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ABSTRACT

Sampling from a target measure whose density is only known up to a normal-
ization constant is a fundamental problem in computational statistics and ma-
chine learning. In this paper, we present a new optimization-based method for
sampling called mollified interaction energy descent (MIED). MIED minimizes a
new class of energies on probability measures called mollified interaction ener-
gies (MIEs). These energies rely on mollifier functions—smooth approximations
of the Dirac delta originated from PDE theory. We show that as the mollifier ap-
proaches the Dirac delta, the MIE converges to the chi-square divergence with
respect to the target measure and the minimizers of MIE converge to the target
measure. Optimizing this energy with proper discretization yields a practical first-
order particle-based algorithm for sampling in both unconstrained and constrained
domains. We show experimentally that for unconstrained sampling problems, our
algorithm performs on par with existing particle-based algorithms like SVGD,
while for constrained sampling problems our method readily incorporates con-
strained optimization techniques to handle more flexible constraints with strong
performance compared to alternatives.

1 INTRODUCTION

Sampling from an unnormalized probability density is a ubiquitous task in statistics, mathemati-
cal physics, and machine learning. While Markov chain Monte Carlo (MCMC) methods (Brooks
et al., 2011) provide a way to obtain unbiased samples at the price of potentially long mixing times,
variational inference (VI) methods (Blei et al., 2017) approximate the target measure with simpler
(e.g., parametric) distributions at a lower computational cost. In this work, we focus on a particular
class of VI methods that approximate the target measure using a collection of interacting particles.
A primary example is Stein variational gradient descent (SVGD) proposed by Liu & Wang (2016),
which iteratively applies deterministic updates to a set of particles to decrease the KL divergence to
the target distribution.

While MCMC and VI methods have found great success in sampling from unconstrained distri-
butions, they often break down for distributions supported in a constrained domain. Constrained
sampling is needed when the target density is undefined outside a given domain (e.g., the Dirich-
let distribution), when the target density is not integrable in the entire Euclidean space (e.g., the
uniform distribution), or when we only want samples that satisfy certain inequalities (e.g., fairness
constraints in Bayesian inference (Liu et al., 2021)). A few recent approaches (Brubaker et al., 2012;
Byrne & Girolami, 2013; Liu & Zhu, 2018; Shi et al., 2021) extend classical sampling methods like
Hamiltonian Monte Carlo (HMC) or SVGD to constrained domains. These extensions, however,
typically contain expensive numerical subroutines like solving nonlinear systems of equations and
require explicit formulas for quantities such as Riemannian metric tensors or mirror maps to be
derived on a case-by-case basis from the constraints.
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We present an optimization-based method called mollified interaction energy descent (MIED) that
minimizes mollified interaction energies (MIEs) for both unconstrained and constrained sampling.
An MIE takes the form of a double integral of the quotient of a mollifier—smooth approximation
of δ0, the Dirac delta at the origin—over the target density properly scaled. Intuitively, minimizing
an MIE balances two types of forces: attractive forces that drive the current measure towards the
target density, and repulsive forces from the mollifier that prevents collapsing. We show that as the
mollifier converges to δ0, the MIE converges to the χ2 divergence to the target measure up to an
additive constant (Theorem 3.3). Moreover, the MIE Γ-converges to χ2 divergence (Theorem 3.6),
so that minimizers of MIEs converge to the target measure, providing a theoretical basis for sampling
by minimizing MIE.

While mollifiers can be interpreted as kernels with diminishing bandwidths, our analysis is funda-
mentally different from that of SVGD where a fixed-bandwidth kernel is used to define a reproducing
kernel Hilbert space (RKHS) on which the Stein discrepancy has a closed-form (Gorham & Mackey,
2017). Deriving a version of the Stein discrepancy for constrained domains is far from trivial and
requires special treatment (Shi et al., 2021; Xu, 2021). In contrast, our energy has a unified form
for constrained and unconstrained domains and approximates the χ2 divergence as long as the band-
width is sufficiently small so that short-range interaction dominates the energy: this idea of using
diminishing bandwidths in sampling is under-explored for methods like SVGD.

Algorithmically, we use first-order optimization to minimize MIEs discretized using particles. We
introduce a log-sum-exp trick to neutralize the effect of arbitrary scaling of the mollifiers and the
target density; this form also improves numerical stability significantly. Since we turn sampling into
optimization, we can readily apply existing constrained sampling techniques such as reparameteri-
zation using a differentiable (not necessarily bijective) map or the dynamic barrier method by Gong
& Liu (2021) to handle generic differentiable inequality constraints. Our method is effective as it
only uses first-order derivatives of both the target density and the inequality constraint (or the repa-
rameterization map), enabling large-scale applications in machine learning (see e.g. Figure 4). For
unconstrained sampling problems, we show MIED achieves comparable performance to particle-
based algorithms like SVGD, while for constrained sampling problems, MIED demonstrates strong
performance compared to alternatives while being more flexible with constraint handling.

2 RELATED WORKS

KL gradient flow and its discretization for unconstrained sampling. The Wasserstein gradi-
ent flow of the Kullback-Leibler (KL) divergence has been extensively studied, and many popular
sampling algorithms can be viewed as discretizations of the KL-divergence gradient flow. Two pri-
mary examples are Langevin Monte Carlo (LMC) and Stein variational gradient descent (SVGD).
LMC simulates Langevin diffusion and can be viewed as a forward-flow splitting scheme for the
KL-divergence gradient flow (Wibisono, 2018). At each iteration of LMC, particles are pulled along
−∇ log p where p is the target density, while random Gaussian noise is injected, although a Metropo-
lis adjusting step is typically needed for unbiased sampling. In contrast with LMC, SVGD is a
deterministic algorithm that updates a collection of particles using a combination of an attractive
force involving −∇ log p and a repulsive force among the particles; it can be viewed as a kernelized
gradient flow of the KL divergence (Liu, 2017) or of the χ2 divergence (Chewi et al., 2020). The
connection to the continuous gradient flow in the Wasserstein space is fruitful for deriving sharp
convergence guarantees for these sampling algorithms (Durmus et al., 2019; Balasubramanian et al.,
2022; Korba et al., 2020; Salim et al., 2022).

Sampling in constrained domains. Sampling in constrained domains is more challenging com-
pared to the unconstrained setting. Typical solutions are rejection sampling and reparameterization
to an unconstrained domain. However, rejection sampling can have a high rejection rate when the
constrained domain is small, while reparameterization maps need to be chosen on a case-by-case
basis with a determinant-of-Jacobian term that can be costly to evaluate. Brubaker et al. (2012)
propose a constrained version of HMC for sampling on implicit submanifolds, but their algorithm
is expensive as they need to solve a nonlinear system of equations for every integration step in each
step of HMC. Byrne & Girolami (2013) propose geodesic Hamiltonian Monte Carlo for sampling
on embedded manifolds, but they require explicit geodesic formulae. Zhang et al. (2020); Ahn
& Chewi (2021) propose discretizations of the mirror-Langevin diffusion for constrained sampling
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provided that a mirror map is given to capture the constraint. Similarly, Shi et al. (2021) propose
mirror SVGD that evolves particles using SVGD-like updates in the dual space defined by a mirror
map. While these two methods have strong theoretical convergence guarantees, they are limited by
the availability of mirror maps that capture the constraints. Liu et al. (2021) extend SVGD to incor-
porate a population constraint over the samples obtained; their setting is different from ours where
the constraint is applied to every sample.

Pairwise interaction energies on particles. Pairwise interaction energies on particles take the form
E({xi}Ni=1) =

∑
i̸=j W (xi, xj) for a kernel W (x, y). The gradient flow of E on N particles can

give rise to phenomena like flocking and swarming, and a long line of mathematical research studies
mean-field convergence of such particle gradient flow to continuous solutions of certain PDEs as
N → ∞ (Carrillo et al., 2014; Serfaty, 2020). Of particular interest to sampling, a separate line of
works summarized by Borodachov et al. (2019) demonstrates that for the hypersingular Riesz kernel
W (x, y) = ∥x− y∥−s

2 with sufficiently big s, minimizing E over a compact set yields uniform sam-
ples as N →∞. Moreover, W can depend on p to obtain non-uniform samples distributed according
to p. As the hypersingular Riesz kernel is not integrable, their analysis is entirely based on geometric
measure theory and avoids any variational techniques. In contrast, we take a different approach by
using integrable kernels in MIEs through mollifiers. This enables us to apply variational analysis
to establish interesting connections between MIEs and χ2 divergence. We compare our formula-
tion with theirs further in Appendix B. Joseph et al. (2019) propose to minimize the maximum of
pairwise interaction akin to the interaction in Borodachov et al. (2019) without gradient information
using a greedy algorithm. Recently, Korba et al. (2021) propose sampling via descending on kernel
Stein discrepancy which can also be viewed as a type of interaction energy, but like SVGD, it is
limited to unconstrained sampling and can be slow as higher-order derivatives of log p are required.
Craig et al. (2022) propose approximating the χ2 divergence with a functional different from ours
that also involves a mollifier. The resulting algorithm needs to evaluate an integral containing the
target density over the whole domain at each step which can be costly. Consequently, their method
is only applied to special target densities for which the integral has a closed form. In comparison,
our method can handle general target densities with cheap updates in each step.

3 MOLLIFIED INTERACTION ENERGY

Notation. Let X ⊂ Rn be the domain we work in. We use Ln to denote the Lebesgue mea-
sure on Rn and write

∫
f(x) dx to denote integration with respect to Ln. We will assume

all measures are Borel. We use Hd to denote the d-dimensional Hausdorff measure. We use
ωN to denote a set of points {x1, . . . , xN} ⊂ Rn. For x ∈ Rn, let δx be the Dirac delta
measure at x and δωN

be the empirical measure 1
N

∑N
k=1 δxk

. We denote Lp(X) := {f :

X → R Lebesgue measurable with
∫
X
|f(x)|p dx < ∞}, and for f ∈ Lp(X) we let ∥f∥p :=(∫

X
|f(x)|p dx

)1/p
. We use ∥f∥∞ to denote the essential supremum of |f |. For f, g : Rn → R, we

define convolution (f ∗ g)(x) :=
∫
f(y)g(x− y) dy provided this integral exists. We use Ck(X) to

denote continuously k-differentiable functions and C∞(X) to indicate the smooth functions. The
space of continuous k-differentiable functions with compact support on X is Ck

c (X). We denote
by P(X) the set of probability measures, and P2(X) the set of probability measures with bounded
second moments. We denote by Msign(X) the set of finite signed measures. Given a Lebesgue
measurable map T : X → X and µ ∈ P2(X), T#µ is the pushforward measure of µ by T .

Setup. The domain X ⊂ Rn where we constrain samples is assumed to be closed and full-
dimensional, i.e., Ln(X) > 0; the unconstrained case corresponds to X = Rn. The target
density, always denoted as p, is assumed to satisfy p ∈ C1(X), p(x) > 0 for all x ∈ X , and
0 <

∫
X
p(x) dx < ∞. Let µ∗ be the target probability measure µ∗(B) :=

∫
B

p(x) dx/
∫
X

p(x) dx for
Borel B ⊂ X . Our goal is to sample from µ∗.

3.1 MOLLIFIERS

Our framework relies on the notion of mollifiers originally introduced in Friedrichs (1944).
Definition 3.1 (family of mollifiers). We say {ϕϵ}ϵ>0 ⊂ C1(Rn) is a family of mollifiers if it
satisfies
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(a) For any ϵ > 0, x ∈ Rn, ϕϵ(x) ≥ 0 and ϕϵ(x) = ϕϵ(−x).
(b) For any ϵ > 0, ∥ϕϵ∥1 = 1 and supx∈Rn ϕϵ(x) <∞.
(c) For any δ > 0, p ∈ {1,∞}, limϵ→0

∥∥1Rn\Bδ(0)ϕϵ

∥∥
p
= 0.

As ϵ → 0, the distribution with density ϕϵ converges to δ0, and if f ∈ Lp(Rn) and is continuous,
then convolution ϕϵ∗f converges to f both pointwise (Proposition A.4) and in Lp (Proposition A.7).

Our definition is different from the one used in PDE theory (Hörmander, 2015), where some ϕ ∈
C∞

c (Rn) is fixed and the family of mollifiers is generated by ϕϵ(x) := ϵ−nϕ(x/ϵ). While in
PDE theory mollifiers are typically used to improve the regularity of non-smooth functions, in our
framework they are used to construct interaction energies that approximate the χ2 divergence.

We will use the following mollifiers. In the following definitions, we include normalizing constants
Zϵ that ensure ∥ϕϵ∥ = 1. We do not write out Zϵ explicitly as they might not admit clean forms
and they are only relevant in theory but not in our practical algorithm. For s > n, the s-Riesz
family of mollifiers is defined as ϕs

ϵ(x) := (∥x∥22 + ϵ2)−s/2/Zs
ϵ . The Gaussian family of molli-

fiers is defined as ϕg
ϵ (x) := exp

(
−∥x∥2

2/2ϵ2
)
/Zg

ϵ . The Laplace family of mollifiers is defined as
ϕl
ϵ(x) := exp (−∥x∥2/ϵ) /Zl

ϵ. Since {ϕg
ϵ} and {ϕl

ϵ} correspond to the densities of centered Gaussian
and Laplace random variables, they satisfy Definition 3.1. Proposition A.1 proves that {ϕs

ϵ} also
satisfies Definition 3.1.

3.2 MOLLIFIED INTERACTION ENERGIES

Definition 3.2 (mollified interaction energy). Given a family of mollifiers {ϕϵ}ϵ>0 satisfying Defi-
nition 3.1, for each ϵ > 0, define a symmetric kernel Wϵ : R

n ×Rn → [0,∞] by

Wϵ(x, y) :=

{
ϕϵ(x− y)(p(x)p(y))−1/2 if x, y ∈ X
∞ otherwise. (1)

Define the mollified interaction energy (MIE), Eϵ : P(Rn)→ [0,∞], to be

Eϵ(µ) :=
∫∫

Wϵ(x, y) dµ(x) dµ(y). (2)

Intuitively, minimizing Eϵ(µ) balances two forces: a repulsive force from ϕϵ(x − y) makes sure
µ has a good spread, and an attractive force from (p(x)p(y))−1/2 helps µ concentrate on high-
density regions. The exponent −1/2 is chosen to balance the two forces so that, as we will show in
Theorem 3.3, Eϵ(µ) approximates the χ2 divergence with respect to µ∗ for small ϵ.

3.3 CONVERGENCE TO χ2-DIVERGENCE

Recall that the χ2-divergence between probability measures P,Q is defined by

χ2(Q ∥ P ) :=

{ ∫ (
dQ
dP − 1

)2
dP if Q≪ P

∞ otherwise,
(3)

where Q≪ P denotes absolute continuity of Q with respect to P with density dQ/dP .

Theorem 3.3. Suppose µ ∈ P(Rn) satisfies χ2(µ ∥ µ∗) < ∞. Then, Eϵ(µ) < ∞ for any ϵ > 0.
Furthermore,

lim
ϵ→0
Eϵ(µ) = χ2(µ ∥ µ∗) + 1.

We provide a succinct proof of Theorem 3.3 in Appendix A.2 using the theory of mollifiers devel-
oped in Appendix A.1. In Remark A.10 we discuss an extension of Theorem 3.3 to cases when X
is not full-dimensional; in particular Theorem 3.3 still holds when X is “flat”, i.e., has Hausdorff
dimension d < n and is contained in a d-dimensional linear subspace.

4



Published as a conference paper at ICLR 2023

3.4 CONVEXITY AND Γ-CONVERGENCE

We next study properties of the minimizers of MIEs: Does minµ∈P(X) Eϵ(µ) admit a unique min-
imum? If so, do minima of {Eϵ}ϵ>0 converge to µ∗ as ϵ → 0? In order to answer affirmatively to
these questions, we will need the associated kernel kϵ(x, y) := ϕϵ(x − y) to satisfy the following
property.
Definition 3.4 (i.s.p.d. kernel). A symmetric lower semicontinuous (l.s.c.) kernel K on X × X
is integrally strictly positive definite (i.s.p.d.) if for every finite signed Borel measure ν on X , the
energy EK(ν) :=

∫∫
K(x, y) d(ν× ν)(x, y) is well-defined (i.e., the integrals over the negative and

positive parts of ν are not both infinite), and EK(ν) ≥ 0 where the equality holds only if ν = 0 on
all Borel sets of X .

For the mollifiers we consider, the associated kernel kϵ(x, y) = ϕϵ(x− y) is i.s.p.d. on any compact
set (Pronzato & Zhigljavsky (2021, Example 1.2)).
Proposition 3.5. Suppose X is compact and kϵ(x, y) := ϕϵ(x− y) is i.s.p.d. on X . Then,

(a) The kernel Wϵ(x, y) defined in (1) also i.s.p.d on X .
(b) The functional Eϵ is strictly convex onMsign(X) and attains a unique minimum on P(X).

We next show the convergence of minima of {Eϵ} to µ∗ as a consequence of Γ-convergence of the
sequence {Eϵ}.
Theorem 3.6. Suppose kϵ(x, y) := ϕϵ(x − y) is i.s.p.d. on compact sets for every ϵ > 0. Then we

have Γ-convergence (Definition A.13) Eϵ Γ→ χ2(· ∥ µ∗)+1 as ϵ→ 0. In particular, if X is compact,
if we denote µ∗

ϵ := argminµ∈P(X) Eϵ(µ), then µ∗
ϵ → µ∗ weakly and limϵ→0 Eϵ(µ∗

ϵ ) = 1.

We prove Theorem 3.6 in Appendix A.3 using Fourier transforms and Bochner’s theorem. Theo-
rem 3.6 provides basis for minimizing Eϵ for a small ϵ, since its unique minimum will be a good
approximation of µ∗.

3.5 DIFFERENTIAL CALCULUS OF Eϵ IN P2(R
n)

We next study the gradient flow of Eϵ in Wasserstein space P2(R
n) for X = Rn. Understand-

ing the gradient flow of a functional often provides insights into the convergence of algorithms
that simulates gradient flow with time discretization (Ambrosio et al., 2005, Chapter 11) or spatial
discretization (Chizat, 2022). Proofs of this section are given in Appendix A.4.

Let F : P2(R
n)→ R be a functional. The Wasserstein gradient flow of F (Ambrosio et al., 2005,

Definition 11.1.1) is defined as the solution {µt}t≥0 of the PDE: ∂µt

∂t = ∇ · (µtwF,µt
) where

wF,µ ∈ L2(µ;Rn) is a Frechét subdifferential of F at µ. Intuitively, gradient flows capture the
evolution of the variable being optimized if we were to do gradient descent1 on F when the step
sizes go to 0. We next show that the gradient flow of Eϵ agrees with that of χ2(· ∥ µ∗) in the sense
that their subdifferentials coincide as ϵ→ 0.
Proposition 3.7. Assume µ ∈ P2(R

n) has density q ∈ C1
c (R

n)2. Then any strong Frechét subdif-
ferential (Definition A.20) of Eϵ at µ takes the form

wϵ,µ(x) = 2∇
(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
, for µ-a.e. x ∈ Rn. (4)

Moreover, if for sufficiently small ϵ, ϕϵ has compact support independent of ϵ, then

lim
ϵ→0

wϵ,µ(x) = wχ2,µ(x), for µ-a.e. x ∈ Rn, (5)

where wχ2,µ is a strong Frechét subdifferential of χ2(· ∥ µ∗).

While simulating χ2 divergence gradient flow is often intractable (Trillos & Sanz-Alonso, 2020,
Section 3.3), our MIE admits a straightforward practical algorithm (Section 4).

1The more precise notion is of minimizing movements (Ambrosio et al., 2005, Chapter 2).
2We assume that µ has compact support because Wϵ can be unbounded and cause integrability issues due

to the presence of (p(x)p(y))−1/2 term.
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We next show that Eϵ is displacement convex at µ∗ ∈ P2(R
n) as ϵ → 0, obtaining a result similar

to Korba et al. (2021, Corollary 4). This hints that gradient flow initialized near µ∗ will have fast
convergence.
Proposition 3.8. Suppose p ∈ C2

c (R
n). Suppose that for sufficiently small ϵ, ϕϵ has compact

support independent of ϵ. Assume kϵ(x, y) := ϕϵ(x − y) is i.s.p.d. Let ξ ∈ C∞
c (Rn;Rn) and

µt := (I + tξ)#µ
∗. Then limϵ→0

d2

dt2

∣∣∣∣
t=0

Eϵ(µt) ≥ 0.

4 A PRACTICAL SAMPLING ALGORITHM

We now present a first-order particle-based algorithm for constrained and unconstrained sampling
by minimizing a discrete version of (2). Substituting an empirical distribution for µ in (2) gives the
discrete mollified interaction energy, for N particles ωN = {x1, . . . , xN},

Eϵ(ωN ) :=
1

N2

N∑
i=1

N∑
j=1

ϕϵ(xi − xj)(p(xi)p(xj))
−1/2. (6)

Denote ω∗
N,ϵ ∈ argminωN⊂X Eϵ(ωN ) and µ∗

ϵ = argminµ∈P2(X) Eϵ(µ), If X is compact, by Boro-
dachov et al. (2019, Corollary 4.2.9), we have weak convergence δω∗

N,ϵ
→ µ∗

ϵ as N → ∞. If in
addition kϵ(x, y) := ϕϵ(x−y) is i.s.p.d., then by Theorem 3.6, we have weak convergence µ∗

ϵ → µ∗.
This shows that minimizing (6) with a large N and a small ϵ will result in an empirical distribution of
particles that approximates µ∗. Our sampling method, mollified interaction energy descent (MIED),
is simply running gradient descent on (6) over particles (Algorithm 1) with an update that resembles
the one in SVGD (see the discussion in Appendix C.1). Below we address a few practical concerns.

Optimization in the logarithmic domain. In practical applications, we only have access to the
unnormalized target density p. The normalizing constant of the mollifier ϕϵ can also be hard to
compute (e.g., for the Riesz family). While these normalization constants do not affect the minima
of (6), they can still affect gradient step sizes during optimization. Moreover, ϕϵ can be very large
when ϵ is small, and in many Bayesian applications p can be tiny and only log p is numerically
significant. To address these issues, we optimize the logarithm of (6) using the log-sum-exp trick
(Blanchard et al., 2021) to improve numerical stability and to get rid of the arbitrary scaling of the
normalizing constants:

logEϵ(ωN ) := log
N∑
i=1

N∑
j=1

exp

(
log ϕϵ(xi − xj)−

1

2
(log p(xi) + log p(xj))

)
− 2 logN. (7)

Special treatment of the diagonal terms. Since ϕϵ goes to the Dirac delta as ϵ → 0, the dis-
cretization of (2) on a neighborhood of the diagonal {(x, y) : x = y} needs to be handled with
extra care. In (6) the diagonal appears as

∑N
i=1 ϕϵ(0)p(xi)

−1 which can dominate the summation
when ϵ is small and then ϕϵ(0) becomes too large. For the mollifiers that we consider, we use a
different diagonal term

∑N
i=1 ϕϵ(hi/κn)p(xi)

−1 where hi := minj ̸=i ∥xi − xj∥ and κn ≥ 1 is a
constant depending only on the dimension n. Since 0 ≤ ϕϵ(hi/κn) ≤ ϕϵ(0), the energy obtained
will be bounded between (6) and the version of (6) without the diagonal terms. Hence by the proof
of Theorem 4.2.2 of Borodachov et al. (2019), the discrete minimizers of Eϵ still converge to µ∗

ϵ as
N → ∞ and ϵ → 0. Empirically we found the choice κn = (1.3n)1/n works well for the Riesz
family of mollifiers and we use the Riesz family primarily for our experiments.

Constraint handling. If X ̸= Rn, we need to minimize (7) subject to constraints ωN =
{x1, . . . , xN} ⊂ X . Since the constraint is the same for each particle xi, we want our algorithm to
remain parallelizable across particles.

We consider two types of constraints: (a) there exists a differentiable map f : Rn → X , with
Ln(X \ f(Rn)) = 0; (b) the set X is given by {x ∈ Rn : g(x) ≤ 0} for a differentiable g :
Rn → R. For (a), we reduce the problem to unconstrained optimization in Rn using objective
logEϵ(f(ωN )) with ωN = {x1, . . . , xN} ⊂ Rn and f(ωN ) := {f(x1), . . . , f(xN )}. For (b), we
apply the dynamic barrier method by Gong & Liu (2021) to particles in parallel; see Appendix C.2
for details and an extension to handling multiple constraints.
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5 EXPERIMENTS

We compare MIED with recent alternatives on unconstrained and constrained sampling problems.
Unless mentioned otherwise, we choose the s-Riesz family of mollifiers {ϕs

ϵ}with s = n+10−4 and
ϵ = 10−8: we found minimizing the MIE with such mollifiers results in well-separated particles so
that we can take ϵ to be very small as our theory recommends. This is not the case for the Gaussian
or the Laplace family as setting ϵ too small can cause numerical issues even when particles are well-
separated. In Appendix D.5, we compare different choices of s on a constrained mixture distribution.

Unless mentioned otherwise: for SVGD (Liu & Wang, 2016), we use the adaptive Gaussian ker-
nel as in the original implementation (adaptive kernels can be prone to collapse samples—see Ap-
pendix D.2); for KSDD (Korba et al., 2021), we use a fixed Gaussian kernel with unit variance. All
methods by default use a learning rate of 0.01 with Adam optimizer (Kingma & Ba, 2014). The
source code can be found at https://github.com/lingxiaoli94/MIED.

5.1 UNCONSTRAINED SAMPLING

Gaussians in varying dimensions. We first compare MIED with SVGD and KSDD on Gaussians of
varying dimensions and with different numbers of particles. In Figure 1, we see that as the number of
dimensions increases, MIED results in best samples in terms of W2 distance (Wasserstein-2 distance
computed using linear programming) with respect to 104 i.i.d. samples, while SVGD yields lower
energy distance (Székely & Rizzo, 2013). We think this is because MIED results in more evenly
spaced samples (Figure 5) so the W2 distance is lower, but it is biased since ϵ > 0 so for energy
distance SVGD performs better. More details can be found in Appendix D.1.
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Figure 1: Gaussian experiments results in varying dimensions and different numbers of particles. For
each method, we plot the metric (W2 distance or energy distance) versus the number of particles,
averaged over 10 trials (shaded region indicates standard deviation).

Product of two Student’s t-distributions. Next, we consider a 2-dimensional distribution con-
structed as the product of two independent t-distributions with the degree of freedom ν = 2 com-
posed with a linear transform. Unlike Gaussians, Student’s t-distributions have heavy tails. On the
left of Figure 2, we visualize the results of each method with 1000 samples after 2000 iterations.
MIED captures the heavy tail while SVGD fails. Quantitatively, on the right of Figure 2, while
SVGD captures the distribution in [−a, a]2 better for a ≤ 3, MIED yields lower metrics for a bigger
a.
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Figure 2: Left: visualization of samples from each method for the product of two Student’s t-
distribution (composed with a linear transform). Right: metrics of each method when restricting
to [−a, a]2. As t-distributions have heavy tails, if we draw i.i.d. samples from the true product
distribution, a small number of them will have large norms, making the computation of metrics
unstable. Thus we restrict both i.i.d. samples and the resulting samples from each method to [−a, a]2
before computing the metrics for a ∈ [2, 10].
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Bayesian logistic regression. We compare MIED with SVGD and KSDD for the Bayesian logistic
regression setting in Liu & Wang (2016). We further include a naı̈ve baseline, independent particle
descent (IPD), which simply runs gradient descent independently on each particle to maximize the
posterior probability. In addition to using test accuracy as the metric, we include W2 distance and en-
ergy distance between the samples from each method and 104 samples from NUTS (Hoffman et al.,
2014) after sufficient burn-in steps. We summarize the results in Table 5.1. All methods, including
the naı̈ve baseline IPD, are comparable in terms of test accuracy. In other words, accuracy is not
a good metric for comparing the quality of posterior samples. Bayesian inference is typically pre-
ferred over maximum a posteriori estimation for its ability to capture uncertainty. When evaluating
the quality of the uncertainty of the samples using distances between distributions, MIED provides
the best approximation in terms of the W2 distance and all methods (except IPD) are comparable in
terms of the energy distance.

Dataset NUTS IPD SVGD KSDD MIED

banana (d = 3) 0.55 -6.14/-3.58/0.55 -7.81/-5.24/0.55 -8.24/-5.76/0.55 -7.37/-5.06/0.55
breast cancer (d = 10) 0.64 -1.51/-1.03/0.60 -1.62/-2.06/0.60 -1.71/-2.23/0.60 -1.99/-2.18/0.60
diabetis (d = 9) 0.78 -2.18/-1.55/0.77 -3.09/-3.42/0.77 -2.91/-3.90/0.77 -3.11/-3.13/0.77
flare solar (d = 10) 0.59 3.30/2.65/0.48 6.91/4.09/0.52 1.77/-0.08/0.55 7.09/4.25/0.48
german (d = 21) 0.65 -1.80/-1.25/0.65 -1.89/-2.63/0.64 -1.27/-2.83/0.65 -1.96/-2.80/0.65
heart (d = 14) 0.87 -0.40/-0.56/0.87 -0.41/-1.50/0.87 -0.10/-1.76/0.87 -0.92/-1.67/0.87
image (d = 19) 0.82 6.53/4.31/0.83 7.17/4.01/0.83 2.16/-0.50/0.82 1.14/-1.88/0.82
ringnorm (d = 21) 0.77 -3.82/-2.45/0.77 -4.11/-5.98/0.77 1.07/-2.21/0.76 -4.03/-5.70/0.77
splice (d = 61) 0.85 -1.47/-1.18/0.85 -1.22/-2.65/0.85 2.04/-0.05/0.84 1.45/0.70/0.82
thyroid (d = 6) 0.84 1.95/0.53/0.84 1.17/-0.00/0.84 2.42/1.57/0.74 0.84/-0.37/0.84
titanic (d = 4) 0.40 -1.59/-0.16/0.40 -0.46/-0.31/0.40 -0.63/-0.39/0.40 -1.00/-0.45/0.40
twonorm (d = 21) 0.97 -1.21/-1.13/0.97 -1.32/-2.78/0.97 1.55/-0.62/0.97 -1.44/-3.21/0.97
waveform (d = 22) 0.77 -2.67/-1.87/0.78 -2.98/-5.23/0.78 -2.60/-4.18/0.77 -3.09/-3.17/0.78

Table 1: Bayesian logistic regression results with 1000 particles. We include the test accuracy for
NUTS in the second column. Three numbers A/B/C in the following columns are logarithmic W2

distance, logarithmic energy distance, and test accuracy. Bold indicates the best numbers. We use
80%/20% training/test split. All methods are run with identical initialization and learning rate 0.01.
Results are reported after 104 iterations.

5.2 CONSTRAINED SAMPLING

Uniform sampling in 2D. We consider uniform sampling in the square [−1, 1]2 with 500 particles.
We reparameterize our particles using tanh to eliminate the constraint and show results with vari-
ous choices of mollifiers—we always choose the smallest ϵ while the optimization remains stable.
We compare our method with mirror LMC (Zhang et al., 2020) and SVMD/MSVGD by Shi et al.
(2021) using entropic mirror map ϕ(θ) =

∑n
i=1 ((1 + θi) log(1 + θi) + (1− θi) log(1− θi)). To

demonstrate that SVGD and KSDD break down in constrained domains, we implement these two
methods adapted to the constrained setting using the same reparameterization as our method. The
initial particles are drawn uniformly from [−0.5, 0.5]2. The left plot of Figure 3 shows that quantita-
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Figure 3: Convergence of metrics and visualization of samples for uniform sampling from a 2D box.

tively our method achieves much lower energy distance and W2 distance (compared to a 5000 i.i.d.
samples uniformly drawn in [−1, 1]2.). On the right of Figure 3, we visualize the samples from each
method. We see that samples from SVGD with an adaptive kernel collapse—we investigate this
issue in Appendix D.2. Samples from SVGD with a fixed kernel size and KSDD are non-uniform
(we choose kernel sizes that produce the best result). While SVMD creates locally clustered arti-
facts, MSVGD produces good results. For mirror LMC, the resulting samples are not evenly spaced,
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resulting in worse W2 distances. When using tanh as the reparameterization map, MIED produces
decent results for all three families of mollifiers (Riesz, Gaussian, Laplace). When using the same
entropic mirror map, MIED also produces good results. This highlights the flexibility of our method
with constraint handling, whereas, for LMC and SVMD/MSVGD, the mirror map has to be chosen
carefully to be the gradient of a strongly convex function while capturing the constraints.

In Appendix D.3, we further test SVMD/MSVGD with a different choice of the mirror map where
they break down. In Appendix D.4, we conduct a similar comparison for sampling from a 20-
dimensional Dirichlet distribution using the same setup as Shi et al. (2021). In scenarios where a
good choice of a mirror map is available, SVMD/MSVGD can obtain better performance compared
to MIED. In Appendix D.6, we conduct additional qualitative experiments for MIED, demonstrating
its effectiveness for challenging constraints and multi-modal distributions.

Fairness Bayesian neural networks. We train fair Bayesian neural networks to predict whether
the annual income of a person is at least $50, 000 with gender as the protected attribute using the
Adult Income dataset (Kohavi et al., 1996). We follow the same setup as in Liu et al. (2021) where
the dataset D = {x(i), y(i), z(i)}|D|

i=1 consists of feature vectors x(i), labels y(i) (whether the in-
come is ≥ $50, 000), and genders z(i) (protected attribute). The target density is taken to be the
posterior of logistic regression with a two-layer Bayesian neural network ŷ(·; θ) with weights θ,
and we put a standard Gaussian prior on each entry of θ independently. Given t > 0, the fair-
ness constraint is g(θ) = (cov(x,y,z)∼D[z, ŷ(x; θ)])

2 − t ≤ 0. On the left of Figure 4, we plot the
trade-off curve of the result obtained using our method and the methods from Liu et al. (2021) for
t ∈ {10−5, 10−4, 0.0001, 0.001, 0.002, 0.005, 0.01}. Details can be found in Appendix D.7. Our
method recovers a much larger Pareto front compared to the alternatives. On the right of Figure 4,
we visualize the curves of the energy and the covariance versus the number of training iterations:
as expected we see a smaller t results in bigger MIE (lower log-likelihood) and smaller covariance
between the prediction and the protected attribute.
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Figure 4: Left: trade-off curves of demographic parity versus accuracy on the test data for MIED
and methods from Liu et al. (2021). Right: MIEs and (cov(x,y,z)∼D[z, ŷ(x; θ)])

2 (measured on the
training data) versus the number of training iterations, for various t.

6 CONCLUSION

We present a new sampling method by minimizing MIEs discretized as particles for unconstrained
and constrained sampling. This is motivated by the insight that MIEs converge to χ2 divergence with
respect to the target measure as the mollifier parameter goes to 0. The proposed method achieves
promising results on the sampling problems we consider.

Below we highlight three limitations. First, as discussed in Remark A.10, our theory only applies
when the domain is full-dimensional or flat. Extending our theory to handle cases where the domain
is an arbitrary d-rectifiable set is an important next step as it allows the handling of more complicated
constraints such as nonlinear equality constraints. Secondly, when ϵ > 0, the minimizer of MIE can
be different from the target measure. Finding a way to debias MIE (e.g., like how Sinkhorn distances
are debiased (Feydy et al., 2019)) is an interesting direction. Lastly, the connection between the
minimizers of the discretized MIE (6) and those of the continuous MIE (2) is only established in the
limit as N →∞. We hope to investigate how well the empirical distribution of particles minimizing
(6) approximates the target measure when N is finite as in Xu et al. (2022).
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Reproducibility statement. We provide self-contained proofs in Appendix A for the theoretical
results stated in the main text. The source code for all experiments can be found at https://
github.com/lingxiaoli94/MIED.
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Lars Hörmander. The analysis of linear partial differential operators I: Distribution theory and
Fourier analysis. Springer, 2015.

V Roshan Joseph, Dianpeng Wang, Li Gu, Shiji Lyu, and Rui Tuo. Deterministic sampling of
expensive posteriors using minimum energy designs. Technometrics, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Achim Klenke. Probability theory: a comprehensive course. Springer Science & Business Media,
2013.

Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pp. 202–207, 1996.

Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, and Arthur Gretton. A non-asymptotic anal-
ysis for stein variational gradient descent. Advances in Neural Information Processing Systems,
33:4672–4682, 2020.

Anna Korba, Pierre-Cyril Aubin-Frankowski, Szymon Majewski, and Pierre Ablin. Kernel stein
discrepancy descent. In International Conference on Machine Learning, pp. 5719–5730. PMLR,
2021.
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A DETAILED ANALYSIS

A.1 PRELIMINARIES ON MOLLIFIERS

Proposition A.1. For s > n, the s-Riesz family of mollifiers, defined as ϕs
ϵ(x) := (∥x∥22 +

ϵ2)−s/2/Zs
ϵ , satisfies Definition 3.1.

In order to prove Proposition A.1, we first prove a lemma.
Lemma A.2. Let b ≥ 0. Then for any ϵ > 0,

Zs
ϵ

∫
Bϵ(0)

ϕs
ϵ(y)∥y∥b2 dy = Hn−1(S

n−1)

(∫ 1

0

tn+b−1

(t2 + 1)s/2

)
ϵn+b−s, (8)

whereHn−1(S
n−1) is the volume of the (n− 1)-dimensional sphere.

Furthermore, assuming s > b+ n, then for any ϵ > 0, δ > 0,

Zs
ϵ

∫
Rn\Bδ(0)

ϕs
ϵ(y)∥y∥b2 dy ≤ Hn−1(S

n−1)
δn+b−s

s− (n+ b)
. (9)

Proof. For (8), we compute

Zs
ϵ

∫
Bϵ(0)

ϕs
ϵ(y)∥y∥b2 dy =

∫
Bϵ(0)

∥y∥b2
(∥y∥22 + ϵ2)s/2

= Hn−1(S
n−1)

∫ ϵ

0

rn+b−1

(r2 + ϵ2)s/2
dr

= Hn−1(S
n−1)

∫ 1

0

(ϵt)n+b−1

(ϵ2t2 + ϵ2)s/2
ϵ dt

= Hn−1(S
n−1)

(∫ 1

0

tn+b−1

(t2 + 1)s/2
dt

)
ϵn+b−s,

where we use substitution r = ϵt on the second line.

If s > b+ n, then

Zs
ϵ

∫
Rn\Bδ(0)

ϕs
ϵ(0, y)∥y∥b2 dy =

∫
Rn\Bδ(0)

∥y∥b2
(∥y∥22 + ϵ2)s/2

≤
∫
Rn\Bδ(0)

∥y∥b2
∥y∥s2

= Hn−1(S
n−1)

∫ ∞

δ

rn−1+b−s

= Hn−1(S
n−1)

δn+b−s

s− (n+ b)
,
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where the last integral uses s > b+ n.

Proof of Proposition A.1. It is clear that (a) of Proposition A.1 holds for ϕs
ϵ(x). Since ϕs

ϵ(x) is
bounded we have ϕs

ϵ ∈ L∞(Rn). For any δ > 0, we have, for ϵ ≤ δ,

Zs
ϵ

∫
Bδ(0)

ϕs
ϵ(x) dx ≥ Zs

ϵ

∫
Bϵ(0)

ϕs
ϵ(x) dx = Cϵn−s,

where we use (8) with b = 0 and C is a constant depending only on n, s. On the other hand, using
(9) with b = 0,

Zs
ϵ

∫
Rn\Bδ(0)

ϕs
ϵ(x) dx ≤ C ′δn−s,

where C ′ depends only on n, s. With δ = ϵ, we see that Zs
ϵϕ

s
ϵ ∈ L1(Rn) so (b) is satisfied.

Since δ is fixed and s > n, we see that

lim
ϵ→0

∫
Bδ(0)

ϕs
ϵ(x) dx∫

Rn\Bδ(0)
ϕs
ϵ(x) dx

≥ lim
ϵ→0

Cϵn−s

C ′δn−s
=∞.

Since
∫
Bδ(0)

ϕs
ϵ(x) dx +

∫
Rn\Bδ(0)

ϕs
ϵ(x) dx = 1, we have shown (c).

In the rest of this section, we assume {ϕϵ}ϵ>0 is a family of mollifiers satisfying Definition 3.1.

Lemma A.3. For any p ∈ [1,∞], for any δ > 0, ϕϵ ∈ Lp(Rn) and limϵ→0

∥∥1Rn\Bδ(0)ϕϵ

∥∥
p
= 0.

holds.

Proof. Assume p /∈ {1,∞} since both cases are covered in the assumptions. Then for any δ > 0,
by Hölder’s inequality,

∥ϕϵ∥pp =
∥∥ϕϵ · ϕp−1

ϵ

∥∥
1
≤ ∥ϕϵ∥1

∥∥ϕp−1
ϵ

∥∥
∞ = ∥ϕϵ∥1∥ϕϵ∥p−1

∞ <∞.

Similarly, ∥∥1Rn\Bδ(0)ϕϵ

∥∥p
p
=
∥∥1Rn\Bδ(0)ϕ

p
ϵ

∥∥
1
=
∥∥ϕϵ · 1Rn\Bδ(0)ϕ

p−1
ϵ

∥∥
1

≤ ∥ϕϵ∥1
∥∥1Rn\Bδ(0)ϕ

p−1
ϵ

∥∥
∞ =

∥∥1Rn\Bδ(0)ϕϵ

∥∥p−1

∞ .

Letting ϵ→ 0 and applying (c) gives limϵ→0

∥∥1Rn\Bδ(0)ϕϵ

∥∥
p
= 0.

Proposition A.4. Let f ∈ Lp(Rn), p ∈ [1,∞]. Then for every ϵ > 0, the integral∫
f(x− y)ϕϵ(y) dy

exists, so that (f ∗ ϕϵ)(x) is finite. Moreover, if f is continous at x, then

lim
ϵ→0

(f ∗ ϕϵ)(x) = f(x). (10)

Proof. Observe that by Hölder’s inequality, for q such that 1/p+ 1/q = 1 (allowing infinity),∫
|f(x− y)ϕϵ(y)| dy ≤ ∥f∥p∥ϕϵ∥q <∞.

Hence (f ∗ ϕϵ)(x) is integrable and finite.

For any ϵ > 0, note that

|(f ∗ ϕϵ)(x)− f(x)| =
∣∣∣∣∫ f(x− y)ϕϵ(y) dy − f(x)

∣∣∣∣.
13
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Since
∫
ϕϵ(x) dx = 1, we have

|(f ∗ ϕϵ)(x)− f(x)| =
∣∣∣∣∫ (f(x− y)− f(x))ϕϵ(y) dy

∣∣∣∣ ≤ ∫ |f(x− y)− f(x)|ϕϵ(y) dy.

Fix t > 0. Continuity of f at x implies there exists δ > 0 such that |f(x− y)− f(x)| < t for all
y ∈ Bδ(0). Then ∫

Bδ(0)

|f(x− y)− f(x)|ϕϵ(y) dy ≤ t

∫
Bδ(0)

ϕϵ(y) dy ≤ t.

On the other hand, by Hölder’s inequality,∫
Rn\Bδ(x)

|f(x− y)− f(x)|ϕϵ(y) dy ≤ ∥τxf − f∥p
∥∥1Rn\Bδ(0)ϕϵ

∥∥
q
≤ 2∥f∥p

∥∥1Rn\Bδ(0)ϕϵ

∥∥
q
.

Hence

|(f ∗ ϕϵ)(x)− f(x)| ≤ t+ 2∥f∥p
∥∥1Rn\Bδ(0)ϕϵ

∥∥
q
.

By Lemma A.3, since ∥f∥p <∞, taking ϵ→ 0 we get, for any t > 0,

lim sup
ϵ→0

|(f ∗ ϕϵ)(x)− f(x)| ≤ t.

Now let t→ 0 we get (10).

Corollary A.5. Let f ∈ Lp(Rn), p ∈ [1,∞], be a continuous function. If {fϵ} is a sequence of
functions that converge uniformly to f , then for every x,

lim
ϵ→0

(fϵ ∗ ϕϵ)(x) = f(x). (11)

Proof. Note that

|(ϕϵ ∗ fϵ)(x)− f(x)| ≤ |(ϕϵ ∗ fϵ)(x)− (ϕϵ ∗ f)(x)|+ |(ϕϵ ∗ f)(x)− f(x)|.
Proposition A.4 shows the second term goes to 0 as ϵ→ 0. For the first term, we have

|(ϕϵ ∗ fϵ)(x)− (ϕϵ ∗ f)(x)| =
∣∣∣∣∫ (fϵ(x− y)− f(x− y))ϕϵ(y) dy

∣∣∣∣
≤ sup

x
|fϵ(x)− f(x)| → 0

by uniform convergence.

Lemma A.6. For f ∈ Lp(Rn), p ∈ [1,∞), we have

lim
y→0
∥τyf − f∥p = 0,

where we use τaf to denote the translated function τaf(x) := f(x− a).

Proof. Fix ϵ > 0. It is a standard fact that Cc(R
n) is dense in Lp(Rn). Hence there exists

g ∈ Cc(R
n) such that ∥f − g∥p < ϵ. Since g is continuous with compact support, it is uniform

continuous. Then there exists δ > 0 with |g(x− y)− g(x)| < ϵ1/p/Ln(K) if y ∈ Bδ(x). Hence
for such y we have ∥τyg − g∥pp < ϵ with Ln(K) <∞. Thus

∥τyf − f∥p ≤ ∥τyf − τyg∥p + ∥τyg − g∥p + ∥g − f∥p ≤ 3ϵ.

Proposition A.7. Let f ∈ Lp(Rn), p ∈ (1,∞). Then for every ϵ > 0,

∥f ∗ ϕϵ∥p ≤ 3∥f∥p.
In particular, f ∗ ϕϵ ∈ Lp(Rn). Moreover,

lim
ϵ→0
∥f ∗ ϕϵ − f∥p = 0.

14
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Proof. For every ϵ > 0, we have

∥f ∗ ϕϵ − f∥pp =

∫ ∣∣∣∣∫ (f(x− y)− f(x))ϕϵ(y) dy

∣∣∣∣p dx
≤
∫ ∫

|f(x− y)− f(x)|pϕϵ(y) dy dx

=

∫ (∫
|f(x− y)− f(x)|p dx

)
ϕϵ(y) dy

=

∫
∥τyf − f∥ppϕϵ(y) dy,

where we use Jensen’s inequality with the observation that ϕϵ(y) dy is a probability measure and
Tonelli’s theorem to exchange the order of integration. To show the first claim, note that,

∥f ∗ ϕϵ − f∥pp ≤
∫
∥τyf − f∥ppϕϵ(y) dy ≤

∫
(2∥f∥p)pϕϵ(y) dy = (2∥f∥p)p.

Hence ∥f ∗ ϕϵ∥p ≤ ∥f∥p + ∥f ∗ ϕϵ − f∥p ≤ 3∥f∥p.

For the second claim, by Lemma A.6, the function y 7→ ∥τyf − f∥pp is continuous at y = 0 with
limit 0. Hence by Proposition A.4, we are done by taking ϵ→ 0.

A.2 CONVERGENCE TO χ2-DIVERGENCE

We start by giving an alternative formula for χ2 divergence with respect to the target measure.

Lemma A.8. Define a functional E : P(Rn)→ [0,∞] by

E(µ) :=
{ ∫

X
q(x)2

p(x) dx if dµ(x) = q(x) dLn(x) and µ≪ µ∗

∞ otherwise.
(12)

Then for every µ ∈ P(Rn),
E(µ) = χ2(µ ∥ µ∗) + 1.

Proof. If µ is not absolutely continuous with respect to µ∗, then both sides are infinity. Otherwise,
µ(X) = 1 and µ has some density q. We then compute

χ2(µ ∥ µ∗) + 1 =

∫ (
dµ

dµ∗ (x)− 1

)2

dµ∗(x) + 1 =

∫
X

(
q(x)

p(x)
− 1

)2

p(x) dx+ 1

=

∫
X

q(x)2

p(x)
dx− 2

∫
X

q(x) dx+ 2 =

∫
X

q(x)2

p(x)
dx = E(µ).

Proof of Theorem 3.3. Since χ2(µ ∥ µ∗) <∞, we know µ≪ µ∗, so µ(X) = 1. We let q(x) be the
density of µ which satisfies q(x) = 0 for x ∈ Rn \X . We compute using Tonelli’s theorem (since
our integrand is positive):

Eϵ(µ) =
∫∫

ϕϵ(x− y)(p(x)p(y))−1/2q(x)q(y) dx dy

=

∫ (
ϕϵ ∗

q√
p

)
(x)

q√
p
(x) dx =

∫
(ϕϵ ∗ g)(x)g(x) dx, (13)

where we define g(x) := q(x)/
√

p(x) on X and g(x) := 0 for x /∈ X . Moreover, by Lemma A.8,

χ2(µ ∥ µ∗) + 1 =

∫
g(x)2 dx.

15
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The assumption χ2(µ ∥ µ∗) <∞ then implies g ∈ L2(Rn). By Proposition A.7, we have ϕϵ ∗ g ∈
L2(Rn). Next notice that∣∣Eϵ(µ)− (χ2(µ ∥ µ∗) + 1

)∣∣ ≤ ∫ |(ϕϵ ∗ g)(x)− g(x)|g(x) dx ≤ ∥ϕϵ ∗ g − g∥2∥g∥2 <∞.

This shows the first claim. Finally, the last expression goes to 0 as ϵ → 0 since ∥ϕϵ ∗ g − g∥2 → 0
by Proposition A.7.

Remark A.9. One may ask if similar results as Theorem 3.3 for f -divergences other than χ2 diver-
gence can be obtained using similar techniques. We think the proof of Theorem 3.3 is highly specific
to χ2 divergence because in (13) there are two copies of q coming from the definition of Eϵ as a
double integral over µ. An f -divergence between µ and µ∗ has the form

∫
X
f(q(x)/p(x)) dp(x),

and the only way to have q2 showing up is to choose f(x) = x2 corresponding to χ2 divergence.

Remark A.10. It is possible to prove versions of Theorem 3.3 when X has Hausdorff dimension d <
n: in such cases χ2-divergence still makes sense as does (2). When X is “flat”, i.e., with Hausdorff
dimension d and contained in a d-dimensional linear subspace of Rn, e.g., when X is defined by
a set of linear inequalities, then Theorem 3.3 follows if we adapt the assumptions of Definition 3.1
and calculation in the proof of Theorem 3.3 to be in the subspace. For a general d-dimensional X , a
similar calculation yields Eϵ(µ) =

∫
X

(∫
X
ϕϵ(x− y)

(
q√
p

)
(y) dHd(y)

)(
q√
p

)
(x) dHd(x). For a

similar argument to go through, we will need the normalizing constant
∫
X
ϕϵ(x− y) dHd(y) to the

same for all x. This is true when X is a d-dimensional sphere, but for a general X the last integral
will depend on the base point x. Proving a version of Theorem 3.3 for X with Hausdorff dimension
d < n is an interesting future direction.

A.3 CONVEXITY AND Γ-CONVERGENCE

We start by recalling a few definitions regarding functionals in P(Rn).

Definition A.11. We say a functional F : P(Rn)→ (−∞,∞] is proper if there exists µ ∈ P(Rn)
such that F(µ) < ∞, and is lower semicontinuous (l.s.c.) if for any weakly convergence sequence
µk → µ, we have lim infk→∞ F(µk) ≥ F(µ).
Lemma A.12. For any ϵ > 0, the functional Eϵ : P(Rn)→ (−∞,∞] is proper and l.s.c. Moreover,
if X is compact, the minimum minµ∈P(X) Eϵ(µ) is attained by some measure in P(X).

Proof. Taking any x ∈ X , since ϕϵ is bounded and p(x) > 0, we see that Eϵ(δx) < ∞ so Eϵ is
proper. Moreover, given weakly convergence µk → µ, by Portmanteau theorem and the fact that
Wϵ is nonnegative and l.s.c., we conclude that Eϵ is also l.s.c.

The set of probability distributions P(X) ⊂ P(Rn) is tight by the compactness of X . It is
closed since if {µk} ⊂ P(X) weakly converges to µ, then by Portmanteau theorem, µ(X) ≥
lim supµ(X) = 1 so that µ ∈ P(X). Hence by Prokhorov’s theorem (Theorem 5.1.3 (Ambrosio
et al., 2005)), P(X) is (sequentially) compact. It is then an elementary result that any l.s.c. function
attains its minimum on a compact set.

We next prove Proposition 3.5 regarding the convexity of Eϵ and the uniqueness of its minimum.

Proof of Proposition 3.5. Let µ be any finite signed Borel measure. The compactness assump-
tion and the fact that p ∈ C1(X) imply p(x) > δ for any x ∈ X for some δ > 0. Hence
p(x)−1/2 ≤ δ−1/2, so the weighted measure µ̃ defined by dµ̃(x) := p−1/2(x) dµ(x) is also fi-
nite. By the definition of i.s.p.d. kernels, we have EWϵ

(µ) = Ekϵ
(µ̃) > 0 if µ̃ is not the zero

measure, which is equivalent to µ not being zero since p > 0. Thus Wϵ is i.s.p.d. on X . Also note
that (p(x)p(y))−1/2 < δ−1 for all x, y ∈ X , so EWϵ

is always finite. By Lemma 1.1 of Pronzato
& Zhigljavsky (2021), we conclude that EWϵ

is strictly convex inMsign, the space of finite signed
measures, and in particular it is convex on P(X). Hence combined with the existence result from
Lemma A.12 we conclude Eϵ attains a unique minimum in P(X).
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Our goal in the rest of this section is to prove the Γ-convergence of Eϵ to E : P(Rn) → [0,∞]
defined in (12). By Lemma A.8, we have E(µ) = χ2(µ ∥ µ∗) + 1. Hence together we will have
proved Theorem 3.6.

Definition A.13 (Γ-convergence). A sequence of functionals Fϵ : P(Rn) → (−∞,∞] is said to

Γ-converge to F : P(Rn)→ (−∞,∞], denoted as Fϵ
Γ→ F , if:

(a) For any sequence µϵ ∈ P(Rn) converging weakly to µ ∈ P(Rn), lim infϵ→0 Fϵ(µϵ) ≥
F(µ);

(b) For any µ ∈ P(Rn), there exists a sequence µϵ ∈ P(Rn) converging weakly to µ with
lim supϵ→0 Fϵ(µϵ) ≤ F(µ).

We will show Eϵ Γ→ E using Fourier transforms and Bochner’s theorem.

Definition A.14 (Fourier transform). For f ∈ L1(Rn), its Fourier transform f̂ is the complex-
valued function defined via

f̂(ξ) :=

∫
e−2πiξ·xf(x) dx.

More generally, for a signed finite measure µ ∈Msign(R
n), its Fourier transform µ̂ is the complex-

valued function defined via

µ̂(ξ) :=

∫
e−2πiξ·x dµ(x).

This integral is always well-defined and moreover µ̂ is uniformly continuous; see Borodachov et al.
(2019, Section 1.10).

We will prove the following weak version (under the additional assumption that a mollifier ϕ is inte-
grable) of Bochner’s theorem suitable for our case. In particular we will need the Fourier inversion
formula which is not given in the usual statement of Bochner’s theorem. On the other hand, we can-
not directly use the Fourier inversion formula since it is not obvious how to check the integrability
of ϕ̂ when ϕ is a mollifier.

Lemma A.15. Suppose ϕ ∈ L1(Rn) is even, bounded, continuous, and k(x, y) := ϕ(x − y) is
i.s.p.d. on any compact sets. Then its Fourier transform ϕ̂ is real, nonnegative, and the following
inversion formula holds:

ϕ(x) =

∫
e2πix·ξϕ̂(ξ) dξ for all x ∈ Rn. (14)

Proof. The proof is adapted from that of Varadhan (2001, Theorem 2.7) and is extended to the
multi-dimensional case.

Since ϕ̂(ξ) :=
∫
e−2πix·ξϕ(x) dx and ϕ(x) = ϕ(−x), with a change of variable x′ = −x, we obtain

ϕ̂(ξ) = ϕ̂(ξ), so ϕ̂ is real.

Next we show that ϕ̂ is nonnegative. For T > 0, we compute, for a fixed ξ ∈ Rn,

1

Tn

∫
[0,T ]n

∫
[0,T ]n

e−2πi(t−s)·ξϕ(t− s) dt ds

=
1

Tn

∫
[−T,T ]n

(∫
∏

i[|ui|,2T−|ui|]
2−n dv

)
e−2πiu·ξϕ(u) du

=
1

Tn

∫
[−T,T ]n

(
n∏

i=1

2T − 2|ui|
2

)
e−2πiu·ξϕ(u) du

=

∫
[−T,T ]n

(
n∏

i=1

(
1− |ui|

T

))
e−2πiu·ξϕ(u) du,
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where we have used change of variable u = t − s, v = t + s. Since ϕ ∈ L1(Rn), by dominated
convergence theorem, we have as T →∞

ϕ̂(ξ) =

∫
e−2πiξ·xϕ(x) dx = lim

T→∞

1

Tn

∫
[0,T ]n

∫
[0,T ]n

e−2πi(t−s)·ξϕ(t− s) dt ds.

For t, s ∈ Rn, we have

Re
(
e−2πi(t−s)·ξϕ(t− s))

)
=cos(2πt · ξ)k(t, s) cos(2πs · ξ) + sin(2πt · ξ)k(t, s) sin(2πs · ξ).

For a fixed T , if we define a finite measure µ as dµ = 1t∈[0,T ]n cos(2πt · ξ) dt, then k being i.s.p.d.
implies ∫∫

ϕ(t− s) dµ dµ =

∫
[0,T ]n

∫
[0,T ]n

cos(2πt · ξ)ϕ(t− s) cos(2πs · ξ) dt ds ≥ 0,

and similarly for sin. Since ϕ̂ is real, we conclude that ϕ̂ is nonnegative.

Finally we prove Equation (14). For σ > 0, define ϕ̂σ(ξ) := ϕ̂(ξ)e−σ2∥ξ∥2
2 . Since ϕ̂ is bounded

(because ϕ ∈ L1(Rn)), we see that ϕ̂σ ∈ L1(Rn). We compute, for x ∈ Rn, using Fubini’s
theorem, ∫

e2πix·ξϕ̂σ(ξ) dξ =

∫
ϕ̂(ξ)e−σ2∥ξ∥2

2e2πix·ξ dξ

=

∫ (∫
e−2πiy·ξϕ(y) dy

)
e−σ2∥ξ∥2

2e2πix·ξ dξ

=

∫ (∫
e−2πi(y−x)·ξe−σ2∥ξ∥2

2 dξ

)
ϕ(y) dy

=

∫
(π/σ2)n/2e−π2∥x−y∥2

2/σ
2

ϕ(y) dy,

where we use the Fourier transform formula (Borodachov et al., 2019, (4.4.1)) of the Gaussian dis-
tribution. Notice that pσ(y) := (π/σ2)n/2e−π2∥x−y∥2

2/σ
2

is the density of a multivariate Gaussian
centered at x with covariance σ2/(2π2) · I . Hence

∫
e2πix·ξϕ̂σ(ξ) dξ = (pσ ∗ ϕ)(0). Since ϕ is

bounded by assumption, with x = 0 we find
∫
ϕ̂σ(ξ) dξ ≤ ∥ϕ∥∞. Taking σ → 0, by monotone

convergence theorem, we have
∫
ϕ̂(ξ) dξ ≤ ∥ϕ∥∞, so together with the fact that ϕ̂ ≥ 0 we have

ϕ̂ ∈ L1(Rn). Finally, since ϕ̂σ ≤ ϕ̂, by dominated convergence theorem and Proposition A.4 (note
pσ is centered at x), we have∫

e2πix·ξϕ̂(ξ) dξ = lim
σ→0

∫
e2πix·ξϕ̂σ(ξ) dξ = lim

σ→0
(pσ ∗ ϕ)(0) = ϕ(x).

Proposition A.16. Given ϕ : Rn → R satisfying the assumptions of Lemma A.15, for any ν ∈
Msign(R

n), it holds that ∫∫
ϕ(x− y) dν(x) dν(y) =

∫
|ν̂(ξ)|2ϕ̂(ξ) dξ,

Proof. By Lemma A.15,∫∫
ϕ(x− y) dν(x) dν(y) =

∫∫ (∫
e−2πi(x−y)·ξϕ̂(ξ) dξ

)
dν(x) dν(y)

=

∫ (∫
e−2πix·ξ dν(x)

)(∫
e2πiy·ξ dν(y)

)
ϕ̂(ξ) dξ

=

∫
ν̂(ξ)ν̂(ξ)ϕ̂(ξ) dξ =

∫
|ν̂(ξ)|2ϕ̂(ξ) dξ.

where we use Fubini’s theorem (all measures are finite and e−2πi· is bounded) to exchange the order
of integration.
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Proof of Theorem 3.6. First note that Definition A.13(b) is immediate from Theorem 3.3 with µϵ =
µ: if E(µ) = ∞, then trivially lim supϵ→0 Eϵ(µ) ≤ E(µ); otherwise we apply Theorem 3.3. So we
focus on proving criterion Definition A.13(a).

Fix a sequence µϵ ∈ P(Rn) that converges weakly to µ ∈ P(Rn), and our goal is to show
lim infϵ→0 Eϵ(µϵ) ≥ E(µ). Without loss of generality, we may assume Eϵ(µϵ) < ∞ for all ϵ > 0
(these terms have no effect in lim inf), which implies µϵ(X) = 1. By Portmanteau’s theorem and
the assumption that X is closed, we have µ(X) ≥ lim supϵ→0 µϵ(X) = 1. So all of µϵ and µ will
have support in X .

For m > 0, ϵ > 0, define a nonnegative measure νϵ,m by

dνϵ,m(x) := hm(x)p−1/2(x) dµϵ(x),

where hm : Rn → R is a continuous monotonically decreasing cutoff function satisfying hm(x) =

1 if ∥x∥22 < m and hm(x) = 0 if ∥x∥22 > m + 1, and that hm(x) ≤ hm′(x) for m < m′. Then
since p > 0 is continuous, it is bounded below on any compact set in X , and hence νϵ,m is finite.
Also define, for m > 0, a nonnegative measure νm by

dνm(x) := hm(x)p−1/2(x) dµ(x),

which is again finite following the same reasoning.

Then for any m > 0, denoting dνϵ(x) := p−1/2(x) dµϵ(x),

Eϵ(µϵ) =

∫∫
ϕϵ(x− y) dνϵ(x) dνϵ(y)

≥
∫∫

ϕϵ(x− y) dνϵ,m(x) dνϵ,m(y) =

∫
|ν̂ϵ,m(ξ)|2ϕ̂ϵ(ξ) dξ, (15)

where we apply Proposition A.16 for the last equality. On the other hand, note that

ν̂ϵ,m(ξ) =

∫
e−2πiξ·x dνϵ,m(x) =

∫
e−2πiξ·xhm(x)p−1/2(x) dµϵ(x).

Since µϵ → µ weakly and the last integrand is a continuous bounded function, we have

lim
ϵ→0

ν̂ϵ,m(ξ) =

∫
e−2πiξ·xhm(x)p−1/2(x) dµ(x) = ν̂m(ξ).

On the other hand, ϕ̂ϵ(ξ) =
∫
e−2πiξ·xϕϵ(x) dx. Since by Definition 3.1, ϕϵ dx converges to δ0 in

probability (and in particular weakly), we have limϵ→0 ϕ̂ϵ(ξ) = 1.

Applying Fatou’s lemma to (15), we obtain, for any m > 0,

lim inf
ϵ→0

Eϵ(µϵ) ≥
∫
|ν̂m(ξ)|2 dξ.

If
∫
|ν̂m(ξ)|2 dξ = ∞ for any m > 0, then we are done since lim infϵ→0 Eϵ(µϵ) = ∞. Otherwise,

by Kühn (2016, Lemma 2.11), for every m > 0, νm has density in L2(Rn). This imples µ has
density everywhere. Suppose dµ(x) = q(x) dLn(x). By Plancherel’s theorem and the monotone
convergence theorem, we have

lim inf
ϵ→0

Eϵ(µϵ) ≥ lim
m→∞

∫
|ν̂m(ξ)|2 dξ

= lim
m→∞

∫
X

(
hm(x)p−1/2(x)q(x)

)2
dx

=

∫
X

p−1(x)q(x)2 dx = E(µ).

This completes the proof of Eϵ Γ→ E .

Now suppose X is compact, and let µ∗
ϵ := argminµ∈P(X) Eϵ(µ). To establish µ∗

ϵ → µ∗ weakly
(resp. limϵ→0 Eϵ(µ∗

ϵ ) = E(µ∗) = 1), it suffices to show that every subsequence of {µ∗
ϵ} (resp.
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{Eϵ(µ∗
ϵ )}) has a further convergence subsequence converging to µ∗ (resp. E(µ∗)). With a slight

abuse of notation, we assume the sequence of ϵ is chosen so that {µ∗
ϵ} (resp. {Eϵ(µ∗

ϵ )}) is already
some subsequence of the original sequence. As argued in the proof of Lemma A.12, P(X) is
compact with respect to weak convergence. Hence {µ∗

ϵ} has a weakly convergence subsequence
µ∗
ϵk
→ ν for some ν ∈ P(X). The Γ-convergence Eϵ Γ→ E implies

lim inf
k→∞

Eϵk(µ∗) ≥ lim inf
k→∞

Eϵk(µ∗
ϵk
) ≥ E(ν) ≥ lim sup

k→∞
Eϵk(ν) ≥ lim sup

k→∞
Eϵk(µ∗

ϵk
),

where we have used, for each inequality, µ∗
ϵk

= argminP(X) Eϵk , Definition A.13(a), the first para-
graph of this proof, and again the fact that µ∗

ϵk
= argminP(X) Eϵk . Since lim infk→∞ Eϵk(µ∗) =

E(µ∗) by Theorem 3.3, we have

E(µ∗) ≥ lim
k→∞

Eϵk(µ∗
ϵk
) = E(ν) ≥ E(µ∗),

where the last inequality follows because µ∗ is the minimizer of E . Then limk→∞ Eϵk(µ∗
ϵk
) =

E(µ∗) = 1. Moreover, χ2(ν ∥ µ∗) = 0. This can only happen if ν and µ∗ agree on all Borel sets, so
ν = µ∗.

A.4 DIFFERENTIAL CALCULUS OF Eϵ IN P2(R
n)

Lemma A.17. Let x0 ∈ R, h > 0, and Ω ⊂ Rm be a compact set. Suppose f : (x0 − h, x0 +
h)× Ω → R is jointly continuous and the derivative ∂

∂xf : (x0 − h, x0 + h)× Ω → R exists and
is jointly continuous. Then

∫
Ω
f(x, ω) dω is differentiable for x ∈ (x0 − h, x0 + h), and

d

dx

∫
Ω

f(x, ω) dω =

∫
Ω

∂

∂x
f(x, ω) dω

where the integration is with respect to the Lebesgue measure Lm on Ω.

Proof. Fix x ∈ (x0 − h, x0 + h) and let t > 0 be small enough such that [x − t, x + t] ⊂ (x0 −
h, x0 + h). Note that

∫
Ω
f(x, ω) dω is well-defined by the dominated convergence theorem since

supx∈[x−t,x+t],ω∈Ω f(x, ω) < ∞ and Lm(Ω) < ∞. Define θ(ω) := supx∈[x−t,x+t]

∣∣ ∂
∂xf(x, ω)

∣∣
which is finite since ∂

∂xf(x, ω) is continuous, so that θ(ω) ≥ ∂
∂x |f(x, ω)| for all x ∈ [x− t, x + t]

and θ is integrable since Lm(Ω) <∞. Hence by the differentiation lemma (Klenke, 2013, Theorem
6.28) we are done.

The following lemma is similar to Korba et al. (2021, Proposition 3) but with different assumptions:
we do not put any integrability assumptions on Wϵ, but we do restrict measures to have compact
support. For a differentiable f : Rn × Rn → R, we use ∇1f(x, y) to denote the gradient with
respect to x. We also use H1f(x, y) to denote the Hessian of f with respect to x. We similarly
denote∇2f(x, y) and H2f(x, y).

Lemma A.18. Assume µ ∈ P2(R
n) has density q ∈ C1

c (R
n). Let ξ ∈ C(Rn;Rn). Denote

s(x, t) := x+ tξ(x). Then for all t > 0 and all ϵ > 0,

d

dt
Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(s(x, t), s(y, t))

)
dµ(x) dµ(y). (16)

In particularly,

d

dt

∣∣∣∣
t=0

Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(x, y)

)
dµ(x) dµ(y). (17)

Moreover,

d2

dt2

∣∣∣∣
t=0

Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1∇2Wϵ(x, y)ξ(y) + ξ(x)⊤H1Wϵ(x, y)ξ(x)

)
dµ(x) dµ(y).

(18)
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Proof. We compute

d

dt
Eϵ(µt) =

d

dt

(
2

∫∫
Wϵ(s(x, t), s(y, t)) dµ(x) dµ(y)

)
.

Since µ has compact support and (x, y, t) 7→Wϵ(s(x, t), s(y, t))q(x)q(y) is jointly continuous and
its derivative with respect to t is also jointly continuous, by Lemma A.17, we can push d

dt inside
the double integral and we obtain (16). Another application of Lemma A.17 shows that if we take
derivative with respect to t again on (16) and evaluate at 0 we obtain (18).

Lemma A.19. Let f ∈ C1(Rn), p ∈ [1,∞]. Assume ϕϵ has compact support for some ϵ > 0. Then
for all i = 1, . . . , n, ϕϵ ∗ f is differentiable and

∂

∂xi
(ϕϵ ∗ f)(x) =

(
ϕϵ ∗

∂

∂xi
f

)
(x).

Proof. Since supp(ϕϵ) is compact and f ∈ C1(Rn) is bounded on any compact set, we know ϕϵ ∗f
is well-defined at every x ∈ Rn. Note that

∂

∂xi
(ϕϵ ∗ f)(x) =

∂

∂xi

(∫
f(x− y)ϕϵ(y) dy

)
(?)
=

∫
∂f

∂xi
(x− y)ϕϵ(y) dy =

(
ϕϵ ∗

∂

∂xi
f

)
(x).

Since supp(ϕϵ) is compact and (x, y) 7→ f(x − y)ϕ(y) is C1, by Lemma A.17 we justify the
existence of the derivative and the exchange of differentiation and integration (?).

A.4.1 SUBDIFFERENTIALS OF Eϵ
Recall the following notion of a “Wasserstein gradient” in P2(R

n) from Ambrosio et al. (2005,
Definition 10.1.1).
Definition A.20. A vector field w ∈ L2(µ;Rn) is a strong Fréchet subdifferential of a functional
F : P2(R

n)→ (−∞,+∞] if for all T ∈ L2(µ;Rn), the following holds:

F(T#µ)−F(µ) ≥
∫

w(x)⊤(T (x)− x) dµ(x) + o
(
∥T − I∥L2(µ;Rn)

)
. (19)

Note that we cannot apply Ambrosio et al. (2005, Lemma 10.4.1) directly to prove (4) because
interaction energies cannot be written in the form of (10.4.1) in their setup.

Proof of Proposition 3.7. Let ξ ∈ C∞
c (Rn;Rn). By Lemma A.18, we have

d

dt

∣∣∣∣
t=0

Eϵ(µt) = 2

∫∫ (
ξ(x)⊤∇1Wϵ(x, y)

)
dµ(x) dµ(y)

= 2

∫∫ (
ξ(x)⊤∇1

(
ϕϵ(x− y)(p(x)p(y))−1/2

))
q(y) dy dµ(x)

= 2

∫
ξ(x)⊤∇

(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
dµ(x),

where the last step follows from applying Lemma A.17 since q has compact support. Now suppose
w ∈ L2(µ;Rn) is a strong Fréchet subdifferential satisfying (19). For the sequence {Tt}, we have
by definition

Eϵ(µt)− Eϵ(µ) ≥
∫

w(x)⊤(Tt(x)− x) dµ(x) + o
(
∥Tt − I∥L2(µ;Rn)

)
=

∫
w(x)⊤(tξ(x)) dµ(x) + o(t).

Hence

lim inf
t↓0

Eϵ(µt)− Eϵ(µ)
t

≥
∫

w(x)⊤ξ(x) dµ(x) ≥ lim inf
t↑0

Eϵ(µt)− Eϵ(µ)
t

.
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The previous calculation shows d
dt |t=0Eϵ(µt) exists, and hence it is equal to

∫
w(x)⊤ξ(x) dµ(x).

This proves for any ξ ∈ C∞
c (Rn;Rn),∫

w(x)⊤ξ(x) dµ(x) =

∫
ξ(x)⊤∇

(
2p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
dµ(x).

Hence we have shown (4).

Finally, we show limϵ→0 wϵ(x) = wχ2(x) for µ-a.e. x under the additional assumption that ϕϵ has

compact support. By Ambrosio et al. (2005, Lemma 10.4.1) with F (x, ρ(x)) =
(

ρ(x)
p(x) − 1

)2
p(x),

we find the strong subdifferential of χ2(· ∥ µ∗) is given by

wχ2,µ(x) = 2∇q(x)

p(x)
, for µ-a.e. x ∈ Rn. (20)

To show (5), we compute, for µ-a.e. x,

wϵ(x) = ∇
(
p(x)−1/2(ϕϵ ∗ q/

√
p)(x)

)
= ∇(p(x)−1/2)(ϕϵ ∗ q/

√
p)(x) + p(x)−1/2∇(ϕϵ ∗ q/

√
p)(x)

= ∇(p(x)−1/2)(ϕϵ ∗ q/
√
p)(x) + p(x)−1/2(ϕϵ ∗ ∇(q/

√
p))(x),

where for the last equality we have applied Lemma A.19. Now taking ϵ → 0, by Proposition A.4
using the fact that supp(ϕϵ) is compact (so that q/

√
p and∇(q/√p) are bounded on x+ supp(ϕϵ)),

we obtain (5).

A.4.2 DISPLACEMENT CONVEXITY OF Eϵ AT µ∗ AS ϵ→ 0

The statement of Proposition 3.8 is similar in form as Korba et al. (2021, Corollary 4) but in our case
we do not have the second term in Equation (18) vanishing and we need to take the limit ϵ→ 0. We
also do not resort to RKHS theory in the proof.

Proof of Proposition 3.8. By (18), we have

d2

dt2

∣∣∣∣
t=0

Eϵ(µt) = 2(Fϵ + Gϵ),

where

Fϵ =

∫∫ (
ξ(x)⊤∇1∇2Wϵ(x, y)ξ(y)

)
dµ∗(x) dµ∗(y)

Gϵ =

∫∫ (
ξ(x)⊤H1Wϵ(x, y)ξ(x)

)
dµ∗(x) dµ∗(y).

We tackle Fϵ first. Observe that successive application of integration by parts using the fact that ξ
has compact support gives

Fϵ =
n∑

i,j=1

∫∫
ξi(x)

∂2

∂xi∂yj
Wϵ(x, y)ξj(y)p(x)p(y) dx dy

= −
n∑

i,j=1

∫∫
∂

∂xi
(ξi(x)p(x))

∂

∂yj
Wϵ(x, y)ξj(y)p(y) dx dy

=
n∑

i,j=1

∫∫
∂

∂xi
(ξi(x)p(x))Wϵ(x, y)

∂

∂yj
(ξj(y)p(y)) dx dy

=

∫∫ ( n∑
i=1

∂

∂xi
(ξi(x)p(x))

)
Wϵ(x, y)

 n∑
j=1

∂

∂yj
(ξj(y)p(y))

 dx dy.
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If we view
∑n

i=1
∂

∂xi
(ξi(x)p(x)) as the density of a signed measure (it is integrable since it has

compact support), and since Wϵ is i.s.p.d. on the support of ξ by Proposition 3.5(a), we see that
each double integral in the last expression is non-negative. Hence Fϵ ≥ 0.

Next we show limϵ→0 Gϵ = 0. Since µ∗ has compact support, by Fubini’s theorem,

Gϵ =

∫
ξ(x)⊤H1

(∫
Wϵ(x, y)p(y) dy

)
ξ(x)p(x) dx.

To expand the integral inside the Hessian operator, we have

H1

(∫
Wϵ(x, y)p(y) dy

)
= H

(
p(x)−1/2(ϕϵ ∗

√
p)(x)

)
.

First by the chain rule and Lemma A.19, we have

d

dx

(
p(x)−1/2(ϕϵ ∗

√
p)(x)

)
=

d

dx

(
p(x)−1/2

)
(ϕϵ ∗

√
p) + p(x)−1/2

(
ϕϵ ∗

d

dx

√
p(x)

)
.

Differentiating again while applying Lemma A.19, we obtain after rearranging terms,

H1

(∫
Wϵ(x, y)p(y) dy

)
=

(
d2

dx2
p(x)−1/2

)
(ϕϵ ∗

√
p)(x)

+ 2

(
d

dx
p(x)−1/2

)(
ϕϵ ∗

d

dx

√
p

)
(x)

+ p(x)−1/2

(
ϕϵ ∗

d2

dx2

√
p

)
(x). (21)

By Proposition A.4 and the fact that p ∈ C2
c (R

n), we have

lim
ϵ→0

H1

(∫
Wϵ(x, y)p(y) dy

)
=

(
d2

dx2
p(x)−1/2

)√
p(x) + 2

(
d

dx
p(x)−1/2

)
d

dx

√
p(x) + p(x)−1/2 d2

dx2

√
p(x)

=
d2

dx2

(
p(x)−1/2

√
p(x)

)
= 0.

Finally, we have

lim
ϵ→0

Gϵ = lim
ϵ→0

∫
ξ(x)⊤H1

(∫
Wϵ(x, y)p(y) dy

)
ξ(x)p(x) dx

=

∫
ξ(x)⊤

(
lim
ϵ→0

H1

(∫
Wϵ(x, y)p(y) dy

))
ξ(x)p(x) dx

= 0,

where interchanging the limit and the integral is jusfitied by the dominated convergence theorem and
the fact that p and ϕϵ have compact support (we need compact support assumption of ϕϵ to make
sure convolutions appearing in (21) are uniformly bounded when ϵ is sufficiently small).

A.4.3 A DESCENT LEMMA FOR Eϵ WITH TIME DISCRETIZATION

We now consider a time discretization of the gradient flow of Eϵ given by, for an initial measure
µ0 ∈ P2(R

n) and m ∈ Z>0, with a step size γ > 0,

µm+1 := (I − γwϵ,µm
)#µm. (22)

Similar to Korba et al. (2021, Proposition 14), we can show the following descent lemma for itera-
tions (22) with the following additional assumptions:
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Assumption A.21. Suppose the target density p ∈ C2(Rn) satisfies 1/Cp ≤ p(x) ≤ Cp,
∥p(x)∥2 ≤ C ′

p, ∥Hp(x)∥2 ≤ C ′′
p for some Cp, C

′
p, C

′′
p for all x ∈ Rn, where we use ∥A∥2 to

indicate the matrix spectral norm (i.e. ∥A∥2 = σmax(A)). Suppose the mollifier ϕϵ ∈ C2(Rn)
satisfies, in addition to Definition 3.1, ϕϵ(x) ≤ Cϵ, ∥∇ϕϵ(x)∥2 ≤ C ′

ϵ, and ∥Hϕϵ(x)∥2 ≤ C ′′
ϵ for

some Cϵ, C ′
ϵ, C

′′
ϵ .

Lemma A.22. Under Assumption A.21, there exists a constant L > 0 such that the function∇1Wϵ :
Rn ×Rn → Rn is L-Lipschitz in terms of ∥·∥2 in either input.

Proof. Denote r(x) := p(x)−1/2. Then our assumptions imply r(x) ≤ Cr := C
1/2
p , ∥∇r(x)∥2 ≤

C ′
r := 1

2C
3/2
p C ′

p, and ∥H1r(x)∥2 ≤ C ′′
r := 3

4C
5/2
p C ′2

p + 1
2C

3/2
p C ′′

p . We compute, for x, y ∈ Rn,

∇1Wϵ(x, y) = ∇x (ϕϵ(x− y)r(x)r(y))

= ∇ϕϵ(x− y)r(x)r(y) + ϕϵ(x− y)∇r(x)r(y).
Then

H1Wϵ(x, y) = Hϕϵ(x− y)r(x)r(y) + 2∇ϕϵ(x− y)∇r(x)⊤r(y) + ϕϵ(x− y)Hr(x)r(y),

and

∇2∇1Wϵ(x, y) = −Hϕϵ(x− y)r(x)r(y) +∇ϕϵ(x− y)r(x)∇r(y)⊤

−∇ϕϵ(x− y)∇r(x)r(y) + ϕϵ(x− y)∇r(x)∇r(y)⊤.
Then we have

∥H1Wϵ(x, y)∥2 ≤ C ′′
ϵ C

2
r + 2C ′

ϵC
′
rCr + CϵC

′′
rCr,

∥∇2∇1Wϵ(x, y)∥2 ≤ C ′′
ϵ C

2
r + 2C ′

ϵCrC
′
r + CϵC

′2
r .

Hence we conclude that∇1Wϵ is L-Lipschitz with

L := C ′′
ϵ C

2
r + 2C ′

ϵC
′
rCr + Cϵ max(C ′′

rCr, C
′2
r ).

Remark A.23. Compared with Korba et al. (2021, Lemma 1), to ensure∇1Wϵ is Lipscthiz, we only
require uniform boundedness of p and ϕϵ up to second order derivatives instead of up to order 3.

Proposition A.24. Under Assumption A.21, suppose µ0 ∈ P2(R
n) has compact support. Then for

any γ ≤ 1
2L , with L defined as in Lemma A.22 and {µm}m>0 defined as in (22),

Eϵ(µm+1)− Eϵ(µm) ≤ −γ(1− 2γL)∥wϵ,µm
∥L2(µm) ≤ 0. (23)

Proof. We first show µm has compact support for all m ∈ Z≥0. For µ ∈ P2(R
n) with compact

support, the proof of Proposition 3.7 implies (note Proposition 3.7 assumes µ has density but it is
not necessary to obtain the following formula using the same proof)

wϵ,µ(x) = 2

∫
∇1Wϵ(x, y) dµ(y).

Since x 7→ ∇1Wϵ(x, y) is C1 by the assumptions and µ has compact support, by Lemma A.17, we
see that wϵ,µ is differentiable with

∇wϵ,µ(x) = 2

∫
H1Wϵ(x, y) dµ(y).

By induction, suppose µm has compact support. Then

supp(µm+1) ⊂ (I − γwϵ,µm
)# supp(µm) ⊂ supp(µm) + γ

(
sup

x∈supp(µm)

∥wϵ,µm
∥2

)
B1(0).

Since wϵ,µm
is continuous, the set on the right-hand side is bounded. Hence µm+1 has compact

support.
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Now fix m ∈ Z>0 and we show (23). Define a path {µt}t∈[0,1] defined by µt = (I−γtwϵ,µm
)#µm.

Let f(t) := Eϵ(µt). By Lemma A.18, the continuity of wϵ,µm
implies that f is differentiable.

Moreover, another application of Lemma A.17 implies that f is twice differentiable, and in particular
continuously differentiable. Hence f is absolutely continuous on the compact interval [0, 1]. By the
fundamental theorem of calculus, we have

Eϵ(µm+1)− Eϵ(µm) = f(1)− f(0) = f ′(0) +

∫ 1

0

(f ′(t)− f ′(0)) dt.

Observe that by Lemma A.18,

f ′(0) = 2

∫∫
(−γwϵ,µm

(x))⊤∇1Wϵ(x, y) dµm(x) dµm(y)

=

∫
(−γwϵ,µm

(x))

(
2

∫
∇1Wϵ(x, y) dµm(y)

)
dµm(x)

= −γ∥wϵ,µm
(x)∥2L2(µm),

where we apply Fubini’s theorem to exchange the order of integration together with the fact that µm

has compact support and the integrand is continuous. Let s(x, t) := x − γtwϵ,µm
(x). Note that,

again by Lemma A.18,

|f ′(t)− f ′(0)| ≤ 2

∫∫ ∣∣(−γwϵ,µm(x))⊤ (∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y))
∣∣ dµm(x) dµm(y)

≤ 2γ

∫∫
∥wϵ,µm

(x)∥2∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y)∥2 dµm(x) dµm(y).

Note that, by Lemma A.22, we have

∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(x, y)∥2
≤∥∇1Wϵ(s(x, t), s(y, t))−∇1Wϵ(s(x, t), y)∥2 + ∥∇1Wϵ(s(x, t), y)−∇1Wϵ(x, y)∥2
≤Lγt(∥wϵ,µm

(x)∥2 + ∥wϵ,µm
(y)∥2).

Thus

|f ′(t)− f ′(0)| ≤ 2γ2Lt

∫∫
∥wϵ,µm

(x)∥2
(
∥wϵ,µm

(x)∥2 + ∥wϵ,µm
(y)∥2

)
dµm(x) dµm(y)

≤ 2γ2Lt

(
∥wϵ,µm

∥L2(µm) +

(∫
∥wϵ,µm

(x)∥2 dµm(x)

)2
)

≤ 4γ2Lt∥wϵ,µm∥L2(µm),

where we have used the Cauchy-Schwartz inequality in the last step.

Combining everything, we have shown

Eϵ(µm+1)− Eϵ(µm) = f ′(0) +

∫ 1

0

(f ′(t)− f ′(0)) dt

≤ −γ(1− 2γL)∥wϵ,µm∥L2(µm) ≤ 0,

since γ < 1
2L .

B WEIGHTED HYPERSINGULAR RIESZ ENERGY

We recall results most relevant to us from Borodachov et al. (2019). Suppose X ⊂ Rn is compact,
of Hausdorff dimension d, and d-rectifiable, i.e., the image of a bounded set in Rd under a Lipschitz
mapping. Given a non-vanishing continuous probability density p on X , define a measureHp

d(B) :=
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∫
B
p(x) dHd(x) for any Borel set B ⊂ X . The target measure hp

d is defined to be hp
d(B) :=

Hp
d(B)/Hp

d(X). The weighted s-Riesz energy is defined as the interaction energy

Es(ωN ) :=
∑
i̸=j

(p(xi)p(xj))
−s/2d

∥xi − xj∥s
. (24)

The following result states that minimizers of the weighted s-Riesz energy approximate the target
measure when the s is sufficiently large.

Theorem B.1 (Theorem 11.1.2, Borodachov et al. (2019)). Suppose s > d. For ω∗
N ∈ argminEs

with ω∗
N = {xN

1 , . . . , xN
N}, we have weak convergence δω∗

N
→ hp

d as N →∞.

A similar result with a slightly different assumption holds for s = d (Theorem 11.1.3 of Borodachov
et al. (2019)).

Comparison of (24) with discretized MIE (6). Our theory is only valid for the full-dimensional
case, i.e., n = d (see a few exceptions discussed in Remark A.10). When this is the case and if the
mollifier is taken to be from the s-Riesz family, (6) becomes, for s > n,

Eϵ(ωN ) :=
N∑

i,j=1

(p(xi)p(xj))
−1/2(

∥xi − xj∥22 + ϵ2
)s/2 .

Compared with (24), in our case there is an ϵ in the denominator, so that the continuous version
of the energy Eϵ does not blow up all the time (this is in contrast with the continuous version of
(24)—see Borodachov et al. (2019, Theorem 4.3.1)). Moreover, the exponential scaling on p is
different: in our case we use −1/2 whereas in (24) it is −s/2n. The diagonal i = j is included
in our energy, but this is inconsequential as another valid discretization is to discard the diagonal
term (Borodachov et al., 2019, Theorem 4.2.2). On the other hand, our theory allows a bigger class
of mollifiers that are not necessarily of Riesz families. We also allow X to be non-compact. An
interesting future research direction is to extend our theory to cases where d < n, e.g., when X is
an embedded d-dimensional submanifold in Rn.

C ALGORITHMIC DETAILS

In this section we provide algorithmic details of MIED and compare with the updates of SVGD (Liu
& Wang, 2016). The negative gradient of (7) with respect to xi is

−∇xi logEϵ(ωN ) =2
∑
j ̸=i

eIij∑
i,j e

Iij

(
(∇ log ϕϵ)(xj − xi) +

1

2
∇ log p(xi)

)

+
eIii∑
i,j e

Iij
∇ log p(xi)

=
N∑
j=1

eIij∑
i,j e

Iij
(2∇ log ϕϵ(xj − xi) +∇ log p(xi)) ,

where

Iij := log ϕϵ(xi − xj)−
1

2
(log p(xi) + log p(xj)), (25)

and to get the last equality we used the fact that ∇ϕ(0) = 0 thanks to the assumption ϕ(x) =
ϕ(−x). Then gradient descent on (7) gives our algorithm (Algorithm 1). The special treatment of
the diagonal terms described in Section 4 amounts to modifying only the diagonal Iii.
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Algorithm 1: Mollified interaction energy descent (MIED) in the logarithmic domain.

Input: target density p, mollifier ϕϵ, initial particles {x0
i }Ni=1, learning rate η, total steps T .

for t← 1 to T do
for i← 1 to N do

xt+1
i ← xt

i + η
∑N

j=1
eIij∑
i,j eIij

(2∇ log ϕϵ(xj − xi) +∇ log p(xi)), where Iij is

defined in (25);
end

end
return final particles {xT

i }Ni=1.

C.1 COMPARISON WITH SVGD

The update formula in Algorithm 1 is similar to the one in SVGD: if we use ϕϵ(x − y) in place of
the kernel k(x, y) in the SVGD update and rewrite:

xt+1
i = xt

i + η
N∑
j=1

(∇ϕϵ(xj − xi) + ϕϵ(xj − xi)∇ log p(xj))

= xt
i + η

N∑
j=1

ϕϵ(xj − xi) (∇ log ϕϵ(xj − xi) +∇ log p(xj)) . (SVGD)

For both algorithms, the update formula for each particle consists of attraction and repulsion terms
and the total time complexity of each update iteration is O(N2). We note the following differences.
First, in our formulation we have scaling factors eIij∑

i,j eIij
which help stabilizing the optimization (as

a by-product of working in the logarithmic domain) and put more weight on nearby particles as well
as particles in low-density regions, whereas in (SVGD) the scaling factors are ϕϵ(xj − xi) which
are not adapted to prioritize low-density regions. Second, in MIED, the attraction force for particle
i only comes from∇ log p(xi), whereas in (SVGD) the attraction force comes from∇ log p(xj) for
all j’s. Third, for each j, in our formulation the repulsive force has an additional factor of 2 in front
of ∇ log ϕϵ(xj − xi).

Empirically, the additional scaling factors in MIED help produce samples with good separations
compared to SVGD, since closer pairs of points will have large weights. Additionally, since MIED
optimizes a finite-dimensional objective (7), we can employ accelerated gradient-based optimizers
like Adam (Kingma & Ba, 2014), which we used in our experiments. In contrast, SVGD does
not optimize any finite-dimensional objective. While practical SVGD implementations also use
optimizers like Adam, it is unclear how the resulting particle dynamics is related to the gradient
flow of KL divergence.

C.2 HANDLING CONSTRAINTS WITH DYNAMIC BARRIER METHOD

The dynamic barrier method is introduced in Gong & Liu (2021) which solves minx f(x) subject
to g(x) ≤ 0 where g is scalar-valued. Intuitively, their method computes update directions by either
decreasing g(x) when g(x) > 0, following −∇f(x) if the constraints are satisfied, or balancing
both gradient directions.

In order to handle multiple constraints such as in Figure 11, we consider a generalized version of
their dynamic barrier method. In this generalized setting, g : Rn → Rm is vector-valued and
constraints are g(x) ≤ 0 where the ≤ sign is interpreted coordinate wise.. Suppose we are at
iteration t with current solution xt. Then the next update direction v∗ is taken to be the argmin of

min
v∈Rn

∥∥v −∇f(xt)
∥∥2
2

s.t. ∀i = 1, . . . ,m,∇gi(xt)⊤v ≥ αigi(x
t), (26)

where αi > 0 are fixed hyperparameters; in our implementation we simply choose αi = 1. Then
xt+1 = xt − ηv∗ with learning rate η. In our implementation we use Adam (Kingma & Ba,
2014) that modulates the update directions. Observe that the optimization problem (26) is the
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same as projecting a point∇f(xt) onto the polyhedron formed by the intersection of the halfspaces
∩mi=1{x ∈ Rn : ∇gi(xt)⊤v ≥ αigi(x

t)}. To solve (26), we use Dykstra’s algorithm (Tibshi-
rani, 2017) which can be interpreted as running coordinate descent on the dual of (26). We use a
fixed number of 20 iterations for the Dykstra’s algorithm which we found to be sufficient for our
experiments; in the case of a single constraint, we only need to use one iteration.

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

D.1 GAUSSIANS IN VARYING DIMENSIONS

We generate the n-dimensional Gaussians used to produce Figure 1 as follows. We generate a matrix√
A ∈ Rn×n with i.i.d. entries uniformly in [−1, 1]. Then we set A =

√
A
√
A

⊤
/ det

(√
A
)

. This
way det(A) = 1. We then use A as the covariance matrix for the Gaussian (centered at 0). We
use Adam with learning rate 0.01 for all methods for a total of 2000 iterations. This is enough for
SVGD and MIED to converge, while for KSDD the convergence can be much slower.

We visualize the samples from each method for n = 2 in Figure 5. We notice that MIED is capable
of generating well-separated samples, while for SVGD there is a gap between the inner cluster of
samples and a sparse outer ring. For KSDD we see the artifact where too many samples concentrate
on the diagonal.
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3
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Figure 5: Visualization of samples from each method for a 2D skewed Gaussian.

D.2 COLLAPSED SAMPLES WHEN THE KERNEL WIDTH IS TOO BIG

In Figure 3, we see that samples from SVGD collapse with an adaptive kernel where the variance
is taken to be half of the median of the squared distance among all pairs of points (Liu & Wang,
2016); at termination the median of the squared distance is greater than 1 in that experiment. Here
we investigate this issue further. In Figure 6, for the same uniform sampling setup, we visualize the
results of SVGD with a fixed kernel width and MIED with Gaussian mollifiers with the same kernel
width: when the kernel width (i.e. 2ϵ2 in ϕg

ϵ (x) = exp
(
−∥x∥2

2

2ϵ2

)
/Zg

ϵ ) is too big, both SVGD and
MIED result in collapsed samples. This is because since the target density is a constant, the only
force in the updates is the repulsive force. When the kernel width is too large, the repulsive force
coming from points in the same collapsed cluster is dominated by the repulsive force coming from
points from other clusters—this is evident in the update directions shown in the leftmost column
of Figure 6 (SVGD with kernel width 0.1). When using the dynamic barrier method Gong & Liu
(2021) to enforce the square constraints instead of reparameterization with tanh, we obtain similar
results as in Figure 6.

This pathological phenomenon is not only limited to constrained sampling: when sampling the 2D
Gaussian from Figure 5, using too big a kernel width can also result in collapsing (Figure 7).

We emphasize that our theory of MIED suggests that in practice we need to choose the kernel
width very small in order to sample from the correct target measure according to Theorem 3.3 and
Theorem 3.6. In comparison, the theory of SVGD has no such implication.

D.3 UNIFORM SAMPLING WITH AN ALTERNATIVE MIRROR MAP

In this section, we show that for sampling from a uniform distribution in the square [−1, 1]2, the
results of SVMD/MSVGD (Shi et al., 2021) depend heavily on the choice of the mirror map. In-
stead of the entropic mirror map used to produce results in Figure 3, here we use the mirror map
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Figure 6: SVGD and MIED with fixed-size Gaussian kernels for uniform sampling in a square. In
each cell of the grid, we plot the samples along with the update direction (black arrows) at that
iteration. Rows correspond to iterations 100, 200, 1000. Columns correspond to each method with
varying kernel widths (twice the variance of the Gaussian kernel/mollifier) indicated in the paren-
theses.
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Figure 7: SVGD and MIED with fixed-size Gaussian kernels for sampling a 2D Gaussian as in
Figure 5. We see that using too big a kernel size can lead to collapsed samples for both SVGD and
MIED.

ϕ(θ) =
∑n

i=1

(
log 1

1−θi
+ log 1

1+θi

)
as in Ahn & Chewi (2021). The results are shown in Figure 8.

SVMD/MSVGD fail to draw samples near the boundary; we suspect this is because the gradient of
the conjugate ∇ϕ∗(η) = (

√
1+η2−1)/η (coordinate-wise arithmetic) requires coordinates of η to go

to∞ to land near the boundary. We verify this phenomenon by using∇ϕ∗(η) as the reparametriza-
tion map in MIED (rightmost figure in Figure 8): indeed with such reparameterization MIED also
struggles near the boundary.
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Figure 8: Visualization of samples for uniform sampling from a 2D box when using a suboptimal
mirror map. All three methods fail to draw samples near the boundary of the box [−1, 1]2.

D.4 20-DIMENSIONAL DIRICHLET DISTRIBUTION

We sample from the 20-dimensional Dirichlet distribution in the same setup as in Shi et al. (2021)
with 50 particles. Results and visualization are shown in Figure 9. We see that unlike sampling from
a box (Figure 3), both MSVGD and SVMD by Shi et al. (2021) perform well in this experiment. This
is due to the fact that the entropic mirror map used here is a well-tested choice for simplex constraint,
yet obtaining a good mirror map for a generic constraint, even if it is linear, can be challenging. Our
method does not have such a limitation, as it can easily incorporate existing constrained optimization
tools.
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Figure 9: Top: Metrics vs. the number of iteration for sampling the 20-dimensional Dirichlet distri-
bution. Bottom: visualization of samples from each method.

D.5 EFFECT OF s FOR RIESZ MOLLIFIERS

When we use the s-Riesz families of mollifiers in MIED, we have the freedom of choosing the
hyperparameter s so long as s > n. In this section, we study the effect of s on the resulting samples.
We consider the problem of sampling from a mixture of four 2D Gaussians centered at (±1,±1),
each with diagonal variance 0.3 and constrained to the [−1, 1]2 box. We vary s in [2, 10] and the
number of particles N in {100, 200, 500, 1000, 2000}. All runs use a total of 1000 iterations with
learning rate 0.01. In the top of Figure 10, we plot the W2 distance and energy distance as functions
of s for each N . Interestingly, we see the best performing s is in [3, 5.0] and depends on N . This
suggests that our choice of s = n + 10−4 in Section 5 may not be optimal and there is room
for hyperparameter tuning to further improve the performance of MIED with Riesz kernel. At the
bottom of Figure 10 we visualize the samples of MIED with s = 3 and of SVGD with kernel width
0.01 (adaptive kernels would result in collapsed samples and other widths we tested on would result
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in worse samples). While SVGD samples form visible artifacts, the samples of MIED are evenly
distributed and the four modes of the mixtures emerge as N increases.
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Figure 10: Ablation study of the hyperparameter s for MIED with s-Riesz families of mollifiers.
Top: metrics as functions of s. Bottom: visualization of samples of MIED with a Riesz mollifier
with s = 3 and of SVGD with kernel width 0.01.

D.6 MORE CONSTRAINED SAMPLING EXPERIMENTS

In this section we test MIED on more low dimensional constrained sampling problems and qualita-
tively assess the results. Note that mirror LMC (Zhang et al., 2020; Ahn & Chewi, 2021) or mirror
SVGD (Shi et al., 2021) cannot be applied due to non-convexity of the constraints. In Figure 11,
we consider uniform sampling of a challenging 2D region with initial samples drawn from the top-
right corner: as the number of iterations increases, MIED gradually propagate samples to fill up the
entire region. In Figure 12, we consider sampling from a von Mises-Fisher distribution on a unit
sphere. Although our theory focuses on sampling from a full-dimensional distribution, as discussed
in Remark A.10, we can extend Theorem 3.3 to the case of a sphere due to its symmetry. We see the
samples visualized in Figure 12 capture the two modes that emerge by restricting the Gaussian to a
unit sphere.

D.7 DETAILS ON FAIRNESS BAYESIAN NEURAL NETWORK EXPERIMENT

We use 80%/20% training/test split as in Liu et al. (2021). We use the source code provided by
Liu et al. (2021) with default hyperparameters.The source code provided by the authors of Liu
et al. (2021) does not implement the calculation of g(θ) faithfully as written in the formula, so we
corrected it. All methods use 2000 iterations for training. For our method we use learning rate 0.001.
One of their four methods (Control+SVGD) got stuck at initialization (with accuracy around 0.75),
so we omit its result from the plot in Figure 4.
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Figure 11: Uniform sampling of the region {(x, y) ∈ [−1, 1]2 : (cos(3πx) + cos(3πy))2 < 0.3}
using MIED with a Riesz mollifier (s = 3) where the constraint is enforced using the dynamic
barrier method. The plot in row i column j shows the samples at iteration 100 + 200(6i + j). The
initial samples are drawn uniformly from the top-right square [0.5, 1.0]2.

Figure 12: Sampling from the von Mises-Fisher distribution obtained by constraining the 3-
dimensional Gaussian from Appendix D.1 to the unit sphere. The unit-sphere constraint is enforced
using the dynamic barrier method and the shown results are obtained using MIED with Riesz kernel
and s = 3. The six plots are views from six evenly spaced azimuthal angles.

32


	Introduction
	Related Works
	Mollified interaction energy
	Mollifiers
	Mollified Interaction Energies
	Convergence to 2-divergence
	Convexity and -convergence
	Differential calculus of E in P2(Rn)

	A practical sampling algorithm
	Experiments
	Unconstrained sampling
	Constrained sampling

	Conclusion
	Detailed Analysis
	Preliminaries on mollifiers
	Convergence to 2-divergence
	Convexity and -convergence
	Differential calculus of E in P2(Rn)
	Subdifferentials of E
	Displacement convexity of E at * as 0
	A descent lemma for E with time discretization


	Weighted hypersingular Riesz energy
	Algorithmic details
	Comparison with SVGD
	Handling constraints with dynamic barrier method

	Experiment details and additional results
	Gaussians in varying dimensions
	Collapsed samples when the kernel width is too big
	Uniform sampling with an alternative mirror map
	20-dimensional Dirichlet distribution
	Effect of s for Riesz mollifiers
	More constrained sampling experiments
	Details on fairness Bayesian neural network experiment


