multi-year mean EWUE 
and EWUE trend (Fig. 3b, d). While relatively high model-based EWUE 
(> 2.8 g C mm−1) was also found in northwest Canada and Northern 
Europe, model-based EWUE was overall overestimated compared to 
satellite-derived EWUE (2.11 vs. 1.68 g C mm−1). Model-based EWUE 
showed consistent increasing trends for different vegetation types, with 
a mean value of 0.11 g C mm−1 dec−1 (Fig. 3e, f). 

Furthermore, we observed contrasting patterns between satellite- 
derived estimates and model-based estimates of EWUE when exam
ining spatially averaged values that encompassed all grid cells (Fig. 4). 
Apart from three process-based models, i.e., DLEM, ISBA-CTRIP, and 
ORCHIDEE, generating lower EWUE, the remaining seven ensemble 
models showed higher EWUE compared to satellite-derived EWUE, 
leading to an overall overestimated ensemble mean EWUE (1.69 vs. 
2.05 g C mm−1). No distinctive trend of satellite-derived EWUE was 
observed from 1982 to 2018, while all model-based EWUEs showed 
increasing trends, with a slope of 0.11 g C mm−1 dec−1 (P < 0.001) for 
the ensemble mean EWUE (Fig. 4). 

3.3. Responses of EWUE to changes in climatic drivers 

We found different partial correlation patterns between satellite- 
derived EWUE and climatic drivers over northern permafrost regions, 
covering 7.8% of the area for temperature but 25.8% of the area for CO2 
(P < 0.05) (Fig. 5a). Overall, CO2 and N deposition had positive- 

Fig. 2. Evaluations of satellite-derived and model-based EWUEs. The number in the bracket is the total site-year records for each vegetation type. The point and error 
bar indicates the mean and standard deviation of EWUE derived from an ensemble of process-based carbon cycle models (b). The histograms represent the root mean 
square error (RMSE) of EWUEs for vegetation types. 
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dominant effects on EWUE, while other drivers, i.e., VPD, temperature, 
precipitation, and radiation, had negative-dominant impacts. However, 
a large discrepancy in partial correlation patterns was found in model- 
based analysis (Fig. 5b). CO2 showed stronger positive impacts on 
model-based EWUE, and temperature showed contrasting effects 
compared to satellite-based analysis. 

CO2 effects dominated nearly half the area for model-based analyses, 
while this dominance decreased to 20% for satellite-based analyses 

(Fig. 6). The negative effects of VPD and radiation on model-based 
EWUE were underestimated, with the dominance over 9% vs. 16% 
and 3% vs. 16% in the northern permafrost area, respectively. Process- 
based models showed discrepant frequencies of dominant drivers, and 
only one model (SDGVM) exhibited similar CO2 dominance to satellite- 
based analysis (Fig. 6). Biome-dependent dominance patterns were 
found for satellite-based analysis (Supplementary Fig. S1). Apart from 
ENF and WET with more negative dominances mainly from effects of 

Fig. 3. Spatio-temporal changes in satellite-derived and model-based EWUEs over northern permafrost regions from 1982 to 2018. The model-based EWUE is the 
ensemble mean EWUE. Spatial variations of multi-year average satellite-derived EWUE (a) and model-based EWUE (b). Distribution of multi-year average EWUEs by 
vegetation types (c). Temporal trends of EWUE from 1982 to 2018 for satellite-derived EWUE (d) and model-based EWUE (e). Frequency of increasing and decreasing 
trends of EWUEs by vegetation types (f). The significance of the temporal trend was set as P < 0.05 based on the Mann-Kendall trend test. 

Fig. 4. Comparison of spatially averaged EWUE from satellite observations and model estimates from 1982 to 2018. The value in the basket represents the mean 
EWUE for the study period. The shaded area indicates the standard deviation of EWUE for all ensemble models. 
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VPD and precipitation, DNF, MF, OSH, SAV, and GRA had more areas 
with positive dominances from effects of CO2, N deposition, and 
temperature. 

3.4. Dynamics of EWUE sensitivities and CO2 fertilization effects 

Sensitivity analyses supported the responses of EWUE to climatic 
drivers, with positive-dominant sensitivities for CO2 and N deposition 
and negative-dominant sensitivities for VPD, temperature, precipitation, 
and radiation (Fig. 7). Grouping sensitivities into vegetation types shows 
the same sensitivities in sign but variant in magnitude for each climatic 
driver. Apart from radiation with steady sensitivity (negative-dominant, 

Fig. 7f), we found decreases in EWUE sensitivities to CO2 and N depo
sition (positive-dominant, Fig. 7a, b), decreases in EWUE sensitivities to 
VPD and precipitation (negative-dominant, Fig. 7c, e), and increases in 
EWUE sensitivity to temperature (negative-dominant, Fig. 7d). In com
parison to climatic sensitivities of satellite-derived EWUE, we found that 
model-based analyses showed considerably higher sensitivity to CO2 
(0.08 vs. 0.36 ± 0.07), divergent sensitivities to temperature (−0.06 vs. 
0.13 ± 0.07) and radiation (−0.15 vs. 0.01 ± 0.05) (Supplementary 
Fig. S2). 

Sensitivities of GPP to CO2 showed disparate patterns for satellite- 
and model-based analyses, with a mean value of 0.14 and 0.28, 
respectively (Fig. 8a, c). Nearly 98% of the area showed a positive effect 

Fig. 5. Distribution of partial correlation coefficients between EWUE and climatic drivers for satellite- (a) and model-based analyses (b). The climatic drivers include 
CO2 concentration (CO2), N deposition (Ndep), vapor pressure deficit (VPD), temperature (TMP), precipitation (PRE), and radiation (RAD). P and N indicate positive 
and negative correlations, respectively. P* (or N*) and PNS (or NNS) represent significant and non-significant correlations, respectively. The significance was set as P 
< 0.05. The value on the right side of the stacked bars represents the ratio between significantly positive and negative correlations. 

Fig. 6. Frequency of dominant drivers of EWUE for satellite observations (EWUESAT) and model estimates. The boxes without (with) textiles represent climatic 
drivers’ positive (negative) responses to EWUE variations. 
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of CO2 on the ensemble mean GPP, but it decreased to 69% for satellite- 
based results. As for temporal trends of the CO2 fertilization effect, we 
found a significantly decreasing trend of CO2 effects for satellite obser
vations (P < 0.001), while no such pattern was observed in model-based 
analysis over northern permafrost regions (Fig. 8). 

4. Discussion 

4.1. Spatio-temporal patterns of EWUE over northern permafrost regions 

Changes in EWUE reflect vegetation acclimation confronting varying 
environmental and climatic conditions (Frank et al., 2015; Huang et al., 
2015). Using long-term (1982–2018) satellite-based GPP and improved 
ET estimates, we found biome-dependent patterns of EWUE over 
northern permafrost regions (Fig. 3). Herbaceous ecosystems (i.e., OSH 
and GRA) had lower EWUE than woody ecosystems (i.e., ENF, DNF, and 
MF) (Fig. 3c), indicating that the coupling of carbon and water is directly 
controlled by plant root allocation and ecosystem structure (Cramer 
et al., 2001). Among different vegetation types, the highest EWUE was 
found in high-latitude SAV, possibly associated with local drought stress 
and plant acclimation. A thick canopy characterized by a relatively high 
LAI correlates with elevated GPP and ET. We found higher EWUE in 
forests than in shrublands and grasslands (Fig. 3c), suggesting the 
LAI-dependent patterns of carbon-water coupling. A possible physical 
explanation is that an increase in LAI can significantly diminish soil 
evaporation by reducing the amount of solar radiation received at the 
soil surface (Hungate et al., 2002). This progress may offset the greater 
ET resulting from higher LAI (Huang et al., 2015). High spatial hetero
geneity was also observed in the temporal trends of EWUE, even within 
the same vegetation type (Fig. 3d, f), suggesting the complex and 
nonlinear responses of EWUE to climate change. Increasing-dominant 

trends of EWUE in OSH may indicate a tendency for plants to save 
more water for growth while confronting aggravated drought stress 
caused by warming and permafrost degradation. 

4.2. Responses of EWUE to changes in environment and climate 

CO2 effects on WUE have been widely reported in leaf-level and 
ecosystem-level analyses. However, upscaling WUE from the leaf to the 
ecosystem level is complex because of the impacts of the boundary layer 
mixing, root allocation, and ecosystem structure (Gentine et al., 2019). 
Unlike leaf WUE (i.e., iWUE) mainly driven by atmospheric CO2, EWUE 
is substantially regulated by climatic conditions. By excluding the effects 
of other drivers, partial correlation analyses indicate that CO2 and N 
deposition positively affect EWUE. In contrast, VPD and climatic factors 
(i.e., temperature, precipitation, and radiation) showed negative im
pacts on EWUE (Fig. 5a), which are consistent with previous studies 
(Adams et al., 2021; Frank et al., 2015; Huang et al., 2015). 

Sensitivity analyses confirmed the responses of EWUE to changes in 
climatic drivers, with overall consistent sensitivity in signs among 
different vegetation types (Fig. 7). Different patterns of N deposition 
effects on EWUE were found among forest ecosystems, with strong and 
slight positive effects for DNF and MF and neutral effects for ENF 
(Fig. 7b). This divergence could be related to the degree of N limitation 
to physiology and growth for different forest ecosystems (Adams et al., 
2021). Warming enhances vegetation productivity, to some degree, 
offsetting CO2 increases globally. However, increases in temperature 
and associated VPD transfer more water from permafrost to the atmo
sphere through hydraulic lift under the ground and transpiration by 
plants (Vereecken et al., 2022), leading to asymmetrical increases in 
GPP and ET (Supplementary Fig. S3) and lower EWUE (Fig. 7c, d). ET is 
closely tied to precipitation. For example, ET, as the second largest flux 

Fig. 7. Sensitivities of satellite-based EWUE to climatic drivers over northern permafrost regions. The climatic drivers include CO2 concentration (a), N deposition 
(b), vapor pressure deficit (c), temperature (d), precipitation (e), and radiation (f). The upper right bar indicates the distribution of sensitivities based on vegetation 
types. The line chart under the map shows the sensitivity variation for each climatic driver using an 18-year moving window. P, N, and NS indicate positive, negative, 
and non-significant, respectively. The significance was set as P < 0.05. 
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of the terrestrial water cycle, returns almost 60% of total precipitation 
into the atmosphere (Jung et al., 2010), exhibiting the strong precipi
tation control of EWUE with negative sensitivities (Fig. 7e). The parti
tioning of incident radiation controls latent heat flux (Vereecken et al., 
2022), showing strong negative-dominant impacts on EWUE (Fig. 7f). 
Climatic drivers of EWUE have temporally dynamic effects, with a 
stronger negative impact of temperature and weaker impacts of CO2, N 
deposition, VPD, and precipitation on EWUE from 1982 to 2018. The 
13C/12C stable isotope ratio in atmospheric CO2 could capture the 
varying climatic signals to EWUE (Adams et al., 2021). Further inves
tigation in the future is required to enhance our comprehension of the 
interplay between carbon and water, which is crucial for advancing our 
understanding in this area. 

4.3. Comparisons between satellite-derived and model-based EWUE 

Although the scale mismatch might hurt the evaluation of EWUE, we 
found a better performance of satellite observations in estimating EWUE 
compared to model estimates (Fig. 2). A large discrepancy between 
satellite-derived and model-based EWUE estimates was observed over 
northern permafrost regions, suggesting the limitation of model esti
mates in coupling ecosystem carbon and water. We found seven out of 
ten models showed overestimated EWUE, and the ensemble mean EWUE 
was nearly 20% higher than satellite-derived EWUE (Fig. 4). Model es
timates showed consistently increasing trends in EWUE that differ from 
satellite observation with a stable trend, suggesting the limitation of 
current process-based models in estimating EWUE variations under 
varying climatic and environmental conditions. 

In addition to the magnitude and trend of EWUE, a substantial dif
ference in EWUE sensitivities was observed between satellite- and 
model-based analyses, indicating the misrepresentation of climatic re
sponses in model estimates. We found notably overestimated CO2 pos
itive effects, contrasting temperature effect on EWUE for model 
estimates (Fig. 5). Elevated CO2 substantially stimulated plant growth 
and productivity, further regulating the ecosystem coupling of carbon 
and water globally (Ballantyne et al., 2012; Piao et al., 2020; Schimel 
et al.,2015). However, changes in temperature and precipitation ac
count for most of the increases in greenness over northern permafrost 
regions (Zhu et al., 2016), indicating the limitation of CO2 fertilization 
effects on GPP and EWUE. Satellite-based analyses in this study have 
confirmed this limitation. For example, the signal (i.e., the absolute 
value of EWUE sensitivity) of CO2 was lower than VPD, precipitation, 
and radiation (Supplementary Figure S3). Unlike the dominance of CO2 
(nearly 50%) in model estimates, satellite-based analyses showed 
limited CO2 control of EWUE variations (less than 20%) (Fig. 6). 
Meanwhile, satellite-based results showed a decreasing CO2 fertilization 
effect on GPP over northern permafrost regions during the last few de
cades, which has been neglected in model estimates (Fig. 8b, d). A recent 
study using satellite observations also revealed the global decline of CO2 
fertilization effects on plant photosynthesis, explained by the varying 
nutrient concentrations and soil water availability (Wang et al., 2020). 
Consistent with our results, model estimates showed a limited capability 
to capture this decline (Wang et al., 2020). Previous studies illustrated 
that increases in temperature and radiation regulate carbon uptake and 
transpiration simultaneously, with a tendency to decrease EWUE due to 
a stronger elevation of ET (Huang et al., 2015). Thus, the positive effects 

Fig. 8. Responses of GPP to elevated CO2 for satellite observations and model estimates. Spatial distribution of CO2 sensitivities to interannual variations of GPP 
derived from satellite observations (a) and the ensemble mean GPP (c). Temporal variations of CO2 sensitivities using an 18-year moving window to GPP derived 
from satellite observations (b) and ensemble mean GPP of process-based models (d). The shaded area indicates the standard deviation of all ensemble models. NS 
indicates non-significant. The significance was set as P < 0.05. 
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of temperature and radiation on EWUE (Figs. 5-7) in model estimates 
reflect that process-oriented models underscore the forcing of temper
ature and radiation on ET, leading to overestimated EWUE and unex
pectedly increasing trends of EWUE across northern permafrost regions. 
In order to enhance the accuracy of process-based models in estimating 
EWUE, it is important to focus on integrating dynamic climatic re
sponses, specifically the fluctuations in the CO2 fertilization effect, into 
the models’ structures and parameters. 

5. Conclusions 

Permafrost is crucial in global carbon and water cycles, but local 
ecosystem coupling of carbon and water, reflected by EWUE, and its 
responses to climate change remain elusive. Using satellite-based GPP 
and improved ET estimates, we quantitatively analyzed the spatio- 
temporal patterns of EWUE and observed a biome-dependent distribu
tion of EWUE with no distinctive trends from 1982 to 2018 over 
northern permafrost regions. Both partial correlation and sensitivity 
analyses showed the positive effects of CO2 and N deposition and the 
negative effects of VPD, temperature, precipitation, and radiation on 
EWUE. Moreover, we found an overestimated EWUE with an increasing 
trend over northern permafrost regions using an ensemble of model 
estimates, showing the limitation of process-based models in charac
terizing the coupling of carbon and water. These discrepancies in EWUE 
estimates may be attributed to the misinterpretation of climatic re
sponses, especially regarding CO2 fertilization effects on GPP. This study 
calls for caution concerning model-based EWUE, and future work is 
needed to improve model processes for projections of vegetation accli
mation and permafrost-climate feedbacks. 
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