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Variational Quasi-Harmonic Maps for Computing Diffeomorphisms

YU WANG, MINGHAO GUO, and JUSTIN SOLOMON, Massachusetts Institute of Technology, USA

Computation of injective (or inversion-free) maps is a key task in geometry
processing, physical simulation, and shape optimization. Despite being a
longstanding problem, it remains challenging due to its highly nonconvex
and combinatoric nature. We propose computation of variational quasi-
harmonic maps to obtain smooth inversion-free maps. Our work is built
on a key observation about inversion-free maps: A planar map is a diffeo-
morphism if and only if it is quasi-harmonic and satisfies a special Cauchy
boundary condition. We hence equate the inversion-free mapping problem
to an optimal control problem derived from our theoretical result, in which
we search in the space of parameters that define an elliptic PDE. We show
that this problem can be solved by minimizing within a family of functionals.
Similarly, our discretized functionals admit exactly injective maps as the
minimizers, empirically producing inversion-free discrete maps of triangle
meshes. We design efficient numerical procedures for our problem that pri-
oritize robust convergence paths. Experiments show that on challenging
examples our methods can achieve up to orders of magnitude improvement
over state-of-the-art, in terms of speed or quality. Moreover, we demonstrate
how to optimize a generic energy in our framework while restricting to
quasi-harmonic maps.
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tions.
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1 INTRODUCTION

Inversion-free mapping is a fundamental task in geometry pro-
cessing, scientific computing, computer graphics, and vision [Fu
et al. 2021]. For example, in physical simulation and shape optimiza-
tion, maps with inverted elements—and hence negative element
volumes—cannot be realized or manufactured; in texture mapping,
surface parameterizations must be injective to avoid content blend-
ing. Other applicable scenarios requiring maps to be inversion-free
include shape deformation, correspondence, collision avoidance
(§11.2), fabrication, design, and mesh quality improvement.

The inversion-free mapping problem goes by many names. The
goal typically is to compute a map, parameterization, shape, or de-
formation that is inversion-free, injective, bijective, foldover/flip-free,
orientation-preserving, and/or diffeomorphic/homeomorphic. Subtle
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nuances shade the differences between these nearly-identical in-
stances, as discussed in §4.

Barrier-type methods and variants of Tutte’s embedding algo-
rithm comprise two major approaches to the inversion-free mapping
problem. Barrier-type methods suffer from numerical instability and
slow progress on extreme examples (§10), and Tutte’s embedding is
limited to mappings onto convex domains (§5).

As an alternative to these strategies, we present a fast and ro-
bust method for injective surface mapping by extending Tutte’s
embedding to nonconvex domains. Our approach relies on a global
condition for map injectivity, eliminating the need for inversion-
preventing line search, which yields larger step sizes that are pro-
hibited in barrier and/or interior point methods. Our method can
be understood as optimizing a differentiable variant of Tutte’s em-
bedding algorithm, searching for edge weights that will produce
inversion-free mappings onto nonconvex domains. Our approach
extends recent advances in computing skinning weights [Wang and
Solomon 2021], built on the strong interplay between map topology,
partial differential equations, global/conformal geometry, and geo-
metric graph theory. Empirically, our method passes a challenging
dataset for inversion-free maps [Du et al. 2020], joining relatively
few works [Du et al. 2020; Garanzha et al. 2021] and achieving
significant improvements on challenging examples.

Contributions. Contributions of our paper include:

e We propose a necessary and sufficient condition for a smooth
map to be diffeomorphic, which equates mapping to the optimal
control of PDEs to satisfy a Cauchy condition (§5).

e We discretize our model in a fashion that yields a necessary and
sufficient characterization of discrete injectivity (§6).

o We propose efficient numerical schemes for solving inverse prob-
lems with the Cauchy condition (§7) using a tensor parameteriza-
tion prioritizing robust convergence paths (§8).

o We demonstrate quasi-harmonization of deformation energies,
enabling the optimization of generic energies within the space of
quasi-harmonics (§7,§11).

e We propose injectivity-promoting functionals such as a paramet-
ric family of Poisson functionals and Dirichlet energies (§7).

2 RELATED WORK

Inversion-free mapping is an active field drawing interdisciplinary
attention in physical simulation, geometry processing, and scientific
computing.

Barrier-type methods. Barrier methods (and interior point meth-
ods) traverse the interior of the feasible region. Barrier-type methods
are popular in graphics for injective mapping. For example, Schiiller
et al. [2013] use a log determinant barrier term for this task. Liu
et al. [2016] solve a sequence of convex programs that minimize a
quadratic elastic energy while staying in the feasible region. Smith
and Schaefer [2015] design a line search method, deriving the maxi-
mal step size such that no flip will be introduced. Their line search
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Fig. 1. Mapping the “Lucy” shape, with boundary marked in the red color,
onto the nonconvex domain of letter G. Our method (tanh) minimizing a
A-Dirichlet energy using Adam finds an inversion-free map within tens of
gradient steps. Despite being naively implemented in MATLAB, ours finds
an injective map in merely 3.1 seconds at ~10% CPU rate. In contrast, the
state-of-the-art Garanzha et al. [2021] using C++ and OpenMP, even at
100% CPU rate, is 300X slower in wallclock time than ours on this example.
See also Figure 5.

[Du et al. 2020]

Ours (si-log)

0 10 2 3 4 s 6 70 8 9% 10 ) 10 20 3 40 5 60 70 8 9 100

Eamips = 22.28
mean = 24.9, max = 1124.1

Emrps = 2.27
mean = 3.63, max = 48.45

Fig. 2. Our method (si-log) finds an injective map whose MIPS energy is an
order of magnitude smaller than [Du et al. 2020]. Our method (si-log), even
without explicitly using any conformal energy, leads to smaller conformal
distortion by any metric: Plots compare distributions of the ratio of singular
values 01/03 > 1. Our method finds an injective map with very low energy
in 190 Adam-gradient steps, while even after 28000 iterations TLC+PN has
an energy much larger than ours. See also Figure 5.

has been widely adopted, e.g. in [Claici et al. 2017; Fang et al. 2021;
Shtengel et al. 2017].
Some methods allow infeasible points either as the initialization

or as an intermediate state. As a recent example, Garanzha et al.

[2021] introduce a progressive method to optimize their energy with
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a barrier scheduling procedure. See §10.2 for detailed discussion and
comparison.

Many energies prevent inversions by exploding when the Jaco-
bian approaches zero. Some examples include the symmetric Dirich-
let energy [Schreiner et al. 2004; Smith and Schaefer 2015] and (many
variants of) the Neo-Hookean energy. The MIPS energy [Hormann
and Greiner 2000], often known as the Winslow functional outside
graphics, standalone may not penalize inversions but can be used
in barrier methods [Garanzha et al. 2021].

Fast solvers. Energy-based methods directly benefit from the ad-
vancement of general-purpose fast solvers and preconditioners for
mapping and deformation [Claici et al. 2017; Kovalsky et al. 2016;
Liu et al. 2017; Shtengel et al. 2017; Zhu et al. 2018].

Some solvers leverage specific structures in the energy. Scalable
Locally Injective Mapping (SLIM) [Rabinovich et al. 2017] general-
izes the local-global as-rigid-as-possible (ARAP) solver [Liu et al.
2008; Sorkine and Alexa 2007] to work on the symmetric Dirichlet
energy by employing spatially-varying reweighting. Their weight-
ing is a scalar field (isotropic), less general than our anisotropic
weights. Brown and Narain [2021] advance in this direction by dy-
namically reweighting a Laplacian matrix using weights obtained
from singular values of per-element Hessian; Stein et al. [2022]
propose a splitting scheme based on alternating direction method
of multipliers (ADMM). Fu et al. [2015] propose an inexact block
coordinate descent method.

Harmonic maps. Tutte’s embedding [Floater 2003a; Tutte 1963]
finds interior node positions by solving a sparse Laplacian system,
with a guarantee of injectivity when mapping into a planar domain
with a convex boundary. It appears in the pipelines of many methods,
often as an initializer for a nonlinear mapping procedure, e.g., [Ra-
binovich et al. 2017; Shen et al. 2019]. Outside the limited setting of
mapping onto convex domains, harmonic maps can be non-injective.
Quasi-harmonic maps have been considered for surface parameter-
ization [Yoshizawa et al. 2004; Zayer et al. 2005]; these works do
not consider the boundary conditions articulated in our paper and
hence can fail injectivity similarly to generic harmonic maps.

Variational harmonic maps (VHM) [Ben-Chen et al. 2009] oper-
ate in the (linear) space of harmonic functions using a boundary
integral representation. Deformations in this space are not necessar-
ily injective, unless additional conditions are enforced [Chen and
Weber 2017; Fargion and Weber 2022; Liao et al. 2021]. Regardless,
optimizing in the space of harmonic maps excludes many viable
options for the injective mapping problem.

As anatural idea, the source and target shapes can be mapped onto
the same domain via harmonic maps ¢, ¢, respectively, constructing
the final map as the composition =1 o ¢ [Weber and Zorin 2014].
Inverse harmonic maps also appear as the minimizer of the MIPS
energy [Garanzha et al. 2021], when restricted to injective maps.

Conformal and extremal quasi-conformal maps. Conformal maps—
those preserve angles—provide another source of injective maps
widely used in parameterization and texture mapping [Ben-Chen
et al. 2008; Lévy et al. 2002; Mullen et al. 2008; Sawhney and Crane
2017; Springborn et al. 2008]. Conformal maps, however, no longer
exist under generic positional constraints, suggesting the use of
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Fig. 3. Discrete harmonic mappings with cotangent weights, a.k.a. Tutte’s embeddings, fail to produce injective maps onto nonconvex boundaries. Inverted
triangles are marked in red. Shapes are from [Du et al. 2020; Weber and Zorin 2014]. Note (quasi) harmonic maps generally admit inversions at the concave
corners of the boundary. Our method (si-log) searches for an anisotropic Laplacian under which quasi-harmonic mapping becomes injective. Similar to the
case of harmonic maps, enforcing quasi-harmonicity also “pushes” inversions onto the boundary, so that we only need to detect and resolve inversions at the

the boundary.

an extremal quasi-conformal map—the map with least global angle
distortion [Weber et al. 2012]. Despite being bijective in the smooth
setting, without remeshing these maps can lack discrete injectivity.

Lipman et al. [2012] derive closed-form formulas for extremal
quasi-conformal planar deformations determined by four control
points. Weber et al. [2012] compute extremal quasi-conformal maps
by minimizing violation of the Beltrami equation via least-squares,
alternatively optimizing the map, Beltrami coefficients, and a dilata-
tion scalar that measures the global angular distortion. Following
this direction, Teichmiiller-mapping surface registration [Lui et al.
2014] and an ADMM-based splitting method [Lui and Ng 2015] have
been proposed for similar formulations.

Total unsigned area. With a fixed boundary map, the total un-
signed area (TUA) provides another energy term for promoting
injectivity [Xu et al. 2011]. Recently, Du et al. [2020] propose Total
Lifted Content (TLC) to regularize TUA, making it more robust to
optimize with a customized Newton-type solver. Du et al. [2022]
propose another variant, the Isometric TLC (IsoTLC), for recovering
an injective map that minimizes isometric distortion rather than
conformal distortion.

Global injectivity. Achieving global injectivity is often regarded
as a related but somewhat different problem, since overlap or col-
lision detection between each pair of boundary elements becomes
necessary. Smooth Excess Area (SEA) extends TLC to free-boundary
optimization for global injectivity, minimizing a smooth version of
overlapping area [Du et al. 2021]. Tessellating the space between ob-
jects prevents inversions of an “air-mesh” [Jiang et al. 2017; Miiller
et al. 2015], providing a means of linking local and global injectivity
(§11.2). Fang et al. [2021] put barrier energies on distances to prevent
intersections.

Other ideas. Aigerman and Lipman [2013]; Kovalsky et al. [2014];
Lipman [2012] optimize in the space of orientation-preserving maps
with bounded distortion. Levi and Weber [2016] show a convex
characterization of the space of locally injective harmonic mappings
with bounded distortion. Rather than working with vertex positions,

Chen et al. [2013]; Chien et al. [2016] optimize in the space of metrics
(edge lengths).

Another condition for map injectivity is that the Gaussian curva-
ture of the target surface should always be zero, i.e. the image of
the map should be developable. Discretely, this condition requires
the adjacent angles to each interior vertex to sum to 2,7, motivating
Angle-Based Flattening (ABF) [Sheffer and de Sturler 2001; Sheffer
et al. 2005].

Liu et al. [2018] compute a progressive sequence of bounded
distortion maps using distortion energies defined on intermediate
reference triangles.

Addressing a problem in a different setting, there are also methods
remeshing the domain for injectivity [Campen et al. 2021; Gillespie
et al. 2021; Gu et al. 2018; Shen et al. 2019; Weber and Zorin 2014].

Inverse problems and optimal control. Inverse problems find a PDE
that reproduces given solution(s) [Isakov 2017; Kirsch 2011], includ-
ing the distributed parameter identification problem [Richter 1981],
with applications to electrical impedance tomography (EIT). Opti-
mal control is a more general setup that measures the solution using
some functional instead [Troltzsch 2010; Wang and Solomon 2021].
Methods relevant to ours include the output least square method
(OLS) directly measuring errors in the space of solutions [Frind and
Pinder 1973] and the equation error method penalizing the viola-
tion of constraints [Acar 1993]. The Sobolev norms have been used
to measure the residual [Hinze and Quyen 2016; Ito and Kunisch
1990].

3 KEY IDEAS

Our methods rely on a particular characterization of the space of
inversion-free maps. Generalizing the notion of harmonic maps and
following Wang and Solomon [2021], we optimize in the space of
quasi-harmonic maps, the family of maps wherein each interior point
is positioned at a weighted average of its neighbors’ positions. The
weighting factors together with the boundary determine positions
of the interior points.
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The family of quasi-harmonic maps provides a rich space of
maps including all inversion-free maps. In particular, as we will
derive in §5.2, a map is diffeomorphic/injective if and only if it is
quasi-harmonic and satisfies a particular Cauchy boundary condition,
which is a coupled pair of simultaneous Dirichlet and Neumann
boundary conditions (BCs). Schematically, we show

Injectivity = {Quasi-harmonic} + {Dirichlet & Neumann BCs}.

Based on this theoretical result, we formulate mapping as an op-
timal control (or inverse PDE) problem, searching in the space of
elliptic operators for one whose associated map satisfies both Dirich-
let and Neumann conditions. Our variable is a spatially-varying
anisotropy field, and the Neumann boundary condition involves the
anisotropic co-normal derivative. Our algorithm maintains quasi-
harmonicity with Dirichlet boundary conditions exactly, while mini-
mizing violation of the Neumann boundary conditions. This strategy
“pushes” inversions onto the boundary: Detecting and resolving in-
versions at the boundary then yields inversion-free maps.

We enforce boundary conditions via a few functionals, such as
the anisotropic Dirichlet energy and the Poisson functional. Their
minimizers are provably inversion-free assuming an inversion-free
map exists, both in the continuous and discrete cases (see §5,§6).
Through a careful parameterization, we optimize these functionals
via an unconstrained problem on which simple gradient descent
methods like Adam or L-BFGS are very efficient.

Fig. 4. A stress test that our method passes. We rotate the inner rectangle
by 7, setting the inner and outer rectangles as positional constraints. A
bijective mapping will inevitably undergo an extreme amount of distortion.
The zoom-in views show that the triangles become very thin: Successful
maps must avoid “geometric locking” that possibly prevent any solution,
which is not a concern in the smooth setting. This example suggests that the
injective mapping problem can have more of a combinatoric nature rather
than mimicking behaviors of smooth PDEs.

A key challenge is to propose injectivity-promoting functionals
that, after discretization, still yield exact injectivity. For example,
Figures 3 and 4 illustrate that under coarse meshing or extreme
distortions, injective mapping becomes combinatoric; in this regime,
methods that hold asymptotically in the smooth limit may not work
in practice. In §6, we show that our model also works in the discrete
setting.

4 MATHEMATICAL PRELIMINARIES
4.1 Basic Definitions

In this paper, we consider mapping from a source domain Q, a two

dimensional manifold with boundary 9, to a target T' C R?, i.e.
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¢:Q->T:x=(xy) - ¢(x) = (u(x),v(x)). The Jacobian (or,
deformation gradient) of ¢ is

ou  ou
J(x) = [3’; Wl=[Vux Vox]T.
ox 9y

The map is called “injective” if distinct points on the source do-
main are mapped to distinct points on the target. The map is called
inversion-free, flip-free, or orientation-preserving if detJ(x) > 0
everywhere. These concepts are closely related and often become
equivalent.

We consider continuous maps, which prevent fracture or tearing.
Discretely, like many existing works, we choose to keep the mesh
triangulation unchanged.

In the smooth setting, we work with diffeomorphisms—or dif-
ferentiable maps with differentiable inverses—as a result of our
PDE-based characterization. In the discrete case, despite often being
referred to as bijective mapping in graphics, in reality we are com-
puting homeomorphisms, which relax differentiability to continuity,
thanks to the use of triangulations.

Restricting to diffeomorphisms does not practically limit the ca-
pacity of our model. Indeed, our discrete model can represent any
inversion-free map of a triangle mesh (Theorem 6.3). Moreover, just
like a continuous function can be approximated by smooth func-
tions, Iwaniec et al. [2012] prove that any planar homeomorphism
can be arbitrarily closely approximated by diffeomorphisms.

4.2 Elliptic PDEs and Quasi-harmonic Functions

We briefly review notions from elliptic PDE. In our discussion, the
domain Q can be a curved surface or even a Riemannian manifold
equipped with a non-Euclidean metric, in which case the gradi-
ent V will be understood as the intrinsic gradient and tensor field
A(-) will operate on the tangent space. See [Evans 1998; Gilbarg
and Trudinger 2015; Taylor 2010] for general discussion of elliptic
PDE and [Wang and Solomon 2019] for an accessible introduction
including discussion of discretization.

We begin by defining our basic object of study:

Definition 4.1 (Quasi-harmonic map). We say a map (u,0) is
quasi-harmonic, or, A(x)-harmonic if u(x), v(x) satisfy the PDEs

V- [Ax)Vu(x)] =0 and V-[A(x)Vu(x)] =0 (1)
for some positive definite tensor field A(+) : Q — R?*? and K > 0:
a1 (x) az(x)
a2(x)  azz(x)

In this definition, the PDE is both inhomogeneous (A(x) can differ
from point to point) and anisotropic (directionally-dependent).

On a Riemannian manifold with metric g, the Laplace-Beltrami
(Laplacian) operator is defined as:

1 iy
Avy=Vas - Vo= —m— D o ( | detglg”a'), (3
M MM /| detg| ,Zjl ' !

A(x) =

1
and EI < A(x) <KL (2)

R2%2 is the metric tensor and (¢'/) = (g_l)ij is the in-

where g;; €
verse metric. In this formula, /] det g|g~! has determinant 1, hinting
to restrict det A(x) = 1 in our model later.

Boundary conditions must be specified for elliptic PDEs to deter-

mine a solution, such as the Dirichlet conditions:



Definition 4.2 (Dirichlet condition). For b : 9Q — R, we say w(-)
is quasi-harmonic with the Dirichlet boundary condition if

V- [A(x)Vw(x)] =0,
w(x) = b(x),

Vx € Q\aQ

Vx € 0Q2. @)

We say w(-) is the A(x)-harmonic (quasi-harmonic) extension of
b into the interior. The PDE (strong form) in (4) is equivalent to the
variational problem (weak form) in (5)

min,,,(. Vw(x) TA(x)Vw(x)
) Ja

st. w(x)=b(x) Vxe Q. ®)

The theory of linear elliptic PDEs implies that the tensor function
A(+) and Dirichlet boundary data b(-) uniquely determine the solu-
tion w(+). Thus, we can define the coefficient-to-solution operator:

F A b() P w().
Another common boundary condition is the Neumann one:

Definition 4.3 (Neumann condition). For g : 90Q — R : faQ g=0,
We say w(-) is quasi-harmonic with the Neumann condition if

V- [A(x)Vw(x)] =0, Vx € Q\9Q

n(x) TA(x)Vw(x) = g(x), Vx € 9Q. ©

The Neumann boundary condition/operator is in the form of
the co-normal derivative n(x)T A(x)V, which corresponds to the
natural boundary condition resulted from minimizing the anisotropic
Dirichlet energy in (5) without boundary conditions.

If the w(+) in (5) and (6) are the same, the map from b(-) to g(-)
is the Dirichlet-to-Neumann operator (DtN) or Poincaré-Steklov op-
erator; see [Gao et al. 2014; Sawhney and Crane 2017; Wang et al.
2018] for applications. For a prescribed tensor field A(-), one has
to choose either the Dirichlet or Neumann boundary condition, but
not both simultaneously, since the Dirichlet data determine the Neu-
mann data uniquely via the DtN operator. The reverse is also true:
the Neumann data uniquely determine the Dirichlet data up to a
constant via the Neumann-to-Dirichlet operator (NtD).

5 QUASI-HARMONIC MAPPING

We first introduce our forward model based on the notion of quasi-
harmonic maps, which, intuitively, describe the equilibrium state
of an elastic membrane with anisotropic elasticity specified by a
tensor field A(-). As a result, each interior point x is positioned at
the A(x)-weighted average of its neighbors’ positions. This model
is versatile: Any inversion-free map is quasi-harmonic, i.e., the
equilibrium state for some tensor field A(-). In addition, existence of
A(x) conveniently provides a global condition to certify injectivity.

5.1 Forward Model with Fixed Boundary Maps

Let us consider a map whose entire boundary is subject to some
positional constraints. Precisely speaking, we propose to represent
a map (u,v) as the solution to an elliptic PDE with the Dirichlet
boundary condition, parameterized by a tensor field A(-):

Definition 5.1 (Quasi-harmonic map with fixed boundary). Given a
positive field A(x) : Q — R?*? and boundary coordinate functions

Variational Quasi-Harmonic Maps for Computing Diffeomorphisms « 130:5

by (%), by(x) : 9Q — R?, we consider the map (u, v) satisfying:
V- [AX)Vu(x)] =0, V-[AX)Vo(x)] =0, Vxe Q\oQ
u(x) = bu(x), 0v(x) = by(x), Vx € 9Q.

Quasi-harmonic maps provide a rich parametric family of maps:
As we will see, the quasi-harmonic family of maps includes all
inversion-free maps. The tensor field A(-) together with the bound-
ary map by, (+), by(-) can be thought of as a surrogate representation
of the map (u, v).

The celebrated Rad6-Kneser-Choquet (RKC) Theorem [Choquet
1945; Kneser 1926; Rado 1926] proves that harmonic maps onto
convex regions are diffeomorphic; see [Duren 2004] for discussion.
That is, for A(x) = Izx2, the map (u,0) in (7) is diffeomorphic. In
fact, the map (u, v) is diffeomorphic even if A(x) # Iz, as long as
the target domain (by, by) is convex [Alessandrini and Nesi 2001].

In practice, convexity of the target domain is undesirable, as it
often yields large distortions in the computed map. In addition,
wherever the user imposes positional constraints in the interior also
becomes part of the boundary, easily breaking the convex boundary
requirement. Hence, we derive a condition characterizing when
maps onto potentially nonconvex regions are inversion-free.

™)

5.2 Main Theory on Diffeomorphic Maps

Now we state the main theory, a necessary and sufficient condition
determining when a map is a diffeomorphism onto a nonconvex
domain. We only present key features and conclusions of the the-
ory; details are provided in the Appendix §D. While we rely on
recent progress in the PDE theory of maps [Alessandrini and Nesi
2021], our contribution is to identify the “if-and-only-if” nature of
the condition and to convert it to a form involving natural bound-
ary conditions for the elliptic PDE; this form suggests the optimal
control problem proposed in §5.3.

With extra conditions on the boundary, map injectivity onto a
nonconvex domain can be established:

THEOREM 5.2 (MAIN RESULT: CONTINUOUS VERSION). Suppose Q
is a two-dimensional Riemannian manifold with disk topology, and
consider a planar domain T C R? whose boundary T is a simple
closed curve. Assume ¢ = (u,v) : Q — T diffeomorphically maps 9Q
onto L. Denote the (given) boundary map as [by, by](+) : 9Q — R?,
and denote the outward normal to aT asfi(-) : 9Q — S'.

Then, ¢ = (u,v) is a diffeomorphism if and only if there exist (1) a
positive definite tensor field A(-) satisfying %I < A(x) < KI for some
K > 0 and (2) a positive function s : 9Q — R that s(x) > S for some
S > 0, such that ¢ is A(x)-harmonic with a special Cauchy boundary
condition, i.e.:

V- [Ax)Vu(x)] =0 Vx € Q\oQ
V- [A(x)Vo(x)] =0 Vx € Q\oQ
u(x) = by (x) Vx € 9Q (3)
v(x) = by(x) Vx € 0Q
n(x)T [A(X)Vu(x) A(X)Vv(x)] =s(x)n(x)T Vx € 9Q.
Optionally, we can additionally assume
det A(x) =1 VxeQ
{s(x)ﬁ(x)T =[L2by(x) -Zbu(x)] VxeaQ. ©)
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Appendix §D provides proof and discussion of Theorem 5.2.

Intuitively, the theorem arises from two premises:

(1) the tensor field A(-) allows us to “reproduce” the Laplace-Beltrami
operator of any target domain induced by a diffeomorphism;
(2) in the reverse direction, our boundary conditions ensure the
map is orientation-preserving at the boundary.
The extra degrees of freedom in choosing a tensor field A(-) make
it possible to specify Cauchy boundary conditions, namely enforc-
ing both Dirichlet and Neumann boundary conditions. This is not
possible for fixed A(-). Cauchy boundary conditions should not
be confused with Zaremba (or Robin) boundary conditions, which
specify either Dirichlet or Neumann conditions (or their linear com-
bination) at each point, but not both.

The extra condition (9) does not limit the representation capac-
ity of our model. In this case, the formula (3) suggests that A(-)
can serve the role of the term +/| detg|g~!: Then A(x) encodes
/I detglg~?, the pull-back metric induced by the map up to scaling,
or, the conformal structure. But note this is only the case for our
method upon convergence.

5.3 Mapping via Optimal Control

System (8) provides a PDE-based characterization of the space of
inversion-free maps. It suggests using an inverse problem formula-
tion to optimize for a high-quality diffeomorphism. As the starting
point, we copy-paste (8) as the constraint, arriving at an optimal
control problem:

ming ,, R(u,0,A)

st. V-[A(x)Vu(x)] =0 Vx € Q\oQ
V- [A(x)Vo(x)] =0 Vx € Q\o9Q
u(x) = by (x) Vx € 9Q
o(x) = by(x) Vx € 0Q (10)
n(x)TA(x)Vu(x) = gu(x) Vx € Q
n(x)TAx)Vo(x) = g»(x) Vx € 9Q
A(x) =0 Vx € Q
detA(x) =1 Vx € Q.

Here, the objective R(-) is some energy or regularizer used to select

among different non-inverting maps. As we are primarily inter-

ested in the feasibility problem, R(-) can even be 0, which is the

default choice throughout the paper unless specified otherwise.

More broadly, R(-) can be any of the following

e Zero as the default choice, which solves the feasibility problem
and will accept any inversion-free map (§7).

o A deformation energy R = E(u,v) based on physics or geometry,
e.g., ARAP (§11.1).

o A regularization term, e.g., what measures coND(A) and (upon

convergence) corresponds to a conformal energy like MIPS (§11.1.4).

6 DISCRETIZATION WITH EXACT INJECTIVITY

To convert our theory to a practical algorithm, we introduce a
discretization such that an analog of Theorem 5.2 holds, namely
Theorem 6.4 below.
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6.1 Motivation and Challenge

A(x)-harmonic functions enjoy the mean value property: the value
at each point x equals to the A(x)-weighted average of its neighbors’
values. This notion naturally transfers to a graph/mesh with edge
weights w, by viewing the triangular mesh as a graph: We consider
functions such that the value at each vertex/node i equals the w-
weighted average of its adjacent vertices’ values.

Analogous results hold for this discrete notion of harmonicity:
Akin to the RKC Theorem, Tutte’s Embedding Theorem asserts
that a discrete mapping computed using this procedure is injective,
when the target is a convex polygon and the edge weights are
positive [Floater 2003a; Gortler et al. 2006; Tutte 1963].

In Tutte’s embedding, ensuring symmetric positive edge weights
greatly limits the representation capacity of the model [Wardetzky
etal. 2007, Figure 1]. A discrete maximum principle is even harder to
ensure for triangular meshes with arbitrary anisotropy, so negative
weights are inevitable. Instead of relying on Tutte’s embedding
theorem, we put constraints on edge weights—possibly negative—
to ensure injectivity, including the case of a nonconvex boundary
where Tutte’s embedding fails even with positive weights.

REMARK. In general, Tutte’s embedding does allow for asymmetric
edge weights, but we leave development of a variant of our approach
with asymmetric but positive weights for future work. For example,
in discrete computational geometry, the geodesic triangulation [Luo
2022] uses directed graph Laplacian with asymmetric weights, such
as the mean-value Laplacian [Floater 2003b]. Gortler et al. [2006]
consider when Tutte’s embeddings with asymmetric weights onto non-
convex domains are injective, and Kovalsky et al. [2020] derive a conic
condition for that.

6.2 Discretization using Piecewise Linear FEM

Our approach to discretize the anisotropic Laplacian V - [A(x)V]
is a straightforward application of the piecewise linear finite el-
ement method (FEM), an intrinsic generalization of the extrinsic
case [Wang and Solomon 2021]; experienced readers may skip this
section and refer to Table 1 for notation.

Throughout the paper, we consider a triangular mesh 7~ with f
faces and n vertices, as a discrete approximation of the domain Q.
Applying piecewise linear FEM, the tensor field becomes a piecewise
constant 2 X 2 matrix per triangle, and the anisotropic Laplacian
V- [A(x)V] is discretized by the matrix multiplication GT AG. Here
G € R X" js the discrete (intrinsic) gradient operator, and the
anisotropy tensor field becomes the sparse matrix A € R2 x2f

_|Gx 2fxn
o[

DIAG(a12)
DI1AG(ag2) |’

DIAG(a11)
DIAG(alz)

where aj1,a12,222 € Rf*! and DIAG(-) expands a vector into a
diagonal matrix.

To ease derivations, we stack the nonzero entries of A into the
vector a such that:

aj
a := FLATTEN(A) = |aj2| € R3X1,
a2

Throughout the paper, A and a will be used interchangeably.



Following Wang and Solomon [2021], we define an operator sp(-)
that satisfies the expression Ab = sp(b)FLATTEN(A):

Definition 6.1 (Span). For b = [EO] € R¥ X! with by, by € RI %L,
1
define the sparse matrix sp(b) as

DIAG(bg) D1aG(by)

sp(b) := piac(bg) Dp1ac(by)

:| c sz)(:‘}f.

Denote m € R/*! such that m ; stores the area of triangle j. We
use A(jy and Gy to denote the anisotropy tensor and intrinsic
gradient at the j-th triangle:

_|(@00)j (ao); 2%2 _ | (Gx)ji: 2xn
(j)_[(aOI)j (all)j] SRS 60 [ ] <R

Note p1AG(m), G, and A are all intrinsic discrete operators: G(j)
yields the intrinsic gradient measured in a local coordinate system
for triangle j. The per-triangle local coordinate can be arbitrar-
ily chosen but Ay will need to operate consistently in the same
coordinate system (a discrete tangent space).

G, m reproduce the familiar cotangent Laplacian L € R"*":
L=GT DIAG(m) .

DIAG(m)

Denote w € R" as the discrete solution to a Laplacian system (11).
Let k be the number of vertices on the boundary of the mesh. Denote
by R € Rk § ¢ R"™%("=K) the binary selection sparse matrices
such that RTw, STw yield rows corresponding to vertices on the
boundary and in the interior, respectively. For the discrete Laplacian
GTAG, the output RTGTAGw € R¥ measures the discrete Neu-
mann boundary data (in weak form, i.e., without dividing by the
average edge length associated with each boundary vertex).

The variational problem (5) can be discretized as

miny, %TR(WTGTAGW)
st. RTw=b,

(11)

where b € R¥ discretizes the per-vertex Dirichlet boundary data.
By standard linear algebra, the unknown rows z := STw are
uniquely determined by A, b via

z=—[STGTAGS] !STGTAGRb. (12)

Hence, the whole solution becomes w = Sz + Rb. Our derivation
suggests the following definition:

Definition 6.2 (Coefficient-to-solution, Dirichlet-to-Neumann, Neu-
mann-to-Dirichlet). The discrete coefficient-to-solution operator F :
REX2f, X1 s R7X1 s the map A; b +— w via Eq. 12, namely

F:Abw= (R —S[STGTAGS] !STGTAGR|b. (13)

Closely related, we have the discrete Dirichlet-to-Neumann operator

S(A) := RTGTAGR - RTGTAGS[STGTAGS] " !STGTAGR. (14)
RTGTAGR RTGTAGS
STGTAGR STGTAGS
discrete Neumann-to-Dirichlet operator is RT(GT AG)'R=58(A)T.

from the Schur complement of [ ] . The
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Table 1. A summary of notations that we will introduce and use throughout
the paper. An analogy between the discrete and continuous cases is given.

l Name [ Continuous Discrete
gradient v G
tensor field A(),A(x) Aora Agj
scalar function w(-), w(x) W, W;
restrict to interior wlo\a0 STw
restrict to boundary wlaq RTw
Dirichlet energy % fQ Vw(x)TA(x) Vw(x) %WT GTAGw
Laplace equation V- [A(x)Vw(x)]|g\oo =0 | STGTAGW =0
Dirichlet condition wloq =b RTw=b
Neumann condition | n(x)TA(x)Vw(x) = g(x) RTGTAGw =g

The last equality can be established by the Woodbury matrix
identity applied to the Schur block. Later we will see that our key
functionals for injectivity are weak forms of S(A) and its inverse.

It is convenient to derive boundary conditions by introducing the
circular gradient operator:

Definition 6.3 (Circular boundary gradient, or discrete area form).
Define D € R™" as the sparse matrix computing the circular gradi-
ent of a function along the boundary:

—% if i — jis a boundary edge
if j — iis a boundary edge (15)

otherwise

D can be viewed as a discrete 1-dimensional gradient via central
differencing. It makes sense to define its restriction to the boundary
vertices for simplicity:

C:=RTDR. (16)

We have DT =—D. Due to Green’s Theorem, uTDv is also the signed
area of the domain [Mullen et al. 2008]; see details in Appendix §A.1.

6.3 Main Theory on Discrete Homeomorphic Maps

In the discrete case, we work with a variant requiring det (m]fl A ) =

1, corresponding to the weak version of Theorem 5.2 that addition-
ally requires det A(x) = 1. This version of quasi-harmonic maps
also does not limit the modeling capacity discretely. This choice
leads to a variant with an elementary proof. It also removes the
requirement that the domain should have disk topology and does
not rely on a discrete maximum principle. Specifically, we have

THEOREM 6.4 (MAIN RESULT: DISCRETE VERSION). Consider a dis-
crete map (u,v) € R™2. Assume the boundary map by, by is bijective
onto a polygon, with the (weak form) weighted normalfi = (g, gu],
where g, 8y € R¥X1 are constant vectors determined by the target
boundary by, b, via g, = Cby, gy = —Cb,,.

Then, the discrete map (u, v) is locally injective, i.e., det](j) > 0,Vj,
if and only if there exists a block-diagonal positive definite matrix A

such that det (m}TlA(j)) = 1Vj and the following bilinear system
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holds:
STGTAG[u v]=]
RT[u v]=[by by] (17)
RTGTAG[u v] =]

=)
2

In addition, the condition det (m;lA(j)) = 1,Vj can be replaced by
1

the convex relaxation det (m]_ A(j)) > 1,Vj.

See Appendix §B,C for a proof and detailed discussion. When the
boundary polygon or mesh connectivity does not allow an injective
map to exist, Theorem 6.4 still holds in the sense that there will not
exist such an A satisfying all conditions.

System (17) can also be compactly written as a constraint on the
associated Dirichlet-to-Neumann operator:

S(A)[by byl =[gu 8ol

REMARK. Future work could derive a version of the theorem allow-
ing the determinant to be non-constant as in Theorem 5.2, possibly
using nonlinear FEM schemes compatible with maximum principle
[Droniou and Potier 2011; Liska and Shashkov 2008; Lu et al. 2014].
It would also be interesting to see if similar results hold using a DEC
discretization [de Goes et al. 2014].

7 INVERSE CAUCHY SOLVER: SIMULTANEOUS
DIRICHLET & NEUMANN CONDITIONS

So far, we have equated the injective mapping to the PDE-constrained
optimization problem (10). Next, we develop a solver for optimally
controlling elliptic PDEs so that our Cauchy boundary condition
holds. While they are designed for the mapping problem, in the
future our techniques in this section may be applied to other inverse
problems involving pairs of Neumann and Dirichlet data.

Problem (10) can be “ill-posed” if, for example, we take R = 0,
since injective maps are not unique. This aspect can make the prob-
lem even more difficult, calling for a careful numerical scheme.

7.1 Insights from Some Failed Attempts

The optimal control problem (10) is challenging: Before we arrive
at our proposed algorithm, we tried several less successful methods.
Some failed attempts providing key insights are listed here:

(1) Alternating descent. Alternatively updating A and map (u,v)
works only for trivial examples and easily gets stuck at local
minima.

(2) Equation error method. Directly measuring equation errors with-
out appropriate norm gets stuck easily; failure patterns include
ignoring the Neumann boundary conditions.

(3) Hard constraints for both Dirichlet & Neumann BCs. While the
boundary’s one-ring-neighbor triangles become orientation-
preserving, the flips appear at the two-ring neighbors as a local
optimum.

These observations indicate that the boundary condition in (8)
should be be viewed as globally constraining the tensor A(jy, in-
cluding those in the interior of the domain, rather than only A ;)
adjacent to the boundary. As we will see, our method propagates
and attributes errors in the Neumann data to tensors in the interior.
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7.2 Our Solution: Strict Dirichlet & Soft Neumann

As an alternative to the approaches explored in §7.1, we propose to
enforce the Dirichlet boundary conditions via hard constraints while
minimizing the violation of the Neumann boundary conditions.
Prioritizing Dirichlet also makes sense practically, since it is the
visible positional constraint prescribed by users.

To do so, we eliminate u, v via the coefficient-to-solution operator
¥ in (13), yielding the following reformulation of (10):

ming (7 (Asby), F(Abo), A )

s.t. some constraints on A, Vj.

(18)

where

O(u,v,A) =R(u,v,A) +V (RTGTAG[u,v],A;gu. 80 ) (19)

Vv ( Ny, Ny, A; 8y, 8o ) measures ( [0y, ny] = [gu, 8ol ) . (20)

V takes the actual Neumann value n,, n, and measures its violation
from the the prescribed one [gy, g,]. We will discuss many choices of
V. We ignore for now the constraint on A ), which can be enforced
through a careful reparameterization A = p(&) in §8.

With R, V chosen, completely eliminating intermediate variables
u, v so the Neumann data RTGT AG|[u, v] becomes [S(A)by, S(A)b,],
the objective Q can be written down:

O (T (Asbu). F(Asbo). A )= R ( 7 (Asbu), F(Asbo). A |
(21
4V ( S(A)bu, S(ADbo, As g ) -

Differentiating into # or S, the gradient can be obtained via

d o\ [Z] o\ T
_Q:|:_Q+_Q@+_Qﬁ:| eRe'fXI, (22)
da da duoda oIvoa
where % is the Jacobian
a
a—“ = _S[STGTAGS] !STGTsp(Gu) e R™3f.  (23)
a

A similar equation holds for v; in this section, we frequently omit
derivations for the term v, v; one can substitute u, u with o, v.

7.3 Injectivity-promoting Functionals: Many Possibilities

Now we derive objective functionals V' that promote injectivity
by penalizing the deviation of the Neumann data from prescribed
values. We propose a few such functionals, and each functional can
be used standalone. We compare these functionals in §7.5.

7.3.1  Neumann Residual. The most natural choice is to measure
the Neumann error using an Ly norm, for u, v, respectively:

Vi=VE VY
where
1
Vi =3 IRTGTAGu - gull*

1
:§||GTAGu—Rgu||2 since STGTAGu = 0 (24)

1
=2 IGTAGF (Asby) - Reul.



Ours (tanh)
Iter 5
Ours  (si-
log)
Iter 10 Iter 20 Iter 40
TLC+QN
Iter 100 Iter 500 Iter 1000
TLC+PN
Iter 10 Iter 20 Iter 40

SBP
[Garanzha
et al. 2021]

Iter6934
(#flips=21442)

Iter22873
(#flips=5453)

Iter41659
(#flips=4550)

Iter64992
(#flips=2278)
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Emrps=8.53
T=3.2s
Emips=2.27
T=9.5s
Iter 70
Iter 2000 Iter 3500 Iter 5000
Iter 113 Iter 3500 Iter 28000
Emips =9.06 Epips = 4.50
' Epmrps =2.25
T=928.7s

Iter128316
(#flips=415)

Iter150292 (#flips=0)

Fig. 5. Convergence paths of our methods and related works. We optimize the A-Dirichlet energy using Adam [Ling et al. 2022]. Ours (tanh) converges in
fewer than 60 iterations; ours (si-log) converges to a map with lower conformal distortions. TLC [Du et al. 2020] using a quasi Newton (QN) solver produces a
non-smooth trajectory, with much larger numbers of iterations. TLC with a projected Newton (PN) solver finds an injection with large distortions, taking
many iterations to improve it. Soft barrier progression (SBP) [Garanzha et al. 2021] also requires many orders-of-magnitude more iterations than ours: Note
their flipped triangles are very tiny, not visible from the figures. For all methods, we call it one iteration if the gradient oracle is called once: oracles of TLC+QN
and SBP do not require linear solve; ours requires a Laplacian solve; TLC+PN requires solving a Hessian system (4x larger than Laplacian).

Intuitively, this functional aims to push the mesh toward the inside
of the boundary. The gradient is:

vy

da

1d
=2 ;16T AGu - Rg, ||* € R3 X1

Fl T
- [GT sp(Gu) + GTAGa—Z} (GTAGu - Rgy)

Neumann error
S S—

—sp(Gu)T (sz — GS[STGTAGS] ‘1STGTA) G (GTAGu - Rgy,) .

(25)

REMARK. GS[STGTAGS]~ISTGT frequently appears in inverse
problems, spreading the Neumann data error at the boundary into
the interior through the A-harmonic extension. The gradient formula
reflects the philosophy that errors in the Neumann boundary data
should be propagated and attributed to tensors in the interior.
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Weight
Dirichlet
(DtN)

Poisson
Functional
(NtD)

Neumann
Residual

SN

[/

Fig. 6. Our methods (si-log) using different functionals consistently produce bijective maps. Different functionals in our framework produce diversed
convergence paths on the example of rotated inner square by x: (a) Weighted Dirichlet: blank-area expansion; (b) Poisson functional: global spinning; (c)

Neumann residual: normal alignment.

7.3.2  Sobolev Neumann Residual. Replacing the Ly norm in Vi,

written in the equivalent form ||GT AGu — Rgy,||?, with the Sobolev-
2 i i — .

type norm || - ”(GTAG)T’ yields a second functional V, = V}! + V.

1
v =E||GTAGu - Rgu||fGTAG)+

1 1 1 1
= JuTGTAGu — —glby + _giRT (GTAG)'Rg, - SBibu.

Weighted Dirichlet V;* Poisson functional V;*

(26)

Here, the pseudo-inverses (-)T are well-defined via solvability of
the Poisson problem:
giRT1=gl1=0, with STGTAG1=0.

V5 splits into two terms: the weighted Dirichlet energy and the
Poisson functional, which are geometrically-meaningful functionals
when extra determinant condition holds as we will discuss.

7.3.3  Weighted Dirichlet Energy. (Applicable when determinant
> 1.) This energy is the default choice in our paper. We can stack
the u, v components in a complex vector and measure its norm, for
our particular Neumann data R[gy, g,] = [Dv, —Du]:

(GTAGu - Rgy) +i(GTAGV — Rg,) = (GTAG +iD) (u + iv)
By choosing another Sobolev-type norm | - ||(gr ag+ip)t —2gain

the pseudo-inverse is well defined provided det (m]TIA( j)) 21
holds (§A)—we arrive at the weighted Dirichlet energy

1 . .
V3 §||(GTAG+1D)(u+1v)||(GTAG+iD)T >0

1 1 1 1 (27)
= EUTGTAGU - Eglbu + EVTGTAGV - Eggbv

viko V20
The two terms V', V;’ are not necessarily positive, but their sum
is. The energy we obtain, %(u —iv)T(GTAG + iD)(u + iv), is a
generalization of the LSCM energy [Lévy et al. 2002], and further
falls back to our weighted Dirichlet energy with boundary fixed. In
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§F.3, we provide a simpler interpretation of the weighted Dirichlet
energy V3 as a tight upper-bound of an area functional.

Viewing u, v as functions of A, V3 becomes a nonlinear function
of A, involving the weak-form of the Dirichlet-to-Neumann (DtN):

1 1
%y =5b,IS(A)bu - Eg;bu, (28)

using which the derivative of V3 can be computed as follows:
vy
da

1 oulT
- [uTGTSP(Gu) +2uTGTAG—u]
2 oa

1 1
== sp(G)T (sz - GS[STGTAGS]’lsTGTA) Gu = s (Gu)TGu.
7.3.4  Poisson Functional. (Applicable when determinant = 1.) As

the “dual” of the weak-form Dirichlet-to-Neumann V3, we have the
Poisson functional Vj:

1 ; 1 1 ; 1
Vi = -giRT(GTAG)'Rgy — Jgibu+ g RT(GTAG)'Rgy — ~gibo

Vit VEo
(29)
where RT(GTAG) R is the weak-form Neumann-to-Dirichlet (NtD).
The proof that V4 > 0 when A > 0, det (ijlA(j)) =1,V; holds
and more justification can be found in Appendix §E. We also derive
its gradient formula in Appendix §E, where we differentiate into

the inverse of system GTAG instead of [STGT AGS]. Note Vy does
not involve u, v in any way, unlike previous functionals.

7.4 Discrete Injectivity at Functional Minimizers

The many options for functionals reflect the versatility and relevance
to map injectivity of our framework, and optimizing any of the
(nonconvex) functionals to the global minimum leads to an injective
map when it exists:

PROPOSITION 7.1. When the boundary positions and mesh con-
nectivity allow a locally injective map to exist, global minimizers of
any functional in §7.3.1 to §7.3.4 in the space of A > 0 satisfying

det (mJTlA(J-)) =1,V are injective maps.



Note these functionals can still be nonconvex in the variable A, so
there is no theoretical guarantee that the gradient descent will find
the global minimum; in practice, however, we found our methods
always yield injective maps. The nonconvexity is expected since
the problem we studied is intrinsically nonconvex: For instance, in
Figure 6 there are two injective maps that correspond to either +7
or —r rotation. They are disconnected globally optima, indicating
the injective mapping problem must be nonconvex.

The determinant condition can be relaxed, but the current form
is sufficient for our purpose. For the regular and Sobolev Neumann
residual functionals and the weighted Dirichlet energy, this result
is a corollary of Theorem 6.4; for the Poisson functional, it can be
shown by using a Lagrangian multiplier argument.

PROPOSITION 7.2. The functionals in §7.3.1 to §7.3.4 are differen-
tiable as functions of A.

Proposition 7.2 holds since in this section we have written down
their derivatives. Thus, we successfully bypass the vanishing gra-
dient and non-smoothness issues of the area functional, with an
approach different from the regularization method [Du et al. 2020].

7.5 Comparing Injectivity Functionals

In this paper, we choose V = V3, weighted Dirichlet energy, as the
default choice, unless specified otherwise. But these functionals
optimize for injectivity by different means. Figure 6 visualizes the
convergence path when optimizing different functionals from §7.3;
details of the algorithm are postponed to §9. Adapting an example
from Du et al. [2020], we recover a bijective map under positional
constraints that rotate the inner square by 180°, while fixing the
outer square, illustrating the preference of different functionals for
attaining injectivity.

For the weighted Dirichlet energy, the map improves slowly at
the beginning and starts to improve dramatically when a small hole
appears at the center, after which the weighted Dirichlet energy
“realizes” that its value can be greatly decreased by emptying the
inner square.

For the Neumann residual, symmetric pattern is broken by mov-
ing the singularity in the center to the left-up corner of the inner
boundary. Then the map orientation starts to align with the normal
to the boundary. The region where the map aligns with the out-
ward normal keeps growing, and eventually the normal alignment
propagates to the whole inner boundary.

For the Poisson functional, progress is made across the entire
domain: Unlike the other functionals in which unfolding gradually
spreads out, in this example the entire domain adjusts to conform to
the boundary normal orientation. It converges in the least iterations.

8 ELLIPTICITY PARAMETERIZED VIA BELTRAMI

We still have to handle the triangle-wise constraint:
det (m;lA(])) = 1’A(]) > 0. (30)

Instead of introducing explicit constraints on det A ;), we param-
eterize A(j) so that the constraints hold automatically. As a point
of comparison, Wang and Solomon [2021] parameterize a positive
tensor using its Cholesky factorization without any guarantee on
its determinant. Note (30) implies strict inequality A(;) > 0.
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8.1 Elliptic PDEs and Complex Beltrami Equation

Our parameterization of the tensor field is motivated by the equiva-
lence between 2D elliptic systems and the complex Beltrami equa-
tion. In this section, we recall relevant concepts; see [Astala et al.
2008] for details. An important concept is the conjugate quasi-
harmonic map:

Definition 8.1 (Conjugate quasi-harmonic map). For positive defi-
nite A(-) € R?%2, map (u,v) is conjugate quasi-harmonic if

V.- [A(x)Vu(x)] =0, V-[A(x)Vo(x)]=0 (31)

where A(-) is the (matrix) conjugate of A(-): A(x) = *TA(x) 1%, in
-1

which = is the matrix * := 0

, the planar Hodge star operator.

This definition differs from Definition 4.1 in that we use the con-
jugate A to compute v(-). That said, since A = A if det(A) = 1,
our choice in (30) to take det(A) = 1 also makes the map conju-
gate quasi-harmonic; again, the choice does not limit our ability to
represent any smooth bijective map.

A map (u,v) can be compactly written as a complex-valued func-
tion f : Q — C, f(z) = u(z) +iv(z). Via a change of variables
to v : Q — C that |p| + |v| < 1, the complex Beltrami equa-
tion [Ahlfors 2006; Daripa 1993; Gardiner and Lakic 2000] is equiva-
lent to the system of PDEs (31), via the reparameterization

_ 1 =gl = -23(p)
L+v—|u2 | —23( 11+ p® = v

Our condition det A(x) = 1 becomes v(z) = 0 and |p| < 1.

(32)

8.2 Tensor Parameterization: A Prior on Conformality

Our change of variable A +— 1, however, still requires the (convex)
constraint |p| < 1 to ensure A > 0. Aiming at a fully unconstrained
optimization, we apply an additional change of variables.

We consider a bijection p <> ¢ between unit disk D and the
complex plane C = R? given by

ul = r(I€]),

where [0, +c0) vL‘—l [0, 1); we use the notation p = f[r](&).
In this paper,rr is one of the two sigmoid functions.
o shifted-inverse-log (si-log): r(x) =1 — 1/(1 + log(1 + x))
e hyperbolic tangent: r(x) = tanh(x)
We choose r to be the hyperbolic tangent function by default, and the
shifted-inverse-log function if close-to-conformal maps are desired.

As Figure 7 shows, shifted-inverse-log (si-log) gives a strong prior
that discourages large angle distortions: The closer it approaches
|u| — 1, the exponentially longer a distance |&| has to travel for im-
proving |u|. Our y can grow arbitrarily close to unit length if needed
without a bounding parameter on cOND(Aj)), unlike approaches
that constrain conformal distortion [Aigerman and Lipman 2013;
Lipman 2012].

We use tanh(-) in our model whenever a well-behaving regular-
izer R(-) has been chosen, or the mesh is subject to distortion to the
extreme level of Figure 4. Our use of tanh(-) was initially motivated
by possible equivalence to optimization in the hyperbolic space
under the Poincaré disk model, which we leave for future work.

arg pu = arg{,
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0 25 50 75 100 125 150

Fig. 7. The curve |&| — |p| via r(x) = si-log(x), or r(x) = tanh (x).

tanh si-log

Fig. 8. The weighted Dirichlet is minimized using either parameterization,
and the first inversion-free map each parameterization encounters is shown:
si-log yields smaller angle distortion. Remarkably, the first injection si-log
encounters (b), is already similar to running TLC until convergence [Du
et al. 2020, Figure 5], while the first injection tanh (a) encounters is similar
to that of TLC. Recall that TLC explicitly minimizes a conformal energy,
while our weighted Dirichlet does not.

8.3 Tensor Parameterization: A Summary
In summary, in this section we advocate the per-triangle change of
variable compositing two bijections: A — y — &, with mJTIA( 0=
A(r(£;)), using

1 [hi-pf
1— g2 |-23(p)

which we compactly summarize via

—-23(p)

. 2X2 _
A:D—->R ,ﬂ(ﬂ)— |1+”|2

(33)

a=p(&m), whereaeR3f,§eCf,

Our optimization variable now becomes & € cfa complex number
per triangle.

There are multiple advantages of optimizing for £ rather than
A, in addition to getting rid of explicit constraints on det A(;) or
CoND(A;)). Without explicitly modifying the objective, our param-
eterization makes the numerical procedure prioritize robust conver-
gence paths and favor conformality by choosing the si-log sigmoid
function.

9 OVERALL ALGORITHM AND VALIDATIONS

In this section, we state the overall algorithm and provide validations.
Implementing our base algorithm amounts to translating matrix
expressions to, e.g., MATLAB.
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Gargoyle Hand

Fig. 9. Rest poses of meshes to be mapped to a planar domain. Red colors
indicate where the boundary is.

9.1 The Base Algorithm: Unconstrained Optimization

After the change of variable u,v — A — £, Problem (18) becomes
a totally unconstrained optimization problem:

ming  Q(F(A(£).bu). F(A(§).bo) AH)). (9

With 3% = g—zi—g, the gradient w.r.t. the solo variable &, we

optimize the energy Q using off-the-shelf gradient-based methods.

Visualization of results. As shown in Figure 10, using L-BFGS [Wright
et al. 1999] to minimize any of the functionals—weighted Dirichlet,
Poisson functional, and Neumann residual—leads to injective maps
on the 30 shape-to-letter examples provided in [Du et al. 2020].

We focus on validating the weighted Dirichlet energy, and all
results use this default functional unless specified otherwise. We
do not find a case that only weighted Dirichlet succeeds and the
other functionals cannot, but we leave it for future work to further
explore the other functionals or even combine them.

9.2 Auxiliary Solvers for Post-Processing

In the vast majority of the cases, our gradient solver in §9.1 already
converges to exact injections. There are cases, especially in confor-
mal maps involving extreme numerics, where first-order methods
can slow down when they almost reach convergence. Hence, in this
section we describe a Newton-type solver and an alternating solver
we can optionally use to refine our solution.

A Newton solver in the joint space. 1t is difficult to directly apply a
second-order method to problem (34): The optimization variable & or
A has global impact, so its Hessian is dense. As a simple workaround,
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Fig. 10. Inversion-free maps produced by different functionals in our method (si-log).

we design a Newton solver operating in the joint space (u, v, ) to
optimize the A(&)-Dirichlet energy of u, v. See details in §F.

Although our Newton solver as a standalone algorithm succeeds
on less challenging examples, we only apply it as a post-processing
step: We find in early phases searching for injective maps, algo-
rithms that progress over u, v, A jointly can follow worse paths on
challenging examples than our base method operating in the space
of A only.

A greedy alternating solver. Alternatively updating either [u, v] or
A to optimality while fixing the other variable leads to a greedy local-
global style solver, which falls back to the post-processing algorithm
suggested by Xu et al. [2011]. Even in the close-to-injection regime,
alternating descent often but not always removes left-over tiny flips,
but when it works it can be effective in removing flipped triangles
under extreme numerics. In addition, this alternating solver is cheap
to apply, so we incorporate it in our pipeline.

Final pipeline. We find the following strategy is most efficient in
our framework: First, apply the first-order gradient descent, usually
all flips are removed quickly. Otherwise, the common pattern is that
there are 1~ 10 leftover flips with tiny areas that are time-consuming
to remove: Then we apply the post-processing step that alterna-
tively attempts the cheaper routine [Xu et al. 2011] and invokes the
second-order Newton solver; when [Xu et al. 2011] fail we discard
its iterations. This strategy passes the entire benchmark [Du et al.
2020] (§10).

The post-processing step is not critical for practical purposes:
Typical changes made at this stage are local adjustments around
tiny flipped triangles with area smaller than 107¢ ~ 1072%, which
are not directly visible.

9.3 Non-Euclidean Reference Poses

Given the positional constraints, whether or not an injective map
exists only depends on the mesh topology, not the geometry of rest
pose triangles—which only matters for measuring distortion. Thus,
we have some degrees of freedom in choosing the reference triangle,
the one in which G and m are computed. Such degrees of freedom
in choosing a reference/source triangle also appear in [Du et al.
2020; Liu et al. 2018]. The choice of reference triangle will not affect
our capacity to represent any injection. By default, we choose the
reference triangle as its rest pose, so our algorithm initializes from
the generalized Tutte’s embedding with cotangent weights.

9.4 A Further Improvement with Cheaper Gradient Steps

Since we carefully formulate the problem to be well-conditioned
and unconstrained, our problem allows applying an even simpler
and cheaper Adam-type solver [Ling et al. 2022]. With a very large
step size, the Adam-type solver converges faster than L-BFGS.

[Ling et al. 2022] is a simple first-order method, advancing in the
gradient direction without any step-size search. It is much cheaper
than L-BFGS, whose line search and gradient history add extra
overhead. Remarkably, Problem (34) remains stable even if we use
relatively large learning rates (step sizes), like 0.1 or larger in Adam.
Adam is rarely a choice in geometry processing, but we manage to
apply Adam to minimizing generic energies (§11) with competitive
performance, made possible by the fact that our variable A or & has
a global impact over u, v, following [Wang and Solomon 2021].

We primarily use Adam: Testings with L-BFGS are to demonstrate
that our method is agnostic to the choice of solver, unlike the method
of Wang and Solomon [2021].
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10 COMPARISONS AND DISCUSSIONS

Despite the large number of works on injective maps, the vast
majority cannot handle generic positional constraints, often due to
the requirement of injective intermediate maps for applying interior
point methods.

That said, we are in the exactly same setting of Du et al. [2020],
searching injective mapping with the entire boundary constrained.
Thus we refer to their work for discussion and experiments that
show prior works can fail to produce injections under positional
constraints. An exception is [Garanzha et al. 2021], to which we
also compare. All evaluation and experiments are done with our
core variant R = 0, V = V3 (weighted Dirichlet) unless specified.

Evaluation metric. Du et al. [2020] provide a dataset including
10743 meshes with given boundary maps. The dataset contains
challenges of two kinds:

(1) The vast majority, including examples taken from [Liu et al.
2018] with boundary obtained by [Jiang et al. 2017], requires
relatively localized adjustment to the mesh: The Tutte initial-
ization usually is not far from injection, requiring adjustment
around concave corners.

(2) Examples requiring substantially global deformations, including
many shape-to-nonconvex-letter examples in the benchmark,
especially the letters “S, G, H”

For < 8% meshes in category (1), the input contains very thin
triangles that may cause slow progress due to numerical issues: For
our method, we modify these reference triangles to have angles
larger than 25°, affecting only our map initialization. See details in
Appendix §F.

Following Du et al. [2020], we measure the conformal distortion
using the MIPS energy [Hormann and Greiner 2000]:

B 1 oy 02 9
MIPS_.?[/(02+61 ),

where o1 > o7 are the singular values of the Jacobian, and A is the
area of the rest pose.

While we are reporting the MIPS energy in the paper, we empha-
size that it may not be a fair metric; our base methods also do not
explicitly minimize a conformal energy like MIPS. As shown in Fig-
ure 11, our method with si-log produces a map with small maximal
conformal distortion. On this example, our map is very similar to
Bounded Distortion Mapping (BDM) [Lipman 2012], but without
their aliasing patterns that depend on the triangulation. Another
injective map that minimizes the MIPS energy, produces a “spike”
at the point constraint. This map is also found by our framework,
using the method introduced in §11. Both ours and BDM produce
maps that are smoother with distortion more evenly distributed.

This example suggests that MIPS may not always be a desired
metric since it can compromise smoothness at positional constraints.
This pattern of large shearing at positional constraints can also be
observed in inverse harmonic maps, the injection minimizing MIPS
energy, as shown in Figure 24.

10.1  Comparison with Total Lifted Content [Du et al. 2020]

Total unsigned area (TUA), while being a simple and intuitive objec-
tive for injectivity, is challenging to optimize due to its combinatoric
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Ours (tanh+MIPS).
Earps=0.55.

Ours (si-log).
Eaprps=1.01.
max=3.11, mean=2.63. max=3.00, mean=2.63. max=27.83, mean=2.00.

[Lipman 2012].
Eamrps=1.03.

Fig. 11. In this example taken from Fu et al. [2015], the point in the center
of the rectangle is moved to its left. We visualize o1/0 > 1. Ours (si-log)
reduces the maximal conformal distortion even without explicitly bound-
ing it, producing a map similar to that of Bounded Distortion Mapping
(BDM) [Lipman 2012]. However, BDM produces aliasing patterns that are
sensitive to the triangulation, which is not the case for our method. Ours
(tanh+MIPS) produces an injective map minimizing the MIPS energy, with
distortion concentrated around the constraint.

; [Du et al. 2020].
max=338.4, mean=5.90

Ours (si-log).
max=4.74, mean=3.72

L

Fig. 12. Distributions of o1/02 > 1over triangles. Our method (si-log) evenly
distribute distortions into across the entire domain: Surprisingly, ratios are
very concentrated even we do not explicitly encourage that. TLC+PN [Du

First Injective Map

Converged

et al. 2020], even when converges, produces injective maps with large dis-
tortion at the concave corner.

and non-smooth nature. Indeed, Xu et al. [2011] suggest their al-
ternating algorithm for TUA as a post-processing step rather than
a standalone algorithm. Improving on TUA, the key idea in total
lifted content (TLC) is to regularize TUA into a smoother objective
without suffering from vanishing gradients [Du et al. 2020].

Our methods share the same wisdom with TLC by considering
a smoother alternative objective: TLC adds terms promoting MIPS
energy, while (the core variant of) ours considers the A-parametric
family of Dirichlet energies. Our methods spread out distortions
broader than TLC, and Figure 12 provides a minimal example: The



TLC+PN
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Fig. 13. Examples produced by TLC [Du et al. 2020]. We see recurring patterns in TLC that triangles are clustered along a few curves where distortions are

concentrated, leading to a large conformal energy.

boundary of a rectangle is subject to vertical displacement pro-
portional to the |x|-coordinate. TLC produces a concentration of
distortion at the concave corner, while our method (si-log) produces
a map with distortions that are more evenly distributed.

Our methods consistently outperform TLC in terms of speed and
quality, by a large margin on challenging examples. On the Lucy
example, Figure 2 compares the map provided by Du et al. [2020]
with our method, plotting histograms of ratios of singular values.
The distortion of the first injection that our method (si-log) found
is an order-of-magnitude smaller, by any metric, such as the MIPS
energy, or the mean/max of o1/02 > 1.

Figure 5 compares the convergence paths. Both the si-log and tanh
variants of our methods converge quickly. The tanh variant finds
an injection in merely 60 Adam-gradient steps. In contrast, TLC
with quasi-Newton (TLC+QN) fails to converge after 10 iterations,
suggesting that it can be a challenging objective to optimize. TLC
with projected Newton (TLC+PN) finds an injective map in 113
Newton steps but progresses slowly: After 28000 extra Newton
iterations, the MIPS energy is still much larger than ours. The pattern
of slow progress is similar to the case of Figure 12, in which TLC finds
a suboptimal injection without spreading out distortion. Subsequent
quality improvement over their initial injections can be extremely
slow, or not possible [Du et al. 2022, Figure 7]. In contrast, our si-log
variant finds an injective map whose MIPS is an-order-of-magnitude
smaller in 190 iterations. We consistently observe similar patterns
on individual examples.

When evaluating our methods on the benchmark [Du et al. 2020],
we design the following strategy that efficiently finds injections
with low conformal distortion: Since our injection functional does
not explicitly optimize any conformal energy, first we run our si-log
variant for at most 1000 iterations, and in > 90% of the cases, an
injection is found in the given iterations. If not, rather than keep
running gradient descent, we run the other variant (tanh), which
often finds injections in much fewer iterations. Usually this indi-
cates that some extreme distortion level is necessary for obtaining
an injective map, and si-log has not necessarily slowed down the
convergence. We always stop when the first injection is found.

Using the strategy above, we are able to quickly find injections
with low distortion over the entire benchmark of [Du et al. 2020].
Figure 14 compares the distribution of MIPS energies over injective
maps produced by TLC and our mixed strategy. MIPS energies by
our method are significantly lower.

In sum, our method consistently yields better results than TLC
on all examples we conduct in the paper: Appendix §F.3 provides a
perspective, by equating injections as minimal surfaces.

1200

1000

800

600

400

200

Our method

[Du et al. 2020]

Fig. 14. The distribution of MIPS energy over the dataset [Du et al. 2020].

As a minor difference, TLC energy admits injective maps in its
kernel only when the regularization weighting diminishes to zero. In
contrast, our functional accepts all injective maps as its minimizers.

10.2 Comparison with Barrier-type Methods

Barrier-type methods, e.g., [Schiiller et al. 2013; Smith and Schaefer
2015] are frequently adopted in practice due to their simplicity
and generality. However, the per-element barrier term introduces
artificial stiffness and ill-conditioning. Most importantly, in our
setting with (hard) position constraints, barrier methods cannot be
applied since there is no feasible/injective initial map.

Table 2. A comparison of quality measured by the MIPS energy on the
shape-to-letter examples in Figure 10. Ours (si-log), without using any energy
explicitly, can have a larger MIPS energy than SBP [Garanzha et al. 2021]; but
surprisingly, there are exceptions (Lucy,Hand). In addition, our framework
allows explicitly introducing a small amount of MIPS to reduce the energy
value, as shown in the last column.

Example SBP || Ours (si-log) | Ours (tanh+MIPS)
Lucy-to-G 2.24 2.24 0.60
Lucy-to-S 2.37 1.82 0.511

Gargoyle-to-G || 1.18 3.69 2.98
Bunny-to-R 0.350 1.45 0.372
David-to-A 0.088 0.512 0.0843
Hand-to-P 0.781 0.391 0.0910

Gargoyle-to-H || 0.717 2.25 1.548

Methods using a soft barrier provide an important exception
avoiding many of these limitations: Coincidentally, the state-of-the-
art barrier method [Garanzha et al. 2021] employs a soft barrier
progression (SBP). SBP progressively sharpens the soft barrier to
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eventually resume infinity at 0, with a careful barrier scheduling.
SBP has to use a particular form of energy, (1 — 0)Eprps + 0E, that
blends the Winslow functional Eps;ps and an area-preserving one
Eg; they choose 6 = 1/128 in the released code. The scale-invariant
part, Winslow functional, yields inverse harmonic maps with ex-
treme boundary scaling, so some amount of (scale-dependent) E,
must be introduced to suppress the scaling in SBP.

Table 3. A comparison of timing (in seconds) on the shape-to-letter ex-
amples in Figure 10. Our methods are orders of magnitude faster on these
examples than SBP [Garanzha et al. 2021].

Example Ours (tanh) | Ours (si-log) || SBP
Lucy-to-G 3.13 9.48 928.7
Lucy-to-S 3.43 9.53 402.6

Gargoyle-to-G 2.34 6.91 219.5
Bunny-to-R 5.22 10.1 348.5
David-to-A 1.65 3.68 63.1
Hand-to-P 1.19 3.59 302.1

Gargoyle-to-H 1.42 5.85 336.3

Figure 5 compares the typical convergence
path of SBP with ours: In general, SBP can take
orders-of-magnitude more gradient steps than
our method, and its convergence path can be
different from ours. The Lucy example shows a
typical convergence pattern of SBP: The major-
ity of the mesh is quickly restricted to the inte-
rior side of the boundary, and a cluster starts to
develop; there is a region with triangles densely
packed in the center. A large number of triangles—mainly those in
the center of clusters—are flipped, but they are too tiny to be visible.
See the zoom-in view in Figure 15 for a typical pattern of inversions
in SBP. Two “spikes” remain in the cluster at center, which only
become visible after zooming in. The cluster of triangles moves
upwards, and the flips are gradually resolved. The differences in
paths reflect distinct objectives: TLC and ours would favor confor-
mal/harmonic maps, while SBP favors inverse harmonic maps.

Indeed, SBP works in a regime complementary to ours: SBP must
use energies with infinite barriers, while we optimize energies with-
out infinite barriers, handling a distinct set of objectives. See details
in §11, where we show that our framework successfully produces
purely (quasi-)conformal bijections, or bijections with diverse ob-
jectives including area-preservation (Figures 10,23,21).

The timings of our method and [Garanzha et al. 2021] are reported
in Table 3 for the shape-to-letter examples. Figure 16 provides a com-
parison of timing on individual meshes over the entire dataset [Du
et al. 2020]. In both cases, our methods can achieve one to two or-
ders of magnitude speedup over [Garanzha et al. 2021] in wallclock
time.

Our reduction of computational cost may be even more significant
than the reported improvement in wallclock timing. Our methods
are implemented in MATLAB, running at only ~ 10% CPU rate;
Garanzha et al. [2021] use an efficient C++ implementation with
OpenMP, running at 100% CPU rate. So, when running large-scale

Fig. 15
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w't [Garanzha et al. 2021]
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Fig. 16. The timing comparison between our method and Garanzha et al.
[2021]. Each dot corresponds to one mesh in the dataset. For our method,
most meshes are in the range of 0.01~5 seconds, while for Garanzha et al.
[2021] the typical range is 1 ~ 100 seconds. The scale of the figure is set
identical to that of [Du et al. 2022, Figure 6] for comparison purpose: Our
method is still more than an order of magnitude faster than [Du et al. 2022].

tests on a single workstation, our implementation can run multiple
instances simultaneously with little interference, allowing a further
~ 10X speedup in the amortized sense. Future work may also im-
plement our method in more efficient languages or explore cheaper
inexact linear solvers for further acceleration.

10.3 Extra Validations

Point-type constraints. Our methods can handle interior point-
type constraints, by simply considering constrained interior vertices
as part of the boundary. Figure 11 gives an example, in which the
center point in a rectangular domain is displaced with the entire
boundary fixed. Note incorporating interior constraints inevitably
makes the domain nonconvex, a scenario for which our methods are
designed over Tutte’s embedding. In Figure 17, the positions of two
points are swapped and our method (si-log) succeeds in producing
an injective map.

However, when upsampling the mesh multiple times to a denser
one, the spikes around point constraints become more extreme,
and our method does slow down when it almost converges. Our
method (si-log) still finds an injective map when the mesh is as
large as 140 X 140, but fails to remove the inversions around the
point within given iterations, for the mesh grid 160 x 160. This is
not surprising, since elliptic PDEs are only well-defined for regional
boundaries: Likely bi-quasi-harmonic systems should be considered.
Alternatively, one can use small regional handles in lieu of point-
type constraints.

Boundaries preventing injectivity. Since there are cases when injec-
tivity inevitably fails, e.g., due to self-intersecting boundaries [Weber
and Zorin 2014], an advantage of our barrier-free approach is the
robustness under these cases. As shown in Figure 18, when the fixed
boundary does not allow an injective map to exist, ours remains
stable, while the barrier methods including Garanzha et al. [2021]
explode. In this cases, ours yields minimal surfaces.

A Comparison with IsoTLC [Du et al. 2022]. The Isometric TLC
(IsoTLC) [Du et al. 2022] supports different objectives from our
methods. As shown in Table 4, our method (si-log) always yields
smaller MIPS energies; however, ours can have much larger iso-
metric energies, measured by max(oy, 1/02) as considered in Du
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Fig. 17. Another example of point constraints. The positions of two vertices
on the rectangular domain are swapped, leading to an extreme level of
distortion. The injective map produced by our method is shown. However,
when upsampling the mesh to as large as 160 X 160, there are two extremely
distorted spikes that our method fails to remove in given iterations.

our methods remain stable. Inverted triangles are marked in red.

Table 4. A comparison with IsoTLC [Du et al. 2022]

MIPS Isometric

Examples Ours | IsoTLC || Ours IsoTLC
Lucy-to-G 221 | 5.67 2.30e+08 | 6.74
Lucy-to-S 1.85 | 5.56 2.63e+08 | 6.31
Gargoyle-to-G || 3.65 | 3.08 36.37 3.71
Bunny-to-R 148 | 2.76 139.1 1.91
David-to-A 0.433 | 1.62 5.71 0.853
Hand-to-P 0.387 | 4.27 797.5 2.77
Gargoyle-to-H || 2.27 | 2.81 69.5 3.12

et al. [2022] (assuming o1 > o2). This is expected since ours only

penalizes deviations from conformal maps and does allow scaling.
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ARAP Area-Preserving
Fig. 19. Inversion-free maps via minimizing variant energies—blended with
A-weighted Dirichlet—in the space of quasi-harmonic maps.

Mass Spring

Fig. 20. Collision avoidance by way of bijectivity: Cheeseman with multiple
holes is put in an hourglass. We optimize the ARAP energy, only over the
shape mesh (in blue). Our method, successfully ensuring bijective meshes
for the shape and air, allows a unified treatment of contact detection and
response. Note that the air mesh layer (in yellow) is subject to extreme
distortion, demanding exact and discrete injectivity.

11 APPLICATION: QUASI-HARMONIZATION FOR
OPTIMIZING WITHIN DIFFEOMORPHISMS

Next, we will show how to optimize a conventional energy while
restricting the shape within the space of diffeomorphisms. In the
optimal control problem (10), we can choose R = E(u, v) as an energy
derived in physics or geometry, providing a generic alternative to
constraining det(J;)) > 0, V.

Similar to variational harmonic maps [Ben-Chen et al. 2009],
which restrict to a linear space of harmonic maps, we restrict to
the nonlinear space of diffeomorphisms. Unlike harmonic maps, our
theoretical results show that this formulation is optimizing in the
full space of diffeomorphisms.

Precisely speaking, in this section we optimize Q = V3 +75E, where
V3 is the weighted Dirichlet, 7 = 1074, and E is a distortion energy.
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Fig. 21. Bijective parameterization produced by our methods with the boundary constrained to be a disk, though our method does support other nonconvex

boundaries. Row 1,4: Area-preserving. Row 2,5: Our method with si-log. Row 3,6: ARAP.

We always use the tanh parameterization for optimizing a given 11.1  Inversion-Permitting Energies

energy, as the preference for conformality is no longer needed. Our framework is most valuable in optimizing an energy that does
not penalize inversions, such as ARAP, removing all flips immedi-
ately. Specifically, we test with the following energies.
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Fig. 22. Rest poses of meshes to be mapped to a planar domain. Red colors
indicate where the boundary is. Note the Cactus model has a bad triangula-
tion at the bottom that our method has no problem dealing with.

11.1.1  As-Rigid-As-Possible (ARAP) [Sorkine and Alexa 2007].
Ey =) (o1 = 1)+ (02 - 1)*)m;
Jj
Here and in our other energies, o1 > o2 > 0 are the singular values
of the Jacobian.

11.1.2  Area Preserving Energy.
E; = ij(det_](j) - 1)2 = Zm]’(dlo‘z - 1)2
J J

Blending of E; with the regular Dirichlet energy yields a compression-
resistant Poisson membrane [Setaluri et al. 2015].

11.1.3  Mass Spring Energy.
By = (le—10)*
e

The mass spring energy measures the change of lengths [, for every
edge e in the mesh, from its rest length 9.

11.1.4 Conformal Energy. While we can simply set E = Epqrps
to promote conformal maps, alternatively this can be achieved by
using a regularization term that only depends on A. The following
regularizer corresponds to the MIPS energy [Hormann and Greiner
2000] upon convergence:

Ri(£) = ) mjR(r(£))), where (35)
J
Cfi-lel il N1
7=+ 12 e ()

With the tanh variant that |p| = tanh ||, by applying the hyperbolic
trigonometric identities we have that the R term becomes

R(r(£)) = 4(cosh? |£] - 1), (37)

where cosh is the hyperbolic cosine function.
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Results. Figures 21, 23 demonstrate the results of optimizing the
energies above in our framework. In the experiment, the bound-
ary is normalized to match the area of the input surface. We see
the mass spring and ARAP usually produce similar results, while
the area-preserving energy leads to patterns very different from
other energies and/or quasi-conformal maps: The triangles are more
evenly distributed, rather than clustered at the center.

Our framework conveniently minimizes many energies that are
not supported by [Du et al. 2022; Garanzha et al. 2021]. While it
seems plausible that in [Garanzha et al. 2021] setting their A to be
1 should lead to purely area-preserving maps, we found doing so
makes their code fail to converge; see Figure 24.

11.2  Application: Collision Avoidance with Air Meshes

Many practical applications can benefit from advances in bijective
mapping under extreme distortion, such as collision avoidance. By
choosing E as the elasticity of the shape with zero weighting at the
“air mesh,” we are able to compute globally bijective maps that avoid
collision, following [Jiang et al. 2017; Miiller et al. 2015].

As demonstrated in Figure 20, the “air mesh” marked in yellow can
undergo extreme distortion: Only methods with discrete bijectivity
can exactly prevent collision.

12 CONCLUSION AND FUTURE WORK

Contribution. In summary, we propose a framework to compute
injective maps under positional constraints with entire boundary
fixed. Our approach supports diverse objectives and can improve
over state-of-the-art methods by orders of magnitude in terms of
speed and map quality in challenging cases.

While existing methods are expensive to handle positional con-
straints, Tutte’s embedding and its generalized family are extremely
cheap to apply, with guaranteed bijections in many cases. Hence, our
methods efficiently search in the space of all generalized Tutte’s em-
beddings, yielding dramatic improvement over existing approaches.

The key to the success of our methods is to appropriately attribute
local inversions to variables with global influence, by differentiating
into the Dirichlet-to-Neumann operator and its inverse. By consid-
ering of a parametric family of Dirichlet energies, we successfully
avoid the vanishing gradient and non-smooth issues of the area
functional.

Limitations. Our approach—centered around a PDE-based char-
acterization of planar map injectivity—is limited to 2D. While quasi-
harmonicity with the Cauchy boundary condition is no longer suffi-
cient to guarantee injectivity due to the many possibilities of saddle
points in 3D, it is still a necessary condition, readily removing a
major pattern of inversions. For future, we plan to generalize our
approach to 3D by augmenting with an extra condition. We have
to rely on nonconvex optimization routines; after all, the positional
constraints might make the problem intrinsically nonconvex.

Future work. Our approach suggests many promising directions,
as we have mentioned throughout the paper.

Moving forward, we plan to optimize for the boundary positions
of the map together with the interior quasi-harmonicity, like the
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ARAP

Mass-
Spring

Area-
Preserving

6 = 1: Area-
Preserving

6 = 0: MIPS

Fig. 24. It is not clear how to obtain area-preserving maps in SBP [Garanzha et al. 2021]. Only using area-preserving energy (6 = 1) in their framework fails to
produce injections except on the David-to-A example. Note the sharp triangles extruded from the mesh in SBP. Also, SBP has many sharp patterns, visually
very different from our area-preserving functional. Without blending with their area-preserving term (6 = 0), the inverse harmonic map produced by SBP can
have extreme scaling and shearing at the boundary: It is not clear how SBP can obtain purely scale-invariant behaviors like harmonic/conformal maps.

free boundary setting [Du et al. 2021]. There are many works find-
ing maps within harmonic subspaces: We can use theirs as fast
initialization, and further enrich the map with quasi-harmonics.

Our continuous theorem without requiring det A(x) = 1is largely
unexplored; we plan to fully unlock the capacity of our quasi-
harmonic framework. The extra factor can add scaling control to
quasi-conformal maps.
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Incorporating ideas from computational mathematics and scien-
tific computing, we might attempt to derive provable guarantees
of our approach, including conditions when the program becomes
convex and the optimality of the Sobolev-type norms.

Extending to other applications, by interpreting our A as stiff-
ness or material property, we could possibly apply our solver to
computational design and inverse mechanics.
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A GENERALIZED LSCM
A.1 Discrete Area Form

Here we provide more details on Definition 15. The circular gradient
is counterclockwise on the outer boundary, and clockwise on the
inner boundary (if there is any). For i — j being a boundary edge,
we mean that i — j follows right-hand rule in the (only) adjacent
triangle: If boundary edge i — j is on the outline (outer boundary)
of the domain, it has to be counter-clockwise along the boundary;
otherwise i — j must be in a hole (inner boundary) of the domain
and clockwise.

Note uTDv is also the signed area of the domain due to Green’s
Theorem, so is %(u+iv)H(—iD) (u+iv) = uTDv, where (-)" denotes
the Hermitian conjugate. The matrix D can also be equivalently
written as:

1 T
D= E(Dh - Dh ),
where

Dy, = Z VF; i) Y 1(F o F ) T 1(F 0 F 0 )
jeT

in which 1y; ;; € R™" denotes the matrix that is 1 at the i, j-
th entry and zero elsewhere, and F .1, Fj 2, Fj3 are the indices of
vertices in the j-th triangle, in counter-clockwise order. To see where
the formula comes from, recall the area of the triangle (x1,y;) —



(x2,y2) = (x3,y3) is:

T
X1 +1  =1| |y

1 - - 1
= det [;Cz B il Y2 B yl] = 3 X2 -1 +1] |y2
sTHX BT x3| |+1 -1 ys

The equivalence of two ways writing down D can be seen by can-
celling out interior “half-edges” (directed edges). In the continuous
case, the equivalence is due to the Green’s Theorem.

A.2 Positive-definiteness of Generalized LSCM

The weighted Dirichlet subtracted from the complex-valued area
form, GTAG + iD, is still positive semi-definite:

PROPOSITION A.1. If det (m}flA(j)) > 1 and ijlA(j) > 0, we
have GTAG + iD > 0.

This has been well-known in the continuous case [Astala et al.
2008]. It generalizes LSCM [Lévy et al. 2002; Mullen et al. 2008] to
m; A # L

Proor. The signed area of j-th triangle is
-1
ij(j)uXG(j)VZUTng)mj [1 ]G(j)v
_1 HGT . i . :
=3 (u+1iv) G(j)mj [—i ] G(j)(u+iv)
and the j-th triangle’s contribution to the Dirichlet energy is
1
Sul (G(])A(J)G(])) ut vt (G<,)A<1>G(j>)v
1 . .
:E(U +iv)H (G(Tj)A(j)G(j)) (u+iv).
It suffices to show that
R il _ | (ag);  (ao1);—i
Agj) —m, [—i ] - [(301)j +i (an);

which can be verified by checking the determinant

=0

>

(ao)j  (ao1)j —
(ao1)j +i  (an);

1] = det(m}lA(j)) -12>0.
O

B BIJECTION = {QUASI-HARMONIC} + {CAUCHY BC}

Now we will argue the “necessary” direction of Theorem 6.4, certi-
fying that our framework of quasi-harmonic maps does not limit
the modeling capacity at the discrete level.

B.1 Review: Linear Precision of Cotangent Laplacian

The linear reproducing property of the planar discrete Laplacian is
well known. See, e.g., [Wardetzky et al. 2007] and references therein.

PrROPOSITION B.1 (LAPLACIAN: LINEAR REPRODUCING PROPERTY).
Consider aplanar triangle mesh with the standard cotangent Laplacian
L = GTMG, where the diagonal matrix M := p1aG([m; m]) repeats
the triangle areas twice. Denote thex,y € R™! as the x, y coordinates
of the vertices. We have the linear reproducing property:

STL[x y]=1[0 0]

RTL[x y]=[Cb, - Cbyl. (38)
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Proposition B.1 is the origin of the idea of our proof: the rest pose
of a planar mesh is in the kernel of its Laplacian. It is also where the
Neumann boundary condition comes from: gz = +Cby, gy = —Cby,.

B.2 Discrete Completeness

The following shows that our model is capable to reproduce any
discrete map containing no foldover by pulling back and recon-
structing the cotangent Laplacian associated to the planar target
mesh, whose kernel admits the map (u, v).

Proros1TION B.2 (REALIZABILITY). Consider a target pose of the
same trlangle mesh with the standard cotangent Laplacian L = GMG
where M := prac([h; m]). The anisotropic Laplacian operator GTAG

on the source domain, under the constraint det m]TlA(j)) = 1,Vj,

is capable to reproduce any weak form Laplacian matrix L, as long
as 1 > 0; namely, there exists a block-diagonal A > 0 such that
L=GTAG.

Proor. For each triangle j, denote the gradients of hat functions
as Vh(; 1), Vh(;,), Vh(;3) € R?, respectively; similarly, denote the
gradients of hat functions for the deformed target triangle j as
Vfl(j’l), Vl:l(j,z), Vlfl(jﬁ) € Rz, respectively.

It suffices to show that for each triangle j there exists A( i) € R2X2

such that

Yhin] YR ' Vh(Tm Vh(T] ol

Vh <Tj,z> Agy |Vhiia| = A<TJ,2> ; |V oz)

hijs) TR B A0S O Y
Let

K(j) = 00}/ 2[Vh ;1) Vi) 1 [Vh(j0) Vhijz)) 7

By noticing Vh; 1) + Vh(;3) + Vhj3) = 0, as well as Vl:l(j’l) +

Vﬁ(jyz) + Vﬁ(jﬁ) = 0, by linearity we have
K(j) [Vh(j1)Vhij2)Vh(i5)] = i) 2 [VR; 1) VB2 VA 5]

So we have found such A(j) = K K(]) > 0.

To derive A( j) which is umque, we observe the following: in
triangle j, edge vectors e(j 1), €(j 2), €(j,3) are transformed byJ(J),
so their orthogonal vectors Vhy; 1), Vh(J 2)> Vh(j 3) with the recip-

rocal magnitude are transformed to Vh<] 1)Vh(] Z)Vh(] 3) byJ( -

So we have found the formula for A( hE
~1A -1
m; Ay =detJ) DIl (39)
It is straightforward to verify
—14A _
det (mj A(])) =1.
Note we require m; > 0 to construct our A. O

Finally, by Proposition B.1 the map (u, v) can be recovered from
the kernel of L: Namely, it holds that

STGTAG[u v]=[0 0]
RTGTAG[u v]=[gu o] =[Chy—Cby]
So we have the “only-if” part of Theorem 6.4 holds.

ACM Trans. Graph., Vol. 42, No. 4, Article 130. Publication date: August 2023.



130:24 + Wang, Guo, and Solomon.

REMARK (MODELING CAPACITY). Proposition B.1 also holds for
planar triangle mesh with flips, if flipped triangles use negative areas.
Our choice requiring A ;) > 0 desirably limits our model’s ability to
reproduce maps with inversions or zero-area triangles.

C BIJECTION < {QUASI-HARMONIC} + {CAUCHY BC}

Let us prove the “sufficient” direction of Theorem 6.4. We will show
the Cauchy boundary condition assures the removal of flips that
quasi-harmonics may still have.

Our proof is based on two facts: 1) weighted Dirichlet and total
signed area tightly “sandwich” total unsigned area, and 2) the map
is free from flips if the total unsigned area equals the signed area.

C.1  Weighted Dirichlet Upper Bounds Area
Definition C.1. The total signed area is
Ay, v) = Z ij(j)u X G(j)V
1
=+ iv)H(=iD)(u +iv) = uTDv = b] Cb,,.
The last equality has been discussed in §A.1.

Definition C.2. The total unsigned area is

U, v) = Z mj||G(j)u>< G(j)V”' (41)
jeT

ProrosiTiON C.3. Provided A > 0 such that det (m}flA(j)) >
1,Vj, we have

1 1
EuTGTAGu+ EVTGTAGV > U(u,v) > Ay, v). (42)

Proor. We have the Jacobian for the j-th triangle denoted as:
Jijy =[6u G;vIT e RPZ.

bi1  bi2
ba1 b2

, we have

For any 2 X 2 matrix, B = [

1 1
det B < |b11ba2 — b1aba| < E(bf1 +b2, + b3 +b3,) = 5||B||§,

Now we are ready to show that the A-weighted Dirichlet energy
upper bounds the total unsigned area:

1 1 1
SUTGTAGu+ _VIGTAGY = 3 R(()A(H];)

JET
1 _ 2 _
= Z Emj” m; lA(j)J;rj)”F 2> Z mj,¢detmj lA(j)|detJ(j)|
JjeT JjeT
> > myldet] (| = U(wv) > > m;det] ;) = A, v).
JjeT JjeET

C.2 A Simple Characterization of Bijections

Under the same setting of fixed boundary in Theorem 6.4, we have

ProposITION C.4. The map (u,v) is (locally) injective if and only
if the total unsigned area equals to the total signed area, and that no
triangle degenerates.
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The theorem is essentially a result of Xu et al. [2011]. The map
becomes homeomorphic/bijective when the conditions in Lipman
[2014] are met, including the boundary is free from self-intersection.

C.3 Completing the Proof of Discrete Theorem 6.4

Now we complete our proof of “sufficient” direction of Theorem 6.4,
by showing that the boundary condition (17) magically enforces
weighted Dirichlet arrives at its global minimum.

Proor. Provided A > 0 such that det (mjflA(j)) > 1,Vj, we
have (42) hold. When the Cauchy boundary condition—all of the
equations in (17)—holds, the Dirichlet energy reaches its lower
bound—total signed area—by checking:

0

uTGTAGu = uTS [STGTAGU] + uTR RTGTAGu = b g,
—_—— ———— ——
b}, 8u
0
vIGTAGv =vTS [ST vl + vIRRTGTAGv =b]g,
—_—— —— —
b} 8o

1 1 1
EuTGTAGu + EVTGTAGV = g(blgu +blg,) = A(u,v).

The weighted Dirichlet energy arriving at the global minimum
forces the “sandwiched” total unsigned area equal to the minimum
as well. By constraining Ay > 0 no triangle degenerates. By Propo-
sition C.4, we can conclude that the system (17) ensures that no
triangle has negative area. ]

D A CHARACTERIZATION OF DIFFEOMORPHISMS

We expand the discussion on Theorem 5.2. A detailed proofis beyond
the scope of this paper, and we only sketch the argument.

The special case det A(x) = 1 follows a similar argument of the
discrete case using Dirichlet energies as a tight upper bound.

For the generic case that det A(x) = 1 may not hold, we have the
very recent result due to [Alessandrini and Nesi 2021].

THEOREM D.1. [Alessandrini and Nesi 2021, Theorem 1.1] Assume
the source domain Q = B is a unit ball in R?, and consider a planar
domainT C R? whose boundary dT is a simple closed curve. Assume
¢ = (u,0) : Q — T diffeomorphically maps 0Q onto oT'. Given that
the entries of A(x) are sufficiently smooth and %I < A(x) 2 KI for
some K > 0, the generated map (u,v) is a diffeomorphism of B onto T
if and only if det[Vu Vo] > 0 everywhere on dB.

We notice the boundary condition can be substituted:
ProrosiTION D.2. Enforcing the Neumann boundary condition
n(x)T[A(x)Vu(x), Ax)Vo(x)] = s(x)n(x)T

wheres : 9Q — Ry, s(dQ) > S for some S > 0, is sufficient to
guarantee det[Vu(x) Vo(x)] > 0.

Proor. Denote n, t as the normal, and tangent direction (by coun-
terclockwise 7z /2-rotation of the normal) at x. And #, { are the normal
and tangent at u(x), v(x).

u  du ou  Ju
o ot 2. El
2 #|-|% 2m a-n
Jn at ax dy



The tangents t, { are related by the Jacobian J: Jt = ct for ¢ > 0. The
Neumann condition

nT[AVu AVy] =nTAJT = faT
can be written as
nT[n tlA[n t]TJT = faT,
where
1

A:=[n t]TA[n t]zEI.

So, we have
[1 0JA[Jn ct]T = farT.
Further multiplying both sides with i from the right,

[1 0]A UngTﬁ] = s()A(X)TAK) = 5(x) > S > 0.

Since An > 0, we have (Jn)Tha > 0, and thus we conclude
det] =det([Jn ct]) > 0.
|
REMARK. The condition on the source domain Q = B to be an

unit disk is not essential and can be relaxed. Uniformization allows
conformally pulling back the PDE on manifold onto the unit disk B.

E DETAILS ON THE POISSON FUNCTIONAL

In this section, we prove that minimizing the Poisson functional
(§7.3.2) leads to an injective map (assume it exists). Lacking an
intuitive interpretation, we conjecture that our Poisson functional
measures a total (weighted) Gaussian curvature for developability.

E.1 Gradient Formula

We first derive the gradient formula for the Poisson functional

(8§7.3.2):
l B l
EgJRT (GTAG)'Rg, — Egljbu.
Denote
p=-[GTAG]| Rg,
such that

Z_z — _[GTAG]"GTsp(Gp) € R"™f (43)

in which % can derived by
consT =[GTAG]p
0 =[GTAG]8p + [GTSAG]p
5p =—- [GTAG]'GT5AGp
5p =— [GTAG]'GTsp(Gp)rraT(SA).

We have the gradient formula

dav¥ 1 T 1 t
4 _21 [@] Rg, = —=sp(Gp) TG[GTAG] "Rgy
da 2|0a 2 (44)
=— %sp(Gp)TGp.
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E.2 Minimizers of Poisson Functional are Injective Maps
Before the proof, we show a simple fact about SL(2,R) N SZ, namely:
For

>0, detA=ajiaxn — a%z =1,

a a
A= 11 12
aiz az2

we have 0 = §det A = dag1az2 + aj1daze — 2a128a12, which implies,
JA, alocal infinitesimal derivation from A, must be orthogonal to
[*xAxT]:
0=J5detA = [«A=T] : 5A.
ProrosITION E.1. Assume the boundary positions and mesh con-
nectivity allow a locally injective map to exist. In the space of A > 0

that det (m}TIAU)) =1,Vj, V4 has value 0 at its minimizers.

Proor. We have
pu = —[GTAG]"Rg,. po = -[GTAG] 'Rg,.
Denote

P(j) = [G(j)Pu G(j)Pol T

C . . dvy¢ dvp
For a that minimizes Vj, the gradient d—; + d—;, when unfolded to a

(Tj)P(j) € R?*2, must be orthogonal to the
constraint det (ijlA(j)) = 1. We have *A(j)*T o P'(rj)P(j). So we

2 X 2 symmetric matrix, P

conclude that m]TIA(j) = | det(P ()| [P(Tj)P(j)]_l, which indicates
that py, po, A satisfy

1 1
EPJGTAGPM + QPJGTAGPU = U(pu,Po) = A(Pu; Po)-
So, V4 is minimized at V4 = 0. ]

F OTHER DETAILS AND DISCUSSION
F.1 Performance and Implementation Details

Below, first we list a few common tricks to avoid pitfalls that might
invoke unnecessary computations. Many of them are not even a
concern if being implemented as per-element operations, but can
add extra overhead if being implemented as matrix operations.

Computation re-ordering and operation merging. SPAN(-)T fol-
lowed by sparse-matrix-vector multiplication can be replaced by
element-wise vector product. Thus, in our implementation we never
assemble the sparse matrix sPAN(-). Specifically, for vectors

b= [bl]’ o [Cl] c p2fx1
C2

b,
we have
c D1AG(b1) b1 0
sp(b)T [ 1] = [p1aGg(by) DpiaG(by) [ 1] =|b;®cy+byOcy|,
C2
DIAG(b2) by ©® ¢y

where sp(b) Tc = sp(c) Th is the outer product of vector fields b and
c.

Matrix-matrix multiplication, except assembling the Laplacian
GTAG, can be completely avoided at runtime by cascading matrix-
vector multiplications. For example, SGu should be evaluated as
S(Gu), rather than (SG)u.
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Symbolic pre-factorization. The sub-block of the discrete anisotropic
Laplacian STGTAGS has a fixed sparsity pattern. We symbolically
pre-factorize it once and reuse using SuiteSparse [Davis et al. 2015],
as is done by Wang and Solomon [2021].

Tensor differentiability. Relying on the auto-differentiation feature
of MATLAB, the parameterization £ — p may have some issues
with differentiability at (0, 0) due to subtle numerical concerns. This
is not an issue in practice, since exact equality for floating numbers
are almost impossible. When initializing £ as (0, 0), we add a tiny
random number as a deviation to avoid the non-differentiable issue.

Thin triangle modification. When evaluating our method on the
bulk of dataset [Du et al. 2020], which is taken from [Liu et al. 2018]
and has many thin triangles, we apply the following modification:
We set any angle less than /6 to be 7/6, and normalize so that
angles in each triangle sums to 7. So the smallest angle in the mesh
would be larger than /8. We then use this normalized reference
triangle to compute our G, m. The scale of the modified triangle
does not matter since it will cancel out.

Adam solver. For Adam, we use VectorAdam [Ling et al. 2022],
instead of the ordinary Adam. The only place they differ in our 2D
setting is that the factor to normalize a complex number comes from
the norm taken over the complex number, instead of separating the
real and imaginary parts and independently normalizing, which is
also a common practice in training complex-valued neural networks.
It makes our convergence trajectory exactly invariant to the choice
of per-triangle tangent spaces. However, in practice we usually
do not observe much difference, but we suspect that adversarially
choosing tangent spaces might make ordinary Adam bad.

F.2 A Newton Solver for Post-processing

Back to the discussion of the Newton solver in §9.2: Let the objective
P be the weighted Dirichlet energy: we use P to emphasize that now
it is a function of the tuple (u, v, £). Again, we use the same & — A
in §8 and have an unconstrained optimization problem.

miréP(u, v, £)

u,v,

1 1 (45)
P(u,v, &) = EuTGTA(f)Gu+ EVTGTA(f)GV.
The gradient and Hessian can be derived:
[ GTAGu
_o° GTAGy
o(u,v, £) ,3_2’ [%SP(GU)TGU+ %SP(GV)TGV]
GTAG 0 GTsp(Gu) 2T
%P (6w 35 T
- 0 GTAG GTsp(Gv) 2
9w v, £) 250(Gu)TG L2sp(Gv)TG H

We have the following block diagonal matrix:

Hyu Huo
H-=
[Huv Hyo

in which Hy,;;, Hyy, Hyy are diagonal, which can be computed us-
ing the chain rule to find some second order derivatives. The per-
triangle computation for tensor parameterization can be done by
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auto-differentiation. For example, we have

1 &
Hyy = 3 [D1AG (Gxu ® Gyu + GV © G4 V)| DIAG ( a;n )

2
u

azalz

+ [DIAG (Gxu © Gyu + Gxv O Gyv)|pI1ac T

2
u

+

az
[D1aG (Gyu © Gyu + Gyv O Gyv)|pIaG ( aaiz )
u

1
2
in which © denotes elementwise multiplication of two vectors, and
day; dap ay fx1
o8, o8, og, < ©
by auto-differentiation. Similar formulas hold for Hy,,, Hyy. Finally
we apply a standard trust region method.

second derivatives can also be handled

F.3 Finding Injections as Minimal Surfaces

Modern geometry suggests advantages of our core functional, the
weighted Dirichlet energy, over the area functional, i.e., total un-
signed area. A simple yet remarkable observation in [Xu et al. 2011]
can be stated equivalently: Injective maps are minimal surfaces.
However, in the mathematical literature of minimal surfaces, as
an object of study, (total unsigned) area became obsolete almost
immediately, replaced by the Dirichlet energy, which has nicer ana-
lytical properties. This modern approach to minimal surfaces dates
to the seminal work of Douglas and Radé [Douglas 1931]. It has
been argued that the area functional is not sufficiently coercive, i.e.,
it does not offer enough control over the map by admitting a huge
kernel [Colding and Minicozzi 2011]. The deficiency of nice ana-
lytical properties for area functionals directly transfers to practical
difficulties when working with total unsigned area: the vanishing
gradient and non-smoothness issues. Beyond the theoretical supe-
riority for mathematical analysis, we have demonstrate that com-
putationally (weighted) Dirichlet energy, is a better optimization
objective: weighted Dirichlet provides a tight upper bound of the
original objective—so the minimizers remain the same; it is smooth
and/or differentiable, much easier to optimize.

Our approach and TLC represent two ways to introduce coer-
civity: TLC adds a regularizer, lifting to a higher dimension and
measuring volume there, while we work within the A-parametric
family of Dirichlet energies.
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