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Abstract

Given a strictly hyperbolic n x n system of conservation laws, it is well known
that there exists a unique Lipschitz semigroup of weak solutions, defined on a do-
main of functions with small total variation, which are limits of vanishing viscosity
approximations. The aim of this note is to prove that every weak solution taking val-
ues in the domain of the semigroup, and whose shocks satisfy the Liu admissibility
conditions, actually coincides with a semigroup trajectory.

1. Introduction

We consider the Cauchy problem for a strictly hyperbolic n x n system of conser-
vation laws in one space dimension

u+ fw)y, =0, (1.1)
u(0,x) = a(x), (1.2)

with f € CZ(R”, R™). In this setting, it is well known that there exists a Lipschitz
continuous semigroup S : D x [0, +oo[+— D of weak solutions, defined on a
domain D c LY(R; R") of functions with sufficiently small total variation. The
trajectories of this semigroup are the unique limits of vanishing viscosity approxi-
mations [3]. All of their shocks satisfy the Liu admissibility conditions [2,17,18].
We recall that the semigroup is globally Lipschitz continuous w.r.t. the L! distance.
Namely, there exists a constant L such that

|Siii — S0y, < L(|t—s|—|—||12—17||L1) foralls,t >0, i@,7 € D. (1.3)

Given any weak solution u = u(¢, x) of (1.1), (1.2), various conditions have been
derived in [7,9,10] which guarantee the identity

u(t) = S;u forallt = 0. (1.4)
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Since the semigroup S is unique, the identity (1.4) yields the uniqueness of solutions
to the Cauchy problem (1.1), (1.2). In addition to the standard assumption that
each characteristic field is either linearly degenerate or genuinely nonlinear, earlier
results required some additional regularity conditions, such as “Tame Variation” or
“Tame Oscillation”, controlling the behavior of the solution near a point where the
variation is small.

The aim of the present note is to show that uniqueness is guaranteed in a fully
general setting: without any assumption about genuine nonlinearity, and without
any of the above regularity conditions. Moreover, no assumption is made about the
existence of a convex entropy. Our only requirement is that all points of approximate
jump satisfy the Liu admissibility conditions.

As in Refs. [7,9,10], the proof relies on the elementary error estimate

dr . (1.5)

- o u(t +h) — Spu(r)
HM(I)_SIMHLI = L-/O I;E(I)I}rf ” - h ”L‘

Indeed, we will prove that the integrand is zero for a.e. time T = 0. Following an
argument introduced in BRESSAN [4], this is achieved by two estimates:

(i) In a neighborhood of a point (z, y) where u(t, -) has a large jump, the weak
solution u is compared with the solution to a Riemann problem.

(i1) In aregion where the total variation is small, the weak solution u is compared
with the solution to a linear system with constant coefficients.

To fix our ideas, let
M = sup{Tot.Var.{zZ;R}; i eD} (1.6)

be an upper bound for the total variation of all functions in the domain of the
semigroup. Notice that this implies

lillpe <M foralli e D. (1.7)

Moreover, for each BV function # € D, we shall take its right-continuous repre-
sentative, so that it(x) = limy_, x4 u(y).
To state our result, we first describe the basic setting.

(A1) (Conservation equations) The function u = u(z, x) is a weak solution
of the Cauchy problem (1.1), (1.2) taking values within the domain of the
semigroup.
More precisely, u : [0, T] — D is continuous w.r.t. the L! distance. The identity
u(0, -) = i holds in L', and, moreover,

// (ugr + f(w)gx) dxdt =0 (1.8)

for every C! function ¢ with compact support contained inside the open strip
10, T[ xR.
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To introduce the Liu admissibility condition on the shocks [17,18], we first recall
that (A1) implies that u = u(¢, x) is a function of bounded variation in time and
space (cf. [15, Section 5.1] for the definition). Indeed, by [13, Theorem 4.3.1], we
have the Lipschitz bound

fu(tz, ) — u(t, -)||L1(R) < Cuta—1) forall0 <t <1, (1.9)

for some constant Cp; > 0 depending only on the flux f and on the upper bound
M for the total variation.

By the structure theorem for BV functions of two variables (see e.g. [15, Section
5.9]or [1]), thereis a Borel subset J C [0, 1]x R with the following three properties:

(i) Every point (z, &) ¢ J is a point of approximate continuity.

(i1) J is countably 1-rectifiable, i.e. it can be covered by countably many Lipschitz
curves, possibly leaving out a subset of zero H! measure (H! denotes the
Hausdorff 1-dimensional measure, cf. [15, Section 2.1]).

(iii) H'-almost every point (z,&) € J is an approximate jump of the function u.
More precisely there exist states u—, u™ € R" and a speed A € R such that,

calling
. u— if x < At,
v, x) = {u+ if x> At (1.10)
if holds that
‘l r r
lim —2/ / u(t+t, E4+x)—U(t,x)|dxdr = 0. (1.11)
r=>0+ r< J_, J_,
Defining the rescaled functions
ur(t,x) = u(t+rt,&+rx) (1.12)

by (iii) and (A1), it follows that u, converges to U in LZIOC (R?). In particular the
conservation equations (1.8) must hold for the piecewise constant function U, and
the triple (u™, u~, A) must therefore satisfy the Rankine-Hugoniot equations

fWh = fw) = ™ —u). (1.13)

Now let a left state u~ € R” be given. Since the system is strictly hyperbolic,
there exist n shock curves

s > Si(s)(u), i=1,...,n,

parameterizing the sets of right states u™ connected to the left state #~ by a shock of
the i-th family [5,13,16]. Asin (1.13), denote by A = A;(s) the Rankine-Hugoniot
speed of a shock with left and right states u™ and u™ = S; (s)(u ™),

(A2) (Liu admissibility condition) In the above setting, a shock with left and
right states u™ and u™ = S;(0)(u™) is Liu-admissible if »; (o) < A;(s) for all
s €[0,0].

Our result can be simply stated as follows:
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Theorem 1.1. Let (1.1) be a strictly hyperbolic n x n system. Then every weak
solution u : [0, T] — D, taking values within the domain of the semigroup and
whose shocks satisfy the Liu admissibility condition, coincides with a semigroup
trajectory.

Under the additional assumptions that each characteristic family is either lin-
early degenerate or genuinely nonlinear, and that the n x n system (1.1) admits a
strictly convex entropy selecting the admissible shocks, this uniqueness result was
recently proved in [8]. Restricted to a class of 2 x 2 systems, an earlier proof can
also be found in [12].

2. Proof of the Theorem

1. Let J be the set introduced in the previous section and let S C J be the subset
of all points which are not approximate jumps. Since 1! (S) = 0, its projection on
the time axis is a subset N C [0, T'] which is null for the Lebesgue measure. Every
point (¢, x) € [0, T] x R with ¢ ¢ N is therefore either a point of approximate
jump, or a point of approximate continuity.

Let us denote by 7 the set

J = {(r.&) : v ¢ N and (z, ) is an approximate jump].

While it follows immediately from the aforementioned BV structure theorem that
J is rectifiable, we claim here a stronger property: 7 can be covered by the graphs
of countably many Lipschitz functions

x = ¢e(t), teN, 2.1

and moreover the Lipschitz constant of each ¢, is bounded by a number A which
depends only on f and on the constant M in (1.6). More precisely, recalling (1.7)
we can set

A = 2Lip(f, Bu), (2.2)

where the right hand side denotes the Lipschitz constant of the function f over the
ball By C R” centered at the origin with radius M.
Since by (1.7) it follows

ut(c, &) <M forall (z,§) € T,

the above definition implies that the shock speed A = A(t, &) at (1.10), (1.13)
satisfies the bound

A
|A(z.&)| = Lip(f, Bu) = > (2.3)

In order to prove our claim, we decompose .7 in the countable union of suitable
pieces. First of all, for every integer k = 1 we define

1
T = {(r,é) €T |ut(r.§) —u(1.§)] 2 E}'



Arch. Rational Mech. Anal. (2023) 247:106 Page S of 12 106

Obviously, J = Uk Jr. Next, given any pairs (71, §1) and (12, &) in Ji, consider
the two piecewise constant functions

Mi(‘l,'j,%'j) if  x <)\(‘L’j,§j)t,

Wi, it x> AT, Ent, j=l2.Gd

Uj(t, x) = {

By (2.3) there is a positive number ¢(k, A) depending on k and A such that the
following holds. If (zg, &) is yet a third point in the plane with the properties that
tsz + ESZ = 1 and |&| = Altsl, then if we “shift” U, by this vector we get the
inequality

|Ui(t, x) — Ua(t + 75, x + &)|dxdt = 6¢, (2.5)
By

where B; denotes the unit disk centered at the origin in R%. We subdivide further
Ji as a union of sets Ji, ;, j > 1, where (z, &) belongs to Tk, j if

1
f lu(t,x) —U@{ —1,x —&)|dxdt < er?  forallr < —. (2.6)
By (1.%) J

Here U is defined as in (1.10) and B, (t, &) denotes the disk centered at (t, &) with
radius r. Clearly,

J=Uax = Uk
k k,j

Next, consider two points (1, 1), (12,&2) € Ji,; such that r = |('L’1, &) —
(12, 52)| < % Let U; be as in (2.4) and set the shift (zy, &) to be

- §1—&
Ty = s é:s = .
r r
We claim that (2.5) cannot hold with this shift. This will enable us to conclude
|&s| < Alzgl. To prove the claim, observe first that

Ui (t, x) — Ua(t + 15, x + &) | dx dt
B

< |Ui(t, x) —u(t) +rt, & +rx)|dxde
B

+ lu(ty +rt, & +rx) — Us(t + 75, x + &) dx dr
By

We then change variables in the integrals to (o, y) = (t1 + rt, &1 + rx). Observe
that

t+n=14+r'm—n) =r ' t+n-n)=r'o-n),
xt&=x+rlE -8 =y &),
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while Uj(r~ (o — 1)), r"'(y = §))) = Uj(0 — 1,y — &) because of the 0-
homogeneity of the functions U;. Hence the change of variables yields

/ U1 (1, %) — Ust + 75, x + &)| dx dr
By
1

< 5 \Ui(o =11,y — &) —u(o, y)|dydo
= JB(11.€)
+— lu(o,y) = Us(o — 12,y — &)| dydo
l r B, (11,&1)
< 5 \Ui(o — 71,y — &) —u(o, y)|dydo
r By (t1,&1)
+= lu(o,y) — Us(o — 12, y — )| dy do,

2
" JBy(2.62)

where we have used the inclusion B, (11, §1) C B2, (12, &) to get the last inequality.
Note next that 7 < 2r < & and, since both (71, &1) and (12, &) belong to J ;, we
can use (2.6) to bound the first summand by ¢ and the second summand by 4¢. In
particular we conclude

U\ (1, x) = Ua(t + 75, x + &)| dx dr < 5¢.
By

As already pointed out, since the latter inequality contradicts (2.5), we conclude
that |&| £ A|tg|, which in turn gives |&; — &1| £ Al — 11).
We have thus proved the following fact:

(L) If (11, &1), (12, &2) € Tk,j and |(71, 1) — (12, &2)| < % then |& — &1| =
Al — 1.

It is well known that from (L) it follows that J; ; can be covered by countably
many Lipschitz graphs of functions x = ¢,(¢), £ € N, with Lipschitz constant at
most A. See for instance [14, Lemma 4.7].

For readers’ convenience, we include here a proof. If B = B4 (x0, fo) is any
disk of radius 1/(4j) and we set F' = J ; N B, then (L) implies

lx —y| S At —s| forall (¢, x), (s, y) € F. 2.7

This obviously implies that there are no points of F which lie on the same line
{t = const}. Hence, if G is the projection of F' on the time axis, then there is a
function ¢ : G — R such that F = {(z, ¢(¢)) : t € G}. On the other hand (2.7)
is equivalent to the statement that the Lipschitz constant of G is at most A. By
the classical Lipschitz extension theorem we can simply extend ¢ to a Lipschitz
function defined on the whole time axis. Since Ji, ; can be covered by a countable
collection of disks with radius 1/(4j), the existence of the desired covering by
means of countably many Lipschitz graphs follows immediately.

2. Next, we wish to show that, if + ¢ A and (¢,x) ¢ J, then y — u(z,y) is
continuous at x. We start by noticing that, since (¢, x) ¢ J, u is approximately
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continuous at (¢, x) as a function of two variables. Therefore there is a ug € R”
such that

lim — — dsd
rli](}r f / lu(s, y) —upldsdy =

In particular, for every fixed ¢ > O there is an ro(g) > 0 such that

t+r x+r
/ / lu(s, y) —uoldsdy < er?  forall r < ro(e).
t—r xX—r

An elementary application of Chebyshev’s inequality and Fubini’s theorem yields
then the existence of a #(r) € [r — r/e, t + r./€] such that

X+r
/ lu(t(r), y) —uoldy < ri/e.

—r

Furthermore we can use the Lipschitz estimate (1.9) to bound

1 [t |t —1(r)]
—/ lu(t, y)—uo|dy < Ve+Cpy—= < (1+Cy)/e  forallr < rg(e).
r Jx r

' 2.8)
On the other hand recall that y +— u(t, y) is a function of bounded variation on
the real line. As such, every point is either a classical jump point, or a point of
continuity. Since ¢ in (2.8) can be closen arbitrarily small, x cannot be a classical
jump point of u(¢, -) and must therefore be a point of continuity, which was in fact
our initial claim.

3. Together with the functions ¢, in (2.1), we consider functions of the form

¢’ (@) =y + At, ¢’ (1) =y — At, yeQ (2.9)

Since here y is a rational point, there are countably many of these functions. For
convenience, the countable set of all functions in (2.1) together with those in (2.9)
will be relabeled as

{Yn; nz1} (2.10)

Next, we observe that, for every j, k = 1, the scalar function

, . ) Tot.Var. {M(l) ]Kﬁ @), 1Pk(l)[} it () < y(),
Wir(t) = { ! other\/mse @11

is bounded and measurable (indeed, it is lower semicontinuous). Therefore a.e. t €
[0, T'] is a Lebesgue point. We denote by N/ C [0, T] the set of all times ¢ which
are NOT Lebesgue for at least one of the countably many functions W. Of course,
N’ has zero Lebesgue measure.

In view of (1.5), we will prove the theorem by establishing the following claim.

(C) For every T € [0, TI\N(N UN") and ¢ > 0, one has

|
lim supEHu(r +h)— 2.12)

h—0+
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4. Assume T ¢ NVUN’. By inductiononk =0, 1,2, ..., N, we construct points

0 <21 < - < Zn
such that
Tot.Var.{u(r, ;] — o0, zO[} < g, (2.13)
Tot.Var.{u(t, -); Jan, +ool } < e, (2.14)
and moreover, fork =1,2,..., N,

% = sup {x > zg—1; Tot.Var{u(z,); ly—1,x[} < e}.

Notice that this implies
Tot.Var.{u(z, -)}

N £ (2.15)
e
We then choose additional points
YWE20SY) <SSy < o < NSNSy

according to the following rules.

(1) If u(z, -) has ajump at x = zg, then y; = y]/( = Zk.
(ii) If u(t, -) is continuous at x = zi, then the points y; < zx < y, are chosen so
that

w—1 € Q, e+t € Q (2.16)
Tot.Var.{u(r, D5 1Vk—1, y,/c[ } < ¢/2. 2.17)

Notice that, for every k = 1, ..., N, this implies
Tot.Var.{u(t, ) lyk—1, [ } < 2e. (2.18)

5. The remainder of the proof is very similar to the one in [8]. For any given y € R,
we denote by U f = U(ﬁu o) (t, x) the solution to the Riemann problem for (1.1),
with initial data ’

u(rt,y—)if x <y,

u(t, y+)if x > y. (2.19)

u(t,x) = {

Moreover, for every given k > 1 we denote by U° = U (b k)L x) the solution to
the linear Cauchy problem with constant coefficients

v+ Avy, = 0, v(t, x) = u(t, x). (2.20)

Here the n x n matrix A is the Jacobian matrix of f computed at the midpoint of
the interval [y;_1, y;]. Namely,
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Y 'y X
k
Z,

Fig. 1. The points zx, vk, y,’( constructed in the proof of the theorem

A = Df (u(t yk%_i_yl/ﬁ)

With reference to Fig. 1, to estimate the lim-sup in (2.12), we need to estimate two
types of integrals.

(I) The integral of |u(z, x) — Ufu ey (0 x)| over the intervals

Jy(0) = [y =A@ =), e+ A =1,

for every k such that y; = y;.
(II) The integral of |u(t, Xx) — Ufu k) (¢, x)| over the intervals

(@) = -1+ A —1), yp — AC—1)].

6. To estimate integrals of type (I) we observe that, since T ¢ N, (1, yi) is either a
Lebesgue point or a point of approximate jump of the function u. Therefore

1 Y+ A(—1)
lim /
=1+ 1 =T Jy—A@—1)

u(t, x) — Ufuwk)(t,x) dx = 0. 2.21)

Indeed, this follows from (1.11) and the Lipschitz continuity of the map ¢ +—
u(t,-) € LY(R); see Theorem 2.6 in [5] for details.

7. To estimate integrals of type (II), two main cases will be considered.
CASE 1: yy_1 — At € Qand y; + At € Q. In this case, since 7 ¢ N’, the
function

V) = Tot.Var.{u(t, 3 I+ AC—1), y,Q—A(t—z)[} (2.22)

has a Lebesgue point at # = t. Hence

1 T+h
lim —/ V() = V(D)|dt = 0.
—0+ T
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By (2.18) it follows V(1) < 2¢. Therefore

1 T+h
lim sup—/ V()dr < 2e. (2.23)
h—0+ h T

CASE 2: yi—1 = ¢¢(1), y; = ¢¢/(7) for some indices ¢, ¢’ € N. In this case,
since T ¢ N\, the function

W) = Tot.Var.{u(r, SEIA0) W(r)[}

has a Lebesgue point at # = 7. Recalling that the functions ¢, ¢ have Lipschitz
constant £ A, a comparison with (2.22) immediately yields V () < W (¢) for all
t = 7. Since our construction implies W () < 2¢, we thus conclude that (2.23)
again holds.

The remaining two cases, where yy_1 = ¢¢(7) and y,’c + At € Q, or where
k-1 — At € Q and y; = ¢y (7) for some £, £’ € N, can be handled in the same
way. Namely, (2.23) always holds.

Using again the fact that the map ¢t — u(¢, -) is Lipschitz continuous from
[0, T] into L1(R), the same argument used in [8] now yields

1 V—Al—1)
lim sup /
t=t+ =T Jy 1 4+A@—1)

u(t,x) = Uy, o (. 0)] dx = O1) - &2,

(2.24)
Indeed, this corresponds to formula (3.20) in [8]. Based on (2.23), the proof is
identical and will not be repeated here.

8. On the other hand, as showed in [3] all trajectories of the semigroup are weak
solutions of (1.1) which satisfy the Liu admissibility conditions. Therefore they
satisfy the same bounds as in (2.21) and (2.24). More precisely,

1 YeF+A(—=1)
lim /
=T+ =T Jy—AG-1)

1 Y= A1)
lim sup /
t—t+ =T Jy (+A@1—1)

(St—eu(0)) (x) — U(uu;t’yk)(t,x)‘ dx =0, (229

(St (D) @) = Uy (60| dr = O(1) <&
(2.26)
9. Combining the previous estimates (2.21), (2.24), (2.25), (2.26), and recalling that

the total number of intervals is N < 2Me~!, we establish the limit (2.12), proving
the theorem. m|
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