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Computation of injective (or inversion-free) maps is a key task in geometry

processing, physical simulation, and shape optimization. Despite being a

longstanding problem, it remains challenging due to its highly nonconvex

and combinatoric nature. We propose computation of variational quasi-

harmonic maps to obtain smooth inversion-free maps. Our work is built

on a key observation about inversion-free maps: A planar map is a diffeo-

morphism if and only if it is quasi-harmonic and satisfies a special Cauchy

boundary condition. We hence equate the inversion-free mapping problem

to an optimal control problem derived from our theoretical result, in which

we search in the space of parameters that define an elliptic PDE. We show

that this problem can be solved by minimizing within a family of functionals.

Similarly, our discretized functionals admit exactly injective maps as the

minimizers, empirically producing inversion-free discrete maps of triangle

meshes. We design efficient numerical procedures for our problem that pri-

oritize robust convergence paths. Experiments show that on challenging

examples our methods can achieve up to orders of magnitude improvement

over state-of-the-art, in terms of speed or quality. Moreover, we demonstrate

how to optimize a generic energy in our framework while restricting to

quasi-harmonic maps.
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1 INTRODUCTION
Inversion-free mapping is a fundamental task in geometry pro-

cessing, scientific computing, computer graphics, and vision [Fu

et al. 2021]. For example, in physical simulation and shape optimiza-

tion, maps with inverted elements—and hence negative element

volumes—cannot be realized or manufactured; in texture mapping,

surface parameterizations must be injective to avoid content blend-

ing. Other applicable scenarios requiring maps to be inversion-free

include shape deformation, correspondence, collision avoidance

(§11.2), fabrication, design, and mesh quality improvement.

The inversion-free mapping problem goes by many names. The

goal typically is to compute a map, parameterization, shape, or de-

formation that is inversion-free, injective, bijective, foldover/flip-free,

orientation-preserving, and/or diffeomorphic/homeomorphic. Subtle
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nuances shade the differences between these nearly-identical in-

stances, as discussed in §4.

Barrier-type methods and variants of Tutte’s embedding algo-

rithm comprise twomajor approaches to the inversion-free mapping

problem. Barrier-type methods suffer from numerical instability and

slow progress on extreme examples (§10), and Tutte’s embedding is

limited to mappings onto convex domains (§5).

As an alternative to these strategies, we present a fast and ro-

bust method for injective surface mapping by extending Tutte’s

embedding to nonconvex domains. Our approach relies on a global

condition for map injectivity, eliminating the need for inversion-

preventing line search, which yields larger step sizes that are pro-

hibited in barrier and/or interior point methods. Our method can

be understood as optimizing a differentiable variant of Tutte’s em-

bedding algorithm, searching for edge weights that will produce

inversion-free mappings onto nonconvex domains. Our approach

extends recent advances in computing skinning weights [Wang and

Solomon 2021], built on the strong interplay between map topology,

partial differential equations, global/conformal geometry, and geo-

metric graph theory. Empirically, our method passes a challenging

dataset for inversion-free maps [Du et al. 2020], joining relatively

few works [Du et al. 2020; Garanzha et al. 2021] and achieving

significant improvements on challenging examples.

Contributions. Contributions of our paper include:

• We propose a necessary and sufficient condition for a smooth

map to be diffeomorphic, which equates mapping to the optimal

control of PDEs to satisfy a Cauchy condition (§5).

• We discretize our model in a fashion that yields a necessary and

sufficient characterization of discrete injectivity (§6).

• We propose efficient numerical schemes for solving inverse prob-

lems with the Cauchy condition (§7) using a tensor parameteriza-

tion prioritizing robust convergence paths (§8).

• We demonstrate quasi-harmonization of deformation energies,

enabling the optimization of generic energies within the space of

quasi-harmonics (§7,§11).

• We propose injectivity-promoting functionals such as a paramet-

ric family of Poisson functionals and Dirichlet energies (§7).

2 RELATED WORK
Inversion-free mapping is an active field drawing interdisciplinary

attention in physical simulation, geometry processing, and scientific

computing.

Barrier-type methods. Barrier methods (and interior point meth-

ods) traverse the interior of the feasible region. Barrier-typemethods

are popular in graphics for injective mapping. For example, Schüller

et al. [2013] use a log determinant barrier term for this task. Liu

et al. [2016] solve a sequence of convex programs that minimize a

quadratic elastic energy while staying in the feasible region. Smith

and Schaefer [2015] design a line search method, deriving the maxi-

mal step size such that no flip will be introduced. Their line search
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Fig. 1. Mapping the “Lucy” shape, with boundary marked in the red color,
onto the nonconvex domain of letter G. Our method (tanh) minimizing a
A-Dirichlet energy using Adam finds an inversion-free map within tens of
gradient steps. Despite being naïvely implemented in MATLAB, ours finds
an injective map in merely 3.1 seconds at ∼10% CPU rate. In contrast, the
state-of-the-art Garanzha et al. [2021] using C++ and OpenMP, even at
100% CPU rate, is 300× slower in wallclock time than ours on this example.
See also Figure 5.

[Du et al. 2020] Ours (si-log)

𝐸𝑀𝐼𝑃𝑆 = 22.28

mean = 24.9, max = 1124.1

𝐸𝑀𝐼𝑃𝑆 = 2.27

mean = 3.63, max = 48.45

Fig. 2. Our method (si-log) finds an injective map whose MIPS energy is an
order of magnitude smaller than [Du et al. 2020]. Our method (si-log), even
without explicitly using any conformal energy, leads to smaller conformal
distortion by any metric: Plots compare distributions of the ratio of singular
values 𝜎1/𝜎2 ≥ 1. Our method finds an injective map with very low energy
in 190 Adam-gradient steps, while even after 28000 iterations TLC+PN has
an energy much larger than ours. See also Figure 5.

has been widely adopted, e.g. in [Claici et al. 2017; Fang et al. 2021;

Shtengel et al. 2017].

Some methods allow infeasible points either as the initialization

or as an intermediate state. As a recent example, Garanzha et al.

[2021] introduce a progressive method to optimize their energy with

a barrier scheduling procedure. See §10.2 for detailed discussion and

comparison.

Many energies prevent inversions by exploding when the Jaco-

bian approaches zero. Some examples include the symmetric Dirich-

let energy [Schreiner et al. 2004; Smith and Schaefer 2015] and (many

variants of) the Neo-Hookean energy. The MIPS energy [Hormann

and Greiner 2000], often known as the Winslow functional outside

graphics, standalone may not penalize inversions but can be used

in barrier methods [Garanzha et al. 2021].

Fast solvers. Energy-based methods directly benefit from the ad-

vancement of general-purpose fast solvers and preconditioners for

mapping and deformation [Claici et al. 2017; Kovalsky et al. 2016;

Liu et al. 2017; Shtengel et al. 2017; Zhu et al. 2018].

Some solvers leverage specific structures in the energy. Scalable

Locally Injective Mapping (SLIM) [Rabinovich et al. 2017] general-

izes the local-global as-rigid-as-possible (ARAP) solver [Liu et al.

2008; Sorkine and Alexa 2007] to work on the symmetric Dirichlet

energy by employing spatially-varying reweighting. Their weight-

ing is a scalar field (isotropic), less general than our anisotropic

weights. Brown and Narain [2021] advance in this direction by dy-

namically reweighting a Laplacian matrix using weights obtained

from singular values of per-element Hessian; Stein et al. [2022]

propose a splitting scheme based on alternating direction method

of multipliers (ADMM). Fu et al. [2015] propose an inexact block

coordinate descent method.

Harmonic maps. Tutte’s embedding [Floater 2003a; Tutte 1963]

finds interior node positions by solving a sparse Laplacian system,

with a guarantee of injectivity when mapping into a planar domain

with a convex boundary. It appears in the pipelines of manymethods,

often as an initializer for a nonlinear mapping procedure, e.g., [Ra-

binovich et al. 2017; Shen et al. 2019]. Outside the limited setting of

mapping onto convex domains, harmonic maps can be non-injective.

Quasi-harmonic maps have been considered for surface parameter-

ization [Yoshizawa et al. 2004; Zayer et al. 2005]; these works do

not consider the boundary conditions articulated in our paper and

hence can fail injectivity similarly to generic harmonic maps.

Variational harmonic maps (VHM) [Ben-Chen et al. 2009] oper-

ate in the (linear) space of harmonic functions using a boundary

integral representation. Deformations in this space are not necessar-

ily injective, unless additional conditions are enforced [Chen and

Weber 2017; Fargion and Weber 2022; Liao et al. 2021]. Regardless,

optimizing in the space of harmonic maps excludes many viable

options for the injective mapping problem.

As a natural idea, the source and target shapes can bemapped onto

the same domain via harmonic maps 𝜙,𝜓 , respectively, constructing

the final map as the composition𝜓−1 ◦ 𝜙 [Weber and Zorin 2014].

Inverse harmonic maps also appear as the minimizer of the MIPS

energy [Garanzha et al. 2021], when restricted to injective maps.

Conformal and extremal quasi-conformal maps. Conformal maps—

those preserve angles—provide another source of injective maps

widely used in parameterization and texture mapping [Ben-Chen

et al. 2008; Lévy et al. 2002; Mullen et al. 2008; Sawhney and Crane

2017; Springborn et al. 2008]. Conformal maps, however, no longer

exist under generic positional constraints, suggesting the use of
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Tutte

Ours

Fig. 3. Discrete harmonic mappings with cotangent weights, a.k.a. Tutte’s embeddings, fail to produce injective maps onto nonconvex boundaries. Inverted
triangles are marked in red. Shapes are from [Du et al. 2020; Weber and Zorin 2014]. Note (quasi) harmonic maps generally admit inversions at the concave
corners of the boundary. Our method (si-log) searches for an anisotropic Laplacian under which quasi-harmonic mapping becomes injective. Similar to the
case of harmonic maps, enforcing quasi-harmonicity also “pushes” inversions onto the boundary, so that we only need to detect and resolve inversions at the
the boundary.

an extremal quasi-conformal map—the map with least global angle

distortion [Weber et al. 2012]. Despite being bijective in the smooth

setting, without remeshing these maps can lack discrete injectivity.

Lipman et al. [2012] derive closed-form formulas for extremal

quasi-conformal planar deformations determined by four control

points. Weber et al. [2012] compute extremal quasi-conformal maps

by minimizing violation of the Beltrami equation via least-squares,

alternatively optimizing the map, Beltrami coefficients, and a dilata-

tion scalar that measures the global angular distortion. Following

this direction, Teichmüller-mapping surface registration [Lui et al.

2014] and an ADMM-based splitting method [Lui and Ng 2015] have

been proposed for similar formulations.

Total unsigned area. With a fixed boundary map, the total un-

signed area (TUA) provides another energy term for promoting

injectivity [Xu et al. 2011]. Recently, Du et al. [2020] propose Total

Lifted Content (TLC) to regularize TUA, making it more robust to

optimize with a customized Newton-type solver. Du et al. [2022]

propose another variant, the Isometric TLC (IsoTLC), for recovering

an injective map that minimizes isometric distortion rather than

conformal distortion.

Global injectivity. Achieving global injectivity is often regarded

as a related but somewhat different problem, since overlap or col-

lision detection between each pair of boundary elements becomes

necessary. Smooth Excess Area (SEA) extends TLC to free-boundary

optimization for global injectivity, minimizing a smooth version of

overlapping area [Du et al. 2021]. Tessellating the space between ob-

jects prevents inversions of an “air-mesh” [Jiang et al. 2017; Müller

et al. 2015], providing a means of linking local and global injectivity

(§11.2). Fang et al. [2021] put barrier energies on distances to prevent

intersections.

Other ideas. Aigerman and Lipman [2013]; Kovalsky et al. [2014];

Lipman [2012] optimize in the space of orientation-preserving maps

with bounded distortion. Levi and Weber [2016] show a convex

characterization of the space of locally injective harmonic mappings

with bounded distortion. Rather than working with vertex positions,

Chen et al. [2013]; Chien et al. [2016] optimize in the space of metrics

(edge lengths).

Another condition for map injectivity is that the Gaussian curva-

ture of the target surface should always be zero, i.e. the image of

the map should be developable. Discretely, this condition requires

the adjacent angles to each interior vertex to sum to 2𝜋 , motivating

Angle-Based Flattening (ABF) [Sheffer and de Sturler 2001; Sheffer

et al. 2005].

Liu et al. [2018] compute a progressive sequence of bounded

distortion maps using distortion energies defined on intermediate

reference triangles.

Addressing a problem in a different setting, there are also methods

remeshing the domain for injectivity [Campen et al. 2021; Gillespie

et al. 2021; Gu et al. 2018; Shen et al. 2019; Weber and Zorin 2014].

Inverse problems and optimal control. Inverse problems find a PDE

that reproduces given solution(s) [Isakov 2017; Kirsch 2011], includ-

ing the distributed parameter identification problem [Richter 1981],

with applications to electrical impedance tomography (EIT). Opti-

mal control is a more general setup that measures the solution using

some functional instead [Tröltzsch 2010; Wang and Solomon 2021].

Methods relevant to ours include the output least square method

(OLS) directly measuring errors in the space of solutions [Frind and

Pinder 1973] and the equation error method penalizing the viola-

tion of constraints [Acar 1993]. The Sobolev norms have been used

to measure the residual [Hinze and Quyen 2016; Ito and Kunisch

1990].

3 KEY IDEAS
Our methods rely on a particular characterization of the space of

inversion-free maps. Generalizing the notion of harmonic maps and

following Wang and Solomon [2021], we optimize in the space of

quasi-harmonic maps, the family of maps wherein each interior point

is positioned at a weighted average of its neighbors’ positions. The

weighting factors together with the boundary determine positions

of the interior points.
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The family of quasi-harmonic maps provides a rich space of

maps including all inversion-free maps. In particular, as we will

derive in §5.2, a map is diffeomorphic/injective if and only if it is

quasi-harmonic and satisfies a particular Cauchy boundary condition,

which is a coupled pair of simultaneous Dirichlet and Neumann

boundary conditions (BCs). Schematically, we show

Injectivity = {Quasi-harmonic} + {Dirichlet & Neumann BCs}.

Based on this theoretical result, we formulate mapping as an op-

timal control (or inverse PDE) problem, searching in the space of

elliptic operators for one whose associated map satisfies both Dirich-

let and Neumann conditions. Our variable is a spatially-varying

anisotropy field, and the Neumann boundary condition involves the

anisotropic co-normal derivative. Our algorithm maintains quasi-

harmonicity with Dirichlet boundary conditions exactly, while mini-

mizing violation of the Neumann boundary conditions. This strategy

“pushes” inversions onto the boundary: Detecting and resolving in-

versions at the boundary then yields inversion-free maps.

We enforce boundary conditions via a few functionals, such as

the anisotropic Dirichlet energy and the Poisson functional. Their

minimizers are provably inversion-free assuming an inversion-free

map exists, both in the continuous and discrete cases (see §5,§6).

Through a careful parameterization, we optimize these functionals

via an unconstrained problem on which simple gradient descent

methods like Adam or L-BFGS are very efficient.

Fig. 4. A stress test that our method passes. We rotate the inner rectangle
by 𝜋 , setting the inner and outer rectangles as positional constraints. A
bijective mapping will inevitably undergo an extreme amount of distortion.
The zoom-in views show that the triangles become very thin: Successful
maps must avoid “geometric locking” that possibly prevent any solution,
which is not a concern in the smooth setting. This example suggests that the
injective mapping problem can have more of a combinatoric nature rather
than mimicking behaviors of smooth PDEs.

A key challenge is to propose injectivity-promoting functionals

that, after discretization, still yield exact injectivity. For example,

Figures 3 and 4 illustrate that under coarse meshing or extreme

distortions, injective mapping becomes combinatoric; in this regime,

methods that hold asymptotically in the smooth limit may not work

in practice. In §6, we show that our model also works in the discrete

setting.

4 MATHEMATICAL PRELIMINARIES

4.1 Basic Definitions
In this paper, we consider mapping from a source domain Ω, a two
dimensional manifold with boundary 𝜕Ω, to a target Γ ⊂ R2, i.e.

𝜙 : Ω → Γ : x = (𝑥,𝑦) → 𝜙 (x) = (𝑢 (x), 𝑣 (x)). The Jacobian (or,

deformation gradient) of 𝜙 is

J(x) =
[
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

]
=

[
∇𝑢 (x) ∇𝑣 (x)

]⊺
.

The map is called “injective” if distinct points on the source do-

main are mapped to distinct points on the target. The map is called

inversion-free, flip-free, or orientation-preserving if det J(x) > 0

everywhere. These concepts are closely related and often become

equivalent.

We consider continuous maps, which prevent fracture or tearing.

Discretely, like many existing works, we choose to keep the mesh

triangulation unchanged.

In the smooth setting, we work with diffeomorphisms—or dif-

ferentiable maps with differentiable inverses—as a result of our

PDE-based characterization. In the discrete case, despite often being

referred to as bijective mapping in graphics, in reality we are com-

puting homeomorphisms, which relax differentiability to continuity,

thanks to the use of triangulations.

Restricting to diffeomorphisms does not practically limit the ca-

pacity of our model. Indeed, our discrete model can represent any

inversion-free map of a triangle mesh (Theorem 6.3). Moreover, just

like a continuous function can be approximated by smooth func-

tions, Iwaniec et al. [2012] prove that any planar homeomorphism

can be arbitrarily closely approximated by diffeomorphisms.

4.2 Elliptic PDEs andQuasi-harmonic Functions
We briefly review notions from elliptic PDE. In our discussion, the

domain Ω can be a curved surface or even a Riemannian manifold

equipped with a non-Euclidean metric, in which case the gradi-

ent ∇ will be understood as the intrinsic gradient and tensor field

A(·) will operate on the tangent space. See [Evans 1998; Gilbarg

and Trudinger 2015; Taylor 2010] for general discussion of elliptic

PDE and [Wang and Solomon 2019] for an accessible introduction

including discussion of discretization.

We begin by defining our basic object of study:

Definition 4.1 (Quasi-harmonic map). We say a map (𝑢, 𝑣) is
quasi-harmonic, or, A(x)-harmonic if 𝑢 (x), 𝑣 (x) satisfy the PDEs

∇ · [A(x)∇𝑢 (x)] = 0 and ∇ · [A(x)∇𝑣 (x)] = 0 (1)

for some positive definite tensor field A(·) : Ω → R2×2 and 𝐾 > 0:

A(x) =
[
𝑎11 (x) 𝑎12 (x)
𝑎12 (x) 𝑎22 (x)

]
and

1

𝐾
I ⪯ A(x) ⪯ 𝐾I. (2)

In this definition, the PDE is both inhomogeneous (A(x) can differ
from point to point) and anisotropic (directionally-dependent).

On a Riemannian manifold with metric 𝑔, the Laplace–Beltrami

(Laplacian) operator is defined as:

ΔM = ∇M · ∇M =
1√︁

| det𝑔 |

∑︁
𝑖 𝑗

𝜕𝑖

(√︁
| det𝑔|𝑔𝑖 𝑗 𝜕𝑗

)
, (3)

where 𝑔𝑖 𝑗 ∈ R2×2 is the metric tensor and (𝑔𝑖 𝑗 ) = (𝑔−1)𝑖 𝑗 is the in-
verse metric. In this formula,

√︁
| det𝑔|𝑔−1 has determinant 1, hinting

to restrict detA(x) = 1 in our model later.

Boundary conditions must be specified for elliptic PDEs to deter-

mine a solution, such as the Dirichlet conditions:
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Definition 4.2 (Dirichlet condition). For 𝑏 : 𝜕Ω → R, we say𝑤 (·)
is quasi-harmonic with the Dirichlet boundary condition if

∇ · [A(x)∇𝑤 (x)] = 0, ∀x ∈ Ω\𝜕Ω
𝑤 (x) = 𝑏 (x), ∀x ∈ 𝜕Ω. (4)

We say𝑤 (·) is the A(x)-harmonic (quasi-harmonic) extension of

𝑏 into the interior. The PDE (strong form) in (4) is equivalent to the

variational problem (weak form) in (5)

min𝑤 ( ·)
∫
Ω ∇𝑤 (x)⊺A(x)∇𝑤 (x)

s.t. 𝑤 (x) = 𝑏 (x) ∀x ∈ 𝜕Ω. (5)

The theory of linear elliptic PDEs implies that the tensor function

A(·) and Dirichlet boundary data 𝑏 (·) uniquely determine the solu-

tion𝑤 (·). Thus, we can define the coefficient-to-solution operator :

F : A(·);𝑏 (·) ↦→ 𝑤 (·).

Another common boundary condition is the Neumann one:

Definition 4.3 (Neumann condition). For 𝑔 : 𝜕Ω → R :

∫
𝜕Ω 𝑔 = 0,

We say𝑤 (·) is quasi-harmonic with the Neumann condition if

∇ · [A(x)∇𝑤 (x)] = 0, ∀x ∈ Ω\𝜕Ω
n(x)⊺A(x)∇𝑤 (x) = 𝑔(x), ∀x ∈ 𝜕Ω. (6)

The Neumann boundary condition/operator is in the form of

the co-normal derivative n(x)⊺A(x)∇, which corresponds to the

natural boundary condition resulted fromminimizing the anisotropic

Dirichlet energy in (5) without boundary conditions.

If the𝑤 (·) in (5) and (6) are the same, the map from 𝑏 (·) to 𝑔(·)
is the Dirichlet-to-Neumann operator (DtN) or Poincaré–Steklov op-

erator; see [Gao et al. 2014; Sawhney and Crane 2017; Wang et al.

2018] for applications. For a prescribed tensor field A(·), one has
to choose either the Dirichlet or Neumann boundary condition, but

not both simultaneously, since the Dirichlet data determine the Neu-

mann data uniquely via the DtN operator. The reverse is also true:

the Neumann data uniquely determine the Dirichlet data up to a

constant via the Neumann-to-Dirichlet operator (NtD).

5 QUASI-HARMONIC MAPPING
We first introduce our forward model based on the notion of quasi-

harmonic maps, which, intuitively, describe the equilibrium state

of an elastic membrane with anisotropic elasticity specified by a

tensor field A(·). As a result, each interior point x is positioned at

the A(x)-weighted average of its neighbors’ positions. This model

is versatile: Any inversion-free map is quasi-harmonic, i.e., the

equilibrium state for some tensor field A(·). In addition, existence of

A(x) conveniently provides a global condition to certify injectivity.

5.1 Forward Model with Fixed Boundary Maps
Let us consider a map whose entire boundary is subject to some

positional constraints. Precisely speaking, we propose to represent

a map (𝑢, 𝑣) as the solution to an elliptic PDE with the Dirichlet

boundary condition, parameterized by a tensor field A(·):

Definition 5.1 (Quasi-harmonic map with fixed boundary). Given a

positive field A(x) : Ω → R2×2 and boundary coordinate functions

𝑏𝑢 (x), 𝑏𝑣 (x) : 𝜕Ω → R2, we consider the map (𝑢, 𝑣) satisfying:
∇ · [A(x)∇𝑢 (x)] = 0, ∇ · [A(x)∇𝑣 (x)] = 0, ∀x ∈ Ω\𝜕Ω

𝑢 (x) = 𝑏𝑢 (x), 𝑣 (x) = 𝑏𝑣 (x), ∀x ∈ 𝜕Ω. (7)

Quasi-harmonic maps provide a rich parametric family of maps:

As we will see, the quasi-harmonic family of maps includes all

inversion-free maps. The tensor field A(·) together with the bound-

ary map 𝑏𝑢 (·), 𝑏𝑣 (·) can be thought of as a surrogate representation

of the map (𝑢, 𝑣).
The celebrated Radó-Kneser-Choquet (RKC) Theorem [Choquet

1945; Kneser 1926; Rado 1926] proves that harmonic maps onto

convex regions are diffeomorphic; see [Duren 2004] for discussion.

That is, for A(x) ≡ I2×2, the map (𝑢, 𝑣) in (7) is diffeomorphic. In

fact, the map (𝑢, 𝑣) is diffeomorphic even if A(x) ≠ I2×2, as long as

the target domain (𝑏𝑢 , 𝑏𝑣) is convex [Alessandrini and Nesi 2001].

In practice, convexity of the target domain is undesirable, as it

often yields large distortions in the computed map. In addition,

wherever the user imposes positional constraints in the interior also

becomes part of the boundary, easily breaking the convex boundary

requirement. Hence, we derive a condition characterizing when

maps onto potentially nonconvex regions are inversion-free.

5.2 Main Theory on Diffeomorphic Maps
Now we state the main theory, a necessary and sufficient condition

determining when a map is a diffeomorphism onto a nonconvex

domain. We only present key features and conclusions of the the-

ory; details are provided in the Appendix §D. While we rely on

recent progress in the PDE theory of maps [Alessandrini and Nesi

2021], our contribution is to identify the “if-and-only-if” nature of

the condition and to convert it to a form involving natural bound-

ary conditions for the elliptic PDE; this form suggests the optimal

control problem proposed in §5.3.

With extra conditions on the boundary, map injectivity onto a

nonconvex domain can be established:

Theorem 5.2 (Main result: Continuous version). Suppose Ω
is a two-dimensional Riemannian manifold with disk topology, and

consider a planar domain Γ ⊂ R2 whose boundary 𝜕Γ is a simple

closed curve. Assume 𝜙 = (𝑢, 𝑣) : Ω → Γ diffeomorphically maps 𝜕Ω
onto 𝜕Γ. Denote the (given) boundary map as [𝑏𝑢 , 𝑏𝑣] (·) : 𝜕Ω → R2,
and denote the outward normal to 𝜕Γ as n̂(·) : 𝜕Ω → 𝑆1.

Then, 𝜙 = (𝑢, 𝑣) is a diffeomorphism if and only if there exist (1) a

positive definite tensor field A(·) satisfying 1

𝐾
I ⪯ A(x) ⪯ 𝐾I for some

𝐾 > 0 and (2) a positive function 𝑠 : 𝜕Ω → R that 𝑠 (x) ≥ 𝑆 for some

𝑆 > 0, such that 𝜙 is A(x)-harmonic with a special Cauchy boundary

condition, i.e.:

∇ · [A(x)∇𝑢 (x)] = 0 ∀x ∈ Ω\𝜕Ω
∇ · [A(x)∇𝑣 (x)] = 0 ∀x ∈ Ω\𝜕Ω
𝑢 (x) = 𝑏𝑢 (x) ∀x ∈ 𝜕Ω
𝑣 (x) = 𝑏𝑣 (x) ∀x ∈ 𝜕Ω
n(x)⊺

[
A(x)∇𝑢 (x) A(x)∇𝑣 (x)

]
= 𝑠 (x)n̂(x)⊺ ∀x ∈ 𝜕Ω.

(8)

Optionally, we can additionally assume{
detA(x) =1 ∀x ∈ Ω

𝑠 (x)n̂(x)⊺ =
[
𝜕
𝜕tb𝑣 (x) − 𝜕

𝜕tb𝑢 (x)
]

∀x ∈ 𝜕Ω.
(9)
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Appendix §D provides proof and discussion of Theorem 5.2.

Intuitively, the theorem arises from two premises:

(1) the tensor fieldA(·) allows us to “reproduce” the Laplace-Beltrami

operator of any target domain induced by a diffeomorphism;

(2) in the reverse direction, our boundary conditions ensure the

map is orientation-preserving at the boundary.

The extra degrees of freedom in choosing a tensor field A(·) make

it possible to specify Cauchy boundary conditions, namely enforc-

ing both Dirichlet and Neumann boundary conditions. This is not

possible for fixed A(·). Cauchy boundary conditions should not

be confused with Zaremba (or Robin) boundary conditions, which

specify either Dirichlet or Neumann conditions (or their linear com-

bination) at each point, but not both.

The extra condition (9) does not limit the representation capac-

ity of our model. In this case, the formula (3) suggests that A(·)
can serve the role of the term

√︁
| det𝑔 |𝑔−1: Then A(x) encodes√︁

| det𝑔 |𝑔−1, the pull-back metric induced by the map up to scaling,

or, the conformal structure. But note this is only the case for our

method upon convergence.

5.3 Mapping via Optimal Control
System (8) provides a PDE-based characterization of the space of

inversion-free maps. It suggests using an inverse problem formula-

tion to optimize for a high-quality diffeomorphism. As the starting

point, we copy-paste (8) as the constraint, arriving at an optimal

control problem:

minA,𝑢,𝑣 𝑅(𝑢, 𝑣,A)
s.t. ∇ · [A(x)∇𝑢 (x)] = 0 ∀x ∈ Ω\𝜕Ω

∇ · [A(x)∇𝑣 (x)] = 0 ∀x ∈ Ω\𝜕Ω
𝑢 (x) = 𝑏𝑢 (x) ∀x ∈ 𝜕Ω
𝑣 (x) = 𝑏𝑣 (x) ∀x ∈ 𝜕Ω
n(x)⊺A(x)∇𝑢 (x) = 𝑔𝑢 (x) ∀x ∈ 𝜕Ω
n(x)⊺A(x)∇𝑣 (x) = 𝑔𝑣 (x) ∀x ∈ 𝜕Ω
A(x) ⪰ 0 ∀x ∈ Ω
detA(x) = 1 ∀x ∈ Ω.

(10)

Here, the objective 𝑅(·) is some energy or regularizer used to select

among different non-inverting maps. As we are primarily inter-

ested in the feasibility problem, 𝑅(·) can even be 0, which is the

default choice throughout the paper unless specified otherwise.

More broadly, 𝑅(·) can be any of the following

• Zero as the default choice, which solves the feasibility problem

and will accept any inversion-free map (§7).

• A deformation energy 𝑅 = 𝐸 (𝑢, 𝑣) based on physics or geometry,

e.g., ARAP (§11.1).

• A regularization term, e.g., what measures cond(A) and (upon

convergence) corresponds to a conformal energy likeMIPS (§11.1.4).

6 DISCRETIZATION WITH EXACT INJECTIVITY
To convert our theory to a practical algorithm, we introduce a

discretization such that an analog of Theorem 5.2 holds, namely

Theorem 6.4 below.

6.1 Motivation and Challenge
A(x)-harmonic functions enjoy the mean value property: the value

at each point x equals to theA(x)-weighted average of its neighbors’
values. This notion naturally transfers to a graph/mesh with edge

weights𝑤 , by viewing the triangular mesh as a graph: We consider

functions such that the value at each vertex/node 𝑖 equals the 𝑤-

weighted average of its adjacent vertices’ values.

Analogous results hold for this discrete notion of harmonicity:

Akin to the RKC Theorem, Tutte’s Embedding Theorem asserts

that a discrete mapping computed using this procedure is injective,

when the target is a convex polygon and the edge weights are

positive [Floater 2003a; Gortler et al. 2006; Tutte 1963].

In Tutte’s embedding, ensuring symmetric positive edge weights

greatly limits the representation capacity of the model [Wardetzky

et al. 2007, Figure 1]. A discrete maximum principle is even harder to

ensure for triangular meshes with arbitrary anisotropy, so negative

weights are inevitable. Instead of relying on Tutte’s embedding

theorem, we put constraints on edge weights—possibly negative—

to ensure injectivity, including the case of a nonconvex boundary

where Tutte’s embedding fails even with positive weights.

Remark. In general, Tutte’s embedding does allow for asymmetric

edge weights, but we leave development of a variant of our approach

with asymmetric but positive weights for future work. For example,

in discrete computational geometry, the geodesic triangulation [Luo

2022] uses directed graph Laplacian with asymmetric weights, such

as the mean-value Laplacian [Floater 2003b]. Gortler et al. [2006]

consider when Tutte’s embeddings with asymmetric weights onto non-

convex domains are injective, and Kovalsky et al. [2020] derive a conic

condition for that.

6.2 Discretization using Piecewise Linear FEM
Our approach to discretize the anisotropic Laplacian ∇ · [A(x)∇]
is a straightforward application of the piecewise linear finite el-

ement method (FEM), an intrinsic generalization of the extrinsic

case [Wang and Solomon 2021]; experienced readers may skip this

section and refer to Table 1 for notation.

Throughout the paper, we consider a triangular mesh T with 𝑓

faces and 𝑛 vertices, as a discrete approximation of the domain Ω.
Applying piecewise linear FEM, the tensor field becomes a piecewise

constant 2 × 2 matrix per triangle, and the anisotropic Laplacian

∇ · [A(x)∇] is discretized by the matrix multiplication G⊺AG. Here
G ∈ R2𝑓 ×𝑛 is the discrete (intrinsic) gradient operator, and the

anisotropy tensor field becomes the sparse matrix A ∈ R2𝑓 ×2𝑓

G =

[
G𝑥
G𝑦

]
∈ R2𝑓 ×𝑛, A =

[
diag(a11) diag(a12)
diag(a12) diag(a22)

]
,

where a11, a12, a22 ∈ R𝑓 ×1, and diag(·) expands a vector into a

diagonal matrix.

To ease derivations, we stack the nonzero entries of A into the

vector a such that:

a := flatten(A) =

a11
a12
a22

 ∈ R3𝑓 ×1 .

Throughout the paper, A and a will be used interchangeably.
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Following Wang and Solomon [2021], we define an operator sp(·)
that satisfies the expression Ab = sp(b)flatten(A):

Definition 6.1 (Span). For b =

[
b0
b1

]
∈ R2𝑓 ×1 with b0, b1 ∈ R𝑓 ×1,

define the sparse matrix sp(b) as

sp(b) :=
[
diag(b0) diag(b1)

diag(b0) diag(b1)

]
∈ R2𝑓 ×3𝑓 .

Denote m ∈ R𝑓 ×1 such that m𝑗 stores the area of triangle 𝑗 . We

use A( 𝑗 ) and G( 𝑗 ) to denote the anisotropy tensor and intrinsic

gradient at the 𝑗-th triangle:

A( 𝑗 ) =
[
(a00) 𝑗 (a01) 𝑗
(a01) 𝑗 (a11) 𝑗

]
∈ R2×2, G( 𝑗 ) :=

[
(G𝑥 ) 𝑗 :
(G𝑦) 𝑗 :

]
∈ R2×𝑛 .

Note diag(m), G, and A are all intrinsic discrete operators: G( 𝑗 )
yields the intrinsic gradient measured in a local coordinate system

for triangle 𝑗 . The per-triangle local coordinate can be arbitrar-

ily chosen but A( 𝑗 ) will need to operate consistently in the same

coordinate system (a discrete tangent space).

G,m reproduce the familiar cotangent Laplacian L ∈ R𝑛×𝑛 :

L = G⊺
[
diag(m)

diag(m)

]
G.

Denotew ∈ R𝑛 as the discrete solution to a Laplacian system (11).

Let 𝑘 be the number of vertices on the boundary of the mesh. Denote

by R ∈ R𝑛×𝑘 , S ∈ R𝑛×(𝑛−𝑘 )
the binary selection sparse matrices

such that R⊺w, S⊺w yield rows corresponding to vertices on the

boundary and in the interior, respectively. For the discrete Laplacian

G⊺AG, the output R⊺G⊺AGw ∈ R𝑘 measures the discrete Neu-

mann boundary data (in weak form, i.e., without dividing by the

average edge length associated with each boundary vertex).

The variational problem (5) can be discretized as

minw
1

2
tr(w⊺G⊺AGw)

s.t. R⊺w = b,
(11)

where b ∈ R𝑘 discretizes the per-vertex Dirichlet boundary data.

By standard linear algebra, the unknown rows z := S⊺w are

uniquely determined by A, b via

z = −[S⊺G⊺AGS]−1S⊺G⊺AGRb. (12)

Hence, the whole solution becomes w ≡ Sz + Rb. Our derivation
suggests the following definition:

Definition 6.2 (Coefficient-to-solution, Dirichlet-to-Neumann, Neu-

mann-to-Dirichlet). The discrete coefficient-to-solution operator F :

R2𝑓 ×2𝑓 ;R𝑛×1 ↦→ R𝑛×1 is the map A; b ↦→ w via Eq. 12, namely

F : A; b ↦→ w =

(
R − S[S⊺G⊺AGS]−1S⊺G⊺AGR

)
b. (13)

Closely related, we have the discrete Dirichlet-to-Neumann operator

S(A) := R⊺G⊺AGR − R⊺G⊺AGS[S⊺G⊺AGS]−1S⊺G⊺AGR. (14)

from the Schur complement of

[
R⊺G⊺AGR R⊺G⊺AGS
S⊺G⊺AGR S⊺G⊺AGS

]
. The

discrete Neumann-to-Dirichlet operator is R⊺ (G⊺AG)†R ≡ S(A)†.

Table 1. A summary of notations that we will introduce and use throughout
the paper. An analogy between the discrete and continuous cases is given.

Name Continuous Discrete

gradient ∇ G
tensor field A( ·),A(x) A or a, A( 𝑗 )

scalar function 𝑤 ( ·), 𝑤 (x) w,w𝑖

restrict to interior 𝑤 |Ω\𝜕Ω S⊺w
restrict to boundary 𝑤 |𝜕Ω R⊺w
Dirichlet energy

1

2

∫
Ω
∇𝑤 (x)⊺A(x)∇𝑤 (x) 1

2
w⊺G⊺AGw

Laplace equation ∇ · [A(x)∇𝑤 (x) ] |Ω\𝜕Ω = 0 S⊺G⊺AGw = 0
Dirichlet condition 𝑤 |𝜕Ω = b R⊺w = b
Neumann condition n(x)⊺A(x)∇𝑤 (x) = 𝑔 (x) R⊺G⊺AGw = g

The last equality can be established by the Woodbury matrix

identity applied to the Schur block. Later we will see that our key

functionals for injectivity are weak forms of S(A) and its inverse.

It is convenient to derive boundary conditions by introducing the

circular gradient operator:

Definition 6.3 (Circular boundary gradient, or discrete area form).

Define D ∈ R𝑛×𝑛 as the sparse matrix computing the circular gradi-

ent of a function along the boundary:

D𝑖 𝑗 =


− 1

2
if 𝑖 → 𝑗 is a boundary edge

1

2
if 𝑗 → 𝑖 is a boundary edge

0 otherwise

(15)

D can be viewed as a discrete 1-dimensional gradient via central

differencing. It makes sense to define its restriction to the boundary

vertices for simplicity:

C := R⊺DR. (16)

We have D⊺ =−D. Due to Green’s Theorem, u⊺Dv is also the signed

area of the domain [Mullen et al. 2008]; see details in Appendix §A.1.

6.3 Main Theory on Discrete Homeomorphic Maps

In the discrete case, weworkwith a variant requiring det

(
m−1
𝑗
A( 𝑗 )

)
=

1, corresponding to the weak version of Theorem 5.2 that addition-

ally requires detA(x) = 1. This version of quasi-harmonic maps

also does not limit the modeling capacity discretely. This choice

leads to a variant with an elementary proof. It also removes the

requirement that the domain should have disk topology and does

not rely on a discrete maximum principle. Specifically, we have

Theorem 6.4 (Main result: Discrete version). Consider a dis-

crete map (u, v) ∈ R𝑛×2. Assume the boundary map b𝑢 , b𝑣 is bijective
onto a polygon, with the (weak form) weighted normal n̂ = [g𝑢 g𝑣],
where g𝑢 , g𝑣 ∈ R𝑘×1 are constant vectors determined by the target

boundary b𝑢 , b𝑣 via g𝑢 = Cb𝑣, g𝑣 = −Cb𝑢 .
Then, the discrete map (u, v) is locally injective, i.e., det J( 𝑗 ) > 0,∀𝑗 ,

if and only if there exists a block-diagonal positive definite matrix A
such that det

(
m−1
𝑗
A( 𝑗 )

)
= 1 ∀𝑗 and the following bilinear system
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holds: 
S⊺G⊺AG[u v] = [0 0]

R⊺ [u v] = [b𝑢 b𝑣]
R⊺G⊺AG[u v] = [g𝑢 g𝑣] .

(17)

In addition, the condition det

(
m−1
𝑗
A( 𝑗 )

)
= 1,∀𝑗 can be replaced by

the convex relaxation det

(
m−1
𝑗
A( 𝑗 )

)
≥ 1,∀𝑗 .

See Appendix §B,C for a proof and detailed discussion. When the

boundary polygon or mesh connectivity does not allow an injective

map to exist, Theorem 6.4 still holds in the sense that there will not

exist such an A satisfying all conditions.

System (17) can also be compactly written as a constraint on the

associated Dirichlet-to-Neumann operator:

S(A) [b𝑢 b𝑣] = [g𝑢 g𝑣]

Remark. Future work could derive a version of the theorem allow-

ing the determinant to be non-constant as in Theorem 5.2, possibly

using nonlinear FEM schemes compatible with maximum principle

[Droniou and Potier 2011; Liska and Shashkov 2008; Lu et al. 2014].

It would also be interesting to see if similar results hold using a DEC

discretization [de Goes et al. 2014].

7 INVERSE CAUCHY SOLVER: SIMULTANEOUS
DIRICHLET & NEUMANN CONDITIONS

So far, we have equated the injectivemapping to the PDE-constrained

optimization problem (10). Next, we develop a solver for optimally

controlling elliptic PDEs so that our Cauchy boundary condition

holds. While they are designed for the mapping problem, in the

future our techniques in this section may be applied to other inverse

problems involving pairs of Neumann and Dirichlet data.

Problem (10) can be “ill-posed” if, for example, we take 𝑅 ≡ 0,

since injective maps are not unique. This aspect can make the prob-

lem even more difficult, calling for a careful numerical scheme.

7.1 Insights from Some Failed Attempts
The optimal control problem (10) is challenging: Before we arrive

at our proposed algorithm, we tried several less successful methods.

Some failed attempts providing key insights are listed here:

(1) Alternating descent. Alternatively updating A and map (𝑢, 𝑣)
works only for trivial examples and easily gets stuck at local

minima.

(2) Equation error method. Directly measuring equation errors with-

out appropriate norm gets stuck easily; failure patterns include

ignoring the Neumann boundary conditions.

(3) Hard constraints for both Dirichlet & Neumann BCs. While the

boundary’s one-ring-neighbor triangles become orientation-

preserving, the flips appear at the two-ring neighbors as a local

optimum.

These observations indicate that the boundary condition in (8)

should be be viewed as globally constraining the tensor A( 𝑗 ) , in-
cluding those in the interior of the domain, rather than only A( 𝑗 )
adjacent to the boundary. As we will see, our method propagates

and attributes errors in the Neumann data to tensors in the interior.

7.2 Our Solution: Strict Dirichlet & Soft Neumann
As an alternative to the approaches explored in §7.1, we propose to

enforce the Dirichlet boundary conditions via hard constraints while

minimizing the violation of the Neumann boundary conditions.

Prioritizing Dirichlet also makes sense practically, since it is the

visible positional constraint prescribed by users.

To do so, we eliminate u, v via the coefficient-to-solution operator

F in (13), yielding the following reformulation of (10):

minA 𝑄

(
F (A; b𝑢 ), F (A; b𝑣),A

)
s.t. some constraints on A( 𝑗 ) ,∀𝑗 .

(18)

where

𝑄 (u, v,A) := 𝑅(u, v,A) +𝑉
(
R⊺G⊺AG[u, v],A; g𝑢 , g𝑣

)
(19)

𝑉
(
n𝑢 , n𝑣,A; g𝑢 , g𝑣

)
measures

(
[n𝑢 , n𝑣] − [g𝑢 , g𝑣]

)
. (20)

𝑉 takes the actual Neumann value n𝑢 , n𝑣 and measures its violation

from the the prescribed one [g𝑢 , g𝑣].Wewill discussmany choices of

𝑉 . We ignore for now the constraint on A( 𝑗 ) , which can be enforced

through a careful reparameterization A = 𝑝 (𝝃 ) in §8.

With 𝑅,𝑉 chosen, completely eliminating intermediate variables

u, v so theNeumann dataR⊺G⊺AG[u, v] becomes [S(A)b𝑢 ,S(A)b𝑣],
the objective 𝑄 can be written down:

𝑄

(
F (A; b𝑢 ), F (A; b𝑣),A

)
= 𝑅

(
F (A; b𝑢 ), F (A; b𝑣),A

)
+𝑉

(
S(A)b𝑢 ,S(A)b𝑣,A; g𝑢 , g𝑣

)
.

(21)

Differentiating into F or S, the gradient can be obtained via

d𝑄

da
=

[
𝜕𝑄

𝜕a
+ 𝜕𝑄

𝜕u
𝜕u
𝜕a

+ 𝜕𝑄

𝜕v
𝜕v
𝜕a

]⊺
∈ R3𝑓 ×1, (22)

where
𝜕u
𝜕a is the Jacobian

𝜕u
𝜕a

= −S[S⊺G⊺AGS]−1S⊺G⊺sp(Gu) ∈ R𝑛×3𝑓 . (23)

A similar equation holds for v; in this section, we frequently omit

derivations for the term 𝑣, v; one can substitute 𝑢, u with 𝑣, v.

7.3 Injectivity-promoting Functionals: Many Possibilities
Now we derive objective functionals 𝑉 that promote injectivity

by penalizing the deviation of the Neumann data from prescribed

values. We propose a few such functionals, and each functional can

be used standalone. We compare these functionals in §7.5.

7.3.1 Neumann Residual. The most natural choice is to measure

the Neumann error using an 𝐿2 norm, for 𝑢, 𝑣 , respectively:

𝑉1 = 𝑉
𝑢
1
+𝑉 𝑣

1
,

where

𝑉𝑢
1
=
1

2

∥R⊺G⊺AGu − g𝑢 ∥2

=
1

2

∥G⊺AGu − Rg𝑢 ∥2 since S⊺G⊺AGu = 0

=
1

2

∥G⊺AGF (A; b𝑢 ) − Rg𝑢 ∥2 .

(24)
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Ours (tanh)

Iter 5 Iter 10 Iter 15 Iter 20 Iter 30 Iter 60, #flips=0

𝐸𝑀𝐼𝑃𝑆 =8.53

𝑇 =3.2𝑠

Ours (si-
log)

Iter 10 Iter 20 Iter 40 Iter 70 Iter 120 Iter 190, #flips=0.

𝐸𝑀𝐼𝑃𝑆 =2.27

𝑇 =9.5𝑠

TLC+QN

Iter 100 Iter 500 Iter 1000 Iter 2000 Iter 3500 Iter 5000

TLC+PN

Iter 10 Iter 20 Iter 40 Iter 113 Iter 3500
𝐸𝑀𝐼𝑃𝑆 = 9.06

Iter 28000
𝐸𝑀𝐼𝑃𝑆 = 4.50

SBP
[Garanzha
et al. 2021]

Iter6934
(#flips=21442)

Iter22873
(#flips=5453)

Iter41659
(#flips=4550)

Iter64992
(#flips=2278)

Iter128316
(#flips=415)

Iter150292 (#flips=0)

𝐸𝑀𝐼𝑃𝑆 =2.25

𝑇 =928.7𝑠

Fig. 5. Convergence paths of our methods and related works. We optimize the A-Dirichlet energy using Adam [Ling et al. 2022]. Ours (tanh) converges in
fewer than 60 iterations; ours (si-log) converges to a map with lower conformal distortions. TLC [Du et al. 2020] using a quasi Newton (QN) solver produces a
non-smooth trajectory, with much larger numbers of iterations. TLC with a projected Newton (PN) solver finds an injection with large distortions, taking
many iterations to improve it. Soft barrier progression (SBP) [Garanzha et al. 2021] also requires many orders-of-magnitude more iterations than ours: Note
their flipped triangles are very tiny, not visible from the figures. For all methods, we call it one iteration if the gradient oracle is called once: oracles of TLC+QN
and SBP do not require linear solve; ours requires a Laplacian solve; TLC+PN requires solving a Hessian system (4× larger than Laplacian).

Intuitively, this functional aims to push the mesh toward the inside

of the boundary. The gradient is:

d𝑉𝑢
1

da
=
1

2

d

da
∥G⊺AGu − Rg𝑢 ∥2 ∈ R3𝑓 ×1

=

[
G⊺sp(Gu) + G⊺AG

𝜕u
𝜕a

]⊺
(G⊺AGu − Rg𝑢 )

=sp(Gu)⊺
(
I
2𝑓 − GS[S⊺G⊺AGS]−1S⊺G⊺A

)
G

Neumann error︷               ︸︸               ︷
(G⊺AGu − Rg𝑢 ) .

(25)

Remark. GS[S⊺G⊺AGS]−1S⊺G⊺ frequently appears in inverse

problems, spreading the Neumann data error at the boundary into

the interior through the A-harmonic extension. The gradient formula

reflects the philosophy that errors in the Neumann boundary data

should be propagated and attributed to tensors in the interior.
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Weight
Dirichlet
(DtN)

Poisson
Functional
(NtD)

Neumann
Residual

Fig. 6. Our methods (si-log) using different functionals consistently produce bijective maps. Different functionals in our framework produce diversed
convergence paths on the example of rotated inner square by 𝜋 : (a) Weighted Dirichlet: blank-area expansion; (b) Poisson functional: global spinning; (c)
Neumann residual: normal alignment.

7.3.2 Sobolev Neumann Residual. Replacing the 𝐿2 norm in 𝑉1,

written in the equivalent form ∥G⊺AGu − Rg𝑢 ∥2, with the Sobolev-

type norm ∥ · ∥2(G⊺AG)† , yields a second functional 𝑉2 = 𝑉
𝑢
2
+𝑉 𝑣

2
:

𝑉𝑢
2
=
1

2

∥G⊺AGu − Rg𝑢 ∥2(G⊺AG)†

=
1

2

u⊺G⊺AGu − 1

2

g⊺𝑢 b𝑢︸                       ︷︷                       ︸
Weighted Dirichlet 𝑉𝑢

3

+ 1

2

g⊺𝑢 R
⊺ (G⊺AG)†Rg𝑢 − 1

2

g⊺𝑢 b𝑢 .︸                                    ︷︷                                    ︸
Poisson functional 𝑉𝑢

4

(26)

Here, the pseudo-inverses (·)† are well-defined via solvability of

the Poisson problem:

g⊺𝑢 R
⊺1 = g⊺𝑢 1 = 0, with S⊺G⊺AG1 = 0.

𝑉2 splits into two terms: the weighted Dirichlet energy and the

Poisson functional, which are geometrically-meaningful functionals

when extra determinant condition holds as we will discuss.

7.3.3 Weighted Dirichlet Energy. (Applicable when determinant

≥ 1.) This energy is the default choice in our paper. We can stack

the u, v components in a complex vector and measure its norm, for

our particular Neumann data R[g𝑢 , g𝑣] = [Dv,−Du]:
(G⊺AGu − Rg𝑢 ) + i(G⊺AGv − Rg𝑣) = (G⊺AG + iD) (u + iv)

By choosing another Sobolev-type norm ∥ · ∥ (G⊺AG+iD)†—again

the pseudo-inverse is well defined provided det

(
m−1
𝑗
A( 𝑗 )

)
≥ 1

holds (§A)—we arrive at the weighted Dirichlet energy

𝑉3 =
1

2

∥(G⊺AG + iD) (u + iv)∥ (G⊺AG+iD)† ≥ 0

=
1

2

u⊺G⊺AGu − 1

2

g⊺𝑢 b𝑢︸                       ︷︷                       ︸
𝑉𝑢
3
̸≥0

+ 1

2

v⊺G⊺AGv − 1

2

g⊺𝑣 b𝑣 .︸                        ︷︷                        ︸
𝑉 𝑣
3
̸≥0

(27)

The two terms 𝑉𝑢
3
,𝑉 𝑣

3
are not necessarily positive, but their sum

is. The energy we obtain,
1

2
(u − iv)⊺ (G⊺AG + iD) (u + iv), is a

generalization of the LSCM energy [Lévy et al. 2002], and further

falls back to our weighted Dirichlet energy with boundary fixed. In

§F.3, we provide a simpler interpretation of the weighted Dirichlet

energy 𝑉3 as a tight upper-bound of an area functional.

Viewing u, v as functions of A, 𝑉3 becomes a nonlinear function

of A, involving the weak-form of the Dirichlet-to-Neumann (DtN):

𝑉𝑢
3
=
1

2

b⊺𝑢S(A)b𝑢 − 1

2

g⊺𝑢 b𝑢 , (28)

using which the derivative of 𝑉3 can be computed as follows:

d𝑉𝑢
3

da
=

1

2

[
u⊺G⊺sp(Gu) + 2u⊺G⊺AG

𝜕u
𝜕a

]⊺
=
1

2

sp(Gu)⊺
(
I
2𝑓 − GS[S⊺G⊺AGS]−1S⊺G⊺A

)
Gu =

1

2

sp(Gu)⊺Gu.

7.3.4 Poisson Functional. (Applicable when determinant = 1.) As

the “dual” of the weak-form Dirichlet-to-Neumann 𝑉3, we have the

Poisson functional 𝑉4:

𝑉4 =
1

2

g⊺𝑢 R
⊺ (G⊺AG)†Rg𝑢 − 1

2

g⊺𝑢 b𝑢︸                                    ︷︷                                    ︸
𝑉𝑢
4
≱0

+ 1

2

g⊺𝑣 R
⊺ (G⊺AG)†Rg𝑣 −

1

2

g⊺𝑣 b𝑣︸                                   ︷︷                                   ︸
𝑉 𝑣
4
≱0

(29)

where R⊺ (G⊺AG)†R is the weak-form Neumann-to-Dirichlet (NtD).

The proof that 𝑉4 ≥ 0 when A ⪰ 0, det

(
m−1
𝑗
A( 𝑗 )

)
= 1,∀𝑗 holds

and more justification can be found in Appendix §E. We also derive

its gradient formula in Appendix §E, where we differentiate into

the inverse of system G⊺AG instead of [S⊺G⊺AGS]. Note 𝑉4 does
not involve u, v in any way, unlike previous functionals.

7.4 Discrete Injectivity at Functional Minimizers
Themany options for functionals reflect the versatility and relevance

to map injectivity of our framework, and optimizing any of the

(nonconvex) functionals to the global minimum leads to an injective

map when it exists:

Proposition 7.1. When the boundary positions and mesh con-

nectivity allow a locally injective map to exist, global minimizers of

any functional in §7.3.1 to §7.3.4 in the space of A ⪰ 0 satisfying

det

(
m−1
𝑗
A( 𝑗 )

)
= 1,∀𝑗 are injective maps.
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Note these functionals can still be nonconvex in the variable A, so
there is no theoretical guarantee that the gradient descent will find

the global minimum; in practice, however, we found our methods

always yield injective maps. The nonconvexity is expected since

the problem we studied is intrinsically nonconvex: For instance, in

Figure 6 there are two injective maps that correspond to either +𝜋
or −𝜋 rotation. They are disconnected globally optima, indicating

the injective mapping problem must be nonconvex.

The determinant condition can be relaxed, but the current form

is sufficient for our purpose. For the regular and Sobolev Neumann

residual functionals and the weighted Dirichlet energy, this result

is a corollary of Theorem 6.4; for the Poisson functional, it can be

shown by using a Lagrangian multiplier argument.

Proposition 7.2. The functionals in §7.3.1 to §7.3.4 are differen-

tiable as functions of A.

Proposition 7.2 holds since in this section we have written down

their derivatives. Thus, we successfully bypass the vanishing gra-

dient and non-smoothness issues of the area functional, with an

approach different from the regularization method [Du et al. 2020].

7.5 Comparing Injectivity Functionals
In this paper, we choose 𝑉 = 𝑉3, weighted Dirichlet energy, as the

default choice, unless specified otherwise. But these functionals

optimize for injectivity by different means. Figure 6 visualizes the

convergence path when optimizing different functionals from §7.3;

details of the algorithm are postponed to §9. Adapting an example

from Du et al. [2020], we recover a bijective map under positional

constraints that rotate the inner square by 180
◦
, while fixing the

outer square, illustrating the preference of different functionals for

attaining injectivity.

For the weighted Dirichlet energy, the map improves slowly at

the beginning and starts to improve dramatically when a small hole

appears at the center, after which the weighted Dirichlet energy

“realizes” that its value can be greatly decreased by emptying the

inner square.

For the Neumann residual, symmetric pattern is broken by mov-

ing the singularity in the center to the left-up corner of the inner

boundary. Then the map orientation starts to align with the normal

to the boundary. The region where the map aligns with the out-

ward normal keeps growing, and eventually the normal alignment

propagates to the whole inner boundary.

For the Poisson functional, progress is made across the entire

domain: Unlike the other functionals in which unfolding gradually

spreads out, in this example the entire domain adjusts to conform to

the boundary normal orientation. It converges in the least iterations.

8 ELLIPTICITY PARAMETERIZED VIA BELTRAMI
We still have to handle the triangle-wise constraint:

det

(
m−1
𝑗 A( 𝑗 )

)
= 1,A( 𝑗 ) ⪰ 0. (30)

Instead of introducing explicit constraints on detA( 𝑗 ) , we param-

eterize A( 𝑗 ) so that the constraints hold automatically. As a point

of comparison, Wang and Solomon [2021] parameterize a positive

tensor using its Cholesky factorization without any guarantee on

its determinant. Note (30) implies strict inequality A( 𝑗 ) ≻ 0.

8.1 Elliptic PDEs and Complex Beltrami Equation
Our parameterization of the tensor field is motivated by the equiva-

lence between 2D elliptic systems and the complex Beltrami equa-

tion. In this section, we recall relevant concepts; see [Astala et al.

2008] for details. An important concept is the conjugate quasi-

harmonic map:

Definition 8.1 (Conjugate quasi-harmonic map). For positive defi-

nite A(·) ∈ R2×2, map (𝑢, 𝑣) is conjugate quasi-harmonic if

∇ · [A(x)∇𝑢 (x)] = 0, ∇ · [Ā(x)∇𝑣 (x)] = 0 (31)

where Ā(·) is the (matrix) conjugate of A(·): Ā(x) = ∗⊺A(x)−1∗, in

which ∗ is the matrix ∗ :=

[
0 −1
1 0

]
, the planar Hodge star operator.

This definition differs from Definition 4.1 in that we use the con-

jugate Ā to compute 𝑣 (·). That said, since Ā = A if det(A) = 1,

our choice in (30) to take det(A) = 1 also makes the map conju-

gate quasi-harmonic; again, the choice does not limit our ability to

represent any smooth bijective map.

A map (𝑢, 𝑣) can be compactly written as a complex-valued func-

tion 𝑓 : Ω → C, 𝑓 (𝑧) = 𝑢 (𝑧) + i𝑣 (𝑧). Via a change of variables

to 𝜇, 𝜈 : Ω → C that |𝜇 | + |𝜈 | < 1, the complex Beltrami equa-

tion [Ahlfors 2006; Daripa 1993; Gardiner and Lakic 2000] is equiva-

lent to the system of PDEs (31), via the reparameterization

A =
1

|1 + 𝜈 |2 − |𝜇 |2

[
|1 − 𝜇 |2 − |𝜈 |2 −2ℑ(𝜇)

−2ℑ(𝜇) |1 + 𝜇 |2 − |𝜈 |2
]
. (32)

Our condition detA(x) ≡ 1 becomes 𝜈 (𝑧) ≡ 0 and |𝜇 | < 1.

8.2 Tensor Parameterization: A Prior on Conformality
Our change of variable A ↦→ 𝜇, however, still requires the (convex)

constraint |𝜇 | ≤ 1 to ensure A ≻ 0. Aiming at a fully unconstrained

optimization, we apply an additional change of variables.

We consider a bijection 𝜇 ↔ 𝜉 between unit disk D and the

complex plane C = R2 given by

arg 𝜇 = arg 𝜉, |𝜇 | = 𝑟 ( |𝜉 |),

where [0, +∞)
𝑟−−−⇀↽−−−
𝑟 −1

[0, 1); we use the notation 𝜇 = 𝑓 [𝑟 ] (𝜉).

In this paper, 𝑟 is one of the two sigmoid functions.

• shifted-inverse-log (si-log): 𝑟 (𝑥) = 1 − 1/(1 + log(1 + 𝑥))
• hyperbolic tangent: 𝑟 (𝑥) = tanh(𝑥)
We choose 𝑟 to be the hyperbolic tangent function by default, and the

shifted-inverse-log function if close-to-conformal maps are desired.

As Figure 7 shows, shifted-inverse-log (si-log) gives a strong prior

that discourages large angle distortions: The closer it approaches

|𝜇 | → 1, the exponentially longer a distance |𝜉 | has to travel for im-

proving |𝜇 |. Our 𝜇 can grow arbitrarily close to unit length if needed

without a bounding parameter on cond(A( 𝑗 ) ), unlike approaches
that constrain conformal distortion [Aigerman and Lipman 2013;

Lipman 2012].

We use tanh(·) in our model whenever a well-behaving regular-

izer 𝑅(·) has been chosen, or the mesh is subject to distortion to the

extreme level of Figure 4. Our use of tanh(·) was initially motivated

by possible equivalence to optimization in the hyperbolic space

under the Poincaré disk model, which we leave for future work.
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Fig. 7. The curve |𝜉 | → |𝜇 | via 𝑟 (𝑥 ) = si-log(𝑥 ) , or 𝑟 (𝑥 ) = tanh (𝑥 ) .

tanh si-log
Fig. 8. The weighted Dirichlet is minimized using either parameterization,
and the first inversion-free map each parameterization encounters is shown:
si-log yields smaller angle distortion. Remarkably, the first injection si-log
encounters (b), is already similar to running TLC until convergence [Du
et al. 2020, Figure 5], while the first injection tanh (a) encounters is similar
to that of TLC. Recall that TLC explicitly minimizes a conformal energy,
while our weighted Dirichlet does not.

8.3 Tensor Parameterization: A Summary
In summary, in this section we advocate the per-triangle change of

variable compositing two bijections: A → 𝜇 → 𝜉 , with m−1
𝑗
A( 𝑗 ) =

A(𝑟 (𝝃 𝑗 )), using

A : D→ R2×2,A(𝜇) = 1

1 − |𝜇 |2

[
|1 − 𝜇 |2 −2ℑ(𝜇)
−2ℑ(𝜇) |1 + 𝜇 |2

]
(33)

which we compactly summarize via

a = 𝑝 (𝝃 ;m), where a ∈ R3𝑓 , 𝝃 ∈ C𝑓 .

Our optimization variable now becomes 𝝃 ∈ C𝑓 , a complex number

per triangle.

There are multiple advantages of optimizing for 𝝃 rather than

A, in addition to getting rid of explicit constraints on detA( 𝑗 ) or
cond(A( 𝑗 ) ). Without explicitly modifying the objective, our param-

eterization makes the numerical procedure prioritize robust conver-

gence paths and favor conformality by choosing the si-log sigmoid

function.

9 OVERALL ALGORITHM AND VALIDATIONS
In this section, we state the overall algorithm and provide validations.

Implementing our base algorithm amounts to translating matrix

expressions to, e.g., MATLAB.

Bunny David

Gargoyle Hand
Fig. 9. Rest poses of meshes to be mapped to a planar domain. Red colors
indicate where the boundary is.

9.1 The Base Algorithm: Unconstrained Optimization
After the change of variable u, v → A → 𝝃 , Problem (18) becomes

a totally unconstrained optimization problem:

min𝝃 𝑄

(
F

(
A(𝝃 ), 𝑏𝑢

)
, F

(
A(𝝃 ), 𝑏𝑣

)
,A(𝝃 )

)
. (34)

With
d𝑄

d𝝃 = da
d𝝃

d𝑄

da , the gradient w.r.t. the solo variable 𝝃 , we

optimize the energy 𝑄 using off-the-shelf gradient-based methods.

Visualization of results. As shown in Figure 10, using L-BFGS [Wright

et al. 1999] to minimize any of the functionals—weighted Dirichlet,

Poisson functional, and Neumann residual—leads to injective maps

on the 30 shape-to-letter examples provided in [Du et al. 2020].

We focus on validating the weighted Dirichlet energy, and all

results use this default functional unless specified otherwise. We

do not find a case that only weighted Dirichlet succeeds and the

other functionals cannot, but we leave it for future work to further

explore the other functionals or even combine them.

9.2 Auxiliary Solvers for Post-Processing
In the vast majority of the cases, our gradient solver in §9.1 already

converges to exact injections. There are cases, especially in confor-

mal maps involving extreme numerics, where first-order methods

can slow down when they almost reach convergence. Hence, in this

section we describe a Newton-type solver and an alternating solver

we can optionally use to refine our solution.

A Newton solver in the joint space. It is difficult to directly apply a

second-ordermethod to problem (34): The optimization variable 𝝃 or

A has global impact, so its Hessian is dense. As a simple workaround,
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Lucy Gargoyle Bunny David Hand Gargoyle
Fig. 10. Inversion-free maps produced by different functionals in our method (si-log).

we design a Newton solver operating in the joint space (u, v, 𝝃 ) to
optimize the A(𝝃 )-Dirichlet energy of u, v. See details in §F.

Although our Newton solver as a standalone algorithm succeeds

on less challenging examples, we only apply it as a post-processing

step: We find in early phases searching for injective maps, algo-

rithms that progress over u, v,A jointly can follow worse paths on

challenging examples than our base method operating in the space

of A only.

A greedy alternating solver. Alternatively updating either [u, v] or
A to optimality while fixing the other variable leads to a greedy local-

global style solver, which falls back to the post-processing algorithm

suggested by Xu et al. [2011]. Even in the close-to-injection regime,

alternating descent often but not always removes left-over tiny flips,

but when it works it can be effective in removing flipped triangles

under extreme numerics. In addition, this alternating solver is cheap

to apply, so we incorporate it in our pipeline.

Final pipeline. We find the following strategy is most efficient in

our framework: First, apply the first-order gradient descent, usually

all flips are removed quickly. Otherwise, the common pattern is that

there are 1∼10 leftover flips with tiny areas that are time-consuming

to remove: Then we apply the post-processing step that alterna-

tively attempts the cheaper routine [Xu et al. 2011] and invokes the

second-order Newton solver; when [Xu et al. 2011] fail we discard

its iterations. This strategy passes the entire benchmark [Du et al.

2020] (§10).

The post-processing step is not critical for practical purposes:

Typical changes made at this stage are local adjustments around

tiny flipped triangles with area smaller than 10
−6 ∼ 10

−20
, which

are not directly visible.

9.3 Non-Euclidean Reference Poses
Given the positional constraints, whether or not an injective map

exists only depends on the mesh topology, not the geometry of rest

pose triangles—which only matters for measuring distortion. Thus,

we have some degrees of freedom in choosing the reference triangle,

the one in which G and m are computed. Such degrees of freedom

in choosing a reference/source triangle also appear in [Du et al.

2020; Liu et al. 2018]. The choice of reference triangle will not affect

our capacity to represent any injection. By default, we choose the

reference triangle as its rest pose, so our algorithm initializes from

the generalized Tutte’s embedding with cotangent weights.

9.4 A Further Improvement with Cheaper Gradient Steps
Since we carefully formulate the problem to be well-conditioned

and unconstrained, our problem allows applying an even simpler

and cheaper Adam-type solver [Ling et al. 2022]. With a very large

step size, the Adam-type solver converges faster than L-BFGS.

[Ling et al. 2022] is a simple first-order method, advancing in the

gradient direction without any step-size search. It is much cheaper

than L-BFGS, whose line search and gradient history add extra

overhead. Remarkably, Problem (34) remains stable even if we use

relatively large learning rates (step sizes), like 0.1 or larger in Adam.

Adam is rarely a choice in geometry processing, but we manage to

apply Adam to minimizing generic energies (§11) with competitive

performance, made possible by the fact that our variable A or 𝝃 has

a global impact over u, v, following [Wang and Solomon 2021].

We primarily use Adam: Testings with L-BFGS are to demonstrate

that our method is agnostic to the choice of solver, unlike themethod

of Wang and Solomon [2021].
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10 COMPARISONS AND DISCUSSIONS
Despite the large number of works on injective maps, the vast

majority cannot handle generic positional constraints, often due to

the requirement of injective intermediate maps for applying interior

point methods.

That said, we are in the exactly same setting of Du et al. [2020],

searching injective mapping with the entire boundary constrained.

Thus we refer to their work for discussion and experiments that

show prior works can fail to produce injections under positional

constraints. An exception is [Garanzha et al. 2021], to which we

also compare. All evaluation and experiments are done with our

core variant 𝑅 = 0,𝑉 = 𝑉3 (weighted Dirichlet) unless specified.

Evaluation metric. Du et al. [2020] provide a dataset including

10743 meshes with given boundary maps. The dataset contains

challenges of two kinds:

(1) The vast majority, including examples taken from [Liu et al.

2018] with boundary obtained by [Jiang et al. 2017], requires

relatively localized adjustment to the mesh: The Tutte initial-

ization usually is not far from injection, requiring adjustment

around concave corners.

(2) Examples requiring substantially global deformations, including

many shape-to-nonconvex-letter examples in the benchmark,

especially the letters “S, G, H.”

For < 8% meshes in category (1), the input contains very thin

triangles that may cause slow progress due to numerical issues: For

our method, we modify these reference triangles to have angles

larger than 25
◦
, affecting only our map initialization. See details in

Appendix §F.

Following Du et al. [2020], we measure the conformal distortion

using the MIPS energy [Hormann and Greiner 2000]:

𝐸𝑀𝐼𝑃𝑆 =
1

A

∫ (
𝜎1

𝜎2
+ 𝜎2
𝜎1

− 2

)
,

where 𝜎1 ≥ 𝜎2 are the singular values of the Jacobian, and A is the

area of the rest pose.

While we are reporting the MIPS energy in the paper, we empha-

size that it may not be a fair metric; our base methods also do not

explicitly minimize a conformal energy like MIPS. As shown in Fig-

ure 11, our method with si-log produces a map with small maximal

conformal distortion. On this example, our map is very similar to

Bounded Distortion Mapping (BDM) [Lipman 2012], but without

their aliasing patterns that depend on the triangulation. Another

injective map that minimizes the MIPS energy, produces a “spike”

at the point constraint. This map is also found by our framework,

using the method introduced in §11. Both ours and BDM produce

maps that are smoother with distortion more evenly distributed.

This example suggests that MIPS may not always be a desired

metric since it can compromise smoothness at positional constraints.

This pattern of large shearing at positional constraints can also be

observed in inverse harmonic maps, the injection minimizing MIPS

energy, as shown in Figure 24.

10.1 Comparison with Total Lifted Content [Du et al. 2020]
Total unsigned area (TUA), while being a simple and intuitive objec-

tive for injectivity, is challenging to optimize due to its combinatoric

Ours (si-log).
𝐸𝑀𝐼𝑃𝑆=1.01.
max=3.11, mean=2.63.

[Lipman 2012].
𝐸𝑀𝐼𝑃𝑆=1.03.
max=3.00, mean=2.63.

Ours (tanh+MIPS).
𝐸𝑀𝐼𝑃𝑆=0.55.
max=27.83, mean=2.00.

Fig. 11. In this example taken from Fu et al. [2015], the point in the center
of the rectangle is moved to its left. We visualize 𝜎1/𝜎2 ≥ 1. Ours (si-log)
reduces the maximal conformal distortion even without explicitly bound-
ing it, producing a map similar to that of Bounded Distortion Mapping
(BDM) [Lipman 2012]. However, BDM produces aliasing patterns that are
sensitive to the triangulation, which is not the case for our method. Ours
(tanh+MIPS) produces an injective map minimizing the MIPS energy, with
distortion concentrated around the constraint.

First Injective Map Converged

[Du et al. 2020].
max=338.4, mean=5.90

Ours (si-log).
max=4.74, mean=3.72

Fig. 12. Distributions of𝜎1/𝜎2 ≥ 1 over triangles. Ourmethod (si-log) evenly
distribute distortions into across the entire domain: Surprisingly, ratios are
very concentrated even we do not explicitly encourage that. TLC+PN [Du
et al. 2020], even when converges, produces injective maps with large dis-
tortion at the concave corner.

and non-smooth nature. Indeed, Xu et al. [2011] suggest their al-

ternating algorithm for TUA as a post-processing step rather than

a standalone algorithm. Improving on TUA, the key idea in total

lifted content (TLC) is to regularize TUA into a smoother objective

without suffering from vanishing gradients [Du et al. 2020].

Our methods share the same wisdom with TLC by considering

a smoother alternative objective: TLC adds terms promoting MIPS

energy, while (the core variant of) ours considers the A-parametric

family of Dirichlet energies. Our methods spread out distortions

broader than TLC, and Figure 12 provides a minimal example: The
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TLC+PN

Fig. 13. Examples produced by TLC [Du et al. 2020]. We see recurring patterns in TLC that triangles are clustered along a few curves where distortions are
concentrated, leading to a large conformal energy.

boundary of a rectangle is subject to vertical displacement pro-

portional to the |𝑥 |-coordinate. TLC produces a concentration of

distortion at the concave corner, while our method (si-log) produces

a map with distortions that are more evenly distributed.

Our methods consistently outperform TLC in terms of speed and

quality, by a large margin on challenging examples. On the Lucy

example, Figure 2 compares the map provided by Du et al. [2020]

with our method, plotting histograms of ratios of singular values.

The distortion of the first injection that our method (si-log) found

is an order-of-magnitude smaller, by any metric, such as the MIPS

energy, or the mean/max of 𝜎1/𝜎2 ≥ 1.

Figure 5 compares the convergence paths. Both the si-log and tanh

variants of our methods converge quickly. The tanh variant finds

an injection in merely 60 Adam-gradient steps. In contrast, TLC

with quasi-Newton (TLC+QN) fails to converge after 10
4
iterations,

suggesting that it can be a challenging objective to optimize. TLC

with projected Newton (TLC+PN) finds an injective map in 113

Newton steps but progresses slowly: After 28000 extra Newton

iterations, theMIPS energy is still much larger than ours. The pattern

of slow progress is similar to the case of Figure 12, inwhich TLCfinds

a suboptimal injection without spreading out distortion. Subsequent

quality improvement over their initial injections can be extremely

slow, or not possible [Du et al. 2022, Figure 7]. In contrast, our si-log

variant finds an injective map whose MIPS is an-order-of-magnitude

smaller in 190 iterations. We consistently observe similar patterns

on individual examples.

When evaluating our methods on the benchmark [Du et al. 2020],

we design the following strategy that efficiently finds injections

with low conformal distortion: Since our injection functional does

not explicitly optimize any conformal energy, first we run our si-log

variant for at most 1000 iterations, and in > 90% of the cases, an

injection is found in the given iterations. If not, rather than keep

running gradient descent, we run the other variant (tanh), which

often finds injections in much fewer iterations. Usually this indi-

cates that some extreme distortion level is necessary for obtaining

an injective map, and si-log has not necessarily slowed down the

convergence. We always stop when the first injection is found.

Using the strategy above, we are able to quickly find injections

with low distortion over the entire benchmark of [Du et al. 2020].

Figure 14 compares the distribution of MIPS energies over injective

maps produced by TLC and our mixed strategy. MIPS energies by

our method are significantly lower.

In sum, our method consistently yields better results than TLC

on all examples we conduct in the paper: Appendix §F.3 provides a

perspective, by equating injections as minimal surfaces.

[Du et al. 2020] Our method

Fig. 14. The distribution of MIPS energy over the dataset [Du et al. 2020].

As a minor difference, TLC energy admits injective maps in its

kernel only when the regularization weighting diminishes to zero. In

contrast, our functional accepts all injective maps as its minimizers.

10.2 Comparison with Barrier-type Methods
Barrier-type methods, e.g., [Schüller et al. 2013; Smith and Schaefer

2015] are frequently adopted in practice due to their simplicity

and generality. However, the per-element barrier term introduces

artificial stiffness and ill-conditioning. Most importantly, in our

setting with (hard) position constraints, barrier methods cannot be

applied since there is no feasible/injective initial map.

Table 2. A comparison of quality measured by the MIPS energy on the
shape-to-letter examples in Figure 10. Ours (si-log), without using any energy
explicitly, can have a largerMIPS energy than SBP [Garanzha et al. 2021]; but
surprisingly, there are exceptions (Lucy,Hand). In addition, our framework
allows explicitly introducing a small amount of MIPS to reduce the energy
value, as shown in the last column.

Example SBP Ours (si-log) Ours (tanh+MIPS)

Lucy-to-G 2.24 2.24 0.60

Lucy-to-S 2.37 1.82 0.511

Gargoyle-to-G 1.18 3.69 2.98

Bunny-to-R 0.350 1.45 0.372

David-to-A 0.088 0.512 0.0843

Hand-to-P 0.781 0.391 0.0910

Gargoyle-to-H 0.717 2.25 1.548

Methods using a soft barrier provide an important exception

avoiding many of these limitations: Coincidentally, the state-of-the-

art barrier method [Garanzha et al. 2021] employs a soft barrier

progression (SBP). SBP progressively sharpens the soft barrier to
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eventually resume infinity at 0, with a careful barrier scheduling.

SBP has to use a particular form of energy, (1 − 𝜃 )𝐸𝑀𝐼𝑃𝑆 + 𝜃𝐸𝑎 that

blends the Winslow functional 𝐸𝑀𝐼𝑃𝑆 and an area-preserving one

𝐸𝑎 ; they choose 𝜃 = 1/128 in the released code. The scale-invariant

part, Winslow functional, yields inverse harmonic maps with ex-

treme boundary scaling, so some amount of (scale-dependent) 𝐸𝑎
must be introduced to suppress the scaling in SBP.

Table 3. A comparison of timing (in seconds) on the shape-to-letter ex-
amples in Figure 10. Our methods are orders of magnitude faster on these
examples than SBP [Garanzha et al. 2021].

Example Ours (tanh) Ours (si-log) SBP

Lucy-to-G 3.13 9.48 928.7

Lucy-to-S 3.43 9.53 402.6

Gargoyle-to-G 2.34 6.91 219.5

Bunny-to-R 5.22 10.1 348.5

David-to-A 1.65 3.68 63.1

Hand-to-P 1.19 3.59 302.1

Gargoyle-to-H 1.42 5.85 336.3

Fig. 15

Figure 5 compares the typical convergence

path of SBP with ours: In general, SBP can take

orders-of-magnitude more gradient steps than

our method, and its convergence path can be

different from ours. The Lucy example shows a

typical convergence pattern of SBP: The major-

ity of the mesh is quickly restricted to the inte-

rior side of the boundary, and a cluster starts to

develop; there is a region with triangles densely

packed in the center. A large number of triangles—mainly those in

the center of clusters—are flipped, but they are too tiny to be visible.

See the zoom-in view in Figure 15 for a typical pattern of inversions

in SBP. Two “spikes” remain in the cluster at center, which only

become visible after zooming in. The cluster of triangles moves

upwards, and the flips are gradually resolved. The differences in

paths reflect distinct objectives: TLC and ours would favor confor-

mal/harmonic maps, while SBP favors inverse harmonic maps.

Indeed, SBP works in a regime complementary to ours: SBP must

use energies with infinite barriers, while we optimize energies with-

out infinite barriers, handling a distinct set of objectives. See details

in §11, where we show that our framework successfully produces

purely (quasi-)conformal bijections, or bijections with diverse ob-

jectives including area-preservation (Figures 10,23,21).

The timings of our method and [Garanzha et al. 2021] are reported

in Table 3 for the shape-to-letter examples. Figure 16 provides a com-

parison of timing on individual meshes over the entire dataset [Du

et al. 2020]. In both cases, our methods can achieve one to two or-

ders of magnitude speedup over [Garanzha et al. 2021] in wallclock

time.

Our reduction of computational cost may be evenmore significant

than the reported improvement in wallclock timing. Our methods

are implemented in MATLAB, running at only ∼ 10% CPU rate;

Garanzha et al. [2021] use an efficient C++ implementation with

OpenMP, running at 100% CPU rate. So, when running large-scale

Our method [Garanzha et al. 2021]

Fig. 16. The timing comparison between our method and Garanzha et al.
[2021]. Each dot corresponds to one mesh in the dataset. For our method,
most meshes are in the range of 0.01∼5 seconds, while for Garanzha et al.
[2021] the typical range is 1 ∼ 100 seconds. The scale of the figure is set
identical to that of [Du et al. 2022, Figure 6] for comparison purpose: Our
method is still more than an order of magnitude faster than [Du et al. 2022].

tests on a single workstation, our implementation can run multiple

instances simultaneously with little interference, allowing a further

∼ 10× speedup in the amortized sense. Future work may also im-

plement our method in more efficient languages or explore cheaper

inexact linear solvers for further acceleration.

10.3 Extra Validations
Point-type constraints. Our methods can handle interior point-

type constraints, by simply considering constrained interior vertices

as part of the boundary. Figure 11 gives an example, in which the

center point in a rectangular domain is displaced with the entire

boundary fixed. Note incorporating interior constraints inevitably

makes the domain nonconvex, a scenario for which our methods are

designed over Tutte’s embedding. In Figure 17, the positions of two

points are swapped and our method (si-log) succeeds in producing

an injective map.

However, when upsampling the mesh multiple times to a denser

one, the spikes around point constraints become more extreme,

and our method does slow down when it almost converges. Our

method (si-log) still finds an injective map when the mesh is as

large as 140 × 140, but fails to remove the inversions around the

point within given iterations, for the mesh grid 160 × 160. This is

not surprising, since elliptic PDEs are only well-defined for regional

boundaries: Likely bi-quasi-harmonic systems should be considered.

Alternatively, one can use small regional handles in lieu of point-

type constraints.

Boundaries preventing injectivity. Since there are cases when injec-

tivity inevitably fails, e.g., due to self-intersecting boundaries [Weber

and Zorin 2014], an advantage of our barrier-free approach is the

robustness under these cases. As shown in Figure 18, when the fixed

boundary does not allow an injective map to exist, ours remains

stable, while the barrier methods including Garanzha et al. [2021]

explode. In this cases, ours yields minimal surfaces.

A Comparison with IsoTLC [Du et al. 2022]. The Isometric TLC

(IsoTLC) [Du et al. 2022] supports different objectives from our

methods. As shown in Table 4, our method (si-log) always yields

smaller MIPS energies; however, ours can have much larger iso-

metric energies, measured by max(𝜎1, 1/𝜎2) as considered in Du

ACM Trans. Graph., Vol. 42, No. 4, Article 130. Publication date: August 2023.



Variational Quasi-Harmonic Maps for Computing Diffeomorphisms • 130:17

Restpose Deformed

Upsampled to 160x160 Zoomed-in view at the spike.
Fig. 17. Another example of point constraints. The positions of two vertices
on the rectangular domain are swapped, leading to an extreme level of
distortion. The injective map produced by our method is shown. However,
when upsampling the mesh to as large as 160× 160, there are two extremely
distorted spikes that our method fails to remove in given iterations.

Restpose Deformed

Fig. 18. Under positional constraints when an injective map does not exist,
our methods remain stable. Inverted triangles are marked in red.

Table 4. A comparison with IsoTLC [Du et al. 2022]

MIPS Isometric

Examples Ours IsoTLC Ours IsoTLC

Lucy-to-G 2.21 5.67 2.30e+08 6.74

Lucy-to-S 1.85 5.56 2.63e+08 6.31

Gargoyle-to-G 3.65 3.08 36.37 3.71

Bunny-to-R 1.48 2.76 139.1 1.91

David-to-A 0.433 1.62 5.71 0.853

Hand-to-P 0.387 4.27 797.5 2.77

Gargoyle-to-H 2.27 2.81 69.5 3.12

et al. [2022] (assuming 𝜎1 ≥ 𝜎2). This is expected since ours only

penalizes deviations from conformal maps and does allow scaling.

ARAP Area-Preserving Mass Spring
Fig. 19. Inversion-free maps via minimizing variant energies—blended with
A-weighted Dirichlet—in the space of quasi-harmonic maps.

Fig. 20. Collision avoidance by way of bijectivity: Cheeseman with multiple
holes is put in an hourglass. We optimize the ARAP energy, only over the
shape mesh (in blue). Our method, successfully ensuring bijective meshes
for the shape and air, allows a unified treatment of contact detection and
response. Note that the air mesh layer (in yellow) is subject to extreme
distortion, demanding exact and discrete injectivity.

11 APPLICATION: QUASI-HARMONIZATION FOR
OPTIMIZING WITHIN DIFFEOMORPHISMS

Next, we will show how to optimize a conventional energy while

restricting the shape within the space of diffeomorphisms. In the

optimal control problem (10), we can choose𝑅 = 𝐸 (𝑢, 𝑣) as an energy
derived in physics or geometry, providing a generic alternative to

constraining det(J( 𝑗 ) ) > 0,∀𝑗 .
Similar to variational harmonic maps [Ben-Chen et al. 2009],

which restrict to a linear space of harmonic maps, we restrict to

the nonlinear space of diffeomorphisms. Unlike harmonic maps, our

theoretical results show that this formulation is optimizing in the

full space of diffeomorphisms.

Precisely speaking, in this section we optimize𝑄 = 𝑉3+𝜂𝐸, where
𝑉3 is the weighted Dirichlet, 𝜂 = 10

−4
, and 𝐸 is a distortion energy.
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Fig. 21. Bijective parameterization produced by our methods with the boundary constrained to be a disk, though our method does support other nonconvex
boundaries. Row 1,4: Area-preserving. Row 2,5: Our method with si-log. Row 3,6: ARAP.

We always use the tanh parameterization for optimizing a given

energy, as the preference for conformality is no longer needed.

11.1 Inversion-Permitting Energies
Our framework is most valuable in optimizing an energy that does

not penalize inversions, such as ARAP, removing all flips immedi-

ately. Specifically, we test with the following energies.
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Fig. 22. Rest poses of meshes to be mapped to a planar domain. Red colors
indicate where the boundary is. Note the Cactus model has a bad triangula-
tion at the bottom that our method has no problem dealing with.

11.1.1 As-Rigid-As-Possible (ARAP) [Sorkine and Alexa 2007].

𝐸1 =
∑︁
𝑗

((𝜎1 − 1)2 + (𝜎2 − 1)2)m𝑗

Here and in our other energies, 𝜎1 ≥ 𝜎2 ≥ 0 are the singular values

of the Jacobian.

11.1.2 Area Preserving Energy.

𝐸2 =
∑︁
𝑗

m𝑗 (det J( 𝑗 ) − 1)2 =
∑︁
𝑗

m𝑗 (𝜎1𝜎2 − 1)2

Blending of𝐸2 with the regular Dirichlet energy yields a compression-

resistant Poisson membrane [Setaluri et al. 2015].

11.1.3 Mass Spring Energy.

𝐸3 =
∑︁
𝑒

(𝑙𝑒 − 𝑙0𝑒 )2

The mass spring energy measures the change of lengths 𝑙𝑒 for every

edge 𝑒 in the mesh, from its rest length 𝑙0𝑒 .

11.1.4 Conformal Energy. While we can simply set 𝐸 = 𝐸𝑀𝐼𝑃𝑆
to promote conformal maps, alternatively this can be achieved by

using a regularization term that only depends on A. The following
regularizer corresponds to the MIPS energy [Hormann and Greiner

2000] upon convergence:

𝑅1 (𝝃 ) =
∑︁
𝑗

m𝑗R(𝑟 (𝝃 𝑗 )), where (35)

R(𝜇) :=
(
1 − |𝜇 |
1 + |𝜇 | +

1 + |𝜇 |
1 − |𝜇 | − 2

)
= 4

(
1

1 − |𝜇 |2
− 1

)
. (36)

With the tanh variant that |𝜇 | = tanh |𝜉 |, by applying the hyperbolic
trigonometric identities we have that the R term becomes

R(𝑟 (𝜉)) = 4(cosh2 |𝜉 | − 1), (37)

where cosh is the hyperbolic cosine function.

Results. Figures 21, 23 demonstrate the results of optimizing the

energies above in our framework. In the experiment, the bound-

ary is normalized to match the area of the input surface. We see

the mass spring and ARAP usually produce similar results, while

the area-preserving energy leads to patterns very different from

other energies and/or quasi-conformal maps: The triangles are more

evenly distributed, rather than clustered at the center.

Our framework conveniently minimizes many energies that are

not supported by [Du et al. 2022; Garanzha et al. 2021]. While it

seems plausible that in [Garanzha et al. 2021] setting their 𝜆 to be

1 should lead to purely area-preserving maps, we found doing so

makes their code fail to converge; see Figure 24.

11.2 Application: Collision Avoidance with Air Meshes
Many practical applications can benefit from advances in bijective

mapping under extreme distortion, such as collision avoidance. By

choosing 𝐸 as the elasticity of the shape with zero weighting at the

“air mesh,” we are able to compute globally bijective maps that avoid

collision, following [Jiang et al. 2017; Müller et al. 2015].

As demonstrated in Figure 20, the “air mesh”marked in yellow can

undergo extreme distortion: Only methods with discrete bijectivity

can exactly prevent collision.

12 CONCLUSION AND FUTURE WORK
Contribution. In summary, we propose a framework to compute

injective maps under positional constraints with entire boundary

fixed. Our approach supports diverse objectives and can improve

over state-of-the-art methods by orders of magnitude in terms of

speed and map quality in challenging cases.

While existing methods are expensive to handle positional con-

straints, Tutte’s embedding and its generalized family are extremely

cheap to apply, with guaranteed bijections in many cases. Hence, our

methods efficiently search in the space of all generalized Tutte’s em-

beddings, yielding dramatic improvement over existing approaches.

The key to the success of our methods is to appropriately attribute

local inversions to variables with global influence, by differentiating

into the Dirichlet-to-Neumann operator and its inverse. By consid-

ering of a parametric family of Dirichlet energies, we successfully

avoid the vanishing gradient and non-smooth issues of the area

functional.

Limitations. Our approach—centered around a PDE-based char-

acterization of planar map injectivity—is limited to 2D. While quasi-

harmonicity with the Cauchy boundary condition is no longer suffi-

cient to guarantee injectivity due to the many possibilities of saddle

points in 3D, it is still a necessary condition, readily removing a

major pattern of inversions. For future, we plan to generalize our

approach to 3D by augmenting with an extra condition. We have

to rely on nonconvex optimization routines; after all, the positional

constraints might make the problem intrinsically nonconvex.

Future work. Our approach suggests many promising directions,

as we have mentioned throughout the paper.

Moving forward, we plan to optimize for the boundary positions

of the map together with the interior quasi-harmonicity, like the
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ARAP

Mass-
Spring

Area-
Preserving

Fig. 23. Injective maps produced in our framework by quasi-harmonizing inversion-permitting energies augmented with the weighted Dirichlet.

𝜃 = 1

128

𝜃 = 1: Area-
Preserving

𝜃 = 0: MIPS

Fig. 24. It is not clear how to obtain area-preserving maps in SBP [Garanzha et al. 2021]. Only using area-preserving energy (𝜃 = 1) in their framework fails to
produce injections except on the David-to-A example. Note the sharp triangles extruded from the mesh in SBP. Also, SBP has many sharp patterns, visually
very different from our area-preserving functional. Without blending with their area-preserving term (𝜃 = 0), the inverse harmonic map produced by SBP can
have extreme scaling and shearing at the boundary: It is not clear how SBP can obtain purely scale-invariant behaviors like harmonic/conformal maps.

free boundary setting [Du et al. 2021]. There are many works find-

ing maps within harmonic subspaces: We can use theirs as fast

initialization, and further enrich the map with quasi-harmonics.

Our continuous theoremwithout requiring detA(x) = 1 is largely

unexplored; we plan to fully unlock the capacity of our quasi-

harmonic framework. The extra factor can add scaling control to

quasi-conformal maps.

Incorporating ideas from computational mathematics and scien-

tific computing, we might attempt to derive provable guarantees

of our approach, including conditions when the program becomes

convex and the optimality of the Sobolev-type norms.

Extending to other applications, by interpreting our A as stiff-

ness or material property, we could possibly apply our solver to

computational design and inverse mechanics.
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A GENERALIZED LSCM

A.1 Discrete Area Form
Here we provide more details on Definition 15. The circular gradient

is counterclockwise on the outer boundary, and clockwise on the

inner boundary (if there is any). For 𝑖 → 𝑗 being a boundary edge,

we mean that 𝑖 → 𝑗 follows right-hand rule in the (only) adjacent

triangle: If boundary edge 𝑖 → 𝑗 is on the outline (outer boundary)

of the domain, it has to be counter-clockwise along the boundary;

otherwise 𝑖 → 𝑗 must be in a hole (inner boundary) of the domain

and clockwise.

Note u⊺Dv is also the signed area of the domain due to Green’s

Theorem, so is
1

2
(u+ iv)H (−iD) (u+ iv) = u⊺Dv, where (·)H denotes

the Hermitian conjugate. The matrix D can also be equivalently

written as:

D =
1

2

(Dℎ − D⊺
ℎ
),

where

Dℎ :=
∑︁
𝑗∈T

1{𝐹 𝑗,1,𝐹 𝑗,2 } + 1{𝐹 𝑗,2,𝐹 𝑗,3 } + 1{𝐹 𝑗,3,𝐹 𝑗,1 } ,

in which 1{𝑖, 𝑗 } ∈ R𝑛×𝑛 denotes the matrix that is 1 at the 𝑖, 𝑗-

th entry and zero elsewhere, and 𝐹 𝑗,1, 𝐹 𝑗,2, 𝐹 𝑗,3 are the indices of

vertices in the 𝑗-th triangle, in counter-clockwise order. To see where

the formula comes from, recall the area of the triangle (𝑥1, 𝑦1) →
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(𝑥2, 𝑦2) → (𝑥3, 𝑦3) is:

1

2

det

[
𝑥2 − 𝑥1 𝑦2 − 𝑦1
𝑥3 − 𝑥1 𝑦3 − 𝑦1

]
=

1

2


𝑥1
𝑥2
𝑥3


⊺ 

+1 −1
−1 +1
+1 −1



𝑦1
𝑦2
𝑦3


The equivalence of two ways writing down D can be seen by can-

celling out interior “half-edges” (directed edges). In the continuous

case, the equivalence is due to the Green’s Theorem.

A.2 Positive-definiteness of Generalized LSCM
The weighted Dirichlet subtracted from the complex-valued area

form, G⊺AG + iD, is still positive semi-definite:

Proposition A.1. If det

(
m−1
𝑗
A( 𝑗 )

)
≥ 1 and m−1

𝑗
A( 𝑗 ) ⪰ 0, we

have G⊺AG + iD ⪰ 0.

This has been well-known in the continuous case [Astala et al.

2008]. It generalizes LSCM [Lévy et al. 2002; Mullen et al. 2008] to

m−1
𝑗
A( 𝑗 ) ≠ I.

Proof. The signed area of 𝑗-th triangle is

m𝑗G( 𝑗 )u × G( 𝑗 )v =u⊺G⊺( 𝑗 )m𝑗

[
−1

1

]
G( 𝑗 )v

=
1

2

(u + iv)HG⊺( 𝑗 )m𝑗

[
i

−i

]
G( 𝑗 ) (u + iv)

and the 𝑗-th triangle’s contribution to the Dirichlet energy is

1

2

u⊺
(
G⊺( 𝑗 )A( 𝑗 )G( 𝑗 )

)
u + 1

2

v⊺
(
G⊺( 𝑗 )A( 𝑗 )G( 𝑗 )

)
v

=
1

2

(u + iv)H
(
G⊺( 𝑗 )A( 𝑗 )G( 𝑗 )

)
(u + iv) .

It suffices to show that

A( 𝑗 ) −m𝑗

[
i

−i

]
= m𝑗

[
(a00) 𝑗 (a01) 𝑗 − i

(a01) 𝑗 + i (a11) 𝑗

]
⪰ 0,

which can be verified by checking the determinant

det

[
(a00) 𝑗 (a01) 𝑗 − i

(a01) 𝑗 + i (a11) 𝑗

]
= det(m−1

𝑗 A( 𝑗 ) ) − 1 ≥ 0.

□

B BIJECTION⇒ {QUASI-HARMONIC} + {CAUCHY BC}
Now we will argue the “necessary” direction of Theorem 6.4, certi-

fying that our framework of quasi-harmonic maps does not limit

the modeling capacity at the discrete level.

B.1 Review: Linear Precision of Cotangent Laplacian
The linear reproducing property of the planar discrete Laplacian is

well known. See, e.g., [Wardetzky et al. 2007] and references therein.

Proposition B.1 (Laplacian: Linear Reproducing Property).

Consider a planar triangle mesh with the standard cotangent Laplacian

L = G⊺MG, where the diagonal matrix M := diag( [m;m]) repeats
the triangle areas twice. Denote the x, y ∈ R𝑛×1 as the 𝑥,𝑦 coordinates

of the vertices. We have the linear reproducing property:

S⊺L[x y] = [0 0]
R⊺L[x y] = [Cb𝑣 − Cb𝑢 ] .

(38)

Proposition B.1 is the origin of the idea of our proof: the rest pose

of a planar mesh is in the kernel of its Laplacian. It is also where the

Neumann boundary condition comes from: g𝑢 = +Cb𝑣, g𝑣 = −Cb𝑢 .

B.2 Discrete Completeness
The following shows that our model is capable to reproduce any

discrete map containing no foldover by pulling back and recon-

structing the cotangent Laplacian associated to the planar target

mesh, whose kernel admits the map (u, v).

Proposition B.2 (Realizability). Consider a target pose of the

same triangle mesh with the standard cotangent Laplacian L̂ = ĜM̂Ĝ
where M̂ := diag( [m̂; m̂]). The anisotropic Laplacian operator G⊺AG
on the source domain, under the constraint det

(
m−1
𝑗
A( 𝑗 )

)
= 1,∀𝑗 ,

is capable to reproduce any weak form Laplacian matrix L̂, as long
as m̂ > 0; namely, there exists a block-diagonal Â ⪰ 0 such that

L̂ = G⊺ÂG.

Proof. For each triangle 𝑗 , denote the gradients of hat functions

as ∇h( 𝑗,1) ,∇h( 𝑗,2) ,∇h( 𝑗,3) ∈ R2, respectively; similarly, denote the

gradients of hat functions for the deformed target triangle 𝑗 as

∇ ˆh( 𝑗,1) ,∇ ˆh( 𝑗,2) ,∇ ˆh( 𝑗,3) ∈ R2, respectively.
It suffices to show that for each triangle 𝑗 there exists Â( 𝑗 ) ∈ R2×2

such that
∇h⊺( 𝑗,1)
∇h⊺( 𝑗,2)
∇h⊺( 𝑗,3)

 Â( 𝑗 )


∇h⊺( 𝑗,1)
∇h⊺( 𝑗,2)
∇h⊺( 𝑗,3)


⊺

=


∇ ˆh⊺( 𝑗,1)
∇ ˆh⊺( 𝑗,2)
∇ ˆh⊺( 𝑗,3)

 m̂𝑗


∇ ˆh⊺( 𝑗,1)
∇ ˆh⊺( 𝑗,2)
∇ ˆh⊺( 𝑗,3)


⊺

.

Let

K̂( 𝑗 ) = m̂1/2
𝑗

[∇ ˆh( 𝑗,1)∇ ˆh( 𝑗,2) ] [∇h( 𝑗,1)∇h( 𝑗,2) ]−1 .

By noticing ∇h( 𝑗,1) + ∇h( 𝑗,2) + ∇h( 𝑗,3) = 0, as well as ∇ ˆh( 𝑗,1) +
∇ ˆh( 𝑗,2) + ∇ ˆh( 𝑗,3) = 0, by linearity we have

K̂( 𝑗 ) [∇h( 𝑗,1)∇h( 𝑗,2)∇h( 𝑗,3) ] = m̂1/2
𝑗

[∇ ˆh( 𝑗,1)∇ ˆh( 𝑗,2)∇ ˆh( 𝑗,3) ] .

So we have found such Â( 𝑗 ) = K̂⊺( 𝑗 ) K̂( 𝑗 ) ⪰ 0.

To derive Â( 𝑗 ) which is unique, we observe the following: in

triangle 𝑗 , edge vectors e( 𝑗,1) , e( 𝑗,2) , e( 𝑗,3) are transformed by J( 𝑗 ) ,
so their orthogonal vectors ∇h( 𝑗,1) ,∇h( 𝑗,2) ,∇h( 𝑗,3) with the recip-

rocal magnitude are transformed to ∇ ˆh( 𝑗,1)∇ ˆh( 𝑗,2)∇ ˆh( 𝑗,3) by J−⊺( 𝑗 ) .

So we have found the formula for Â( 𝑗 ) :

m−1
𝑗 Â( 𝑗 ) = det(J( 𝑗 ) ) [J

⊺
( 𝑗 ) J( 𝑗 ) ]

−1 . (39)

It is straightforward to verify

det

(
m−1
𝑗 Â( 𝑗 )

)
= 1.

Note we require m̂𝑗 ≥ 0 to construct our Â. □

Finally, by Proposition B.1 the map (u, v) can be recovered from

the kernel of L̂: Namely, it holds that

S⊺G⊺ÂG[u v] = [0 0]
R⊺G⊺ÂG[u v] = [g𝑢 g𝑣] ≡ [Cb𝑣,−Cb𝑢 ]

So we have the “only-if” part of Theorem 6.4 holds.
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Remark (Modeling Capacity). Proposition B.1 also holds for

planar triangle mesh with flips, if flipped triangles use negative areas.

Our choice requiring A( 𝑗 ) ≻ 0 desirably limits our model’s ability to

reproduce maps with inversions or zero-area triangles.

C BIJECTION⇐ {QUASI-HARMONIC} + {CAUCHY BC}
Let us prove the “sufficient” direction of Theorem 6.4. We will show

the Cauchy boundary condition assures the removal of flips that

quasi-harmonics may still have.

Our proof is based on two facts: 1) weighted Dirichlet and total

signed area tightly “sandwich” total unsigned area, and 2) the map

is free from flips if the total unsigned area equals the signed area.

C.1 Weighted Dirichlet Upper Bounds Area
Definition C.1. The total signed area is

A(u, v) :=
∑︁
𝑗∈T

m𝑗G( 𝑗 )u × G( 𝑗 )v

=
1

2

(u + iv)H (−iD) (u + iv) = u⊺Dv = b⊺𝑢Cb𝑣 .
(40)

The last equality has been discussed in §A.1.

Definition C.2. The total unsigned area is

U(u, v) :=
∑︁
𝑗∈T

m𝑗 ∥G( 𝑗 )u × G( 𝑗 )v∥.
(41)

Proposition C.3. Provided A ⪰ 0 such that det

(
m−1
𝑗
A( 𝑗 )

)
≥

1,∀𝑗 , we have
1

2

u⊺G⊺AGu + 1

2

v⊺G⊺AGv ≥ U(u, v) ≥ A(u, v) . (42)

Proof. We have the Jacobian for the 𝑗-th triangle denoted as:

J( 𝑗 ) = [G( 𝑗 )u G( 𝑗 )v]⊺ ∈ R2×2 .

For any 2 × 2 matrix, B =

[
𝑏11 𝑏12
𝑏21 𝑏22

]
, we have

detB ≤ |𝑏11𝑏22 − 𝑏12𝑏21 | ≤
1

2

(𝑏2
11

+ 𝑏2
12

+ 𝑏2
21

+ 𝑏2
22
) = 1

2

∥B∥2𝐹 .

Now we are ready to show that the A-weighted Dirichlet energy

upper bounds the total unsigned area:

1

2

u⊺G⊺AGu + 1

2

v⊺G⊺AGv =
∑︁
𝑗∈T

1

2

tr(J( 𝑗 )A( 𝑗 ) J
⊺
( 𝑗 ) )

=
∑︁
𝑗∈T

1

2

m𝑗 ∥
√︃
m−1
𝑗
A( 𝑗 ) J

⊺
( 𝑗 ) ∥

2

𝐹 ≥
∑︁
𝑗∈T

m𝑗

√︃
detm−1

𝑗
A( 𝑗 ) | det J( 𝑗 ) |

≥
∑︁
𝑗∈T

m𝑗 | det J( 𝑗 ) | ≡ U(u, v) ≥
∑︁
𝑗∈T

m𝑗 det J( 𝑗 ) ≡ A(u, v) .

□

C.2 A Simple Characterization of Bijections
Under the same setting of fixed boundary in Theorem 6.4, we have

Proposition C.4. The map (u, v) is (locally) injective if and only
if the total unsigned area equals to the total signed area, and that no

triangle degenerates.

The theorem is essentially a result of Xu et al. [2011]. The map

becomes homeomorphic/bijective when the conditions in Lipman

[2014] are met, including the boundary is free from self-intersection.

C.3 Completing the Proof of Discrete Theorem 6.4
Now we complete our proof of “sufficient” direction of Theorem 6.4,

by showing that the boundary condition (17) magically enforces

weighted Dirichlet arrives at its global minimum.

Proof. Provided A ≻ 0 such that det

(
m−1
𝑗
A( 𝑗 )

)
≥ 1,∀𝑗 , we

have (42) hold. When the Cauchy boundary condition—all of the

equations in (17)—holds, the Dirichlet energy reaches its lower

bound—total signed area—by checking:

u⊺G⊺AGu = u⊺S✘✘✘✘✘✘✿ 0

[S⊺G⊺AGu] + u⊺R︸︷︷︸
b⊺𝑢

R⊺G⊺AGu︸       ︷︷       ︸
g𝑢

= b⊺𝑢 g𝑢

v⊺G⊺AGv = v⊺S✘✘✘✘✘✘✿ 0

[S⊺G⊺AGv] + v⊺R︸︷︷︸
b⊺𝑣

R⊺G⊺AGv︸       ︷︷       ︸
g𝑣

= b⊺𝑣 g𝑣

1

2

u⊺G⊺AGu + 1

2

v⊺G⊺AGv =
1

2

(b⊺𝑢 g𝑢 + b⊺𝑣 g𝑣) ≡ A(u, v).
The weighted Dirichlet energy arriving at the global minimum

forces the “sandwiched” total unsigned area equal to the minimum

as well. By constraining A( 𝑗 ) ≻ 0 no triangle degenerates. By Propo-

sition C.4, we can conclude that the system (17) ensures that no

triangle has negative area. □

D A CHARACTERIZATION OF DIFFEOMORPHISMS
We expand the discussion on Theorem 5.2. A detailed proof is beyond

the scope of this paper, and we only sketch the argument.

The special case detA(x) = 1 follows a similar argument of the

discrete case using Dirichlet energies as a tight upper bound.

For the generic case that detA(x) = 1 may not hold, we have the

very recent result due to [Alessandrini and Nesi 2021].

Theorem D.1. [Alessandrini and Nesi 2021, Theorem 1.1] Assume

the source domain Ω = 𝐵 is a unit ball in R2, and consider a planar
domain Γ ⊂ R2 whose boundary 𝜕Γ is a simple closed curve. Assume

𝜙 = (𝑢, 𝑣) : Ω → Γ diffeomorphically maps 𝜕Ω onto 𝜕Γ. Given that

the entries of A(x) are sufficiently smooth and
1

𝐾
I ⪯ A(x) ⪯ 𝐾I for

some 𝐾 > 0, the generated map (𝑢, 𝑣) is a diffeomorphism of 𝐵 onto Γ̄
if and only if det[∇𝑢 ∇𝑣] > 0 everywhere on 𝜕𝐵.

We notice the boundary condition can be substituted:

Proposition D.2. Enforcing the Neumann boundary condition

n(x)⊺ [A(x)∇𝑢 (x), A(x)∇𝑣 (x)] = 𝑠 (x)n̂(x)⊺

where 𝑠 : 𝜕Ω → R+, 𝑠 (𝜕Ω) > 𝑆 for some 𝑆 > 0, is sufficient to

guarantee det[∇𝑢 (x) ∇𝑣 (x)] > 0.

Proof. Denote n, t as the normal, and tangent direction (by coun-

terclockwise 𝜋/2-rotation of the normal) at x. And n̂, t̂ are the normal

and tangent at 𝑢 (x), 𝑣 (x).[
𝜕𝑢
𝜕n

𝜕𝑢
𝜕t

𝜕𝑣
𝜕n

𝜕𝑣
𝜕t

]
=

[
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

]
[n t] = J[n t]
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The tangents t, t̂ are related by the Jacobian J: Jt = 𝑐 t̂ for 𝑐 > 0. The

Neumann condition

n⊺ [A∇𝑢 A∇𝑣] = n⊺AJ⊺ = 𝑓 n̂⊺

can be written as

n⊺ [n t]Ã[n t]⊺J⊺ = 𝑓 n̂⊺,

where

Ã := [n t]⊺A[n t] ⪰ 1

𝑘
I.

So, we have

[1 0]Ã[Jn 𝑐 t̂]⊺ = 𝑓 n̂⊺ .

Further multiplying both sides with n̂ from the right,

[1 0]Ã
[
(Jn)⊺n̂

0

]
= 𝑠 (x)n̂(x)⊺n̂(x) = 𝑠 (x) > 𝑆 > 0.

Since Ã11 > 0, we have (Jn)⊺n̂ > 0, and thus we conclude

det J = det( [Jn 𝑐 t̂]) > 0.

□

Remark. The condition on the source domain Ω = 𝐵 to be an

unit disk is not essential and can be relaxed. Uniformization allows

conformally pulling back the PDE on manifold onto the unit disk 𝐵.

E DETAILS ON THE POISSON FUNCTIONAL
In this section, we prove that minimizing the Poisson functional

(§7.3.2) leads to an injective map (assume it exists). Lacking an

intuitive interpretation, we conjecture that our Poisson functional

measures a total (weighted) Gaussian curvature for developability.

E.1 Gradient Formula
We first derive the gradient formula for the Poisson functional

(§7.3.2):

1

2

g⊺𝑢 R
⊺ (G⊺AG)†Rg𝑢 − 1

2

g⊺𝑢 b𝑢 .

Denote

p = −[G⊺AG]†Rg𝑢
such that

𝜕p
𝜕a

= −[G⊺AG]†G⊺sp(Gp) ∈ R𝑛×3𝑓 (43)

in which
𝜕p
𝜕a can derived by

const =[G⊺AG]p
0 =[G⊺AG]𝛿p + [G⊺𝛿AG]p

𝛿p = − [G⊺AG]†G⊺𝛿AGp

𝛿p = − [G⊺AG]†G⊺sp(Gp)flat(𝛿A) .

We have the gradient formula

d𝑉𝑢
4

da
=
1

2

[
𝜕p
𝜕a

]⊺
Rg𝑢 = −1

2

sp(Gp)⊺G[G⊺AG]†Rg𝑢

= − 1

2

sp(Gp)⊺Gp.
(44)

E.2 Minimizers of Poisson Functional are Injective Maps
Before the proof, we show a simple fact about SL(2,R) ∩S2+, namely:

For

A =

[
𝑎11 𝑎12
𝑎12 𝑎22

]
⪰ 0, detA = 𝑎11𝑎22 − 𝑎212 ≡ 1,

we have 0 = 𝛿 detA = 𝛿𝑎11𝑎22 + 𝑎11𝛿𝑎22 − 2𝑎12𝛿𝑎12, which implies,

𝛿A, a local infinitesimal derivation from A, must be orthogonal to

[∗A∗⊺]:
0 = 𝛿 detA = [∗A∗⊺] : 𝛿A.

Proposition E.1. Assume the boundary positions and mesh con-

nectivity allow a locally injective map to exist. In the space of A ⪰ 0

that det

(
m−1
𝑗
A( 𝑗 )

)
= 1,∀𝑗 , 𝑉4 has value 0 at its minimizers.

Proof. We have

p𝑢 = −[G⊺AG]†Rg𝑢 , p𝑣 = −[G⊺AG]†Rg𝑣 .

Denote

P( 𝑗 ) = [G( 𝑗 )p𝑢 ,G( 𝑗 )p𝑣]⊺ .

For a that minimizes𝑉4, the gradient
d𝑉𝑢

4

da + d𝑉 𝑣
4

da , when unfolded to a

2× 2 symmetric matrix, P⊺( 𝑗 )P( 𝑗 ) ∈ R
2×2, must be orthogonal to the

constraint det

(
m−1
𝑗
A( 𝑗 )

)
= 1. We have ∗A( 𝑗 )∗⊺ ∝ P⊺( 𝑗 )P( 𝑗 ) . So we

conclude that m−1
𝑗
A( 𝑗 ) = | det(P( 𝑗 ) | [P

⊺
( 𝑗 )P( 𝑗 ) ]

−1, which indicates

that p𝑢 , p𝑣,A satisfy

1

2

p⊺𝑢G
⊺AGp𝑢 + 1

2

p⊺𝑣 G
⊺AGp𝑣 = U(p𝑢 , p𝑣) = A(p𝑢 , p𝑣) .

So, 𝑉4 is minimized at 𝑉4 = 0. □

F OTHER DETAILS AND DISCUSSION

F.1 Performance and Implementation Details
Below, first we list a few common tricks to avoid pitfalls that might

invoke unnecessary computations. Many of them are not even a

concern if being implemented as per-element operations, but can

add extra overhead if being implemented as matrix operations.

Computation re-ordering and operation merging. span(·)⊺ fol-

lowed by sparse-matrix-vector multiplication can be replaced by

element-wise vector product. Thus, in our implementation we never

assemble the sparse matrix span(·). Specifically, for vectors

b =

[
b1
b2

]
, c =

[
c1
c2

]
∈ R2𝑓 ×1

we have

sp(b)⊺
[
c1
c2

]
=


diag(b1)
diag(b2) diag(b1)

diag(b2)


[
c1
c2

]
=


b1 ⊙ c1

b1 ⊙ c2 + b2 ⊙ c1
b2 ⊙ c2

 ,
where sp(b)⊺c ≡ sp(c)⊺b is the outer product of vector fields b and
c.
Matrix-matrix multiplication, except assembling the Laplacian

G⊺AG, can be completely avoided at runtime by cascading matrix-

vector multiplications. For example, SGu should be evaluated as

S(Gu), rather than (SG)u.
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Symbolic pre-factorization. The sub-block of the discrete anisotropic

Laplacian S⊺G⊺AGS has a fixed sparsity pattern. We symbolically

pre-factorize it once and reuse using SuiteSparse [Davis et al. 2015],

as is done by Wang and Solomon [2021].

Tensor differentiability. Relying on the auto-differentiation feature

of MATLAB, the parameterization 𝜉 → 𝜇 may have some issues

with differentiability at (0, 0) due to subtle numerical concerns. This

is not an issue in practice, since exact equality for floating numbers

are almost impossible. When initializing 𝜉 as (0, 0), we add a tiny

random number as a deviation to avoid the non-differentiable issue.

Thin triangle modification. When evaluating our method on the

bulk of dataset [Du et al. 2020], which is taken from [Liu et al. 2018]

and has many thin triangles, we apply the following modification:

We set any angle less than 𝜋/6 to be 𝜋/6, and normalize so that

angles in each triangle sums to 𝜋 . So the smallest angle in the mesh

would be larger than 𝜋/8. We then use this normalized reference

triangle to compute our G,m. The scale of the modified triangle

does not matter since it will cancel out.

Adam solver. For Adam, we use VectorAdam [Ling et al. 2022],

instead of the ordinary Adam. The only place they differ in our 2D

setting is that the factor to normalize a complex number comes from

the norm taken over the complex number, instead of separating the

real and imaginary parts and independently normalizing, which is

also a common practice in training complex-valued neural networks.

It makes our convergence trajectory exactly invariant to the choice

of per-triangle tangent spaces. However, in practice we usually

do not observe much difference, but we suspect that adversarially

choosing tangent spaces might make ordinary Adam bad.

F.2 A Newton Solver for Post-processing
Back to the discussion of the Newton solver in §9.2: Let the objective

𝑃 be the weighted Dirichlet energy: we use 𝑃 to emphasize that now

it is a function of the tuple (u, v, 𝝃 ). Again, we use the same 𝝃 → A
in §8 and have an unconstrained optimization problem.

min

u,v,𝝃
𝑃 (u, v, 𝝃 )

𝑃 (u, v, 𝝃 ) := 1

2

u⊺G⊺A(𝝃 )Gu + 1

2

v⊺G⊺A(𝝃 )Gv.
(45)

The gradient and Hessian can be derived:

𝜕𝑃

𝜕(u, v, 𝝃 ) =


G⊺AGu
G⊺AGv

𝜕a
𝜕𝝃

[
1

2
sp(Gu)⊺Gu + 1

2
sp(Gv)⊺Gv

]
𝜕2𝑃

𝜕(u, v, 𝝃 )2
=


G⊺AG 0 G⊺sp(Gu) 𝜕a

𝜕𝝃
⊺

0 G⊺AG G⊺sp(Gv) 𝜕a
𝜕𝝃
⊺

𝜕a
𝜕𝝃 sp(Gu)

⊺G 𝜕a
𝜕𝝃 sp(Gv)

⊺G H

 .
We have the following block diagonal matrix:

H =

[
H𝑢𝑢 H𝑢𝑣
H𝑢𝑣 H𝑣𝑣

]
in which H𝑢𝑢 ,H𝑢𝑣,H𝑣𝑣 are diagonal, which can be computed us-

ing the chain rule to find some second order derivatives. The per-

triangle computation for tensor parameterization can be done by

auto-differentiation. For example, we have

H𝑢𝑢 =
1

2

[diag (G𝑥u ⊙ G𝑥u + G𝑥v ⊙ G𝑥v)]diag
(
𝜕2a11
𝜕𝝃 2𝑢

)
+ [diag

(
G𝑥u ⊙ G𝑦u + G𝑥v ⊙ G𝑦v

)
]diag

(
𝜕2a12
𝜕𝝃 2𝑢

)
+ 1

2

[diag
(
G𝑦u ⊙ G𝑦u + G𝑦v ⊙ G𝑦v

)
]diag

(
𝜕2a22
𝜕𝝃 2𝑢

)
in which ⊙ denotes elementwise multiplication of two vectors, and

second derivatives
𝜕2a11
𝜕𝝃 2

𝑢

,
𝜕2a12
𝜕𝝃 2

𝑢

,
𝜕2a22
𝜕𝝃 2

𝑢

∈ R𝑓 ×1 can also be handled

by auto-differentiation. Similar formulas hold for H𝑢𝑣,H𝑣𝑣 . Finally
we apply a standard trust region method.

F.3 Finding Injections as Minimal Surfaces
Modern geometry suggests advantages of our core functional, the

weighted Dirichlet energy, over the area functional, i.e., total un-

signed area. A simple yet remarkable observation in [Xu et al. 2011]

can be stated equivalently: Injective maps are minimal surfaces.

However, in the mathematical literature of minimal surfaces, as

an object of study, (total unsigned) area became obsolete almost

immediately, replaced by the Dirichlet energy, which has nicer ana-

lytical properties. This modern approach to minimal surfaces dates

to the seminal work of Douglas and Radó [Douglas 1931]. It has

been argued that the area functional is not sufficiently coercive, i.e.,

it does not offer enough control over the map by admitting a huge

kernel [Colding and Minicozzi 2011]. The deficiency of nice ana-

lytical properties for area functionals directly transfers to practical

difficulties when working with total unsigned area: the vanishing

gradient and non-smoothness issues. Beyond the theoretical supe-

riority for mathematical analysis, we have demonstrate that com-

putationally (weighted) Dirichlet energy, is a better optimization

objective: weighted Dirichlet provides a tight upper bound of the

original objective—so the minimizers remain the same; it is smooth

and/or differentiable, much easier to optimize.

Our approach and TLC represent two ways to introduce coer-

civity: TLC adds a regularizer, lifting to a higher dimension and

measuring volume there, while we work within the A-parametric

family of Dirichlet energies.
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